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1. Introduction

In [68], Stein mentioned that there are three important types of operators in har-
monic analysis, namely average operators, oscillatory integrals and singular inte-
grals. The average operators, including Hardy operators, Hausdorff operators,
Hardy-Littlewood maximal operators, etc. Properties of these operators in Eu-
clidean space have been well studied, and a large number of results have been
obtained. In this paper, we also focus on the boundedness of such operators and
their commutators in the setting of homogeneous groups and local fields.

For a locally integrable function b and an integral operator T , the commutator
operator for a proper function f can be defined by [b, T ]f := Tb(f) = bT (f)−T (bf).
During the past decade, the theory of commutator has developed in a variety
of directions, such as the role in studying the regularity of solutions to PDEs,
see e.g. [42, 49, 53–55], the characterizations of function spaces see e.g. [15, 56–59].
On the Euclidean space, we also obtained some different characterizations of cen-
tral Campanato spaces via the boundedness and compactness of commutators of
Hardy type operators. More precisely, we proved in [52] that commutators of
Hardy operators, including the fractional Hardy operator, are compact operators
on Lp(Rn)(1 < p < ∞) spaces if and only if the symbol functions of commutators
belong to CVMO(Rn) spaces (the central BMO(Rn) closure of C∞c (Rn)). In [27],
we addressed two characterizations of BMO(Rn) type space via the commutators
of Hardy operators with homogeneous kernels on Lebesgue spaces by exploiting the
center symmetry of Hardy operator deeply and by a more explicit decomposition
of the operator and the kernel function. In [29], we obtained characterizations of
commutators of several versions of maximal functions on spaces of homogeneous
type. In addition, we provided weighted version of the commutator theorems by
establishing new characterizations of the weighted BMO space.

On the p-adic field, we established sharp estimates for the p-adic Hardy and
Hardy-Littlewood-Pólya operators on power-weighted Lebesgue spaces. Also, we
proved that the commutators generated by the p-adic Hardy operators, the frac-
tional p-adic Hardy operators, Hardy-Littlewood-Pólya operators and the central
BMO functions are bounded on Lq(|x|αp dx), more generally, on Herz spaces [24,30].
For the weighted version, in [71], we established necessary and sufficient conditions
for boundedness of weighted p-adic Hardy operators on p-adic Morrey spaces, p-adic
central Morrey spaces and p-adic λ-central BMO spaces, respectively, and obtained
their sharp bounds. We also gave the characterization of weight functions for which
the commutators generated by weighted p-adic Hardy operators and λ-central BMO
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functions are bounded on the p-adic central Morrey spaces. This result is different
from that on Euclidean spaces due to the special structure of p-adic integers.

In the setting of the Heisenberg group, we obtained the sharp (p, p)(1 < p ≤ ∞)
estimate for the Hardy operator, and got the best constant in the weak type (1, 1)
inequality for the Hardy operator. We also established the boundedness for the
Hardy operator from H1 to L1. Moreover, for 1 ≤ p <∞, we described the differ-
ence between Mp weights and Ap weights and obtained the characterization of such
weights using the weighted Hardy inequalities [73]. For the weighted version, we
characterized the weights w for which the weighted Hardy operator Hw is bounded
on Lp(Hn), 1 ≤ p ≤ ∞, and on BMO(Hn). Meanwhile, the corresponding operator
norm in each case was derived. Furthermore, we introduced a type of weighted
multilinear Hardy operators and obtained the characterization of their weights for
which the weighted multilinear Hardy operators are bounded on the product of
Lebesgue spaces on the Heisenberg group. In addition, the corresponding norms
were worked out [14].

In [46,47], we studied the Hausdorff operator, defined via a general linear map-
ping A, on weighted Herz spaces and weighted Morrey spaces in the setting of the
Heisenberg group. Under some assumptions on the mapping A, we established
its sharp boundedness on power-weighted Herz spaces, power-weighted Lebesgue
spaces and power-weighted Morrey spaces on the Heisenberg group. In addition, we
obtained the boundedness of commutators of such Hausdorff operators on power-
weighted Morrey spaces on the Heisenberg group.

We defined weighted Hardy spaces by means of their atomic characterization
on the Heisenberg group in [72], and established the sharp boundedness of Haus-
dorff operators on power-weighted Hardy spaces. Moreover, we obtained suffi-
cient and necessary conditions for the boundedness of Hausdorff operators on local
Hardy spaces on the Heisenberg group. In [70], we obtained the boundedness from
Lebesgue spaces to Hardy spaces for fractional Hausdorff operators and their com-
positions with Riesz transforms. We also established the boundedness for two kinds
of special Hausdorff operators, the Hausdorff-Poisson operator and the Hausdorff-
Gauss operator, on Hardy spaces.

The theory of singular integrals and function spaces has a central role in mod-
ern harmonic analysis with extensive applications to other fields such as PDEs,
capacity theory and potential theory, see [9, 16, 39, 50, 60–62, 64, 66, 67, 75]. Using
the properties for the Hilbert transform and Clifford analytic techniques, Gu et.
al [32, 33, 38] established the Riemann-Hilbert problems in Clifford value Hölder
spaces and Lebesgue p-integrable spaces. Based on the Newton embedding method,
Gu et. al [34–37] also obtained the existence and uniqueness for the nonlinear
Riemann-Hilbert problem and also gave the error estimation for the approximate
solutions in the Newton embedding procedure.

In section three, we focus on oscillatory type integrals related to the one defined
by Ricci and Stein [45], which have been an essential part of harmonic analysis;
three sections are devoted to them in the book [68]. The Fourier transform (one of
the most important and powerful tools in theoretical and applied mathematics), the
Bochner-Riesz means and the Radon transform are some versions of oscillatory in-
tegrals. In this section, we considered one-sided oscillatory integral operators, frac-
tional Fourier transforms, and linear canonical transforms. The one-sided weighted
classes of Muckenhoupt type were used to study the weighted weak type (1,1) norm
inequalities for the one-sided oscillatory singular integrals. Furthermore, we gave
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the weighted norm inequalities for commutators of the one-sided oscillatory integral
operators.

Motivated by analyzing non-stationary signals, there are many results about the
Fourier transform of fractional order. Nowadays, the fractional Fourier transform
(FRFT for short) has found various applications in scientific research and engineer-
ing technology, such as swept filter, artificial neural network, wavelet transform,
time-frequency analysis, time-varying filtering, complex transmission, PDEs and so
on (see, e.g., [5, 22, 76–80]). We studied the Lp theory of the FRFT and FRFT
properties of L1 functions via the introduction of a suitable chirp operator. We
solved the problems of convergence and studied the FRFT inversion problem via
approximation by the fractional Gauss and Abel means. Moreover, the regularity
of fractional convolution and results on pointwise convergence of FRFT means and
the Lp multiplier results and a Littlewood-Paley theorem associated with FRFT
were also considered.

In section four, we collect our works for some singular integral operators in
complex analysis, including Hilbert transforms, Riesz transforms, Cauchy type op-
erators, Cauchy-Szegö projection operators, etc. Further study on singular integrals
and related PDEs leads to commutators of these operators. There are quite a num-
ber of recent results on the characterizations of commutators in the above forms for
singular integrals in different settings. Inspired by these classical results above, it
is natural to ask whether these results hold on stratified Lie groups, especially on
Heisenberg groups. Note that in several complex variables, the Heisenberg group Hn
is the boundary of the Siegel upper half space, which is holomorphically equivalent
to the unit sphere in Cn. And hence, the role of the Riesz transform on Hn is sim-
ilar to the role of the Hilbert transform on the real line. There are also some other
works about singular integrals, see e.g. [2, 21, 63] for multilinear integrals and [43]
for Marcinkiewicz integrals.

Duong-Li-Li-Wick [18] established the characterization of the BMO space on
stratified nilpotent Lie groups via the boundedness of the commutator of the Riesz
transforms. This extends the well-known Coifman, Rochberg, Weiss theorem [15]
on Euclidean space to the setting of stratified Lie groups. In [7], we obtained the
characterization of compactness of the commutators of Rj with respect to VMO,
the space of functions with vanishing mean oscillation on stratified Lie group, which
extends the well-known result of Uchiyama [69] on Euclidean spaces.

The quaternionic Heisenberg group Hn−1 plays a fundamental role in quater-
nionic analysis and geometry. Its analytic and geometric behaviors are different from
the usual Heisenberg group in many aspects, e.g., there is no nontrivial quasicon-
formal mapping between the quaternionic Heisenberg group while quasiconformal
mappings between Heisenberg groups are abundant. The quaternionic Siegel upper
half space can be identified with the quaternionic Heisenberg group Hn−1. In [6],
Chang, Markina and Wang determined the kernel of the Cauchy-Szegő projection
on quaternionic Siegel upper half space. We further obtained its explicit formula [4],
and then based on this, we proved that the Cauchy–Szegő projection on quaternionic
Heisenberg group is a Calderón–Zygmund operator. We also obtained a suitable
version of pointwise lower bound for the kernel, which further implies the character-
ization of the boundedness and compactness of commutators of the Cauchy–Szegő
operator via the BMO and VMO spaces on quaternionic Heisenberg group, respec-
tively.

Recently, Lanzani and Stein [40] studied the Cauchy–Szegő projection operator
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in a bounded strongly pseudoconvex domain D in Cn, whose boundary bD satisfies
the minimum regularity condition of class C2. They obtained the Lp(bD) bounded-
ness (1 < p <∞) of a family of Cauchy integrals {Cε}ε, We studied the commutator
of these Cauchy type integrals, and showed that the commutator [b,C] is bounded on
Lp(bD) (1 < p <∞) or on weighted Morrey space Lp,κv (bD) (v ∈ Ap, 1 < p <∞) if
and only if b is in the BMO space on bD. Moreover, the commutator [b,C] is compact
on Lp(bD) (1 < p <∞) or on weighted Morrey space Lp,κv (bD) (v ∈ Ap, 1 < p <∞)
if and only if b is in the VMO space on bD. Our method can also be applied to
the commutator of Cauchy–Leray integral in a bounded, strongly C-linearly convex
domain D in Cn with the boundary bD satisfying the minimum regularity C1,1.

2. Average operators
We begin with some function spaces which are needed in this section. Let 1 ≤ p <
∞. Then for any ball B ⊂ Rn, the classical Campanato space and Morrey space
are defined by the following norms (see e.g. [56, 57])

‖f‖Cp,λ(Rn) = sup
B

1

|B|λ

(
1

|B|

∫
B

|f − fB |pdx
)1/p

, −1/p < λ < 1/n

and

‖f‖Mp,λ(Rn) = sup
B

1

|B|λ

(
1

|B|

∫
B

|f(x)|pdx
)1/p

, −1/p < λ < 0,

respectively. The excellent structures of the spaces Cp,λ(Rn) and Mp,λ(Rn) render
them useful in the study of PDEs and the Sobolev embedding theorems. The central
version of these spaces are defined by the following norm [58]

‖f‖Ċp,λ(Rn) =: sup
r>0

1

|B(0, r)|λ

(
1

|B(0, r)|

∫
B(0,r)

|f − fB(0,r)|pdx

)1/p

and

‖f‖Ṁp,λ(Rn) = sup
r>0

1

|B(0, r)|λ

(
1

|B(0, r)|

∫
B(0,r)

|f |pdx

)1/p

.

If λ = 0, then Ċp,0(Rn) = CṀOp(Rn) (the bounded central mean oscillation func-
tion space) with the equivalent norm

‖f‖CṀOp(Rn) = sup
r>0

inf
c∈C

(
1

|B(0, r)|
|f(y)− c|pdy

)1/p

.

If 0 < λ < 1
p , then Ċ

p,0(Rn) = CṀOp,λ(Rn)(the λ-central bounded mean oscillation
space) [24].

2.1. Average operators on Euclidean fields
In this subsection, we focus on Hardy operators in Rn. The n−dimensional Hardy
operator and its dual operator on Rn are defined by [13] as

Hf(x) =
1

|x|n

∫
|y|<|x|

f(y)dy, x ∈ Rn \ {0}
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and

H∗f(x) =

∫
|y|≥|x|

f(y)

|y|n
dy, x ∈ Rn \ {0},

respectively. In [24], we gave some characterizations of CṀOp(Rn) for 1 < p <∞
by the boundedness of Hb and H∗b , on Lebesgue spaces as:

b ∈ CṀOmax{p,p′}(Rn)⇐⇒ Hb(H
∗
b ) : Lp(Rn) −→ Lp(Rn),

where 1
p + 1

p′ = 1. Zhao and Lu [84] characterized CṀOp,λ(Rn) with more restric-
tions on λ as

b ∈ CṀOmax{p,p′},λ(Rn)⇐⇒ Hb(H
∗
b ) : Lp(Rn) −→ Lq(Rn),

0 ≤ λ =
1

p
− 1

q
, 1 < p <∞.

We settled the characterization for the case −1/p < λ < 0 under the assumption
that b satisfies the following mean value inequality [56]

sup
B3x
|f(x)− fB | ≤

C

|B|

∫
B

|f(x)− fB |dx.

In [58], we obtained the boundedness characterization of Ċp,λ(Rn) as follows.

Theorem 2.1. Let 1 < p < ∞,−1/p < λ < 0, −1/pi < λi < 0, i = 1, 2, 1/p =∑2
i=1 1/pi, λ =

∑2
i=1 λi and let b satisfy the mean value inequality. Then the

following statements are equivalent:
(a) b ∈ Ċp1,λ1(Rn);
(b) Both Hb and H∗b are bounded operators from Ṁp2,λ2(Rn) to Ṁp,λ(Rn).

The mean value inequality is very important in the proof of the Theorem 2.1. If
we drop this assumption, the following result can be deduced under some stronger
condition.

Theorem 2.2. Let 2 < p < ∞ and −1/(2p) < λ < 0. Then the following state-
ments are equivalent:
(a) b ∈ Ċp,λ(Rn);
(b) Both Hb and H∗b are bounded operators from Ṁp,λ(Rn) to Ṁp,2λ(Rn).

For 0 < α < n, the n−dimensional fractional Hardy operator and its dual
operator are defined by (see e.g. [24])

Hαf(x) =
1

|x|n−α

∫
|y|<|x|

f(y)dy, x ∈ Rn \ {0},

and

H∗αf(x) =

∫
|y|≥|x|

f(y)

|y|n−α
dy, x ∈ Rn \ {0},

respectively. In [24], we gave some characterizations of CṀOp(Rn)(1 < p <∞) via
the boundedness of Hα,b on both Lebesgue spaces and Herz spaces. For λ < 0, we
gave some characterizations of Ċp,λ(Rn) in [58] as follows.
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Theorem 2.3. Let p, λ, pi, λi, i = 1, 2, b as in Theorem 2.1, 0 < α < min{n(1 −
1/p), n(λ2 + 1/p2)} and let β = λ2 − α/n. Then the following statements are
equivalent:
(a) b ∈ Ċp1,λ1(Rn);
(b) Both Hα,b and H∗α,b are bounded operators from Ṁp2,β(Rn) to Ṁp,λ(Rn).

Theorem 2.4. Let 2 < p < ∞,−1/(2p) < λ < 0, 0 < α < min{n(1 − 1/p), n(λ +
1/p)} and let β = λ− α/n. Then the following statements are equivalent:
(a) b ∈ Ċp,λ(Rn);
(b) Both Hα,b and H∗α,b are bounded operators from Ṁp,β(Rn) to Ṁp,2λ(Rn).

The study for the compactness of operators can be traced to Uchiyama [69]
where the characterization of Lp−compactness of Tb was obtained when T is the
Calderón-Zygmund singular integral and b ∈ VMO(Rn). Since then, many results
were obtained for the compactness of commutators on different function spaces, see
e.g. [1,10,11]. In [52], we explored the compactness of Hb and H∗b on Lp(Rn) space
as

b ∈ CVMO(Rn)⇐⇒ Both [b,H] and [b,H∗] are compact on Lp(Rn),

where CVMO(Rn) denotes the CBMO(Rn) closure of C∞c (Rn).
In [27], we considered the following Hardy operator with homogeneous kernel,

which was introduced by Fu, Lu and Zhao in [28].

HΩf(x) =
1

|x|n

∫
|y|<|x|

Ω(x− y)f(y)dy, x ∈ Rn \ {0},

where Ω satisfies

Ω(tx) = Ω(x) ∀ t > 0 & x ∈ Rn; (2.1)∫
Sn−1

Ω(x′)dσ(x′) = 0; (2.2)

Ω ∈ Lq(Sn−1) ∀ q ≥ 1. (2.3)

Similarly, we can define the dual operator of HΩ as

H∗Ωf(x) =

∫
|y|≥|x|

Ω(x− y)f(y)

|y|n
dy.

So far, there is little information on the function characterizations by the bound-
edness and compactness of commutators for HΩ and H∗Ω, this is because known
results for the inverse function characterizations highly depend on the smoothness
of the kernels, see e.g. [56] for Ω ∈ C∞(Sn−1). Since then, much work was being
spent on weakening the conditions of Ω, for example the following so-called Hölder
condition of the log type

|Ω(x′)− Ω(y′)| ≤ A(
log 2
|x′−y′|

)γ with A > 0, γ > 1 and x′, y′ ∈ Sn−1. (2.4)

If Ω satisfies (2.4), then Ω ∈ Lq(Sn−1) and also satisfies∫ 1

0

wq(δ)

δ
(1 + | log δ|)dδ <∞ with q ≥ 1.
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If Ω satisfies (2.1) and (2.3), Fu, Lu and Zhao [28] obtained the boundedness of
[b,HΩ] on Lp(Rn) with b ∈ CBMO(Rn). In [27], we gave some characterizations of
CBMO(Rn) when Ω satisfies (2.1), (2.2) and (2.4).

Theorem 2.5. Suppose that Ω satisfies (2.1), (2.2) and (2.4). Then
(a) b ∈ CBMOmax{p,s}(Rn) with 1

p + 1
q + 1

s = 1 for q > 1 ⇒ both HΩ,b and H∗Ω,b
are bounded on Lp(Rn).
(b) Both HΩ,b and H∗Ω,b are bounded on Lp(Rn) ⇒ b ∈ CBMO(Rn).

Theorem 2.6. Let Ω satisfy (2.1), (2.2), (2.4) and b ∈ BMO(Rn). Then

b ∈ CVMO(Rn)⇐⇒ Both HΩ,b and H∗Ω,b are compact on Lp(Rn).

2.2. Average operators on p-adic field
In the past two decades, there is an increasing interest in the study of harmonic
analysis on p-adic field and their various generalizations and the related theory of
operators and spaces. For a prime number p, let Qp be the field of p-adic numbers.
It is defined as the completion of the field of rational numbers Q with respect to
the non-Archimedean p-adic norm | · |p. This norm is defined as follows: |0|p = 0;
if any non-zero rational number x is represented as x = pγ mn , where γ is an integer
and integers m, n are indivisible by p, then |x|p = p−γ . It is easy to see that the
norm satisfies the following properties:|xy|p = |x|p|y|p, |x+ y|p ≤ max{|x|p, |y|p}.
Moreover, if |x|p 6= |y|p, then |x+ y|p = max{|x|p, |y|p}. It is well-known that Qp is
a typical model of non-Archimedean local fields.

The space Qnp consists of points x = (x1, x2, · · · , xn), where xj ∈ Qp, j =
1, 2, · · · , n. The p-adic norm on Qnp is

|x|p := max
1≤j≤n

|xj |p, x ∈ Qnp .

Denote by Bγ(a) = {x ∈ Qnp : |x − a|p ≤ pγ}, the ball with center at a ∈ Qnp and
radius pγ , and by Sγ(a) := {x ∈ Qnp : |x − a|p = pγ} the sphere with center at
a ∈ Qnp and radius pγ , γ ∈ Z. It is clear that Sγ(a) = Bγ(a) \Bγ−1(a).

Since Qnp is a locally compact commutative group under addition, there exists
a Haar measure dx on Qnp , which is unique up to positive constant multiple and is
translation invariant. We normalize the measure dx by the equality∫

B0(0)

dx = |B0(0)|H = 1,

where |E|H denotes the Haar measure of a measurable subset E of Qnp . Then
|Bγ(a)|H = pγn, |Sγ(a)|H = pγn(1− p−n) for any a ∈ Qnp .

The following definitions of function spaces can be found in [30,71,74].
Let 1 ≤ q <∞. A function f ∈ Lqloc(Qnp ) is said to be in CBMOq(Qnp ), if

‖f‖CBMOq(Qnp ) := sup
γ∈Z

(
1

|Bγ(0)|H

∫
Bγ(0)

|f(x)− fBγ(0) |
qdx

) 1
q

<∞,

where
fBγ(0) =

1

|Bγ(0)|H

∫
Bγ(0)

f(x)dx.
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It is obvious that L∞(Qnp ) ⊂ BMO(Qnp ) ⊂ CBMOq(Qnp ).
Let Bk = Bk(0), Sk = Bk \ Bk−1 and χk is the characteristic function of Sk.

Suppose that α ∈ R, 0 < q < ∞ and 0 < r < ∞. The homogeneous p-adic Herz
space Kα,q

r (Qnp ) is defined by

Kα,q
r (Qnp ) =

{
f ∈ Lrloc(Qnp ) : ‖f‖Kα,q

r (Qnp ) <∞
}
,

where

‖f‖Kα,q
r (Qnp ) =

(
+∞∑

k=−∞

pkαq‖fχk‖qLr(Qnp )

) 1
q

with the usual modifications made when q = ∞ or r = ∞. It’s easy to see that
K

α
q ,q
q (Qnp ) = Lq(|x|αp dx), K0,q

q (Qnp ) = Lq(Qnp ) for all 0 < q ≤ ∞ and α ∈ R.
Let 1 ≤ q <∞ and λ ≥ − 1

q . The p-adic Morrey space Lq,λ(Qnp ) is defined by

Lq,λ(Qnp ) =
{
f ∈ Lqloc(Q

n
p ) : ‖f‖Lq,λ(Qnp ) <∞

}
,

where

‖f‖Lq,λ(Qnp ) = sup
a∈Qnp ,γ∈Z

(
1

|Bγ(a)|1+λq
H

∫
Bγ(a)

|f(x)|qdx

) 1
q

.

Clearly, Lq,−1/q(Qnp ) = Lq(Qnp ), Lq,0(Qnp ) = L∞(Qnp ).
Let λ ∈ R and 1 < q < ∞. The non-homogeneous p-adic central Morrey space

Bq,λ(Qnp ) is defined by

‖f‖Bq,λ(Qnp ) := sup
γ∈Z+

(
1

|Bγ |1+λq
H

∫
Bγ

|f(x)|qdx

) 1
q

<∞.

The homogeneous p-adic central Morrey space Ḃq,λ(Qnp ) is defined by

‖f‖Ḃq,λ(Qnp ) := sup
γ∈Z

(
1

|Bγ |1+λq
H

∫
Bγ

|f(x)|qdx

) 1
q

<∞.

Obviously, Ḃq,λ(Qnp ) ⊂ Bq,λ(Qnp ). If 1 ≤ q1 < q2 <∞, by Hölder’s inequality

Ḃq2,λ(Qnp ) ⊂ Ḃq1,λ(Qnp ), Bq2,λ(Qnp ) ⊂ Bq1,λ(Qnp ),

for λ ∈ R. When λ < −1/q, the spaces Ḃq,λ(Qnp ) and Bq,λ(Qnp ) reduce to {0}, and

Ḃq,−
1
q (Qnp ) = Bq,−

1
q (Qnp ) = Lq(Qnp ).

Let λ < 1
n and 1 < q <∞. The space CBMOq,λ(Qnp ) is defined by the condition

‖f‖CBMOq,λ(Qnp ) := sup
γ∈Z

(
1

|Bγ |1+λq
H

∫
Bγ

|f(x)− fBγ |qdx

) 1
q

<∞,
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where fBγ = 1
|Bγ |H

∫
Bγ
f(x)dx. When λ = 0, the space CBMOq,λ(Qnp ) is just

CBMOq(Qnp ). If 1 ≤ q1 < q2 <∞, by Hölder’s inequality, we have

CBMOq2,λ(Qnp ) ⊂ CBMOq1,λ(Qnp )

for λ ∈ R. By the standard proof as that in Rn, we can see that

‖f‖CBMOq,λ(Qnp ) ∼ sup
γ∈Z

inf
c∈C

(
1

|Bγ |1+λq
H

∫
Bγ

|f(x)− c|qdx

) 1
q

.

2.2.1. Hardy operators on p-adic field

For a function f on Qnp , the p-adic Hardy operators are defined as follows

Hpf(x) =
1

|x|np

∫
B(0,|x|p)

f(t)dt, x ∈ Qnp \ {0},

Hp,∗f(x) =

∫
Qnp\B(0,|x|p)

f(t)

|t|np
dt, x ∈ Qnp \ {0},

where B(0, |x|p) is a ball in Qnp with center at 0 ∈ Qnp and radius |x|p. Let
b ∈ Lloc(Qnp ). The commutators of Hp,Hp,∗ with b are denoted by Hpb ,H

p,∗
b , re-

spectively. In [30], we obtained the sharp estimates for Hp and Hp,∗ on Lq(|x|αp dx).

Theorem 2.7. Let 1 < q <∞ and α < n(q − 1). Then

‖Hp‖Lq(|x|αp dx)→Lq(|x|αp dx) = ‖Hp,∗‖Lq(|x|αp dx)→Lq(|x|αp dx) =
1− p−n

1− p
α
q −

n
q′
,

where 1
q + 1

q′ = 1.

In particular, when α = 0, we have

‖Hp‖Lq(Qnp )→Lq(Qnp ) = ‖Hp,∗‖Lq(Qnp )→Lq(Qnp ) =
1− p−n

1− p−
n
q′
,

where 1
q + 1

q′ = 1. Obviously, the Lq norm of Hp on Qnp depends on n, however, the
Lq norm of H on Rn is independent of the dimension n.

In [30], we also got the boundedness of commutators of Hardy operators on
homogeneous p-adic Herz spaces.

Theorem 2.8. Let 0 < q1 ≤ q2 < ∞, 1 < r < ∞ and b ∈ CBMOmax{r′,r}(Qnp ).
Then
(1) If α < n

r′ , then H
p
b is bounded from Kα,q1

r (Qnp ) to Kα,q2
r (Qnp );

(2) If α > −nr , then H
p,∗
b is bounded from Kα,q1

r (Qnp ) to Kα,q2
r (Qnp ).

Corollary 2.1. Suppose that 1 < q <∞ and b ∈ CBMOmax{q′,q}(Qnp ). Then
(1) If α < nq

q′ , then H
p
b is bounded from Lq(|x|αp dx) to Lq(|x|αp dx);

(2) If α > −n, then Hp,∗b is bounded from Lq(|x|αp dx) to Lq(|x|αp dx).
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2.2.2. The Hardy-Littlewood-Pólya operator on p-adic field

The Hardy-Littlewood-Pólya operator on R is defined by

Tf(x) =

∫ +∞

0

f(y)

max(x, y)
dy.

And its norm on Lq(R+), 1 < q <∞, is ‖T‖Lq(R+)→Lq(R+) = q2

q−1 .

In [30], we considered the p-adic of Hardy-Littlewood-Pólya operator which is
defined as

T p(x) =

∫
Qp

f(y)

max(|x|p, |y|p)
dy, x ∈ Q∗p.

We obtained the sharp estimates of T p on Lq(|x|αp dx).

Theorem 2.9. Let 1 < q <∞ and −1 < α < q − 1. Then

‖T p‖Lq(|x|αp dx)→Lq(|x|αp dx) =

(
1− 1

p

)(
1

1− p
α
q −

1
q′

+
p−

α+1
q

1− p−
α+1
q

)
,

where 1
q + 1

q′ = 1.

When α = 0, we can see

‖T p‖Lq(Qp)→Lq(Qp) =

(
1− 1

p

)(
1

1− p−
1
q′

+
p−

1
q

1− p−
1
q

)
.

2.2.3. Weighted Hardy operators on p-adic field

On p-adic field, the weighted p-adic Hardy operator Hpψ is defined by

Hpψf(x) =

∫
Z∗p
f(tx)ψ(t)dt,

where ψ is a non-negative function defined on Z∗p. Obviously, if ψ ≡ 1 and n = 1,
then Hpψ is just reduced to the p-adic Hardy operator Hp on Qp.

In [71], we got the following sufficient and necessary conditions of weight func-
tions, under which the weighted p-adic Hardy operators are bounded on p-adic
Morrey, central Morrey and λ-central BMO spaces.

Theorem 2.10. Let 1 < q <∞, Θn =
∫
Z∗p
|t|nλp ψ(t)dt, we have

(i) when −1/q < λ ≤ 0, then Hpψ is bounded on Lq,λ(Qnp ) if and only if Θn < ∞.
Moreover, ‖Hpψ‖Lq,λ(Qnp )→Lq,λ(Qnp ) = Θn;
(ii) when −1/q < λ ≤ 0, then Hpψ is bounded on Ḃq,λ(Qnp ) if and only if Θn < ∞.
Moreover, ‖Hpψ‖Ḃq,λ(Qnp )→Ḃq,λ(Qnp )) = Θn;

(iii) when 0 ≤ λ < 1/n, then Hpψ is bounded on CMOq,λ(Qnp ) if and only if Θn <∞.
Moreover, ‖Hpψ‖CMOq,λ(Qnp )→CMOq,λ(Qnp )) = Θn

Corollary 2.2. Let 1 < q <∞, then
(i) when −1/q < λ ≤ 0, then ‖Hp‖Lq,λ(Qp)→Lq,λ(Qp) = 1−p−1

1−p−(1+λ) ;

(ii) when −1/q < λ ≤ 0, then ‖Hp‖Ḃq,λ(Qp)→Ḃq,λ(Qp) = 1−p−1

1−p−(1+λ) ;

(iii) when 0 ≤ λ < 1, then ‖Hp‖CMOq,λ(Qp)→CMOq,λ(Qp) = 1−p−1

1−p−(1+λ) .
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Denote by Hpψ,b the commutator of the weighted p-adic Hardy operator Hpψ and
locally integrable function b. We established the following sufficient and necessary
condition for weight functions to ensure that Hpψ,b are bounded on p-adic central
Morrey spaces.

Theorem 2.11. Let 1 < q < q1 < ∞, 1/q = 1/q1 + 1/q2 and −1/q1 ≤ λ < 0.
Assume that ψ is a positive integrable function on Z∗p. Then for any b ∈ CMOq2(Qnp )

the commutator Hpψ,b is bounded from Ḃq1,λ(Qnp ) to Ḃq,λ(Qnp ) if and only if∫
Z∗p
ψ(t)|t|nλp logp

1

|t|p
dt <∞.

When b ∈ CMOq,λ(Qnp ) with λ 6= 0, we have the following conclusion.

Theorem 2.12. Let 1 < q < q1 <∞, 1/q = 1/q1 + 1/q2, −1/q < λ < 0, −1/q1 <
λ1 < 0, 0 < λ2 <

1
n and λ = λ1 + λ2. If∫

Z∗p
ψ(t)|t|nλ1

p dt <∞,

then for any b ∈ CMOq2,λ2(Qnp ), the corresponding commutator Hpψ,b is bounded
from Ḃq1,λ1(Qnp ) to Ḃq,λ(Qnp ).

2.3. Average operators on the Heisenberg group

The Heisenberg group Hn is a non-commutative nilpotent Lie group, with the un-
derlying manifold R2n × R and the group law [70]

(x1, x2, · · · , x2n, x2n+1)(x′1, x
′
2, · · · , x′2n, x′2n+1)

=
(
x1 + x′1, x2 + x′2, · · · , x2n + x′2n, x2n+1 + x′2n+1 + 2

n∑
j=1

(x′jxn+j − xjx′n+j)
)
.

The identity element on Hn is 0 ∈ R2n+1, while the element x−1 inverse to x is −x.
Hn is a homogeneous group with dilations

δr(x1, x2, · · · , x2n, x2n+1) = (rx1, rx2, · · · , rx2n, r
2x2n+1), r > 0.

The Haar measure on Hn coincides with the usual Lebesgue measure on R2n × R.
We denote the measure of any measurable set E ⊂ Hn by |E|. Then

|δr(E)| = rQ|E|, d(δrx) = rQdx,

where Q = 2n + 2 is called the homogeneous dimension of Hn. The Heisenberg
distance derived from the norm

|x|h =

( 2n∑
i=1

x2
i

)2

+ x2
2n+1

 1
4

,

where x = (x1, x2, · · · , x2n, x2n+1), is given by d(p, q) = d(q−1p, 0) = |q−1p|h.
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For r > 0 and x ∈ Hn, the ball and sphere with center x and radius r on Hn
are given by B(x, r) = {y ∈ Hn : d(x, y) < r} and S(x, r) = {y ∈ Hn : d(x, y) = r},
respectively. And we have

|B(x, r)| = |B(0, r)| = ΩQr
Q,

where

ΩQ =
2πn+ 1

2 Γ(n2 )

(n+ 1)Γ(n)Γ(n+1
2 )

.

The area of S(0, 1) on Hn is ωQ = QΩQ.
Let 1 < p < ∞. We say that a weight w ∈ Ap(Hn) if there exists a constant C

such that for all balls B,(
1

|B|

∫
B

w(x)dx

)(
1

|B|

∫
B

w (x)
−1/(p−1)

dx

)p−1

≤ C.

We say that a weight w ∈ A1(Hn) if there is a constant C such that for all balls B,

1

|B|

∫
B

w (x) dx ≤ C essinf
x∈B

w (x) .

We define
A∞(Hn) =

⋃
1≤p<∞

Ap(Hn).

A close relation to A∞(Hn) is the reverse Hölder condition. If there exist r > 1 and
a fixed constant C such that(

1

|B|

∫
B

w(x)rdx

)1/r

≤ C

|B|

∫
B

w(x)dx

for all balls B ⊂ Hn, we then say that w satisfies the reverse Hölder condition of
order r and write w ∈ RHr(Hn) (cf. [46] and references therein).

2.3.1. Hardy operator on the Heisenberg group

Let f be a locally integrable function on Hn. The Hardy operator on Hn [73] is
defined by

Hf(x) : =
1

|B(0, |x|h)|

∫
B(0,|x|h)

f(y)dy, x ∈ Hn \ {0}.

The weak L1(Hn) space L1,∞(Hn) is defined as the set of all measurable functions
f on Hn satisfying

‖f‖L1,∞(Hn) := sup
λ>0

λ
∣∣{x ∈ Hn : |f(x)| > λ}

∣∣ <∞.
A (1,∞, 0)-atom is a compactly supported L∞(Hn) function f such that (i)

there is a ball B whose closure contains supp(f) and satisfying ‖f‖∞ ≤ |B|−1; (ii)∫
f(x)dx = 0.
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The Hardy space H1(Hn) can be defined by

H1(Hn) :=
{
f ∈ L1(Hn) : f(x) =

∞∑
k=1

λkfk(x),

∞∑
k=1

|λk| <∞
}
,

where each fk is a (1,∞, 0)-atom, and theH1 norm of f can be defined by ‖f‖H1(Hn)

:= inf
∑∞
k=1 |λk|, here the infimum is taken over all the decompositions of f =∑

k λkfk as above [19].
In [73], we obtained the following boundedness of H on the Heisenberg group.

Theorem 2.13. Let 1 < p ≤ ∞, then
(i) H is bounded from Lp(Hn) to Lp(Hn). Moreover,

‖H‖Lp(Hn)→Lp(Hn) =
p

p− 1
, 1 < p <∞,

‖H‖L∞(Hn)→L∞(Hn) = 1.

(ii) H is bounded from L1(Hn) to L1,∞(Hn). Moreover, ‖H‖L1(Hn)→L1,∞(Hn) = 1.
(iii) H is bounded from H1(Hn) to L1(Hn).

Remark 2.1. (i) H is not bounded from L1(Hn) to L1(Hn). For example, we can
take

f0(x) = |x|αhχB(0,R)(x), α > −Q.

It is easy to see that f0 ∈ L1(Hn), and ‖f0‖L1(Hn) = ωQR
α+Q/(α+Q). But

Hf0(x) =

{
Q|x|αh/(Q+ α), |x| ≤ R,
QRQ+α|x|−Qh /(Q+ α), |x| > R,

does not belong to L1(Hn).
(ii) H is not bounded from H1(Hn) to H1(Hn). To illustrate this, we take

f0(x) =
1− 2Q

ΩQ2Q+1
χ{|x|h≤1}(x) +

1

ΩQ2Q+1
χ{1<|x|h≤2}(x).

Then f0 is a (1,∞, 0)-atom of H1(Hn), and

Hf0(x) =
1− 2Q

ΩQ2Q+1
χ{|x|h≤1}(x) +

1− 2Q|x|−Qh
ΩQ2Q+1

χ{1<|x|h≤2}(x).

It is clear that ∫
Hf0(x)dx = −Q

2
ln 2 6= 0.

Thus Hf0 6∈ H1(Hn).

It is known that the Hardy-Littlewood maximal operator on Rn is bounded from
Lp(v) to Lp(w) if and only if (w, v) ∈ Ap(Rn) . On the Heisenberg group, a pair
of nonnegative weights (w, v) belongs to the class Ap(Hn), 1 ≤ p < ∞, if when
1 < p <∞

sup
B

(
1

|B|

∫
B

w(x)dx

)(
1

|B|

∫
B

v(x)1−p′dx

)p−1

<∞,
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and when p = 1,
1

|B|

∫
B

w(x)dx ≤ C inf
x∈B

v(x).

In the Euclidean space, the characterization of the weights (w, v) for the n-
dimensional Hardy inequality∫

Rn
(Hf(x))pw(x)dx ≤ C

∫
Rn

(f(x))pv(x)dx, 1 ≤ p <∞,

was obtained by Drábek et al. in a skillful method.
The good weights (w, v) for H were called Mp weights [83], 1 ≤ p < ∞. A

natural question is that whether Mp weights exist on the Heisenberg group. If
they exist, do the corresponding results hold for these Mp weights? We provided
affirmative answers to these questions.

Assume that (w, v) is a pair of nonnegative functions. (w, v) is called anM1(Hn)
weight if for almost all x ∈ Hn,∫

|x|h>α
|x|−Qh w(x)dx ≤ C essinf |x|h<αv(x), α > 0,

for some constant C. (w, v) is called an Mp(Hn) (1 < p < 1) weight if

sup
0<α<∞

(∫
|x|h>α

|x|−Qph w(x)dx

) 1
p
(∫
|x|h<α

v(x)1−p′dx

) 1
p′

<∞,

where 1/p+ 1/p′ = 1. If w = v, we say that w ∈Mp(Hn), 1 ≤ p <∞.
The weighted Hardy inequalities on the Heisenberg group can also characterize

Mp weights [73].

Theorem 2.14. Let w and v be nonnegative weight functions on Hn. For 1 < p ≤
q <∞, the inequality{∫

Hn
w(x) (Hf(x))

q
dx

} 1
q

≤ C
{∫

Hn
v(x)f(x)pdx

} 1
p

, (2.5)

holds for f ≥ 0 if and only if

A := sup
0<α<∞

(∫
|x|h>α

|x|−Qqh w(x)dx

) 1
q
(∫
|x|h<α

v(x)1−p′dx

) 1
p′

<∞.

Moreover, if C is the smallest constant for which (2.5) holds, then

A ≤ ΩQC ≤ Ap′
1
p′ p

1
q .

Corollary 2.3. Let w and v be nonnegative weight functions on Hn. For 1 < p <
∞, the inequality{∫

Hn
w(x) (Hf(x))

p
dx

} 1
p

≤ C
{∫

Hn
v(x)f(x)pdx

} 1
p

, (2.6)

holds for f ≥ 0 if and only if (w, v) ∈ Mp. Moreover, if C is the smallest constant
for which (2.6) holds, then

A ≤ ΩQC ≤ Ap′
1
p′ p

1
p .
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2.3.2. Weighted Hardy operators on the Heisenberg group

Let w : [0, 1] → [0,∞) be a function, the weighted Hardy operators Hw on Hn [14]
is defined as

Hwf(x) : =

∫ 1

0

f(δtx)w(t)dt,

for a measurable function f on Hn. The adjoint operator of the weighted Hardy
operator, the weighted Cesàro operator is defined as

Cωf(x) :=

∫ 1

0

f(δ1/tx)t−Qω(t)dt, x ∈ Hn,

which satifies ∫
Hn
f(x)(Hωg)(x)dx =

∫
Hn
g(x)(Cωf)(x)dx.

Here f ∈ Lp(Hn), g ∈ Lq(Hn), 1 < p <∞, q = p/(p−1), Hω is bounded on Lp(Hn)
and Cω is bounded on Lq(Hn).

Recall that the space BMO(Hn) is defined to be the space of all locally integrable
functions f on Hn such that

‖f‖BMO(Hn) := sup
B⊂Hn

1

|B|

∫
B

|f(x)− fB |dx <∞,

where the supremum is taken over all balls in Hn.
In [14], we gave the characterization of w when Hw and Cw are bounded.

Theorem 2.15. Let w : [0, 1]→ (0,∞) be a function and let 1 ≤ p ≤ ∞. Then
(i) Hw is bounded on Lp(Hn) if and only if∫ 1

0

t−
Q
p w(t)dt <∞. (2.7)

Moreover, if (2.7) holds, then

‖Hw‖Lp(Hn)→Lp(Hn) =

∫ 1

0

t−
Q
p w(t)dt.

(ii) Hw is bounded on BMO(Hn) if and only if∫ 1

0

w(t)dt <∞. (2.8)

Moreover, if (2.8) holds, then

‖Hw‖BMO(Hn)→BMO(Hn) =

∫ 1

0

w(t)dt.

Theorem 2.16. Let w : [0, 1]→ (0,∞) be a function and let 1 ≤ q ≤ ∞. Then
(i) Cw is bounded on Lq(Hn) if and only if∫ 1

0

t−Q(1−1/q)w(t)dt <∞. (2.9)
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Moreover, if (2.9) holds, then

‖Cw‖Lq(Hn)→Lq(Hn) =

∫ 1

0

t−Q(1−1/q)w(t)dt.

(ii) Cw is bounded on BMO(Hn) if and only if∫ 1

0

t−Qw(t)dt <∞. (2.10)

Moreover, if (2.10) holds, then

‖Cw‖BMO(Hn)→BMO(Hn) =

∫ 1

0

t−Qw(t)dt.

2.3.3. Hausdorff operator on the Heisenberg group

Let Φ be a locally integrable function on Hn. The Hausdorff operators on Hn are
defined by

TΦf(x) =

∫
Hn

Φ(y)

|y|Qh
f
(
δ|y|−1

h
x
)
dy, TΦ,Af(x) =

∫
Hn

Φ(y)

|y|Qh
f (A(y)x) dy,

where A(y) is a matrix-valued function [12] and we assume detA(y) 6= 0 almost
everywhere on the support of Φ. In the above definition, we note that TΦ,A = TΦ

if we choose a special matrix A. For a matrix M , we will use the norm ‖M‖ =
supx∈Hn, x 6=0 |Mx|h/|x|h.

Suppose α ∈ R, 0 < p, q < ∞. Let w be a weight on Hn, Bk = {x ∈ Hn |
|x|h < 2k}, Dk = Bk \ Bk−1. The homogeneous weighted Herz space K̇α,p

q (Hn;w) is
defined by

K̇α,p
q (Hn;w) =

{
f ∈ Lqloc (Hn \ {0};w) : ‖f‖K̇α,p

q (Hn;w) <∞
}
,

where

‖f‖K̇α,p
q (Hn;w) =

{
+∞∑

k=−∞

w(Bk)αp/Q‖f‖pLq(Dk,w)

}1/p

.

In [46], we obtained the following boundedness estimates.

Theorem 2.17. Let 1 ≤ p < ∞, 1 ≤ q1, q2 < ∞, −∞ < α1 < 0, α2 ∈ R and
1/q1 + α1/Q = 1/q2 + α2/Q. Suppose that w ∈ Aγ , 1 ≤ γ < ∞, with the critical
index rw for the reverse Hölder condition and q1 > q2γrw/(rw − 1).

(i) If 1/q1 + α1/Q ≥ 0, then for any 1 < δ < rw,

‖TΦ,Af‖K̇α2,p
q2

(Hn;w) � C3‖f‖K̇α1,p
q1

(Hn;w),

where

C3 =

∫
‖A(y)‖<1

|Φ(y)|
|y|Qh

|detA−1(y)|γ/q1‖A(y)‖−γα1dy

+

∫
‖A(y)‖≥1

Φ(y)

|y|Qh
|detA−1(y)|γ/q1‖A(y)‖Qγ/q1−(Q/q1+α1)(δ−1)/δdy.
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(ii) If 1/q1 + α1/Q < 0, then for any 1 < δ < rw,

‖TΦ,Af‖K̇α2,p
q2

(Hn;w) � C4‖f‖K̇α1,p
q1

(Hn;w),

where

C4 =

∫
‖A(y)‖<1

|Φ(y)|
|y|Qh

|detA−1(y)|γ/q1‖A(y)‖Qγ/q1−(Q/q1+α1)(δ−1)/δdy

+

∫
‖A(y)‖≥1

Φ(y)

|y|Qh
|detA−1(y)|γ/q1‖A(y)‖−γα1dy.

The result for the case γ = 1, p < 1 was also obtained in [46].
If ‖A−1(y)‖ and ‖A(y)‖−1 are comparable, we can obtain the following sharp

result.

Theorem 2.18. Let 1 ≤ p, q <∞, −Q < β <∞, α ∈ R and Φ be a nonnegative
function. Suppose that there is a constant C independent of y such that ‖A−1(y)‖ ≤
C‖A(y)‖−1 for all y ∈ supp(Φ) . Then TΦ,A is bounded on K̇α,p

q (Hn; | · |β) if and
only if ∫

Hn

Φ(y)

|y|Qh
‖A−1(y)‖(Q+β)(1/q+α/Q)dy <∞.

Let Φ be a locally integrable function on Hn. If b ∈ Lloc(Hn), the commutator
of Hausdorff operator is defined by

T bΦ,Af = bTΦ,Af − TΦ,A(bf).

Define (
T b,1Φ,Af

)
(x) =

∫
‖A(y)‖≤1

Φ(y)

|y|Qh
f (A(y)x) [b(x)− b (A(y)x)] dy,

(
T b,2Φ,Af

)
(x) =

∫
‖A(y)‖>1

Φ(y)

|y|Qh
f (A(y)x) [b(x)− b (A(y)x)] dy.

It is clear that
T bΦ,Af = T b,1Φ,Af + T b,2Φ,Af.

Theorem 2.19. Let 1 ≤ p1, p2, q <∞ and −1/p1 ≤ λ < 0. Suppose that w ∈ Aq
with the critical index rw for the reverse Hölder condition. If p1 > p2qrw/(rw − 1),
then we have that, for any 1 < δ < rw,

‖TΦ,Af‖L̇p2,λ(Hn;w) � C1‖f‖L̇p1,λ(Hn;w),

where

C1 =

∫
‖A(y)‖>1

|Φ(y)|
|y|Qh

(
‖A(y)‖Q

|detA(y)|

)q/p1
‖A(y)‖Qλ(δ−1)/δdy

+

∫
‖A(y)‖≤1

|Φ(y)|
|y|Qh

(
‖A(y)‖Q

|detA(y)|

)q/p1
‖A(y)‖Qλqdy.
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Theorem 2.20. Let 1 ≤ p, p1, p2, q < ∞ and −1/p1 ≤ λ < 0. Suppose that
w ∈ Aq with the critical index rw for the reverse Hölder condition. If 1/p > (1/p1 +
1/p2)qrw/(rw − 1) and q ≤ p2, then we have that, for any 1 < δ < rw,

‖T bΦ,Af‖L̇p,λ(Hn;w) � C2‖f‖L̇p1,λ(Hn;w)‖b‖CMOp2 (Hn;w),

where

C2 =

∫
‖A(y)‖>1

|Φ(y)|
|y|Qh

(
‖A(y)‖Q

|detA(y)|

)q/p1
‖A(y)‖Qλ(δ−1)/δ

×max

{
‖A(y)‖Q

|detA(y)|
, log2 ‖A(y)‖

}
dy

+

∫
‖A(y)‖≤1

|Φ(y)|
|y|Qh

(
‖A(y)‖Q

|detA(y)|

)q/p1
‖A(y)‖Qλq

×max

{
‖A(y)‖Q

|detA(y)|
, log2

1

‖A(y)‖

}
dy.

Especially, if ‖A−1(y)‖ and ‖A(y)‖−1 are comparable, the following sharp results
hold.

Theorem 2.21. Let 1 ≤ p < ∞, −1/p ≤ λ < 0,−Q < α < ∞ and Φ be a
nonnegative function. Suppose that there is a constant C0 independent of y such that
‖A−1(y)‖ ≤ C0‖A(y)‖−1 for all y ∈ supp(Φ). Then TΦ,A is bounded on L̇p, λ(Hn; | ·
|αh) if and only if ∫

Hn

Φ(y)

|y|Qh
‖A(y)‖(Q+α)λdy <∞. (2.11)

Theorem 2.22. Let 1 ≤ p, p1, p2 < ∞, 1/p = 1/p1 + 1/p2, −1/p1 < λ < 0,
−Q < α <∞ and p2 > (Q+α)/Q if 0 < α <∞ or p2 ≥ 1 if −Q < α ≤ 0. Suppose
that Φ is a nonnegative function and there is a constant C0 independent of y such
that ‖A−1(y)‖ ≤ C0‖A(y)‖−1 for all y ∈ supp(Φ). If b ∈ CMOp2(Hn; | · |αh) and
(2.11) holds, then we have the following conclusions.

(i) T b,1Φ,A is bounded from L̇p1, λ(Hn; | · |αh) to L̇p, λ(Hn; | · |αh) if and only if∫
‖A(y)‖≤1

Φ(y)

|y|Qh
‖A(y)‖(Q+α)λ |log2 ‖A(y)‖| dy <∞.

(ii) T b,2Φ,A is bounded from L̇p1, λ(Hn; | · |αh) to L̇p, λ(Hn; | · |αh) if and only if∫
‖A(y)‖>1

Φ(y)

|y|Qh
‖A(y)‖(Q+α)λ log2 ‖A(y)‖dy <∞.

Let S(Hn) be the Schwartz class on Hn. Its dual space S ′(Hn) is the space of
tempered distributions on Hn. For f ∈ S ′(Hn) and Ψ ∈ S(Hn), the nontangential
maximal function MΨf of f with respect to Ψ is defined by

MΨf(x) = sup
|x−1y|h<r<∞

|f ∗Ψr(y)|, (2.12)
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where Ψr(y) = r−QΨ(δr−1y). The nontangential grand maximal function M(N)f is
defined by

M(N)f(x) = sup
Ψ∈S,‖Ψ‖N≤1

MΨf(x). (2.13)

For 0 < p ≤ 1, let Np = [Q(1/p − 1)] + 1. The Hardy space Hp(Hn) [19] is
defined by

Hp(Hn) =
{
f ∈ S ′(Hn) : M(Np)f ∈ Lp(Hn)

}
with

‖f‖Hp(Hn) = ‖M(Np)f‖Lp(Hn).

The ordered triplet (p, q, α) is called admissible if 0 < p ≤ 1 ≤ q ≤ ∞, p 6= q,
α ∈ N and α ≥ [Q( 1

p − 1)], where [·] is the integer funcion. Let (p, q, α) be an
admissible triplet. A function a ∈ Lq(Hn) is called a (p, q, α)-atom [19] centered at
x0 if it satisfies the following conditions:

(i) There exists a ball B(x0, r) such that supp(f) ⊂ B(x0, r);

(ii) ‖f‖Lq(Hn) ≤ |B|
1
q−

1
p ;

(iii)
∫
Hn f(x)P (x)dx = 0, for any polynomial P of homogeneous degree less than

or equal to α.
A function a ∈ Lq(Hn) is called a big (p, q)-atom centered at x0 if there exists a

ball B(x0, r) with r ≥ 1
2 such that it satisfies (i) (ii), see [3].

If (p, q, α) is an admissible triplet, the atomic Hardy space Hp
q,α(Hn) is the set of

all tempered distributions of the form
∑
j λjfj (the sum converging in the topology

of S ′), where each fj is a (p, q, α)-atom and
∑
j |λj |p <∞.

If f ∈ Hp
q,α(Hn), the quasi-norm ‖f‖Hpq,α(Hn) (it is a norm when p = 1) is defined

by

‖f‖Hpq,α(Hn) = inf

(∑
j

|λj |p
) 1
p

,

where the infimum is taken over all (p, q, α)-atom decompositions of f .
Given a weight w ∈ A∞ and an admissible triplet (p, q, [Q(qw/p − 1)], a w-

(p, q, [Q(qw/p − 1)]-atom centered at x0 with respect to w will be a function a
satisfying the following three conditions.

(i) There exists a ball B(x0, r) such that supp(a) ⊂ B(x0, r).
(ii) ‖a‖Lqw(Hn) ≤ w(B(x0, r))

1
q−

1
p , if q < ∞ or ‖a‖L∞(Hn) ≤ w(B(x0, r))

− 1
p , if

q =∞.
(iii)

∫
Hn a(x)xIdx = 0, for all multi-indices I = (i1, i2, · · · , i2n+1) ∈ N2n+1 with

|I| =
∑2n
k=1 ik + 2i2n+1 ≤ [Q(qw/p− 1)].

Let w ∈ A∞ be a weight and let 0 < p ≤ 1 < q ≤ ∞. A tempered distribution
f ∈ S ′ belongs to Hp

w(Hn) if and only if f can be written as a series

f =
∑
j

λjaj , (2.14)

(the sum converging in S ′), where each aj is a w-(p, q, [Q(qw/p − 1)])-atom and∑
j |λj |p <∞. Moreover, by setting ‖f‖p

Hpw(Hn)
to be the infimum of the sums over

all decompositions (2.14), one obtains the norm for such space.
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The local maximal functions are defined by taking supremum over 0 < r ≤ 1
instead of 0 < r <∞ in (2.12) and (2.13):

M̃Ψf(x) = sup
|x−1y|h<r≤1

|f ∗Ψr(y)| ,

M̃(N)f(x) = sup
Ψ∈S,‖Ψ‖N≤1

M̃Ψf(x).

Let 0 < p ≤ 1. The local Hardy space hp(Hn) is defined by

hp(Hn) =
{
f ∈ S ′(Hn) : M̃(Np)f ∈ Lp(Hn)

}
with

‖f‖hp(Hn) = ‖M̃(Np)f‖Lp(Hn).

In [72], we got the following behavior of Hausdorff operators on power-weighted
Hardy spaces and local Hardy spaces

Theorem 2.23. Let Φ be a nonnegative function. Suppose that A(y) ∈ Aut(Hn) al-
most everywhere and there exists a constantM independent of y such that ‖A−1(y)‖
≤M‖A(y)‖−1.

(i) Let −Q < α < Q and α 6= 0. If all entries of the same row of A(y)
are nonnegative uniformly or nonpositive uniformly on y ∈ supp(Φ), then TΦ,A is
bounded on H1

|·|αh
(Hn) if and only if∫

Hn

Φ(y)

|y|Qh
‖A−1(y)‖α

∣∣detA−1(y)
∣∣ dy <∞.

(ii) If there exists at least one row of A(y) such that all entries of such row
are nonnegative uniformly or nonpositive uniformly on y ∈ supp(Φ), then TΦ,A is
bounded on H1(Hn) if and only if∫

Hn

|Φ(y)|
|y|Qh

∣∣detA−1(y)
∣∣ dy <∞.

Theorem 2.24. Let Φ be a nonnegative function. Suppose A(y) ∈ Aut(Hn) almost
everywhere. If there exists a constant M independent of y such that ‖A−1(y)‖ ≤
M‖A(y)‖−1, then TΦ,A is bounded on h1(Hn) if and only if∫

‖A−1(y)‖<1

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣max

{
1, ln

(
‖A−1(y)‖−1

)}
dy

+

∫
‖A−1(y)‖≥1

Φ(y)

|y|Qh

∣∣detA−1(y)
∣∣dy

<∞.

Let Φ be a locally integrable function on Hn. The fractional Hausdorff operator
on Hn [70] is defined by

TΦ,βf(x) =

∫
Hn

Φ(δ|y|−1
h
x)

|y|Q−βh

f(y)dy, 0 ≤ β ≤ Q.
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We shall define two kinds of special Hausdorff operators. If Φ is a Poisson kernel
associated to sub-Laplacians on the Heisenberg group, the corresponding Hausdorff
operator TΦ, written as T p

Φ, is called the Hausdorff-Poisson operator. It is known
that Poisson kernels have the semigroup property:

Φs ∗ Φt(x) = Φs+t(x),

for s, t > 0. If Φ ∈ S(Hn) satisfies another group relation:

Φs ∗ Φt(x) = Φ√s2+t2(x),

for s, t > 0, then the corresponding Hausdorff operator, written as T g
Φ, is called the

Hausdorff-Gauss operator.
In [70], we obtained the boundedness of Hausdorff operators on Hardy spaces.

Theorem 2.25. Suppose Φ is radial, 0 ≤ β < Q and

Ψ(x) =
Φ(|x|−1

h )

|x|Q−βh

.

Assume 0 < p < 1, α = Q(1/p− 1) and 1/p = 1/q + β/Q. If Ψ ∈ Γα+ε ∩ Γα−ε for
some sufficiently small ε such that α− ε > 0, then

‖TΦ,β(f)‖Lq(Hn) � ‖f‖Hp(Hn),

where Γα is the Lipschitz space of order α (see Section 3).

Theorem 2.26. Let Q
Q+1 < p ≤ 1. We have

‖T p
Φ(f)‖Hp(Hn) � ‖f‖Hp(Hn).

Theorem 2.27. For all 0 < p <∞,

‖T g
Φ(f)‖Hp(Hn) � ‖f‖Hp(Hn).

3. Oscillatory type integral operators

3.1. One-sided oscillatory integral operators

The study for one-sided operators was motivated by their natural appearance in
harmonic analysis; for example, in the study of one-sided Hardy-Littlewood maximal
operator [48]

M+f(x) = sup
h>0

1

h

∫ x+h

x

|f(y)| dy & M−f(x) = sup
h>0

1

h

∫ x

x−h
|f(y)| dy

arising in the ergodic maximal function. Sawyer introduced the one-sided Ap classes
A+
p , A−p by the following conditions in [48]:

A+
p : A+

p (w) := sup
a<b<c

1

(c− a)p

∫ b

a

w(x) dx

(∫ c

b

w(x)1−p′ dx

)p−1

<∞,
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A−p : A−p (w) := sup
a<b<c

1

(c− a)p

∫ c

b

w(x) dx

(∫ b

a

w(x)1−p′ dx

)p−1

<∞,

when 1 < p < ∞; also, for p = 1, A+
1 : M−w ≤ Cw, A−1 : M+w ≤ Cw for some

constant C.
We say a function K is a one-sided Calderón-Zygmund kernel [26] if K satisfies

the condition as that of Calderón-Zygmund kernel and∣∣∣∣∣
∫
a<|x|<b

K(x) dx

∣∣∣∣∣ ≤ C, 0 < a < b

with support in R− = (−∞, 0) or R+ = (0,+∞).
The one-sided oscillatory integral operator T+ and T− were defined in [26] as

T+f(x) = lim
ε→0+

∫ ∞
x+ε

eiP (x,y)K(x− y)f(y)dy = p.v.

∫ ∞
x

eiP (x,y)K(x− y)f(y)dy

and

T−f(x) = lim
ε→0+

∫ x−ε

−∞
eiP (x,y)K(x− y)f(y)dy = p.v.

∫ x

−∞
eiP (x,y)K(x− y)f(y)dy,

where P (x, y) is a real polynomial defined on R × R, and K are the one-sided
Calderón-Zygmund kernel.

We obtained the weak (1,1) boundedness of T+ in [26] as follows:

Theorem 3.1. If w ∈ A+
1 , then there exists a constant C depending on the total

degree of P , C(K) and A+
1 (w) such that

sup
λ>0

λw({x ∈ R : |T+f(x)| > λ}) ≤ C‖f‖L1(w)

for f ∈ S(R).

One-sided BMO spaces were introduced in [44] and defined as

BMO+ := {f : f ]+ ∈ L∞, ‖f‖BMO+ = ‖f ]+‖L∞},

and
BMO− := {f : f ]− ∈ L∞, ‖f‖BMO− = ‖f ]−‖L∞},

where f ]+ and f ]− were the one-sided sharp maximal function which were defined as

f ]+ = sup
h>0

1

h

∫ x+h

x

(
f(y)− 1

h

∫ x+2h

x+h

f

)+

dy,

and

f ]− = sup
h>0

1

h

∫ x

x−h

(
f(y)− 1

h

∫ x−h

x−2h

f

)+

dy

with z+ = max{z, 0}. The commutators formed by T+ and b ∈ BMO+ can be
defined as follows.

T+
b f(x) = p.v.

∫ ∞
x

eiP (x,y)K(x− y)(b(x)− b(y))f(y)dy
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for b ∈ BMO+(R). The high order commutators of T+(T−) and b ∈
BMO+(BMO−) are

T k,+b f(x) = p.v.

∫ ∞
x

eiP (x,y)K(x− y) (b(x)− b(y))
k
f(y)dy

and
T k,−b f(x) = p.v.

∫ x

−∞
eiP (x,y)K(x− y) (b(x)− b(y))

k
f(y)dy,

where k ∈ Z+.
In [51,65], we established the boundedness of commutator for T k,+b and T k,−b as

follows.

Theorem 3.2. Let 1 < p <∞ and T̃+ be the one-sided Calderón-Zygmund singular
operator.

(1) If w ∈ A+
p and T̃+ is of type (L2, L2), then T+

b is bounded on Lp(w) for
every b ∈ BMO+, where the norm independent on the coefficients of P .

(2) If w ∈ A−p and T̃− is of type (L2, L2), then T−b is bounded on Lp(w) for
every b ∈ BMO−, where the norm independent on the coefficients of P .

Theorem 3.3. Let 1 < p <∞ and k ∈ Z+.
(1) If w ∈ A+

p and T̃+ is of type (L2, L2), then T k,+b is bounded on Lp(w) for
every b ∈ BMO+, where the norm independent on the coefficients of P .

(2) If w ∈ A−p and T̃− is of type (L2, L2), then T k,−b is bounded on Lp(w) for
every b ∈ BMO−, where the norm independent on the coefficients of P .

We shall say that f in S ′(x−∞,∞) belongs to the one-sided Hardy space Hq
+(w)

[25] if

‖f‖Hq+(w) =

(∫ ∞
x−∞

(M2
+,ψ(x))qw(x)dx

)1/q

<∞, 0 < q ≤ 1

and w ∈ A+
p (p ≥ 1). A function a(x) defined on R is called a q-atom with respect

to w(x) if there exists an interval I containing the support of a(x) such that
(a) I ⊂ (x−∞,∞) and w(I) <∞,
(b) ‖a‖L∞ ≤ w(I)−1/q,
(c) |I| < dist(x−∞, I), and

∫
I
a(x)dx = 0.

It is easy to check that H1
+(w) ⊂ L1(w). In [25], we proved the following results.

Theorem 3.4. Let P (x) be a polynomial which satisfies P ′(0) = 0 and w ∈ A+
1 .

Then there exists a constant C > 0, which depends only on A+
1 (w) and the degree

of P (x) (not its coefficients), such that

‖T+f‖L1(w) ≤ C‖f‖H1
+(w)

for all f ∈ H1
+(w).

Corollary 3.1. Let P and w be in the above Theorem. Then T+ is bounded from
L∞(w) into [Hq

+(w)]∗, where [Hq
+(w)]∗ is the dual space of Hq

+(w)

In [25], we also gave a criterion for the weighted Lp-boundednesss of T+.

Theorem 3.5. Let P (x, y) be a real polynomial, K be a one-sided Calderón-
Zygmund kernel and b(r) be a bounded variation function on [0,∞). For 1 < p <∞
and w ∈ A+

p , we have
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(a) The operator

T̃+,bf(x) = p.v

∫ ∞
x

b(y − x)K(x− y)f(y)dy

is of type (Lp(w), Lp(w)).
(b) The operator

T+,bf(x) = p.v

∫ ∞
x

eiP (x,y)b(y − x)K(x− y)f(y)dy

is of type (Lp(w), Lp(w)). Here its norm depends only on the total degree of P (x, y)
and A+

p (w), but not on the coefficients of P (x, y).

Furthermore, we have

Theorem 3.6. Let w, p and K be as in the above theorem. Then the following
statements are equivalent:

(a) If P (x, y) is a nontrivial polynomial (P (x, y) does not take the form P0(x)+
P1(y), where P0 and P1 are polynomials defined on R ), then the operator T+ is of
type (Lp(w), Lp(w)).

(b) If P (x, y) satisfies P (x, y) = P (x − h, y − h) + P0(x, h) + P1(y, h) with
h ∈ R and P0 and P1 are polynomials defined on R, then the operator T+ is of type
(Lp(w), Lp(w)).

(c) The truncated operator

T̃+
0 f(x) = p.v.

∫ x+1

x

K(x− y)f(y)dy

is of type (Lp(w), Lp(w)).

By the above two theorems, we can easily obtain the following result for the
maximal operator corresponding to T+:

Theorem 3.7. Let w, p and K be as above. Then the maximal operator

T+
∗ f(x) = sup

ε>0

∣∣∣∣∫ ∞
x+ε

eiP (x,y)K(x− y)f(y)dy

∣∣∣∣
is of type (Lp(w), Lp(w)), where its norm depends only on the total degree of P (x, y),
but not on the coefficients of P (x, y).

Very recently, the authors [23] further give the characterizations of one-sided
Triebel–Lizorkin spaces and the boundedness for commutators. These results com-
plement the missing components in the one-sided singular integral operator and
function space theory studied before.

3.2. Fractional Fourier transforms

Theory of the FRFT has been developed on the Schwartz space S(R) and L2(R),
while we focus on the FRFT on L1(R). On L1(R), problems of convergence arise
when certain manipulations of functions are performed and FRFT inversion is not
possible.
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For f ∈ L1(R) and α ∈ R, the fractional Fourier transform of order α of f is
(c.f. [8]) defined by

(Fαf)(x) =


∫ +∞
−∞ Kα(x, t)f(t) dt, α 6= nπ, n ∈ N,

f(x), α = 2nπ,

f(−x), α = (2n+ 1)π,

where

Kα(x, t) = Aα exp

[
2πi

(
t2

2
cotα− xt cscα+

x2

2
cotα

)]
is the kernel of FRFT and

Aα =
√

1− i cotα.

From [8], we can see that Fα is a bounded linear operator from L1(R) to L∞(R).
For f ∈ L1(R), Fαf is uniformly continuous on R.

Theorem 3.8 (Multiplication formula). For every f, g ∈ L1(R) and α ∈ R we have∫ +∞

−∞
(Fαf)(x)g(x)dx =

∫ +∞

−∞
f(x)(Fαg)(x)dx.

Let f, g ∈ L1(R). Define the fractional convolution of order α by(
f
α∗ g
)

(x) = e−πix
2 cotα

∫ +∞

−∞
eπit

2 cotαf(t)g(x− t)dt =M−α (Mαf ∗ g) (x).

The L1 dilation of a function φ is defined as

φε(x) :=
1

ε
φ
(x
ε

)
, ∀ε > 0.

The following is a fundamental result concerning fractional convolution and approx-
imate identities [8].

Theorem 3.9. Let φ ∈ L1(R) and
∫ +∞
−∞ φ (x) dx = 1. If f ∈ Lp (R) , 1 ≤ p < ∞,

then
(i)

lim
ε→0

∥∥∥(f α∗ φε)− f∥∥∥
p

= 0.

(ii) if in addition ψ (x) = sup
|t|≥|x|

|φ (t)| ∈ L1(R), then

lim
ε→0

(
f
α∗ φε

)
(x) = f (x) , a.e. x ∈ R,

where ψ is the decreasing radial dominant functions of φ.

Given Φ ∈ C0(R), Φ(0) = 1 and ε > 0, we define

Mε,Φα(f) :=

∫ +∞

−∞
(Fαf)(x)K−α(x, ·)Φα(εx)dx,
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where
Φα (x) := Φ (x cscα) .

The expressionsMε,Φα(f) (with varying ε) are called the Φα means of the fractional
Fourier integral of f .

We now address the FRFT inversion problem [8].

Theorem 3.10. If Φ, ϕ := FΦ ∈ L1(R) and
∫ +∞
−∞ ϕ (x) dx = 1, then

(i) the Φα means of the Fourier integral of f are convergent to f in L1 norm, that
is,

lim
ε→0

∥∥∥∥∫ +∞

−∞
(Fαf) (x)K−α(·, x)Φα (εx) dx− f (·)

∥∥∥∥
1

= 0.

(ii) if in addition ψ = sup
|t|≥|x|

|ϕ (t)| ∈ L1(R), then the Φα means of the Fourier

integral of f are a.e. convergent to f , that is,∫ +∞

−∞
(Fαf) (x)K−α(t, x)Φα (εx) dx→ f (t)

as ε→ 0 for almost all t ∈ R.

Theorem 3.11 (Uniqueness of FRFT on L1(R)). If f1, f2 ∈ L1(R) and (Fαf1) (x) =
(Fαf2) (x) for all x ∈ R, then

f1 (t) = f2 (t) , a.e. t ∈ R.

We have the following result concerning the action of the FRFT on Lp(R).

Theorem 3.12 (Hausdorff-Young inequality). Let 1 < p ≤ 2, p′ = p/(p−1). Then
Fα are bounded linear operators from Lp(R) to Lp

′
(R). Moreover,

‖Fαf‖p′ ≤ A
2
p−1
α ‖f‖p .

Let 1 ≤ p ≤ ∞ and mα ∈ L∞(R). Define the operator Tmα as

Fα (Tmαf) (x) = mα (x) (Fαf) (x) , f ∈ L2(R) ∩ Lp(R).

The function mα is called the Lp Fourier multiplier of order α, if there exist a
constant Cp,α > 0 such that

‖Tmαf‖p ≤ Cp,α ‖f‖p , f ∈ L2(R) ∩ Lp(R).

Fourier multipliers play an important role in operator theory, partial differential
equations, and harmonic analysis. We got some basic multiplier theory results in
the FRFT setting.

Theorem 3.13. Let mα be a bounded function. If there exists a constant B > 0
such that one of the following conditions hold:

(a) (Mikhlin’s condition) ∣∣∣∣ d

dx
mα(x)

∣∣∣∣ ≤ B |x|−1
;
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(b) (Hörmander’s condition)

sup
R>0

1

R

∫
R<|x|<2R

∣∣∣∣ d

dx
mα(x)

∣∣∣∣2 dx ≤ B2.

Then mα is a fractional Lp multiplier for 1 < p <∞, that is, there exist a constant
C > 0 such that

‖Tmαf‖p = ‖F−α [mα (Fαf)]‖p ≤ C ‖f‖p , ∀f ∈ Lp(R).

Theorem 3.14 (Bernstein multiplier theorem). Let mα ∈ C1(R\{0}) be bounded.
If ‖m′α‖ <∞, then there exist constants C1, C2 > 0 such that

‖F−α [mα (Fαf)]‖p ≤ C1 ‖f‖p ,

for f ∈ Lp(R) (1 ≤ p <∞), and

‖mα‖2 ≤ C2‖mα‖2‖m′α‖2.

Theorem 3.15 (Marcinkiewicz multiplier theorem). Letmα ∈ L∞(R)∩C1(R\{0}).
If there exist a constant B > 0 such that

sup
I∈I

∫
I

∣∣∣∣ d

dx
mα(x)

∣∣∣∣dx ≤ B,
where I : ={[2j , 2j+1], [−2j+1,−2j ]}j∈Z is the set of binary intervals in R, then, for
f ∈ Lp(R) (1 < p <∞), there exist a constant C > 0 such that

‖F−α [mα (Fαf)]‖p ≤ C ‖f‖p .

The Littlewood-Paley is not only a powerful tool in Fourier analysis, but also
plays a very important role in other areas, such as partial differential equations.

Let j ∈ Z. Define the binary intervals in R as Iαj := [2j sinα, 2j+1 sinα],−Iαj := [−2j+1 sinα,−2j sinα], α ∈ (0, π),

Iαj := [2j+1 sinα, 2j sinα],−Iαj := [−2j sinα,−2j+1 sinα], α ∈ (π, 2π).

Then those binary intervals internally disjoint and

R\{0} =
⋃
j∈Z

(−Iαj ∪ Iαj ).

Let Iα := {Iαj ,−Iαj }j∈Z. Define the partial summation operator Sρα corresponding
to ρα ∈ Iα by

Fα(Sραf)(x) = χρα(x) (Fαf) (x), ∀f ∈ L2(R) ∩ Lp(R),

where χρα denote the characteristic function of the interval ρα. It is obvious that∑
ρα∈Iα

‖Sρα(f)‖22 = ‖f‖22 , ∀f ∈ L2(R).

For general Lp(R) functions, we have the following result, which is the Littlewood-
Paley theorem in fractional setting.
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Theorem 3.16. Let f ∈ Lp(R), 1 < p <∞. Then ∑
ρα∈Iα

|Sρα(f)|2
1/2

∈ Lp(R)

and there exists constants C1, C2 > 0 independent of f such that

C1 ‖f‖p ≤

∥∥∥∥∥∥∥
 ∑
ρα∈Iα

|Sρα(f)|2
1/2

∥∥∥∥∥∥∥
p

≤ C2 ‖f‖p .

For f ∈ L1(Rn) and α = (α1, α2, ..., αn) ∈ Rn, the nd-FRFT of f with order α
is defined by

Fαf(z) =

∫
Rn
Kα(x, z)f(x) dx,

where Kα(x, z) =
∏n
j=1Kαj (xj , zj) and here for each j = 1, 2, · · · , n, Kαj (xj , zj)

is defined as follows

Kαj (xj , zj) =


√

1− i cotαj e
iπ cotαj [x

2
j+z

2
j−2xjzj secαj ], αj /∈ πZ,

δ(xj − zj), αj ∈ 2πZ,

δ(xj + zj), αj ∈ 2πZ + π,

where x = (x1, x2, · · · , xn).
The multidimensional fractional convolution of order α can be defined as(

f
α∗ g
)

(x) = e−α(x)

∫
Rn
eα(z)f(z)g(x− z)dz

for f, g ∈ L1(Rn).
We establish the following two approximation theorems in [82]. Theorem 3.17

is about approximation in Lp norm and Theorem 3.18 is about almost everywhere
approximation.

Theorem 3.17. Let φ ∈ L1(Rn), f ∈ Lp (Rn) , 1 ≤ p < ∞ and
∫
Rn φ (x) dx = 1.

Then
lim
y→0

∥∥∥(f α∗ φy)− f∥∥∥
p

= 0

where φy := 1
ynφ

(
·
y

)
.

Theorem 3.18. Let φ ∈ L1(Rn), f ∈ Lp (Rn) , 1 ≤ p < ∞ and
∫
Rn φ (x) dx = 1.

Denote by ψ (z) = sup|x|≥z |φ (x)| the decreasing radial dominant function of φ. If
ψ ∈ L1(Rn), then for almost all z ∈ Rn,

lim
y→0

(
f
α∗ φy

)
(z) = f (z) ,

where φy := 1
ynφ

(
·
y

)
.
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The uncertainty principle is a principle of physics introduced by Heisenberg in
1927. It points out that it is impossible to determine precisely the position and
momentum of a microscopic particle simultaneously. It is one of the fundamental
results in quantum mechanics. The uncertainty principle is expressed mathemati-
cally as the Heisenberg inequality. In [82], we also obtained the general Heisenberg
inequality.

Theorem 3.19 (General Heisenberg inequality). Let f ∈ L2(Rn) and α = (α1, α2,
..., αn), β = (β1, β2, ..., βn) ∈ Rn. For any y = (y1, y2, ..., yn),v = (v1, v2, ..., vn) ∈
Rn, if α1 − β1 = α2 − β2 = ... = αn − βn, then[∫

Rn
|x− ỹ|2 |(Fαf) (x)|2 dx

] [∫
Rn
|z − ṽ|2 |(Fβf) (z)|2 dz

]
≥n

2‖f‖42
16π2

sin2(α1 − β1),

where

ỹ = (y1 sinα1 + v1 cosα1, y2 sinα2 + v2 cosα2, ..., yn sinαn + vn cosαn) ,

ṽ = (y1 sinβ1 + v1 cosβ1, y2 sinβ2 + v2 cosβ2, ..., yn sinβn + vn cosβn) .

3.3. Linear canonical transforms
The linear canonical transform (LCT) was proposed by Collins and Moshinsky–
Quesne almost simultaneously in the early 1970s. Since LCT has more free param-
eters than the classical Fourier transform (FT) and the fractional Fourier transform
(FRFT), it has become an important tool for time-frequency analysis, especially
for non-stationary signals or time-varying signals, and is widely used in many fields
such as radar, sonar, communication, information security, digital watermarking,
etc.

Let’s review the definition of 1D-LCT. Denote by SL (2,R) the set of all 2×2 real

matrices of determinant 1. For any matrix A =

a b
c d

 ∈ SL (2,R) , the 1D-LCT

is defined by

LAf (x) =


∫ +∞

−∞
KA (x, t) f (t) dt, b 6= 0,

√
dei

cd
2 x

2

f (dx) , b = 0,

where

KA (x, t) = CAeb,d(x)eb,a(t)eb(x, t),

CA =

√
1

i2πb
, eb,d(x) = ei

d
2bx

2

, eb,a(x) = ei
a
2b t

2

, eb(x, t) = e−
i
bxt.

For any matrix Aj =

aj bj
cj dj

 ∈ SL (2,R), bj 6= 0, j = 1, 2, u = (u1, u2) ∈ R2,

the 2D-LCT [81] is defined by

LAf (u) =

∫
R2

KA (u,x) f (x) dx,
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where

KA (u,x) = KA1
(u1, x1)KA2

(u2, x2) = CAeb,d (u) eb,a (x) eb (u,x) ,

CA = CA1
CA2

, A = (A1, A2) ,

eb,d (u) = eb1,d1(u1)eb2,d2(u2) = e
i
(
d1
2b1

u2
1+

d2
2b2

u2
2

)
,

eb,a (x) = eb1,a1(x1)eb2,a2(x2) = e
i
(
a1
2b1

x2
1+

a2
2b2

x2
2

)
,

eb (u,x) = eb1(u1, x1)eb2(u2, x2) = e
−i

(
u1x1
b1

+
u2x2
b2

)
.

In [81], we obtained that

Theorem 3.20 (General Multiplication formula). Let

A = (A1, A2) , A′ = (A′1, A
′
2) ,

Aj =

aj bj
cj dj

 ∈ SL (2,R) , A′j =

dj bj
cj aj

 ∈ SL (2,R) ,

where j = 1, 2. For every f, g ∈ L2(R2) we have∫
R2

[LAf (u)] g (u) du =

∫
R2

f (u) [LA′g (u)] du.

Theorem 3.21 (General Heisenberg inequality). Let f ∈ L2(R2) and

Akj =

akj bkj
ckj d

k
j

 ∈ SL (2,R) , j, k = 1, 2.

For any y = (y1, y2),v = (v1, v2) ∈ R2, if A1
1

(
A1

2

)∗
= A2

1

(
A2

2

)∗ then[∫
R2

|x− ỹ|2 |(LA1f) (x)|2 dx

]
×
[∫

R2

|u− ṽ|2 |(LA2f) (u)|2 du

]
≥
∣∣a1

1c
1
2 − b11d1

2

∣∣2 ‖f‖42,
where

A1 =
(
A1

1, A
2
1

)
, A2 =

(
A1

2, A
2
2

)
,

ỹ =
(
y1b

1
1 + v1a

1
1, y2b

2
1 + v2a

2
1

)
,

ṽ =
(
y1b

1
2 + v1a

1
2, y2b

2
2 + v2a

2
2

)
.

For f, g ∈ L1(R2), we define the convolution
A∗ by(

f
A∗ g
)

(u) = e−b,a (u)

∫
R2

eb,a (x) f (x) g (u− x) dx.

For ε > 0, let φε (u) := 1
ε2φ

(
u
ε

)
.
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Theorem 3.22. Let φ ∈ L1(R2) and
∫
R2 φ (u) du = 1. If f ∈ Lp(R2), 1 ≤ p <∞,

then
(i)

lim
ε→0

∥∥∥(f A∗ φε)− f∥∥∥
p

= 0.

(ii) If in addition the decreasing radial dominant functions ψ (u) = sup
|x|≥|u|

|φ (x)| ∈

L1(R2) and f ∈ Lp(R2), 1 ≤ p <∞, then

lim
ε→0

(
f
A∗ φε

)
(u) = f (u) , a.e. u ∈ R2.

Let Φ ∈ L1(R2) with Φ (0, 0) = 1. For any ε > 0, the Φb means of the linear
canonical integral with respect to A of f is defined by

Mε,Φb
(f) (x) :=

∫
R2

LAf (u)KA∗ (x,u) Φb (εu) du,

where
Φb (u) := Φ (ub) .

Theorem 3.23. Let Φ, ϕ := FΦ ∈ L1(R2) with
∫
R2 ϕ (x) dx = 1 and ψ (u) =

sup
|x|≥|u|

|ϕ (x)| ∈ L1(R2). Then

(i) Φb means of the linear canonical integral of f are convergent to f in the sense
of L1 norm:

lim
ε→0
‖Mε,Φb

(f)− f‖1 = 0,

(ii) Φb means of the linear canonical integral of f are convergent to f almost
everywhere, i.e.,

lim
ε→0

Mε,Φb
(f) (x) = f (x) , a.e. x ∈ R2.

From Theorem 3.23, we deduce the following conclusion.

Corollary 3.2. Suppose f,LAf ∈ L1(R2). Then

f (x) =

∫
R2

LAf (u)KA∗ (x,u) du, a.e. x ∈ R2.

Corollary 3.3. For f1, f2,LAf1,LAf2 ∈ L1(R2) with

LAf1 (u) = LAf2 (u) , u ∈ R2,

we have
f1 (x) = f2 (x) , a.e. x ∈ R2.

The LCT also has the following boundedness result as FRFT.

Theorem 3.24 (Hausdorff-Young inequality). For 1 < p ≤ 2, p′ = p/ (p− 1), we
have that LA is a bounded linear operator from Lp(R2) to Lp

′
(R2). Moreover,

‖LAf‖p′ = C
2
p−1

A ‖f‖p.
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For 1 ≤ p ≤ ∞ and mA ∈ L∞(R2). The operator TmA
is defined by

LA (TmA
f) (x) = mA (x)LAf (x) , f ∈ L2(R2) ∩ Lp(R2).

If there exists a constant Cp,A > 0 satisfying

‖TmA
f‖p ≤ Cp,A ‖f‖p , f ∈ L2(R2) ∩ Lp(R2),

then mA is called the Lp linear canonical multiplier.

Theorem 3.25. Let mA ∈ L∞(R2). If there exists a constant B > 0 satisfying
one of the following conditions:

1. (Mikhlin’s condition) ∣∣∣∣ ∂2

∂u1∂u2
mA (u)

∣∣∣∣ ≤ B |u|−2
;

2. (Hörmander’s condition)

sup
R>0

1

R

∫
R<|u|<2R

∣∣∣∣ ∂2

∂u1∂u2
mA (u)

∣∣∣∣2 du ≤ B.

Then there exists C > 0 satisfying

‖TmA
f‖p = ‖LA∗ (mALAf)‖p ≤ C ‖f‖p , f ∈ Lp(R2).

Corollary 3.4. Assume that f ∈ Lp(R2) (1 < p < ∞) and mA ∈ L∞(R2) ∩
C1(R2\{0}).
(i) (Bernstein-type multiplier theorem) If ‖m′A‖2 < ∞, then there exists C > 0
satisfying

‖LA∗ (mALAf)‖p ≤ C‖mA‖
1
2
2 ‖m′A‖

1
2
2 ‖f‖p.

(ii) (Marcinkiewicz-type multiplier theorem) If there exists B > 0 satisfying

sup
I∈∆

∫
I

∣∣∣∣ ∂2

∂x1∂x2
mA (x)

∣∣∣∣ dx ≤ B,
where

∆ = I × I,

I =
{

[2j , 2j+1], [−2j+1,−2j ]
}
j∈Z

is the set of dyadic rectangles in R2, then there exists C > 0 satisfying

‖LA∗ (mALAf)‖p ≤ C ‖f‖p .

We define the partial summation operator Sρb associated with ρb ∈ ∆ as

LA (Sρbf) (u) = χρb (u)LAf (u) , f ∈ L2(R2) ∩ Lp(R2),

where χρb is the characteristic function of ρb. It is simple to show that∑
ρb∈∆

‖Sρb (f)‖22 = ‖f‖22 , ∀f ∈ L2(R2).
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Theorem 3.26. For f ∈ Lp(R2), 1 < p <∞, we have∑
ρb∈∆

|Sρb (f)|2
1/2

∈ Lp(R2)

and there exist C1, C2 > 0 satisfying

C1 ‖f‖p ≤

∥∥∥∥∥∥∥
∑
ρb∈∆

|Sρb (f)|2
1/2

∥∥∥∥∥∥∥
p

≤ C2 ‖f‖p .

4. Singular integral operators

4.1. Riesz type operators
Recall that a connected, simply connected nilpotent Lie group G is said to be strat-
ified if its left-invariant Lie algebra g (assumed real and of finite dimension) admits
a direct sum decomposition

g =

s⊕
i=1

Vi, [V1, Vi] = Vi+1, for i ≤ s− 1 and [V1, Vs] = 0.

s is called the step of the group G.
There is a natural family of dilations on g defined for r > 0 as follows:

δr

( s∑
i=1

vi

)
=

s∑
i=1

rivi, with vi ∈ Vi.

This allows the definition of dilation on G, which we still denote by δr. We fix once
and for all a (bi-invariant) Haar measure dx on G (which is just the lift of Lebesgue
measure on g via exp).

Denote by the sub-Laplacian ∆ =
∑n
j=1 X2

j , where {X1, · · · ,Xn} is the basis
of V1. Let Q denote the homogeneous dimension of G, namely, Q =

∑s
i=1 i dimVi.

And let ph (h > 0) be the heat kernel (that is, the integral kernel of eh∆) on G.
The kernel of the jth Riesz transform Xj(−∆)−

1
2 (1 ≤ j ≤ n) is written simply

as Kj(g, g
′) = Kj(g

′−1 ◦ g). It is known that (c.f. [7, 18])

Kj ∈ C∞(G \ {0}), Kj(δr(g)) = r−QKj(g), ∀g 6= 0, r > 0, 1 ≤ j ≤ n.

Let ρ be the homogeneous norm on G, which induces a quasi-distance

ρ(g, g′) = ρ(g′−1 ◦ g) = ρ(g−1 ◦ g′), ∀g, g′ ∈ G.

The bounded mean oscillation space BMO(G) [7] is defined to be the space of all
locally integrable functions f on G such that

‖f‖BMO(G) := sup
B⊂G

M(f,B) := sup
B⊂G

1

|B|

∫
B

|f(g)− fB | dg <∞,

where fB = 1
|B|
∫
B
f(g)dg.
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We define VMO(G) as the closure of the C∞0 functions on G under the norm of
the BMO space.

Let 1 < p <∞, a weight w is said to be of class Ap(G) if

[w]Ap := sup
B⊂G

(
1

|B|

∫
B

w(g)dg

)(
1

|B|

∫
B

w(g)−1/(p−1)dg

)p−1

<∞.

A weight w is said to be of class A1(G) if there exists a constant C such that for all
balls B ⊂ G,

1

|B|

∫
B

w(g)dg ≤ C essinf
x∈B

w(g).

For p =∞, we define
A∞(G) =

⋃
1≤p<∞

Ap(G).

In [7], we obtained the following lower bound of the Riesz transform kernel and
the characterization of the compactness of Riesz transform commutator.

Theorem 4.1. Suppose that G is a stratified Lie group with homogeneous dimension
Q and that j ∈ {1, 2, . . . , n}. There exist a large positive constant ro and a positive
constant C such that for every g ∈ G there exists a “twisted truncated sector” Gg ⊂ G
satisfying that inf

g′∈Gg
ρ(g, g′) = ro and that for every g1 ∈ Bρ(g, 1) and g2 ∈ Gg, we

have
|Kj(g1, g2)| ≥ Cρ(g1, g2)−Q, |Kj(g2, g1)| ≥ Cρ(g1, g2)−Q,

and all Kj(g1, g2) as well as all Kj(g2, g1) have the same sign.
Moreover, this “twisted truncated sector” Gg is regular, in the sense that |Gg| =

∞ and that for any R2 > R1 > 2ro,

|(Bρ(g,R2) \Bρ(g,R1)) ∩Gg| ≈ |Bρ(g,R2) \Bρ(g,R1)| ,

where the implicit constants are independent of g and R1, R2.

Theorem 4.2. Let 1 < p <∞, w ∈ Ap(G), b ∈ L1
loc(G). Then b ∈ VMO(G) if and

only if for some ` ∈ {1, · · · , n}, Riesz transform commutator [b,R`] is compact on
Lpw(G).

4.2. Cauchy type operators

4.2.1. Cauchy integrals and Cauchy–Leray integral

Recently, Lanzani and Stein [40] studied the Cauchy–Szegő projection operator on
a bounded strongly pseudoconvex domain D in Cn whose boundary bD satisfies
the minimum regularity condition of class C2. The measure that they used on the
boundary bD is the Leray–Levi measure dλ. They obtained the Lp(bD) boundedness
(1 < p <∞) of a family of Cauchy integrals {Cε}ε. Since the role of the parameter
ε is of no consequence here, when denoting a member in this family we will simply
write C. Here the space Lp(bD) is defined with respect to dλ. We point out that
the kernel of these Cauchy integral operators does not satisfy the standard size
or smoothness conditions for Calderón–Zygmund operators. To obtain the Lp(bD)
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boundedness, they decomposed the Cauchy transform C, which is the restriction of
such a Cauchy integral on bD into the essential part C] and the remainder R, i.e.,

C = C] + R,

where the kernel of C], denoted by C](w, z), satisfies the standard size and smooth-
ness conditions for Calderón–Zygmund operators, i.e. there exists a positive con-
stant A1 such that for every w, z ∈ bD with w 6= z,

a) |C](w, z)| ≤ A1
1

d(w, z)2n ;

b) |C](w, z)− C](w′, z)| ≤ A1
d(w,w′)

d(w, z)2n+1 , if d(w, z) ≥ cd(w,w′);

c) |C](w, z)− C](w, z′)| ≤ A1
d(z, z′)

d(w, z)2n+1 , if d(w, z) ≥ cd(z, z′)

for an appropriate constant c > 0 and where d(z, w) is a quasi-distance suitably
adapted to D. However, the kernel R(w, z) of R satisfies a size condition and a
smoothness condition for only one of the variables as follows: there exists a positive
constant CR such that for every w, z ∈ bD with w 6= z,

d) |R(w, z)| ≤ CR 1
d(w, z)2n−1 ;

e) |R(w, z)−R(w, z′)| ≤ CR
d(z, z′)
d(w, z)2n , if d(w, z) ≥ cRd(z, z′)

for an appropriate large constant cR.
In [17], we obtained the following characterization of the commutator of Cauchy

transform C.

Theorem 4.3. Suppose D ⊂ Cn, n ≥ 2, is a bounded domain whose boundary
is of class C2 and is strongly pseudoconvex. Suppose b ∈ L1(bD, dλ). Then for
1 < p <∞,

(1) b ∈ BMO(bD, dλ) if and only if the commutator [b,C] is bounded on
Lp(bD, dλ).

(2) b ∈ VMO(bD, dλ) if and only if the commutator [b,C] is compact on
Lp(bD, dλ).

We also considered the Cauchy–Leray integral in the setting of Lanzani–Stein
[41], where they studied such integral in a bounded domainD in Cn which is strongly
C-linearly convex and the boundary bD satisfies the minimum regularity C1,1. The
Cauchy–Leray transform of a suitable function f on bD, denoted C(f), is formally
defined by

C(f)(z) =

∫
bD

f(w)

∆(w, z)n
dλ(w), z ∈ bD,

where ∆(w, z) = 〈∂ρ(w), w − z〉, ρ is the defining function of D. In [41], they
obtained the Lp(bD) boundedness (1 < p < ∞) of C by showing that the ker-
nel K(w, z) of C satisfies the standard conditions of Calderón–Zygmund operators.
Following a similar approach as in the proof for Theorem 4.3, we arrived at the
following result on the commutator of the Cauchy–Leray transform.
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Theorem 4.4. Let D be a bounded domain in Cn of class C1,1 that is strongly
C-linearly convex and let b ∈ L1(bD, dλ). Let C be the Cauchy–Leray transform.
Then for 1 < p <∞,

(1) b ∈ BMO(bD, dλ) if and only if the commutator [b, C] is bounded on
Lp(bD, dλ).

(2) b ∈ VMO(bD, dλ) if and only if the commutator [b, C] is compact on
Lp(bD, dλ).

In [31], we also characterized the boundedness and compactness of the commu-
tator of Cauchy type integral C on the weighted Morrey space Lp, κv (bD), p ∈ (1,∞),
κ ∈ (0, 1) and v ∈ Ap(bD), which is defined by

Lp, κv (bD) :=
{
f ∈ Lploc(bD) : ‖f‖Lp, κv (bD) <∞

}
with

‖f‖Lp, κv (bD) := sup
B

{
1

[v(B)]κ

∫
B

|f(z)|pv(z) dλ(z)

}1/p

,

here
v(B) =

∫
B

v(z)dλ(z).

Theorem 4.5. Suppose D ⊂ Cn, n ≥ 2, is a bounded domain whose boundary is of
class C2 and is strongly pseudoconvex. Suppose b ∈ L1(bD), 1 < p <∞, 0 < κ < 1
and v ∈ Ap. Then,

(1) b ∈ BMO(bD) if and only if the commutator [b,C] is bounded on Lp,κv (bD).
(2) b ∈ VMO(bD) if and only if the commutator [b,C] is compact on Lp,κv (bD).

Again following a similar approach as in the proof of Theorem 4.3, we obtained
the following results on the Cauchy–Leray transform and its commutator.

Theorem 4.6. Let D be a bounded domain in Cn of class C1,1 that is strongly
C-linearly convex. Let 1 < p <∞, v ∈ Ap. Then there exists a positive constant C
such that

‖C(f)‖Lpv(bD) ≤ C‖f‖Lpv(bD)

holds for every function f ∈ Lpv(bD).

Theorem 4.7. Let D be a bounded domain in Cn of class C1,1 that is strongly
C-linearly convex and let b ∈ L1(bD), 1 < p < ∞, 0 < κ < 1 and v ∈ Ap. Let C be
the Cauchy–Leray transform (as in [41]). Then for 1 < p <∞,

(1) b ∈ BMO(bD) if and only if the commutator [b, C] is bounded on Lp,κv (bD).
(2) b ∈ VMO(bD) if and only if the commutator [b, C] is compact on Lp,κv (bD).

4.2.2. Cauchy-Szegő projection operators

Recall that the space H of quaternion numbers forms a division algebra with respect
to the coordinate addition and the quaternion multiplication

xx′ = (x1 + x2i + x3j + x4k)(x′1 + x′2i + x′3j + x′4k)

= x1x
′
1 − x2x

′
2 − x3x

′
3 − x4x

′
4 + (x1x

′
2 + x2x

′
1 + x3x

′
4 − x4x

′
3) i

+ (x1x
′
3 − x2x

′
4 + x3x

′
1 + x4x

′
2) j + (x1x

′
4 + x2x

′
3 − x3x

′
2 + x4x

′
1)k,
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for any x = x1 + x2i + x3j + x4k, x′ = x′1 + x′2i + x′3j + x′4k ∈ H. The conjugate x̄
is defined by

x̄ = x1 − x2i− x3j− x4k,

and the modulus |x| is defined by |x|2 = xx̄ =
∑4
j=1 x

2
j . The conjugation inverses

the product of quaternion number in the following sense qσ = σ̄q̄ for any q, σ ∈ H.
It is clear that

Im(x̄x′) = Im{(x1 − x2i− x3j− x4k)(x′1 + x′2i + x′3j + x′4k)}
= (x1x

′
2 − x2x

′
1 − x3x

′
4 + x4x

′
3) i + (x1x

′
3 + x2x

′
4 − x3x

′
1 − x4x

′
2) j

+ (x1x
′
4 − x2x

′
3 + x3x

′
2 − x4x

′
1)k

=:

3∑
α=1

4∑
k,j=1

bαkjxkx
′
jiα,

where i1 = i, i2 = j, i3 = k, and bαkj is the (k, j)-th entry of the following matrices
bα:

b1 :=


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 , b2 :=


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 , b3 :=


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 .

The Siegel upper half space

Un :=
{
q = (q1, · · · , qn) = (q1, q

′) ∈ Hn | Re q1 > |q′|2
}
,

where q′ = (q2, · · · , qn) ∈ Hn−1, whose boundary ∂Un := {(q1, q
′) ∈ Hn | Re q1 =

|q′|2} is a quadratic hypersurface and can be identified with the quaternionic Heisen-
berg group Hn−1, which is ImH×Hn−1 endowed with the non-commutative mul-
tiplication

(t, y) · (t′, y′) = (t+ t′ + 2 Im〈y, y′〉, y + y′) ,

where t = t1i + t2j + t3k, t′ = t′1i + t′2j + t′3k ∈ ImH, y, y′ ∈ Hn−1, and 〈·, ·〉 is the
inner product defined by

〈y, y′〉 =

n−1∑
l=1

yly
′
l, y = (y1, · · · , yn−1), y′ = (y′1, · · · , y′n−1) ∈ Hn−1.

The Cauchy–Szegő projection operator P can be defined via the “vertical trans-
late” from Cauchy–Szegő kernel for Un by

(Pf)(q) = lim
ε→0

∫
∂Un

S(q + εe, p)f(p)dβ(p), ∀f ∈ L2(∂Un), q ∈ ∂Un,

where e = (1, 0, 0, · · · , 0) ∈ Hn, the limit exists in the L2(∂Un) norm and P(f) is
the boundary limit of some function in holomorphic Hardy space H2(Un) (c.f. [4,6]).
In view of the action of the quaternionic Heisenberg group, the operator P can be
explicitly described as a convolution operator on this group:

(Pf)(g) = (f ∗K)(g) = p.v.

∫
Hn−1

K(h−1 · g)f(h)dh,
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where the kernel K(g) is the corresponding Cauchy–Szegő kernel on Hn−1. We can
write

(Pf)(g) = p.v.

∫
Hn−1

K(g, h)f(h)dh, (4.1)

where K(g, h) = K(h−1 · g) for g 6= h. Note that (4.1) holds whenever f is an L2

function supported in a compact set, for ever g outside the support of f .
Based on [6], in [4], we obtained the explicit formula of Cauchy–Szegő kernel for

the quaternionic Siegel upper half-space Un.

Theorem 4.8. The explicit formula of Cauchy–Szegő kernel for the quaternionic
Siegel upper half-space Un is given by

S(q, p) = s
(
q1 + p1 − 2

n∑
k=2

pkqk

)
,

for p = (p1, p
′) = (p1, · · · , pn) ∈ Un, q = (q1, q

′) = (q1, · · · , qn) ∈ Un, where

s(σ) = cn−1
4(2n− 2)!

|z|4(z − z̄)3
i

×
{

Im

[
z̄2

z2n−2

(
z + (2n− 1)

z − z̄
2

)]
σ − Im

[
z̄2

z2n−3

(
z + (2n− 2)

z − z̄
2

)]}
,

here σ = x1 +x2i+x3j+x4k ∈ H, z = x1 + | Imσ|i, and cn−1 is the one in Theorem
A.

Theorem 4.9. Suppose j = 1, . . . , 4n−4, and we denote Yj the left-invariant vector
fields on Hn−1. Then we have

|YjK(g)| . 1

ρ(g,0)Q+1
, g ∈ Hn−1 \ {0},

where 0 is the neutral element of Hn−1.
Then we further have the Cauchy–Szegő kernel K(g, h) on Hn−1 (g 6= h) satisfies

the following conditions.

(i) |K(g, h)| . 1

ρ(g, h)Q
;

(ii) |K(g, h)−K(g0, h)| . ρ(g, g0)

ρ(g0, h)Q+1
, if ρ(g0, h) ≥ cρ(g, g0);

(iii) |K(g, h)−K(g, h0)| . ρ(h, h0)

ρ(g, h0)Q+1
, if ρ(g, h0) ≥ cρ(h, h0)

for some constant c > 0, where Q = 4n+ 2 is the homogeneous dimension of Hn−1

and ρ is defined in Section 2.

We also got the boundedness and compactness of the commutator of P.

Corollary 4.1. Let all the notation be the same as above.

(1) P extends to a bounded operator on Lp(Hn−1) for 1 < p <∞;

(2) P is of weak type (1, 1);
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(3) P is bounded from H1(Hn−1)→ L1(Hn−1);

(4) P is bounded from L∞(Hn−1)→ BMO(Hn−1);

(5) [b,P] is bounded on Lp(Hn−1) for 1 < p <∞ if b ∈ BMO(Hn−1);

(6) [b,P] is compact on Lp(Hn−1) for 1 < p <∞ if b ∈ VMO(Hn−1).

However, to obtain reverse arguments of (5) and (6) above, we still need to know
more about the pointwise lower bound of the kernel K.

Theorem 4.10. The Cauchy–Szegő kernel K(·, ·) on Hn−1 satisfies the following
pointwise lower bound: there exist a large positive constant r0 and a positive constant
C such that for every g ∈ Hn−1, there exists a “twisted truncated sector” Sg ⊂ Hn−1

such that
inf
g′∈Sg

ρ(g, g′) = r0

and that for every g1 ∈ B(g, 1) and g2 ∈ Sg we have

|K(g1, g2)| ≥ C

ρ(g1, g2)Q
.

Moreover, this sector Sg is regular in the sense that |Sg| = ∞ and that for every
R2 > R1 > 2r0 ∣∣(B(g,R2)\B(g,R1)

)
∩ Sg

∣∣ ≈ ∣∣B(g,R2)\B(g,R1)
∣∣

with the implicit constants independent of g and R1, R2.

By using the above Theorem, we established the boundedness and compactness
of the commutator of P with respect to BMO(Hn−1) and VMO(Hn−1) in [20],
following the ideas and approaches in [7, 17], respectively.

Theorem 4.11. Suppose 1 < p <∞ and b ∈ L1
loc(H

n−1).
(i) b ∈ BMO(Hn−1) if and only if [b,P] is bounded on Lp(Hn−1).
(ii) b ∈ VMO(Hn−1) if and only if [b,P] is compact on Lp(Hn−1).

Theorem 4.12. Let p ∈ (1,∞), κ ∈ (0, 1), w ∈ Ap(Hn−1) and b ∈ L1
loc (Hn−1).

Then the Cauchy–Szegö operator commutator [b,P] has the following boundedness
characterization:

(i) If b ∈ BMO(Hn−1), then [b,P] is bounded on Lp, κw (Hn−1).

(ii) If b is real-valued and [b,P] is bounded on Lp, κw (Hn−1), then b ∈ BMO(Hn−1).

Based on the above Theorem, we further obtained the compactness characteri-
zation of Cauchy–Szegö operator commutator.

Theorem 4.13. Let p ∈ (1,∞), κ ∈ (0, 1), w ∈ Ap(Hn−1) and b ∈ BMO(Hn−1).
Then the Cauchy–Szegö operator commutator [b, P] has the following compactness
characterization:

(i) If b ∈ VMO(Hn−1), then [b, P] is compact on Lp, κw (Hn−1).

(ii) If b is real-valued and [b, P] is compact on Lp, κw (Hn−1), then b ∈ VMO(Hn−1).
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