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NEW EFFECTIVE TRANSFORMATIONAL
COMPUTATIONAL METHODS

Jun Zhang1,†, Ruzong Fan2, Fangyang Shen3 and Junyi Tu4

Abstract Mathematics serves as a fundamental intelligent theoretic basis for
computation, and mathematical analysis is very useful to develop computa-
tional methods to solve various problems in science and engineering. Integral
transforms such as Laplace Transform have been playing an important role in
computational methods. In this paper, we will introduce Sumudu Transform in
a new computational approach, in which effective computational methods will
be developed and implemented. Such computational methods are straight-
forward to understand, but powerful to incorporate into computational sci-
ence to solve different problems automatically. We will provide computational
analysis and essentiality by surveying and summarizing some related recent
works, with additional automatic proof details by applying system built-in
functions. Applications include the computation of coefficients of Taylor’s ex-
pansions, calculation of generating functions, mathematical identity proofs,
solving differential equations and integral equations. For demonstration pur-
poses, some of the methods were implemented in Maple with demonstrational
results matching the expected values.
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tion, problem solving.
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1. Introduction of Sumudu Transform

Mathematical analysis is very useful to develop computational methods to solve
various problems in the real world. Named after its inventor Pierre-Simon Laplace,
Laplace Transform is an integral transform with many applications in science and
engineering. Since it is very famous and widely used, many undergraduate and
graduate programs offer courses on the Laplace Transform.

The Sumudu Transform is recent, but it is as powerful as the Laplace Transform,
furthermore, it has many nice new features. Laplace Transform is well studied and
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implemented in computer algebra systems such as Maple. Since the similarity of
these two transforms, it is a good idea to introduce the Sumudu Transform in
comparison with Laplace Transform.

Let f be a function of variable x defined in the domain of 0 <= x < ∞. The
Laplace Transform and Sumudu Transform of f can be defined respectively as:

G(s) = L[f(x)] =

∫ ∞
0

e−xsf(x)dx,

H(s) = S[f(x)] =

∫ ∞
0

1

s
e−x/sf(x)dx.

We refer to f(x) as the original function of G(s) or H(s) respectively, G(s) as
the Laplace Transform of the function f(x), H(s) as the Sumudu Transform of the
function f(x). We also refer to f(x) as the inverse Laplace Transform of G(s) or
inverse Sumudu Transform of H(s). The symbol L denotes the Laplace Transform,
the exponential function e−xs is called the kernel of the Laplace Transform. The
symbol S denotes the Sumudu Transform, the function 1

se
−x/s is called the kernel

of the Sumudu Transform.
Sumudu Transform was introduced and studied in a traditional way as other

integral transforms by many researchers recently [1–5,7–9,11,15,23], it was studied
through new computational approaches [17–22]. In this paper, we will introduce
the essentiality and analysis of the transform in computational approaches, which
can be used to solve various problems automatically.

Since both Laplace and Sumudu Transforms are defined as improper integral,
we have the basic properties based on the integral calculation as following:

Linearity:

L[c1f(x) + c2g(x)] = c1L[f(x)] + c2L[g(x)],

S[c1f(x) + c2g(x)] = c1S[f(x)] + c2S[g(x)].

Shift:

L[eaxf(x)] = G(s− a),

S[eaxf(x)] =
1

1− as
H(

s

1− as
).

Scaling:

L[f(ax)] = G(s/a)/a,

S[f(ax)] = H(as).

Derivative:

L[fm(x)] = smL[f(x)]− sm−1f(0)− · · · − fm−1(0),

S[fm(x)] = S[f(x)]/sm − f(0)/sm − · · · − fm−1(0)/s.

Integral:

L[

∫ x

0

f(t)dt] = L[f(x)]/s,
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S[

∫ x

0

f(t)dt] = sS[f(x)].

Convolution:

L[(f ∗ g)(x)] = L[f(x)]L[g(x)],

S[(f ∗ g)(x)] = sS[f(x)]S[g(x)].

Laplace-Sumudu Duality:

H(s) = G(1/s)/s,

G(s) = H(1/s)/s.

Notice the similarities of the properties for both transforms. These properties
are very useful for problem solving, including automatic coefficient calculation, au-
tomatic calculation of generating functions, automatic proof of identities, automatic
solving of differential and integral equations, etc.

A very surprising and useful fact is that the Sumudu Transform and its original
function share the same Taylor’s coefficients except for a factor of n!. This fact can
be explained by the following theorems:

Theorem 1.1 ( [5]). If function f(x) can be expanded as:

f(x) =

∞∑
n=0

anx
n,

then, its Sumudu Transform can be written as the power series function:

S[f ](x) =

∞∑
n=0

n!anx
n.

Theorem 1.2 ( [16]). We assume that f(x) is a bounded and continuous function
of x and its Sumudu Transform satisfies:

S[f ](x) =

∞∑
n=0

anx
n,

then we can expend:

f(x) =

∞∑
n=0

an
xn

n!
.

Theorem 1.1 and Theorem 1.2 give a complete relationship about coefficients
under transforms. This is an important relationship. Based on this relationship,
a lot of work can be done, including but not limited to the works in the following
sections.

2. Coefficient calculation

A very surprising and useful fact regarding Sumudu Transform is that the original
function and its Sumudu Transform share the same coefficients with an exception
of a factor of n!, therefore we can calculate the nth coefficient an of a function f as
following:
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Algorithm 2.1

(I) Input function: f(x).
(II) Compute the Sumudu Transform S[f ](x).
(III) Compute the nth coefficient an = [xn]S[f ].
(IV) Return: an/n!.

We implement a simplified version of this algorithm in the Maple systems as the
following coeffCalculation procedure.

with(inttrans);
with(genfunc);
coeffCalculation := proc(f, x)

local tem;
tem := laplace(f, x, y);
tem := subs(y = 1/z, tem)/z;
tem := rgf expand(tem, z, n));
tem := simplify((tem)/n!);
return tem

end proc

Unfortunately, in Maple, there is no such a procedure to calculate the general
term of coefficient, but it has the series to calculate the first few terms. We can
easily make comparisons as the following:

> coeffCalculation(exp(x), x);
1

n!

> series(exp(x), x = 0, 8);

1 + x +
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 +

1

720
x6 +

1

5040
x7 + O(x8)

> coeffCalculation(sin(x), x);

sin nπ
2

n!

> series(sin(x), x = 0, 8);

x− 1

6
x3 +

1

120
x5 − 1

5040
x7 + O(x9)

> coeffCalculation(cos(x), x);

cos nπ2
n!

> series(cos(x), x = 0, 8);

1− 1

2
x2 +

1

24
x4 − 1

720
x6 + O(x8)

> coeffCalculation(cos(10x)4, x);

(−40I)n + (40I)n + 4(−20I)n + 4(20I)n

16n!
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> series(cos(10x)4, x = 0, 8);

1− 200x2 +
50000

3
x4 − 6800000

9
x6 + O(x8)

Algorithm 2.2

(I) Input function: f(x).
(II) Compute G(x), the inverse Sumudu Transform of f(x).
(III) Compute the nth coefficient an = [xn]G(x).
(IV) Return: an ∗ n!.

The calculation of inverse Sumudu Transform is not easy, so this algorithm is
more theoretical, but less practical.

3. Generating functions

Generating functions are a very powerful tool in discrete mathematics and algorithm
analysis. For a sequence {an, n = 0, ...,∞}, there are two types of widely used
generating functions:

g(x) =

∞∑
n=0

anx
n,

h(x) =

∞∑
n=0

an
n!

xn.

We call g(x) and h(x) the ordinary generating function and the exponential
generating function of the sequence an respectively. According to Theorem 1.1 and
Theorem 1.2 stated above, we can claim: the Sumudu Transform of an exponential
generating function is its ordinary generating function; the inverse Sumudu Trans-
form of an ordinary generating function is its exponential generating function. The
relationship of these two widely used generating functions is nothing but exactly
the Sumudu Transform.

These theorems serve as a base to calculate the general terms of Taylor’s series
expansions and to calculate the generating functions.

For a sequence {an, n = 0, ...,∞}, the following algorithm will print out the
exponential generating function and return the ordinary generating function:

Algorithm 3.1

(I) Input sequence {an, n = 0, ...,∞}.
(II) Compute and print out h(x) =

∑∞
n=0

an
n! x

n, the the exponential
generating function.

(III) Compute the Laplace Transform of h(x): G(x) = L[h(x)].
(IV) Return the ordinary generating function g(x) = G(1/x)/x.

We are not attempting to implement Algorithm 3.1 completely and perfectly.
Since Laplace Transform is implemented in algebra systems, a simplified demon-
stration version is implemented as following:
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with(inttrans);
with(genfunc);
genFunction := proc(coeff, x)

simplify(coeff ∗ xn/n!);
sum(%, n = 0..∞);
simplify(%);
print(%);
laplace(%, x, s);
subs(s = 1/t,%)/t;
subs(t = x,%);
simplify((%));
return %

end proc

We can make some tests.
For sequence (an = 1, n = 0...∞), to calculate the exponential generating func-

tion and ordinary generating function:
> genFunction(1, x);
> ex;
> 1

1−x ;
For sequence (an = (−1)n, n = 0...∞), to calculate the exponential generating

function and ordinary generating function:
> genFunction((−1)n, x);
> e−x;
> 1

1+x ;
For sequence (an = n, n = 0...∞), to calculate the exponential generating func-

tion and ordinary generating function:
> genFunction(n, x);
> xex;
> x

(1−x)2 ;

For sequence (an = cn, n = 0...∞), to calculate the exponential generating
function and ordinary generating function:

> genFunction(cn, x);
> ecx;
> 1

1−cx ;
For sequence (an = sin(nπ2 ), n = 0...∞), to calculate the exponential generating

function and ordinary generating function:
> genFunction(sin(nπ2 ), x);
> sin(x);
> x

1+x2 ;
For sequence (an = cos(nπ2 ), n = 0...∞), to calculate the exponential generating

function and ordinary generating function:
> genFunction(cos(nπ2 ), x);

> cos(x);
> 1

1+x2 ;
For sequence (an = 1+(−1)n, n = 0...∞), to calculate the exponential generating

function and ordinary generating function:
> genFunction(1 + (−1)n, x);

> ex + e−x;
> 2

1−x2 .
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4. Proof of identities

We all know that sin2(x)+cos2(x) = 1 and this is the famous Pythagorean Identity.
How to prove it automatically? Let f(x) = sin2(x) + cos2(x) − 1, we can simply
apply coeffCalculation presented above easily to calculate an, the nth coefficient of
f(x). It happens that an = 0 for all n = 0, 1, 2, 3, . . . . Since f(x) is analytic, so
f(x) = 0 for all x. This proves the identity automatically.

New let f(x) = sin(x)− (eIx − e−Ix)/2I, we can simply apply coeffCalculation
presented above to calculate an, what happens is that an = 0 for all non-negative
integers n. Since f(x) is analytic, so f(x) = 0 for all x. This proves the identity
sin(x) = (eIx − e−Ix)/2I automatically. A lot of identities can be proved in the
same way, and here are some samples:

cos(x) = (eIx + e−Ix)/2,

sin(x) = (eIx − e−Ix)/2I,

cosh(x) = (ex + e−x)/2,

sinh(x) = (ex − e−x)/2,

cosh2(x)− sinh2(x) = 1,

eix = cos(x) + i sin(x),

sin2(x) + cos2(x) = 1,

cos(a + x) = cos(a) cos(x)− sin(a) sin(x),

cos(a− x) = cos(a) cos(x) + sin(a) sin(x),

sin(a + x) = sin(a) cos(x) + cos(a)sin(x),

sin(a− x) = sin(a) cos(x)− cos(a)sin(x),

cos(2x) = cos2(x)− sin2(x),

cos(2x) = 2 cos2(x)− 1,

cos(2x) = 1− 2 sin2(x),

sin(2x) = 2 cos(x) sin(x),

cos(3x) = cos3(x)− 3 sin2(x) cos(x),

cos(3x) = 4 cos3(x)− 3 cos(x),

sin(3x) = − sin3(x) + 3 cos2(x) sin(x),

sin(3x) = −4 sin3(x) + 3 sin(x),

cos(nx) = 2 cos(x) cos((n− 1)x)− cos((n− 2)x),
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sin(nx) = 2 cos(x) sin((n− 1)x)− sin((n− 2)x),

cos(nx) + I sin(nx) = (cos(x) + I sin(x))n,

cosh(nx) + sinh(nx) = (cosh(x) + sinh(x))n,

sin2(x) = (1− cos(2x))/2,

sin3(x) = (3 sin(x)− sin(3x))/4.

5. Solving differential equations

First, let’s review how to solve differential equations by Laplace Transform, then we
will show the advantage of Sumudu Transform to solve such equations automatically
without the calculation of inverse transform.

Now let’s consider the differential equation with initial values:

y′′ + 2y′ + y = 0,

y(0) = 1,

y′(0) = 2.

Applying the Laplace Transform to both sides, we have

L[y′′ + 2y′ + y] = L[0],

=>L[y′′] + 2L[y′] + L[y] = 0,

s2L[y]− sy(0)− y′(0) + 2(sL[y]− y(0)) + L[y] = 0.

Let Y (s) denote L[y(x)]. Substituting with initial values, then

s2Y (s)− sy(0)− y′(0) + 2(sY (s)− y(0)) + Y (s) = 0,

(s2 + 2s + 1)Y (s) = s + 4,

=>Y (s) =
s + 4

s2 + 2s + 1
.

In the conventional way, we have to calculate the inverse transform. In Maple, by
applying invlaplace with Y (s), we have

y(x) = (1 + 3x)ex.

To avoid the calculation of the inverse transform, we can use Laplace-Sumudu
Duality to calculate the Sumudu Transform, we have:

F (s) =
1 + 4s

(1 + s)2
.

Since F (s) is a rational function, we can just apply rgf expand to expand F (s) as:

F (s) =

∞∑
n=0

(1− 3n)(−1)nsn.
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We can use Sumudu Transform property regarding coefficient calculation stated
above, then

y(x) =

∞∑
n=0

(1− 3n)(−1)n

n!
xn.

The correctness can be easily verified. One way is just applying the coeffCalculation
procedure implemented above to y(x) = (1 + 3x)e−x, we have

(1− 3n)(−1)n

n!
.

Which shows automatically that the two solutions are the same since all correspond-
ing coefficients are the same.

For rational functions, the calculation of the inverse Laplace Transforms can
be done by using algebraic techniques, except that, in general, the computation of
inverse Laplace Transforms is expensive and troublesome [6]. Since Sumudu Trans-
form has similar properties of Laplace Transform, we can use Sumudu Transform
to replace Laplace Transform, we have

S[y′′ + 2y′ + y] = S[0],

=>S[y′′] + 2S[y′] + S[y] = 0,

S[y]

s2
− y(0)

s2
− y′(0)

s
+ 2(

S[y]

s
− y(0)

s
) + S[y] = 0.

Multiply s2 to both sides and substitute with the initial values, we have

(s2 + 2s + 1)S[s] = 1 + 4s,

=>S[y] =
1 + 4s

s2 + 2s + 1
.

We can solve the equation by calculating the inverse of Sumudu Transform, but
we have a better way here, since S[y] is a rational function, we can use rgf expand
to help us, then

S[y] =

∞∑
n=0

(1− 3n)(−1)nxn.

By taking the advantage of the Sumudu Transform property regarding coefficient
calculation, we have

y(x) =

∞∑
n=0

(1− 3n)(−1)n

n!
xn.

We can use either Laplace or Sumudu Transform to solve equations, but we
recommend a good combination in the following method:

• Conducting Laplace Transform to transfer a differential equation to an alge-
braic equation.

• Solving the algebraic equation from the step above.

• Applying Laplace-Sumudu Duality to calculate the Sumudu Transform.

• Calculating the general term of coefficient an of the Sumudu Transform.
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• Returning the solution which is the power series with an/n! as the general
term of coefficient.

• Optional, adding the power series summation to a close form.

The advantage of this method is that it avoids the inverse Laplace Transform
calculation, especially when such an inverse calculation is too expensive or not
possible.

In Maple, one can verify the correctness by comparing the solutions with Maple’s
dsolve(deqns, vars,method = Transform) and set the method as laplace with
dsolve(deqns, vars,method = Transform, options).

6. Solving integral equations

We can represent Volterra convolution integral equations of the first kind in the
form:

intEq1 :=

∫ x

0

k(x− t)v(t)dt = f(x)

where v(x) is the unknown function to be determined, and k(x)(called the kernel)
and f(x) are known functions. There are different ways to solve such a problem.
One commonly used method is Laplace Transform. Applying Laplace Transform
to both sides of intEq1, and using the convolution property regarding Laplace
Transform, then

K(s)V (s) = F (s)

where V (s) = L[v(x)], K(s) = L[k(x)], F (s) = L[f(x)]. Then

V (s) =
F (s)

K(s)
.

The conventional method to solve the problem is calculating the inverse of V (s).
As listed above, both Sumudu and Laplace Transforms have the same or similar

properties, therefore, Sumudu Transform can be used in the conventional method
to solve such an equation. The drawback of this traditional method is to calculate
the inverse transform, which is normally expensive and problematic. Can we avoid
such an inverse transform? Yes, the following method can solve the problem without
inverse transform:

• Transfer an integral equation to an algebraic equation by using Laplace Trans-
form.

• Solve the algebraic equation generated by Laplace Transform.

• Calculate Sumudu Transform by using Laplace-Sumudu Duality.

• Calculate an, the general term of coefficient of the Sumudu Transform.

• Return the solution as the power series with an/n! as the general term of
coefficient.

• Optional, add the power series summation to a close form.

This method can be used to solve different kinds of integral equations, including
the first, second and mixed kinds. Now, apply the method to intEq1, we have the
following algorithm:
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• Computing the Laplace Transforms K(s) = L[k(x)], F (s) = L[f(x)].

• Computing Laplace Transform V (s) = F (s)
K(s) .

• Computing the Sumudu Transform by Laplace-Sumudu Duality S[v(x)] =
V (1/s)/s.

• Computing the nth coefficient an of S[v(x)].

• Returning the solution as the power series with an/n! as the general term of
coefficient.

• Optional, adding the power series summation to a close form.

Since there are limitations in Maple systems, it is impossible to implement such
an algorithm fully. For demonstration purpose, a simplified Maple procedure called
solveIntF irst can be implemented as the following:

with(inttrans) :
with(genfunc) :
solveIntF irst := proc(v, k, f, x)
local F,K;
F := laplace(f, x, s);
F := simplify(subs(s = 1/t, F ));
K := laplace(k, x, s);
K := simplify(subs(s = 1/t,K));
K := simplify(F/(K ∗ t));
K := rgf expand(K, t, n);
K := simplify(K∗x

n

n! );
return v(x) = sum(K,n = 0..∞)

end proc

A simple way for testing the implementation is to compare with the built-in
procedure called intsolve(eq, y(x),method = Laplace), the results match except
possibly 0 or a few Dirac(x) functions, such kind of functions are 0 except a single
point so we ignore in our solutions. The following are some sample test cases:

eq :=
∫ x
0
y(t)dt = 1;

> solveIntF irst(y, 1, 1, x);
Returns : y(x) = 0
> intsolve(eq, y(x),method = Laplace);
Returns : y(x) = Dirac(x)

eq :=
∫ x
0
y(t)dt = cos(x);

> solveIntF irst(y, 1, cos(x), x);
Returns : y(x) = − sin(x)
> intsolve(eq, y(x),method = Laplace);
Returns : y(x) = Dirac(x)− sin(x)

eq :=
∫ x
0
ex−ty(t)dt = cos(x);

> solveIntF irst(y, ex, cos(x), x);
Returns : y(x) = − cos(x)− sin(x)
> intsolve(eq, y(x),method = Laplace);
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Returns : y(x) = Dirac(x)− cos(x)− sin(x)

eq :=
∫ x
0

(x− t)
2
y(t)dt = cos(x);

> solveIntF irst(y, x2, cos(x), x);

Returns : y(x) = sin(x)
2

> intsolve(eq, y(x),method = Laplace);

Returns : y(x) = Dirac(2,x)
2 − Dirac(x)

2 + sin(x)
2

eq :=
∫ x
0
y(t)dt = sin(x);

> solveIntF irst(y, 1, sin(x), x);
Returns : y(x) = cos(x)
> intsolve(eq, y(x),method = Laplace);
Returns : y(x) = cos(x)

eq :=
∫ x
0
ex−ty(t)dt = sin(x);

> solveIntF irst(y, ex, sin(x), x);
Returns : y(x) = cos(x)− sin(x)
> intsolve(eq, y(x),method = Laplace);
Returns : y(x) = cos(x)− sin(x)

eq :=
∫ x
0
y(t)dt = ex;

> solveIntF irst(y, 1, ex, x);
Returns : y(x) = ex

> intsolve(eq, y(x),method = Laplace);
Returns : y(x) = Dirac(x) + ex

eq :=
∫ x
0

sin(x− t)y(t)dt = ex;
> solveIntF irst(y, sin(x), ex, x);
Returns : y(x) = 2ex

> intsolve(eq, y(x),method = Laplace);
Returns : y(x) = Dirac(1, x) + Dirac(x) + 2ex

eq :=
∫ x
0

sin(x− t)
2
y(t)dt = ex;

> solveIntF irst(y, sin(x)2, ex, x);
Returns : y(x) = 5ex

2
> intsolve(eq, y(x),method = Laplace);

Returns : y(x) = Dirac(2,x)
2 + Dirac(1,x)

2 + 5Dirac(x)
2 + 5ex

2

eq :=
∫ x
0
y(t)dt = cosh(x);

> solveIntF irst(y, 1, cosh(x), x);
Returns : y(x) = ex

2 −
1

2ex = sinh(x)
> intsolve(eq, y(x),method = Laplace);
Returns : y(x) = Dirac(x) + sinh(x)

eq :=
∫ x
0
ex−ty(t)dt = cosh(x)

> solveIntF irst(y, ex, cosh(x), x);
Returns : y(x) = − 1

ex

> intsolve(eq, y(x),method = Laplace);
Returns : y(x) = Dirac(x)− e−x
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eq :=
∫ x
0
y(t)dt = sinh(x);

> solveIntF irst(y, 1, sinh(x), x);
Returns : y(x) = ex

2 + 1
2ex = cosh(x)

> intsolve(eq, y(x),method = Laplace);
Returns : y(x) = cosh(x)

eq :=
∫ x
0
ex−ty(t)dt = sinh(x);

> solveIntF irst(y, ex, sinh(x), x);
Returns : y(x) = 1

ex

> intsolve(eq, y(x),method = Laplace);
Returns : y(x) = e−x

The above solutions are in the original forms generated from solveIntF irst
with little change. These examples are just a few samples, and there are an infinite
number of such equations that can be solved by the same way.

The calculation of the general term (nth term) of Taylor’s coefficient is needed
in the algorithm, Maple only works for rational functions and implemented by
procedure rgf expand, a potential problem was “inherited” from the procedure
which assumes n is larger than the degree of the polynomial, therefore returns 0 for
any polynomial functions (for example rgf expand(x10 + x6 + x + 2, x, n) returns
0). So the answer may be different from the exact one by a polynomial, however,
tests show, in a lot of cases, it gives the exactly right answers.

Now, let’s look at a different kind of integral equation. The Volterra convolution
integral equations of the second kind can be represented as

intEq2 := f(x) +

∫ x

0

k(x− t)v(t)dt = v(x)

where v(x) is the function to be determined, k(x) (called the kernel) and f(x) are
given functions. Applying Laplace Transform to both sides of intEq2 and using the
convolution property, we have

F (s) + K(s)V (s) = V (s)

where F (s) = L[f(x)], K(s) = L[k(x)], V (s) = L[v(x)]. So we have

V (s) =
F (s)

1−K(s)
.

The conventional method to solve the problem is by calculating the inverse of V (s).
Since Sumudu and Laplace Transforms have the same or similar properties,

Sumudu Transform can also be used in the conventional method to solve such
an equation. The drawback of this traditional method is to calculate the inverse
transform, which is normally expensive and problematic. Can we avoid such an
inverse transform? Yes, the following method can solve the problem without inverse
transform:

• Calculate the Laplace Transforms K(s) = L[k(x)], F (s) = L[f(x)].

• Calculate V (s) = F (s)
1−K(s) .
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• Calculate the Sumudu Transform by Laplace-Sumudu Duality S[v(x)] =
V (1/s)/s.

• Calculate the nth coefficient an of S[v(x)].

• Return the solution, the power series with an/n! as the general term of coef-
ficient.

• Optional, add the power series summation to a close form.

Since the limitations of current algebra systems, no one can implement such an
algorithm completely and perfectly under the current systems, but a limited Maple
procedure called solveIntSecond is implemented as follows:

with(inttrans) :
with(genfunc) :
solveIntSecond := proc(v, k, f, x)

local F,K;
F := laplace(f, x, s);
K := laplace(k, x, s);
K := simplify(F/(1−K));
K := simplify(subs(s = 1/t,K)/t);
K := rgf expand(K, t, n);
K := simplify(K/n!);
return v(x) = sum(K ∗ xn, n = 0..∞)

end proc

Similarly, this implementation suffers the limitations and potential issues “in-
herited” from Maple as described in the above. However, there are still an infinite
number of such kind of equations that can be solved by solveIntSecond, including
but not limited to the following samples. One can compare and verify the results by
comparing with solutions from intsolve(eq, y(x),method = Laplace), and explore
the equations of the following:

eq := y(x) = 1−
∫ x
0

(x− t)y(t)dt
> solveIntSecond(y,−x, 1, x);
Returns : y(x) = cos(x)
> intsolve(eq, y(x),method = Laplace);
Returns : y(x) = cos(x)

eq := y(x) = 1 +
∫ x
0
y(t)dt

> solveIntSecond(y, 1, 1, x);
Returns : y(x) = ex

> intsolve(eq, y(x),method = Laplace);
Returns : y(x) = ex

eq := y(x) = cos(x) +
∫ x
0

(x− t)y(t)dt
> solveIntSecond(y, x, cos(x), x);

Returns : y(x) = ex

4 + 1
4ex + cos(x)

2 = cos(x)
2 + cosh(x)

2
> intsolve(eq, y(x),method = Laplace);

Returns : y(x) = cos(x)
2 + cosh(x)

2
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eq := y(x) = cos(x) +
∫ x
0
y(t)dt

> solveIntSecond(y, 1, cos(x), x);

Returns : y(x) = cos(x)
2 + cosh(x)

2 + sin(x)
2 + sinh(x)

2 = ex

2 + cos(x)
2 + sin(x)

2
> intsolve(eq, y(x),method = Laplace);

Returns : y(x) = ex

2 + cos(x)
2 + sin(x)

2

eq := y(x) = (cos(x))2 +
∫ x
0

(x− t)y(t)dt
> solveIntSecond(y, x, (cos(x))2, x);

Returns : y(x) = e2Ix

5 + 1
5e2Ix

+ 3ex

10 + 3
10ex = 4 cos(x)2

5 + 3 cosh(x)
5 − 2

5
> intsolve(eq, y(x),method = Laplace);

Returns : y(x) = 4 cos(x)2

5 + 3 cosh(x)
5 − 2

5

eq := y(x) = sin(x) +
∫ x
0

(x− t)y(t)dt
> solveIntSecond(y, x, sin(x), x);

Returns : y(x) = ex

4 −
1

4ex + sin(x)
2 = sin(x)

2 + sinh(x)
2

> intsolve(eq, y(x),method = Laplace);

Returns : y(x) = sin(x)
2 + sinh(x)

2

eq := y(x) = sin(x) +
∫ x
0
y(t)dt

> solveIntSecond(y, 1, sin(x), x);

Returns : y(x) = − cos(x)
2 + cosh(x)

2 + sin(x)
2 + sinh(x)

2 = ex

2 −
cos(x)

2 + sin(x)
2

> intsolve(eq, y(x),method = Laplace);

Returns : y(x) = ex

2 −
cos(x)

2 + sin(x)
2

eq := y(x) = (sin(x))2 +
∫ x
0

(x− t)y(t)dt
> solveIntSecond(y, x, (sin(x))2, x);

Returns : y(x) = − e
2Ix

5 −
1

5e2Ix
+ ex

5 + 1
5ex = − 4 cos(x)2

5 + 2 cosh(x)
5 + 2

5
> intsolve(eq, y(x),method = Laplace);

Returns : y(x) = − 4 cos(x)2

5 + 2 cosh(x)
5 + 2

5

eq := y(x) = sin(x) +
∫ x
0
e(x−t)y(t)dt

> solveIntSecond(y, ex, sin(x), x);

Returns : y(x) = − cos(x)+cosh(2x)+3 sin(x)+sinh(2x)
5 = e2x

5 −
cos(x)

5 + 3 sin(x)
5

> intsolve(eq, y(x),method = Laplace);

Returns : y(x) = e2x

5 −
cos(x)

5 + 3 sin(x)
5

eq := y(x) = sinh(x) +
∫ x
0

(x− t)y(t)dt
> solveIntSecond(y, x, sinh(x), x);

Returns : y(x) = ex

4 −
1

4ex + xex

4 + x
4ex = x cosh(x)

2 + sinh(x)
2

> intsolve(eq, y(x),method = Laplace);

Returns : y(x) = x cosh(x)
2 + sinh(x)

2

eq := y(x) = sinh(x)−
∫ x
0

(x− t)y(t)dt
> solveIntSecond(y,−x, sinh(x), x);

Returns : y(x) = sin(x)
2 + ex

4 −
1

4ex = sinh(x)
2 + sin(x)

2
> intsolve(eq, y(x),method = Laplace);

Returns : y(x) = sinh(x)
2 + sin(x)

2
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eq := y(x) = cosh(x)−
∫ x
0

(x− t)y(t)dt
> solveIntSecond(y,−x, cosh(x), x);

Returns : y(x) = cos(x)
2 + ex

4 + 1
4ex = cos(x)

2 + cosh(x)
2

> intsolve(eq, y(x),method = Laplace);

Returns : y(x) = cos(x)
2 + cosh(x)

2

We tested the samples above in the comparison with Maple built-in procedure
intsolve(eq, y(x),method = Laplace), it is no surprise that the results match ex-
actly (the formats may be different). The above solutions are in the original forms
generated directly from solveIntSecond with little change.

7. Conclusion

Laplace Transform is a conventional transform which has been widely used for a
long time. Sumudu Transform is recent, but it has many good properties for solving
problems in sciences, technologies, pure and applied mathematics. Computational
science and engineering is getting more and more important in problem solving,
and Sumudu Transform is a powerful and effective new transform, in which vari-
ous computational methods can be developed to solve different type of problems
automatically. In this paper, the authors introduced Sumudu Transform in compu-
tational approach, with applications in automatic coefficient calculation, automatic
proof of identities, automatic computation of generating functions, automatic solv-
ing of differential and integral equations, etc..
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