
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com

Volume 14, Number 1, February 2024, 379–391 DOI:10.11948/20230226

EXISTENCE AND ASYMPTOTIC BEHAVIOR
OF GROUND STATE SOLUTIONS FOR A

CLASS OF MAGNETIC KIRCHHOFF
CHOQUARD TYPE EQUATION WITH A

STEEP POTENTIAL WELL

Li Zhou1, Chuanxi Zhu2,3 and Shufen Liu4,†

Abstract In this paper, we consider the following nonlinear magnetic Kirch-
hoff Choquard type equation

[a+ b

∫
RN

(|∇Au|2 + λV (x)|u|2)dx](−∆Au+ λV (x)u)

=(Iα ∗ F (|u|))f(|u|)
|u| u, in RN ,

where u : RN → C, A : RN → RN is a vector potential, N ≥ 3, a > 0, b > 0,
α ∈ (N − 2, N ], V : RN → R is a scalar potential function and Iα is a Riesz
potential of order α ∈ (N − 2, N ]. Under certain assumptions on A(x), V (x)
and f(t), we prove that the equation has at least one ground state solution by
variational methods and investigate the asymptotic behavior of solutions.

Keywords Magnetic Laplace operator, ground state solutions, Nehari man-
ifold, asymptotic behavior.
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1. Introduction

In this article, we study the following Kirchhoff Choquard type equation
[a+ b

∫
RN (|∇Au|2 + λV (x)|u|2)dx](−∆Au+ λV (x)u)

= (Iα ∗ F (|u|)) f(|u|)
|u| u, in RN ,

|u| ∈ H1(RN ).

(1.1)
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Let us define ∇Au = −i∇u − Au and the magnetic Laplace operator ∆Au :=
(∇− iA)2u = ∆u− 2iA(x) · ∇u− |A(x)|2u− iudiv(A(x)). Here i is the imaginary
unit, u : RN → C, A : RN → RN is a vector magnetic potential, N ≥ 3, a > 0,
b > 0, λ > 0, F (t) =

∫ t
0
f(s)ds, V : RN → R is a scalar potential function and Iα

is a Riesz potential whose order is α ∈ (N − 2, N ] defined by Iα=
Γ(N−α

2 )

Γ(α2 )π
N
2 2α|x|N−α

,

where Γ is the Gamma function. V (x) : RN → R is a continuous, bounded potential
function satisfying:

(V1) V (x) ∈ C(RN ,R), and V (x) ≥ 0 for all x ∈ RN ,
(V2) There exists V0 > 0 such that V0 := {x ∈ RN : V (x) ≤ V0} is nonempty

and has a finite measure,
(V3) Ω := intV −1(0) is a nonempty open set which has locally Lipschitz bound-

ary and Ω = V −1(0).
We also suppose A satisfies:
(A1) lim inf

|x|→+∞
A(x) = A∞,

(A2) A ∈ Lυ(RN ,RN ), υ > N ≥ 3,
(AV) |A(y)|2 + V (y) < |A∞|2 + V∞.
Moreover, we assume that the function f ∈ C1(R,R) verifies:
(f1) f(t) = o(t

α
N ) as t→ 0,

(f2) lim
|t|→+∞

f(t)

t
α+2
N−2

= 0,

(f3) there exists θ > 2 such that f(t)t > θF (t),
(f4) f(t) is increasing on R.
These hypotheses of V (x) were first put forward by Bartsch and Wang [8] in the

research of the nonlinear Schrödinger equations and have attracted the attention
of several researchers, see e.g. [7, 35, 39]. We note that the conditions (V1)-(V3)
imply that λV represents a potential well which has the bottom V −1(0) and its
steepness is controlled by the positive parameter λ. In consideration of this, λV is
often referred as the steep potential well if λ is sufficiently large.

It should be noted that if b = 0, problem (1.1) is related to the following equation

−∆Au+ V (x)u = (Iα ∗ F (|u|))f(|u|)
|u|

u, in RN . (1.2)

When A ≡ 0 it conduces to the Choquard equation. There is a huge collections
of articles on the subject and some good reviews of the Choquard equation can be
found in [18,26–32,41]. Recently, Alves et al. [5] studied the existence of multi-bump
solutions for the Choquard equation as follows

−∆u+ (λV (x) + 1)u = (
1

|x|µ
∗ |u|p)|u|p−2u, in R3, (1.3)

where µ ∈ (0, 3), p ∈ (2, 6 − µ), the nonnegative continuous function V (x) has a
potential well.

If b 6= 0 and A ≡ 0, problem (1.1) is related to the Kirchhoff type equation{
−(a+ b

∫
RN |∇u|

2dx)∆u+ V (x)u = g(x, u), in RN ,
u ∈ H1(RN ),

(1.4)

where a > 0, b ≥ 0, V : RN → R is a potential function and g ∈ C(RN×R,R). This
problem has an interesting physical context. Indeed, if we set V (x) = 0 and replace
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RN by a bounded domain Ω ⊂ RN in (1.4), then we get the following Kirchhoff
Dirichlet problem{

−(a+ b
∫

Ω
|∇u|2dx)∆u = g(x, u), x ∈ Ω,

u = 0 x ∈ ∂Ω.
(1.5)

It is related to the stationary analogue of the equation

utt − (a+ b

∫
Ω

|∇u|2dx)∆u = g(x, u).

Such a hyperbolic equation is a general version of the equation

ρ
∂2u

∂t2
−
(ρ0

h
+

E

2L

∫ L

0

∣∣∂u
∂x

∣∣dx)∂2u

∂x2
= 0,

which was proposed by G. Kirchhoff as an extension of classical D′Alembert′s wave
equations for free vibration of elastic strings. Kirchhoff′s model takes into account
the changes in length of the string produced by transverse vibrations. Later, J. L.
Lions introduced a functional analysis approach. After that, (1.4) has been paid
much attention to by many scholars. Readers can see [10,19,34,40] for recent work.
Moreover, Kirchhoff type problems with steep potential well have also been studied
by many researchers, see [11, 23, 25] and references therein. It is worth mentioning
that for the nonlocal problems with steep potential well, Alves and Figueiredo [4]
considered the following Kirchhoff problem{
M [
∫
R3 |∇u|2dx+

∫
R3(λα(x) + 1)u2)dx](−∆u+ (λα(x) + 1)u) = f(u), in R3,

u ∈ H1(R3).

(1.6)
Assuming that the nonnegative function α(x) has a potential well with int(α−1(0))
consisting of k disjoint components Ω1, Ω2, · · · , Ωk and the nonlinearity f(t)
has a subcritical growth, they established the existence and multiplicity of positive
multi-bump solutions by using variational methods.

On the other hand, there are also many works concerning the following nonlinear
Schrödinger equations with a magnetic field recently:

−∆Au+ V (x)u = |u|p−2u, in Ω ⊂ RN , N ≥ 2. (1.7)

Here u : Ω → C, 2 < p ≤ 2∗, where 2∗ = 2N
N−2 if N ≥ 3 and 2∗ = ∞ if N = 1 or

2. Besides, A : Ω → RN and V : Ω → R are smooth. It is well known that the
first paper in which problem (1.7) has been studied maybe Esteban and Lions [17].
They used the concentration-compactness principle and minimization arguments
to obtain solutions for a local equation for N = 2 and N = 3. More recently,
applying constrained minimization and a minimax-type argument, Arioli-Szulkin [6]
considered the equation in a magnetic filed. They established the existence of
nontrivial solutions both in the critical and in the subcritical case, provided that
some technical conditions relating to A and V were assumed. In [2], the authors
use the penalization method and Ljusternik-Schnirelmann category theory to prove
the multiplicity and concentration results of solutions for the following nonlinear
Schrödinger equation with magnetic field:{

( εi∇−A(x))2u+ V (x)u = f(|u|2)u, in RN ,
u ∈ H1(RN ,C),

(1.8)
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where f ∈ C1 has the subcritical growth. We must point out that if f is only
continuous, then the arguments developed in [2] fail. In [21], Ji and Rădulescu used
the method of the Nehari manifold, the penalization technique and Ljusternik-
Schnirelmann category theory to study the multiplicity and concentration results
for the above nonlinear magnetic Schrödinger equation in which the subcritical
nonlinearity f is only continuous. After that, Ji and Rădulescu [22] continued to
study multiplicity and concentration of the solutions for the magnetic Schrödinger
equation with critical growth. Recently, Alves et al. [3] obtained the existence
of multiple solutions for a nonlinear magnetic Choquard equation by using the
penalization method and Ljusternik-Schnirelmann category theory.

Besides, we also refer to [16] for other results related to problem (1.2) in the
presence of the magnetic field when the nonlinearity has a subcritical growth. Fur-
thermore, we must mention the works [1, 20] for the critical case and also refer to
the recent papers [33, 37] for the study of various classes of PDEs with magnetic
potential.

Inspired by the above works, we want to research the the equation (1.1). Our aim
of this paper is to prove the existence of the ground state solutions for problem (1.1),
that is a nontrivial solution with minimal energy, and investigate the asymptotic
behavior of solutions.

Notice that if we define

f̃(t) =

{
f(t)
t , t 6= 0,

0, t = 0,

our assumptions assure that f̃(t) is continuous. Therefore, equation (1.1) can be
rewritten in the form

[a+ b

∫
RN

(|∇Au|2 +λV (x)|u|2)dx](−∆Au+λV (x)u) = (Iα ∗F (|u|))f̃(|u|)u, (1.9)

which generalizes the study in [9, 13–15,38].
Our main result is as follows:

Theorem 1.1. If α ∈ (N −2, N ], (A1), (A2), (V1), (V2), (AV) are valid, and f ∈
C1(R,R) verifies (f1)-(f4), then problem(1.1) has at least a ground state solution.

Theorem 1.2. Assume that uλn are solutions for problem (1.1), and Ω is defined
by (V3), then uλn → u in Eλ as λn →∞, where u ∈ H1

0 (Ω) is a nontrivial solution
of {

(a+ b
∫
RN |∇Au|

2dx)(−∆Au) = (Iα ∗ F (|u|)) f(|u|)
|u| u, x ∈ Ω,

u = 0 on ∂Ω.
(1.10)

2. Preliminaries

In this section, we will establish the variational framework for equation (1.1) and
give some very important inequalities and lemmas.

For the convenience of expression, from now on, we use the following notations:

• H1 = {u ∈ L2(RN ,C) : ∇Au ∈ L2(RN ,C)} is equipped with an equivalent
norm:

‖u‖2 =

∫
RN

(|∇Au|2 + V (x)|u|2)dx,
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• For λ > 0, we define the space H1
λ := (H1, ‖u‖λ) equipped with scalar product

〈u, v〉λ = Re

∫
RN

(∇Au · ∇Av + λV (x)uv)dx,

therefore the norm

‖u‖2λ =

∫
RN

(|∇Au|2 + λV (x)|u|2)dx,

• Ls(RN )(1 ≤ s ≤ ∞) denotes the Lebesgue space with the norm |u|s =
(
∫
RN |u|

sdx)1/s,

• For any x ∈ RN and r > 0, Br(x) := {y ∈ RN : |y − x| < r},
• C,Cε, C1, C2, ... represent positive constants possibly different in different lines.

Remark 2.1. It is obviously that for ∀λ ≥ 1, ‖u‖λ ≥ ‖u‖.
Remark 2.2. ‖u‖λ is an equivalent norm to the norm obtained by considering
V ≡ 1, see [24].

Lemma 2.1. [17] Assume u ∈ H1
λ, then |u| ∈ H1(RN ) and the diamagnetic in-

equality holds
∣∣∇|u|(x)

∣∣ ≤ |∇Au(x)|.
Remark 2.2. It is well known that the embedding H1

λ ↪→ Lr(RN ,C) is compact
for r ∈ [1, 2∗) and H1

λ ↪→ Lr(RN ,C) is continuous for r ∈ [1, 2∗].

Lemma 2.3. Assume (f1)-(f4) hold, then we have

1. for all ε > 0, there is a Cε > 0 such that |f(t)| ≤ ε|t| αN + Cε|t|
α+2
N−2 and

|F (t)| ≤ ε|t|N+α
N + Cε|t|

N+α
N−2 ,

2. for all ε > 0, there is a Cε > 0 such that for every p ∈ (2, 2∗), |F (t)| ≤
ε(|t|N+α

N + |t|
N+α
N−2 ) + Cε|t|

p(N+α)
2N , and |F (t)|

2N
N+α ≤ ε(|t|2 + |t|

2N
N−2 ) + Cε|t|p,

3. for any s 6= 0, F (s) > 0.

Proof. One can easily obtain the results by elementary calculation.

Lemma 2.4. [9] Let O ⊂ RN be any open set, for 1 < p < ∞, and {fn} be a
bounded sequence in Lp(O,C) such that fn(x) ⇀ f(x) a.e., then fn(x) ⇀ f(x).

Lemma 2.5. [9] Suppose that un ⇀ u0 in H1
λ(RN ,C), and un(x) → u0(x) a.e. in

RN , then Iα ∗ F (|un(x)|) ⇀ Iα ∗ F (|u0(x)|) in L
2N
α (RN ).

Corollary 2.6. Suppose that un ⇀ u0 in H1
λ(RN ,C), then Re

∫
RN Iα ∗ F (|un|)

f(|un|)unϕ→ Re
∫
RN Iα ∗ F (|u0|)f(|u0|)u0ϕ for ϕ ∈ C∞c (RN ,C).

Lemma 2.7. (Hardy-Little-Sobolev inequality [24]). Let 0 < α < N, p, q >
1 and 1 ≤ r < s <∞ be such that

1

p
+

1

q
= 1 +

α

N
,

1

r
− 1

s
=

α

N
.

1. For any f ∈ Lp(RN ) and g ∈ Lq(RN ), one has∣∣∣∣ ∫
RN

∫
RN

f(x)g(y)

|x− y|N−α
dxdy

∣∣∣∣ ≤ C(N,α, p)‖f‖Lp(RN )‖g‖Lq(RN ).
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2. For any f ∈ Lr(RN ) one has∥∥∥∥ 1

| · |N−α
∗ f
wwww
Ls(RN )

≤ C(N,α, r)‖f‖Lr(RN ).

Remark 2.8. By Lemma 2.3(1), Lemma 2.7(1) and Sobolev imbedding theorem,
we can get∣∣∣∣ ∫

RN

(
Iα ∗ F (u)

)
F (u)dx

∣∣∣∣ ≤ C|F (u)|22N
N+α

≤ C
[ ∫

RN

(
|u|

N+α
N + |u|

N+α
N−2

) (2N)
N+α dx

]N+α
N

≤ C
[ ∫

RN

(
|u|2 + |u|

2N
N−2

)
dx

]N+α
N

≤ C(‖u‖
2N+2α
N

λ + ‖u‖
2N+2α
N−2

λ ).

(2.1)

3. Variational formulation for problem (1.1)

The enenrgy functional associated to problem (1.1) is given by:

Jλ(u) =
a

2
‖u‖2λ +

b

4
‖u‖4λ −

1

2

∫
RN

(Iα ∗ F (|u|))F (|u|)dx. (3.1)

The derivative of the energy functional Jλ(u) is given by

〈J ′λ(u), ϕ〉 = a〈u, ϕ〉λ + b‖u‖2λ〈u, ϕ〉λ −Re

∫
RN

(Iα ∗ F (|u|))f̃(|u|)uϕdx. (3.2)

Thus,

〈J ′λ(u), u〉 = a‖u‖2λ + b‖u‖4λ −
∫
RN

(Iα ∗ F (|u|))f(|u|)|u|dx. (3.3)

Now, we can prove the following results.

Lemma 3.1. The functional Jλ possesses the mountain-pass geometry, that is

1. there exists ρ, δ > 0 such that Jλ ≥ δ for all ‖u‖λ = ρ;

2. for any u ∈ H1
λ(RN ,C)\{0}, there exists τ ∈ (0,+∞)) such that ‖τu‖λ > ρ

and Jλ(τu) < 0.

Proof. (1) By Lemma 2.7(1) and Lemma 2.3, one can get

Jλ(u) ≥ 1

2
‖u‖2λ − C(‖u‖

2N+2α
N

λ + ‖u‖
2N+2α
N−2

λ ).

Thus there exists ρ, δ > 0 such that Jλ ≥ δ for all ‖u‖λ = ρ > 0 small enough.

(2) For any fixed u0 ∈ H1
λ\{0}, and consider the function gu0

(t) : (0,+∞) → R
given by

gu0
(t) =

1

2

∫
RN

(
Iα ∗ F

( t|u0|
‖u0‖λ

))
F
( t|u0|
‖u0‖λ

)
dx, (3.4)
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then

g′u0
(t) =

∫
RN

(
Iα ∗ F

( t|u0|
‖u0‖λ

))
f
( t|u0|
‖u0‖λ

) |u0|
‖u0‖λ

dx

=
2θ

t

∫
RN

1

2

(
Iα ∗ F

( t|u0|
‖u0‖λ

))1

θ
f
( t|u0|
‖u0‖λ

) t|u0|
‖u0‖λ

dx

≥ 2θ

t
gu0

(t) > 0, (t > 0).

(3.5)

Thus, lngu0
(t)
∣∣τ‖u0‖λ
1

≥ 2θlnt
∣∣τ‖u0‖λ
1

. So
gu0 (τ‖u0‖λ)

gu0 (1) ≥ (‖u0‖λ)2θ which implies that

gu0
(τ‖u0‖λ) ≥M(‖u0‖λ)2θ for a constant M > 0. Since θ > 2, we can get

Jλ(τu0) =
aτ2

2
‖u0‖2λ +

bτ4

4
‖u0‖4λ − gu0

(τ‖u0‖λ) ≤ C1τ
2 + C2τ

4 − C3τ
2θ (3.6)

yields that Jλ(τu0) < 0 when τ is large enough.

Hence we can define the mountain-pass level of Jλ:

c = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)) > 0,

where: Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, Jλ(γ(1)) < 0}.
Now we recall the Nehari manifold

Nα := {u ∈ H1
λ(RN ,C)\{0} : 〈J ′λ(u), u〉 = 0}.

Let cα = inf
u∈Nα

Jλ(u), Moreover by the similar argument as Chapter 4 [36], we have

the following characterization

c = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)) = cα = inf
u∈Nα

Jλ(u) = c∗ = inf
u∈H1

λ(RN ,C)\{0}
max
t≥0

Jλ(tu).

4. Ground state solution for equation (1.1)

In this section, we prove the theorem 1.1.

Proof of Theorem 1.1. Let {un} be minimizing sequence given as a consequence
of Lemma 3.1, i.e. {un} ⊂ H1

λ such that J ′λ(un)→ 0, Jλ(un)→ c, where

c = cα = inf
u∈Nα

Jλ(u) = c∗ = inf
u∈H1

λ(RN ,C)\{0}
max
t≥0

Jλ(tu).

Then we have

cα + o(1) = Jλ(un)− 1

4
〈J ′λ(un), un〉

=
a

4

∫
RN

[|∇Aun|2 + λV (x)|un|2]dx

+
1

4

∫
RN

(Iα ∗ F (|un|))[f(|un|)|un| − 2F (|un|)]dx

≥ a

4
‖un‖2λ.

(4.1)

Consequence, {un} is bounded. Then by standard methods we can get the conver-
gence of {un}.
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Next, let δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)

|un|2dx. We claim δ > 0. On the contrary,

by Lion’s concentration compactness principle, we have un → 0 in Lp(RN ) for
2 < p < 2∗. By Lemma 2.3(2), for any ε > 0 there exists a constant Cε > 0 such
that

lim sup
n→∞

∫
RN

(Iα ∗ F (|un|))f(|un|)|un|dx

≤ C lim sup
n→∞

[
ε(

∫
RN
|un|2dx+

∫
RN
|un|

2N
N−2 dx) + Cε

∫
RN
|un|pdx

]N+α
N

≤ C
[
εC1 + Cε lim sup

n→∞

∫
RN
|un|pdx

]N+α
N

= C(εC2)
N+α
N .

Note that ε is arbitrary, we get∫
RN

(Iα ∗ F (|un|))f(|un|)|un|dx = o(1).

Combining with J ′λ(un)→ 0, we can get

o(1) = 〈J ′λ(un), un〉

= a‖un‖2λ + b‖un‖4λ −
∫
RN

(Iα ∗ F (|un|))f(|un|)|un|dx,
(4.2)

which implies that

a‖un‖2λ + b‖un‖4λ =

∫
RN

(Iα ∗ F (|un|))f(|un|)|un|dx+ o(1) = 2o(1). (4.3)

Then we have ‖un‖2λ =
∫
RN [|∇Aun|2 + λV (x)|un|2]dx → 0, which implies un → 0

in H1
λ. We deduce that cα = 0, which contradicts to the fact that cα > 0. Hence

δ > 0 and there exists {yn} ⊂ RN such that
∫
B1(yn)

|un|pdx ≥ δ
2 > 0. We set

vn(x) = un(x + yn), then ‖un‖ = ‖vn‖,
∫
B1(0)

|vn|pdx > δ
2 and Jλ(vn) → cα =

c, J ′λ(vn)→ 0. Thus there exists a v0 6= 0 such that
vn ⇀ v0 in H1

λ,

vn → v0 inLs(RN ), ∀ s ∈ [2, 2∗),

vn → v0 a.e. on RN .

Then for any ϕ ∈ C∞0 (RN ) we have 0 = 〈J ′λ(vn), ϕ〉 + o(1) = 〈J ′λ(v0), ϕ〉, which
means v0 is a solution of equation (1.1).

On the other hand, combining with the Fatou Lemma, we can obtain

cα = Jλ(vn)− 1

4
〈J ′λ(vn), vn〉+ o(1)

=
a

4

∫
RN

[|∇Avn|2 + V (x)|vn|2]dx

+
1

4

∫
RN

(Iα ∗ F (|vn|))[f(|vn|)|vn| − 2F (|vn|)]dx+ o(1)



Solutions for magnetic Kirchhoff Choquard type equation 387

≥ a

4

∫
RN

[|∇Av0|2 + V (x)|v0|2]dx

+
1

4

∫
RN

(Iα ∗ F (|v0|))[f(|v0|)|v0| − 2F (|v0|)]dx+ o(1)

= Jλ(v0)− 1

4
〈J ′λ(v0), v0〉+ o(1)

= Jλ(v0) + o(1). (4.4)

At the same time, we know cα ≤ Jλ(v0) by the definition of cα. Then we can deduce
that v0 is a ground state solution of equation (1.1).

5. Asymptotic behavior of solutions for equation
(1.1)

In this section, we will investigate the asymptotic behavior of solutions for (1.1).

Proof of Theorem 1.2. Let uλ be ground state solution of (1.1) obtained in
Theorem 1.1, we can get that Jλ(uλ) = cαλ and J ′λ(uλ) = 0. Define un := uλn ,
then there exists a sequence {un} such that Jλn(un) = cαλn and J ′λn(un) = 0. It
follows from (4.1) that {un} is bounded in H1

λn
, that is there exist T > 0 such that

‖un‖λn ≤ T. (5.1)

Thus, up to a subsequence, we may assume that there exist a u0 such that
un ⇀ u0 in H1

λn
,

un → u0 inLsloc(RN ), ∀ s ∈ [2, 2∗),

un → u0 a.e. on RN .

Now we show that un → u0 in Ls(RN ) for s ∈ (2, 2∗). We define

DR := {x ∈ RN\BR : V (x) ≥ V0} (5.2)

and

AR := {x ∈ RN\BR : V (x) < V0}. (5.3)

Then we have meas(AR)→ 0 as R→∞ by (V2) and∫
DR

u2
ndx ≤ 1

λnV0

∫
DR

λnV (x)u2
ndx ≤ C8

λnV0
→ 0 (5.4)

as λn → ∞. Combing with the Hölder and Sobolev inequality, for any s ∈ (2, 2∗)
we get

∫
AR

u2
ndx ≤

(∫
AR

usndx

) 2
s
(∫

AR

1dx

) s−2
s

≤ ‖un‖2λn(meas(AR))
s−2
s . (5.5)
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Thus, we can obtain∫
BcR

usndx =

(∫
BcR

|un|2dx

) 2∗−s
2∗−2

(∫
BcR

|un|2
∗
dx

) s−2
2∗−2

≤ C9

(∫
DR

u2
ndx+

∫
AR

u2
ndx

) 2∗−s
2∗−2

≤ C9

(
C8

λnV0
+ C10(meas(AR))

s−2
s

) 2∗−s
2∗−2

→ 0

(5.6)

as λn →∞, where BcR := {x ∈ RN : |x| ≥ R}. Then,∫
BcR

∣∣|un|s − |u0|s
∣∣dx ≤ ∫

BcR

|un|sdx+

∫
BcR

|u0|sdx→ 0, (5.7)

as R→∞. Since un → u0 in Lsloc(RN ) with s ∈ (2, 2∗), we derive∫
|x|<R

|un|sdx→
∫
|x|<R

|u0|sdx. (5.8)

Therefore, un → u0 in Ls(RN ) for s ∈ (2, 2∗) as λn →∞.
Next, we set zn := un− u0 and by standard methods we can get that zn → 0 in

H1
λ.

Thus together with Fatou’s Lemma and (5.1), we have∫
RN

V (x)u2
0dx ≤ lim inf

n→∞

∫
RN

V (x)u2
ndx ≤

lim inf
n→∞

‖un‖2λn
λn

→ 0. (5.9)

Hence by (V3), we deduce that u0 = 0 a.e. x ∈ RN\Ω and u0 ∈ H1
0 (Ω). Then we

obtain

aRe

∫
Ω

(∇Au0 · ∇Av)dx+ b

∫
Ω

(|∇Au0|2)dxRe

∫
Ω

(∇Au0 · ∇Av)dx

=Re

∫
Ω

(Iα ∗ F (|u0|))f̃(|u0|)u0vdx, (5.10)

for any v ∈ H1
0 (Ω). This completes the proof.
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