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NUMBER OF LIMIT CYCLES OF A CASE OF
POLYNOMIAL SYSTEM VIA THE
STABILITY-CHANGING METHOD

Jianan Zhou® and Lijuan Sheng!'

Abstract In this paper, we study bifurcation of limit cycles bifurcating from
a planar polynomial system with degree nine. More limit cycles can be ob-
tained by using the stability-changing method compared to the Melnikov func-
tion method. We obtain 24 limit cycles bifurcating from a symmetrical com-
pound loop with five saddles.
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1. Introduction

The following system is widely studied, called near-Hamiltonian system
‘r:Hy(x’y)+Ef($7y76)a (1 1)
Y= _H:E(xv y) + €g($, Y, 5)7

where ¢ is a small parameter, H(z,y), f(x,y,0) and g(x, y, ) are C* functions and
0 =(61,...,0m) € D CR™ with D bounded. The main tools to find limit cycles of
(1.1) are known as the Melnikov function method and the averaging method. The
authors [13] established the equivalence of the two methods. If the unperturbed
system has a center, or a homoclinic loop, the Melnikov function method can be used
to study Hopf bifurcation and homoclinic bifurcation. However, if the unperturbed
system has a polycycle containing a heteroclinic loop L, it may appear to have
alien limit cycles that cannot be detected by the Melnikov function method, see
[2,4,5,19-21]. In the case that the unperturbed system has a polycycle with n
saddles, where n > 2 is an integer, the authors [8,11,15,16,26,29] developed a new
approach to obtain alien limit cycles by changing the stability of a homoclinic loop
or a double homoclinic loop. From those references, we notice that one can always
find more limit cycles bifurcating from a polycycle by the stability-changing method
than the Melnikov function method.

When H(z,y), f(z,y,d) and g(x,y,d) are polynomials, the number of limit
cycles of (1.1) is related to the week Hilbert 16th problem [1]. There are many
related results about the limit cycles, on their existence [32] and their number
[3,7,12,14,17,24,27,30,31]. We introduce some of them here. When the unperturbed
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system (1.1).—¢ is a cubic system, 12 limit cycles around a singular point are found in
[34]. Recently, the authors of [6] analyzed the bifurcation of limit cycles near double
saddle loops in cubic Hamiltonian systems under small perturbations. In [33], the
authors studied a cubic planar switching polynomial system with Zs-symmetry
to obtain 18 limit cycles. For higher degree, the authors of [25] found 80 limit
cycles in a degree nine polynomial vector field of Z;p-symmetry. In [28], a class of
piecewise smooth systems with degree n is studied. By perturbing a piecewise cubic
polynomial system with a cusp and a nilpotent saddle, the authors found 3n — 1
limit cycles, see [28]. Via the stability-changing method, the authors considered a
polynomial system with degree seven, in which four limit cycles were found near a
2-polycycle, including an alien limit cycle, see [29]. In [23], the authors found 16
limit cycles bifurcating from a symmetrical compound polycycle with three saddle
points, four of which are alien limit cycles.

In this paper, motivated by those references, we discuss the following planar
polynomial system of degree 9

T =y,
{y = kafa? — 0)(a? — (e — (e — ) + <o+ b+ o))

where go(x) = Z?:o ag;x® + z'8, and k,a,b, c,d are real coefficients with a > b >
c¢>d > 0. When ¢ = 0, it has the unperturbed system

=y
{y = ka(2® - a)(a? — b)(2” — ¢)(a” — d), (1:3)

and the Hamiltonian function

H(z,y) = %y2 - /Ox ks(s* —a)(s* = b)(s* — ¢)(s* — d)ds.

We remark that the above system has been discussed in [22]. Via the stability
changing method, the authors found 20 limit cycles bifurcating from a compound
loop with five saddles. In this paper, by choosing a different family of parameters,
we find more limit cycles. Our main result is as follows.

Theorem 1.1. Consider system (1.2). When k > 0, H(\/c,0) < H(y/a,0) = 0,
then

(i) system (1.3) has a large double heterclinic loop surrounding two double homo-
clinic loops.

(i1) system (1.2) has 24 limit cycles bifurcating from a large double heterclinic loop
and two double homoclinic loops.

2. Preliminary lemmas
Assume that the unperturbed system (1.1).—¢ has three hyperbolic saddles S, 5§, So

and a double heteroclinic loop Ly = Lg1 U Loz U Loy U Lgo shown in Figure 1. The
system (1.1) has a saddle S. near Sp.
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Figure 1. The image of Lo

Denote
Mo((S) = M01(6) + MOQ((S), MOz(é) = gd.’E — fdy, 1= ]., 2,

My(8) = Moy (8) + Mo2(6), Mos(6)

Il
o o

gdfﬂ*fdy, i:172a

c1(0) = (fa + 9y)(S0), €1(6) = (fo + gy)(z%*), a1 (6) = (fz + 94)(S0), (2.1)
2 2

62(5) = Z/ (f:z: + gy)|t:1:c{:0dt> 62(5) = 2/7 (fac + gy)‘q:El:Odta
i=1 7 Loi i=1 7 Loi

c30(0) = 78}25255) L

where R;(S:) denotes the first saddle quantity of S.. If Sy is the origin and
H(x,y) = Moxy + O(|(z,y)|?) with Ao > 0, near the origin. c30(8) has the fol-
lowing form [18],

C30(6)|01:0 = 7% {(fzmy + gzyy) - )%0 [Hmyy(fmm + ga:y) + Hzﬂcy(fzy + gyy)} }

rz=y=0

(2.2)

Lemma 2.1 ( [29]). Suppose that system (1.1).=o has a double heteroclinic loop Lo
shown in Figure 1. Let My, Mo, Moy, Moy, ci, ci, ¢ and cso be defined in (2.1) and
(2.2), i =1,2. If there exists 6o € D such that

Mo (80) = Mo(d0) = 0, Mo1(60)Mo1(60) > 0,
c30(do) # 0, ¢i(do) = ¢i(do) = ci(do) =0, i = 1,2,

a(MO,M07clch751702752) (50) -7

k
Ran (01, ,0m)

then system (1.1) has 10 limit cycles bifurcating from Lo for some (6, ¢) near (0o, 0).

Remark 2.1. From the proof of [29, Theorem 2.2], we can know the distribution
of the 10 limit cycles: eight limit cycles are surrounded by two large limit cycles,
see Figure 2. Thus, one can see easily that the large limit cycles cannot be found
by Melnikov functions, which are called the alien limit cycles.

In order to study the limit cycles bifurcating from a double homoclinic loop by
the stability-changing method, we suppose that the unperturbed system (1.1).—¢
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Figure 2. The distribution of 10 limit cycles

has a double homoclinic loop L1 = Li; U L5 passing through the saddle S7, see
Figure 3.

L12 Lll

Sl

Figure 3. The image of L,

Denote that
M, () = M11(0) + Mi2(9),

2.3
Mul®) = § gdo fay|_i=1.2 (23)
Li; e=0
For the existence of a double homoclinc loop of (1.1), we have the following
Lemma from [8].

Lemma 2.2 ( [8]). Suppose that system (1.1).—o has a double homoclinic loop Ly
shown in Figure 3. If there exists &g € D such that for i = 1,2, My;(6y) = 0,
%(50) # 0, then there exists two functions ¢; = (g,93,...,0m) such that for
|0 — 0| + € small, system (1.1) has a double homoclinic loop L. = L., U L., passing
through Se, if and only if §; = ¢;(g,03,...,0m), where Se; — S1 and Le; — Ly, as
e —0.

The following lemma illustrates the global stability of a homoclinic loop and a
double homoclinic loop.

Lemma 2.3 ( [10,11,16]). Suppose that system (1.1) has a double homoclinic loop
L. = L., U L., passing through a saddle S;,. Let

M1 = 5(fz +gy)(561)7
M2 = p21 + fo2, where [lo; = Ej{ (fz + gy)dt, (2.4)
L

€i

,U3 = R1(551)7 Z: 1a2a
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where R1(Se,) denotes the first saddle quantity of Se,. Then the following state-
ments are true.

(1) Fori=1,2, the homoclinic loop L; is orbitally inside stable(unstable) as p <
0(>0), or 1 =0, p2; <0(>0), or u1 = po; = 0, u3 > 0(< 0).

(2) The double homoclinic loop L. is orbitally outside stable(unstable) as p1 < 0(>
0), or py =0, 2 <0(>0), or i = p2 = 0, 3 < 0(> 0).

Now we introduce the following quantities

c11(0) = (fz + g4)(S1),

u® = § (ot e, 1= 1.2 05
OR1(S.,
031(6) - 18(8 ) 8:0.

If Sy is at the origin and H(z,y) = Mzy + O(|(z,y)|?) near the origin with A; > 0,
we further denote that

c31(9) = _ﬁ {(fmy + Gayy) — %1 [nyy(fm + Gay) + Hawy(foy + gyy)} }

011:0

Following a similar idea of [29], we have

Lemma 2.4. Suppose that system (1.1).—¢ has a double homoclinic loop Ly. Let
M, My, and c;; be defined in (2.3), (2.5) and (2.6). If there exists 69 € D such

that
Mi(60) =0, ¢31(00) # 0, c11(d0) = €21(d0) = c22(d0) =0,
3(M11,M12,0117021,022) (50) —5, (2-7)
A1, ,0m)

then system (1.1) has 7 limit cycles bifurcating from Ly for some (9,€) near (4o, 0).

Rank

Proof. From Lemma 2.2, we know that under (2.7), system (1.1) has a double
homoclinic loop L. = L., U L., such that L., = L1, L., — L13 as € — 0. Then
we can produce 7 limit cycles by changing the stability of L..

First, let

Mi1 = M11(0), Mg = Mi2(9), c11 = c11(9), co1 = ¢21(6), ca2 = c22(9).

From (2.7) and the implicit function theory, one can solve ¢ near dy from the above
equations. It implies that My1, Mis, c11, a1, Coo can be taken as free parameters.
Further, when (f; + g4)(S=) = 0, we have from [29, Lemma 2.4] that

f(ﬁ+@ﬁ=f(h+%w+ommm,
L

€1 L1

]{ (fz+gy)dt:j§ (fz +gy)dt + O(elne)).
L

eo L2

Then from (2.4) and (2.5), we have the following

p1 = e(c11 + O(e)),
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p21) =0 = €(c21 + O(eln [¢])),
22|y =0 = €(c22 + O(e In [¢])), (2.8)
w3 = € (c31(00) + O(Je] + |e11, €21, €22])) -

In the following, we change the signs of p1, po1 and pog by varying ci11, co1 and cog.

Assuming c33(dp) > 0, we have us > 0 from (2.8). Letting M1; = M2 = ¢11 =
o1 = c9o = 0, Lemma 2.3 derives that L. is inside stable and outside unstable.

Keep M1y = Mis = ¢11 = co1 = 0. Letting 0 < ¢oo < 1 implies pg2 > 0. So
that the homoclinic loop L., is inside unstable. Meanwhile, the homoclinic loop
L., remains stable and the double homoclinic loop L. is still unstable. Then one
limit cycle can be found inside L.,.

Let My1 = Mi3 = c¢11 =0 and 0 < ¢91 < 1, that is po; > 0. Then from Lemma
2.2 we know that the stability of the homoclinic loop L., has changed from stable
to unstable. L., and L. are unstable like in the last step. Thus, one limit cycle is
produced inside L., .

Now let My, = M5 = 0. Vary c11 < 0 and |011| < min{Cgl,CQQ}, then 1 < 0.
Hence, L. is stable both inside and outside. From last step, we know that the
stability of L.,, L., and L. are changed. Then one can find three more limit cycles,
two inside L,, L., and one ouside L., respectively.

At last, letting My; < 0 and Mps < 0, one can find two more limit cycles by
breaking L., and L,,.

We have found seven limit cycles by varying My1, Mia, c11, €21, o2 in the case
of ¢31(dp) > 0. Denote (n1,n9,n3) by the distribution of limit cycles near L., such
that nq limit cycles inside L,, ng limit cycles inside L., and ng limit cycles outside
L.. From the above proof, seven limit cycles has the distribution of (3,3,1), see
Figure 4. In fact, we have considered all the possibility of My1, Mis, €11, C21, Coo
and find no more than 7 limit cycles. By choosing the parameters as follows, one
can also find seven limit cycles.

1. When 033(50) >0,let 0 < min{—MH, —Mlg} L =11 K —Co9 < o K 1.
When 033(50) <0, let 0 < min{Mn,Mm} KL K egp < —co1 K 1.
Distribution of limit cycles is (3,1, 3).

2. When 033((50) >0, let 0 < min{—Mll, —M12} -1 K min{0217022} < 1.
When ¢33(dp) < 0, let 0 < min{Mi1, M12} < ¢11 < min{—ca1, —cao} < 1.
Distribution of limit cycles is (3,3,1).

It completes the proof of this theorem. O

Figure 4. The distribution of 7 limit cycles
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Now consider the centrally symmetrical near-Hamiltonian system (1.1), where

H(I’, y) = H(7$7 7y)5
f(_xa _yv(s) = —f(x,% 6)7
g(—CL‘, -Y, 5) = _g(m7 Y, 6)
Assume that the unperturbed system (1.1).—¢ has five hyperbolic saddles Sy(0, 0),

Sy (x5,0), So(—x%,0), Si(x5,0), Si(—z3,0), and four centers C;(z¢,0), C;(—z5,0)
where xf > 0,7 = 1,2. By the symmetry of system (1.1).—g, we have

H(z;,0) = H(—x,0), H(z$,0) = H(—25,0), i=1,2.

Suppose system (1.1).—¢ has a double heteroclinic loop Ly surrounding two homo-
clinic IOOpS Ll,Ll,Where L() = L01 U LOQ U L01 U LOQ, L1 = L11 @] L12 and Ll =
L11U Lqa, see Figure 5. We can get that

H(+27,0) = H(0,0).
Without loss of generality, we further assume that
H(0,0) =0, H(+x5,0) = hg <0, H(£x{,0) =h; < hg, i =1,2,

from which we know Lg is in clockwise orientation.
Then by the symmetry of (1.1), we can obtain the following theorem easily from
Lemmas 2.1, 2.4 and Remark 2.1.

Theorem 2.1. Suppose the symmetrical system (1.1).—¢ has a double heteroclinic

loop Lo surrounding two double homoclinic loops Ly and Ly like Figure 5. Let
M;, M; , M, le ¢i, Gi, €7, c3j be defined in (2.1), (2.2), (2.3), (2.5) and (2.6).
If there exist 0y € D such that

Mo (bo) = Mo(do) = Mi(do) = 0, Mo1(d0) Mor () > 0, €3(0) # 0,5 = 0,1,
c11(d0) = c2i(d0) = ci(do) = €i(do) = c1(do) = 0,7 = 1,2,

O(Mu1, Mg, Mo, Mo, c11, c21, 22, €1, €}, €1, C2, C2)
901, .-, 0m)

(2.9)
Rank

(0p) = 12,

then system (1.1) has 24 limit cycles, for some (0,¢) near (d,0), fourteen of which
are bifurcated from Ly, L1 and ten of which are from Ly. Among them, there are
two alien limit cycles.

Remark 2.2. We know that by using the Melnikov function, a double heteroclinic
loop Lg can produce six limit cycles, see [22], and a double homoclinic loops L; can
produce seven limit cycles, see [9]. So twenty limit cycles can be generated from
system (1.1).—o. In summary, we can find four more limit cycles near Ly, L; and
Ly by the stability-changing method than the Melnikov function method.

3. Proof of the main theorem

First, we prove Theorem 1.1(i).
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Figure 5. The image of Lo, L, and L

Notice that system (1.3) has 9 singular points (0,0), (££+/a,0), (£vb,0), (£4/c, 0)
and (£v/d,0). Let J(z,y) be the Jacobi matrix at point (x,y), defined as

J(z.y) 0 1
T,yY) =
—9H,
ox 0

where —H, = kz(2? — a)(2? — b)(2? — ¢)(2? — d).
Then one can caculate easily the eigenvalues A of J(z,y) at points (0, 0), (1/a, 0),
(v/b,0), (1/¢,0) and (v/d,0), which are listed in the following table.

Table 1. Eigenvalues of sigular points

[@y] ©0 ] (V/a,0) \ (V5.0) \ (V2.0) \ (V4,0) |
[ A | £Vabedk | £\/2ak(a —b)(a—o)(a—d) | £/2kb-a)(b—c)(b—d) | £1/2ck(c—a)(c—b)(c—d) | +/2dk(d— a)(d —b)(d— o) |

Under the assumptions a > b > ¢ > d > 0 and k > 0, we can conclude that
(0,0), (v/a,0) and (1/c,0) are saddles, (v/b,0) and (v/d, 0) are centers. Then by the
symmetry of (1.3) and H(/¢,0) < H(y/a,0) = H(0,0) = 0, Theorem 1.1(i) can be
proved directly.

Now let Kk =1,a =4,b = %, ¢ =2 and d = 1. Then the phase portrait of
system (1.3) is Figure 6.
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4
3 4
Zuz Lo
Yy 27
1.
Z” le L, L,
— f\/?\ < fl\/\,
o S 0 ‘\I/Sl\J S,
X
1.
< -2
Ly, Ly,
_3 4
—Ad

Figure 6. The phase portrait of system (1.3)

Consider the number of limit cycles for the following Liénard system

T =y,
43 126 152 64 (3.1)
y=—2"+—2" — —a° + —1® — —z +e(box + b12* + go(2)y),
5 5 5 5
where go(z) = ao + a22? + agz* + a2’ + ag2® + a102'0 + apx!? + ajgrtt +

a1621% + 218 by, by # 0. The unperturbed system (1.1).—¢ has five saddles S§ =
(2,0), So = (~2,0), S1 = (2£2,0), S; = (=2/19,0), Sy = (0,0), and four centers
(£1,0), (£v/2,0). Tt has the following Hamiltonian function

1

H(z,y) = 5

—y? 410 (m2(4x4—11m2—16)(x—2 (x+2) )
By (2.1) we have the following 1ntegralb along the curves Lg; : y
(—1)”‘12\1/537(4 2?)(4zt — 1122 +16)2, 0<2<2, i=1,2,

My(8) = Mo1(8) + Mpa(9)

- / (boz + b12® + go(2)y)dzx + / (boz + b12® + go(2)y)dx
L()l L02

:/ go(m)yl(x)dx+/ go(z)ya(z)dx
L01 LOZ
Jr/ (box + by’ )daer/ (boz + byz®)dx
Lgl L02

:%/O go(@) (z(4 — ) (4a* — 112° +16)% ) da

1
= ﬁ(IOaO+I2a2+I4a4+I€,a6+18a8+110a10 +Isa12+T1sa14+Tigai16+11s)
(3.2)
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where
- 1
Loi:y = (=1)"' ——z(4 — 2?)(4a* — 1122 + 16)%7 0<z<2 i=1,2,

2V/5
2
Ii:/ 224~ 2?) (4t — 1122 +16)F, 0<m <9, i = 2m,
0

and

;2923 28353 5059743146611 3035925043513

07 384 512 7 5637144576 1073741824’

;115805 1429651n3 _ 370903396451989 440637580935 1n 3

27 12288 16384 ° 27 135201469824 8589934592
;14284121 13903651n3 _ 13337650412525201  60233341779451n 3

47 7491520 131072 M 7 1546188226560 137438953472

752541529 n 15698205 1n 3
7 77864320 2097152
7o 26682779747440136519 n 436319050144051n 3

10 T 952451947560960 1099511627776
_ 130791632753  861876451n 3

)

b

s = —lotot020  ~ 16777216
;. _ 947782503494616315817  78089101491573451n 3
18 TT10159487440650240 35184372088832

Similarly, along the homoclinic loop Li;: y = iﬁ(mo:vﬁ — 37752* 4 764022 —
3888)z (522 — 8) ,@ < x < /2, we have from (2.3) that

Mi1(0) = 7{ (boa: + b2+ go(x)y)dm
Liy

= / (box + by2® + go(z)ys(z))da
L1

125 Jaym
1

T 125
+ Jiza12+J14a14+ J1ga16+ J1s) (3.3)

go(2) (5002 — 37752 + 76402% — 3888)2 (522 — 8)dx

(Joag+Joas+Jyas+ Jsas+ Jsas + Jipaio

V2
Ji:/ 2™ (5002° — 377521 +-76402% —3888) 2 (522 —8)dx, 0 < m <9, i = 2m,

obtained by Maple using numerical integration

Jo = 9.226513336 - - -, Jo = 17.18815710- - -,
Jy = 3210371920 - - -, Je = 60.11415378 - - - ,
Jg = 112.8375462 - - - | Jio = 212.2978888 - - -,
Ji2 = 400.3246508 - - - , Ji4 = 756.5074514 - - - |

Jie = 1432.545119 - - - Jis = 2718.055189 - - - .
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We can also obtain M13(d) from (2.3) that
M12(5) = % (bofE + b1$3 + go(x)y)dx
Li2

- /L (boz + b12® + go(z)ys(x))da

210
1 g 6 4 2 Lo 2 (3.4)
90(2)(5002° — 37752 + 764022 — 3888)% (522 — 8)d

= o5 :
1
= E(K@CLQ + Ksas + Kyaq + Keag + Kgasg + Kipaio
+ Ki2a12 + K14a14 + Ki6a16 + Kis)
where
2/10
Ki:/ xgm(500x6_3775x4+7640x2_3888)%(5x2_8)dx, 0<m <9, i=2m,
1

1 | 2¢/10
Lip: y= iﬁ(mogg6 — 37752 + 764022 — 3888)% (522 — 8), 1<z < Tf

Calculating K;, we have

Ko = —26.64042911 - - - | Ky = —31.79318924 - - - |
K, = —38.46007978 - - -, Kg = —47.17856128 - - - |
Kg = —58.69889628 - - - | Kip = —74.07464795 - - - |
Ko = —94.79365732- - - | K4 = —122.9682972- - - |
Kig = —161.6127875- - - | Kig = —215.0487424 - - - .

For the expression of ¢;1(d), ¢i(d) and ¢11(8), we can easily obtain from (2.1) and
(2.5) that

01(5) = ap,
8
CT(d) = 4ja2j —|—49,
jZ:;) (3.5)
.8, 8
en(®) =) (2 az; +(2)".
1 jzzjo 5 2 5

Let ¢1(0) = c¢;(8) = 0, which yields that ag = —(4ay +4%ag +43ag +4*a10+4%a12 +
45a14 + 47a16 + 48). Then, taking as into (2.1), we have

c2(0) = / go(z)dt = / 9o() dx
Lo1ULg2 LoiULgz Y

2
= 2/ 90(%) - dx
0 —=x(4— 2?)(4at — 1122 + 16)=

2vV/5

2
=45

o x(

go()

- dx
4 —x2)(4z* — 1122 + 16)2

8
= 4\/5( Z Pyjas; + P18>
=2
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where
2 2m—1 2m—2
—9
Pi:/ ”“" Y dz, 2<m <9, i=2m,
0o z(4—x22)(4z* — 1122 + 16)2
and
In3 1 43In3
Pr=—m Bo=—g =
po_ 193 285913 30743 89695In3
57 64 256 19T T 1536 2048
p._ 5168267 112607231n3 324823563  3574512691n3
127 9152 65536 T 655360 524288 '
b _ 23237660873  22854210367In3
16 10485760 8388608
5662048512319 7321407151751n3
18 7 587202560 67108864

Let ¢11(6) = 0, from (3.5) we obtain that

8 8 8 8 8 8 8 8 8
a0=—(Fart(z)a1+(5) a6 +(2) as+(2) aro (7 Cana+(2) ara+ (3 ars+(5)7)-

It implies from (2.5) that

_ Db — 9o(2)

vz go()
=500 / ; de  (3.7)
2/10 (50026 — 377524 + 764022 — 3888)2 (a2 — 8)
= 500(Q2a2 + Qa4 + Qsas + Qzas + Qroa10 + Qi2a12
+ Quaa14 + Q616 + Q1s)

where
V2 2m _ (8\m
Qiz/ v =) i de, 1<m <9, i=2m,
2/10 (5002¢ — 377524 4 764022 — 3888)2 (522 — 8)
and

Q> = 0.001316505038 - - - , Q4 = 0.004490334120-- , Q¢ = 0.01151924117 - - - ,
Qs = 0.02634464921 - - - , Q10 = 0.05665708129 - - - , Q1o = 0.1173417856 - - - ,
Q14 = 0.2370405044 - - - , Q16 = 0.4706303950 - - , Q15 = 0.9229379649 - - - .

And (@)
go(x

co2(0) = f go(zx)dt :j{ dx
L12 L12 y3($)

= (x)

go(x

=2 - T dx (3.8)
1 (50026 — 377504+ 764022 —3888) 2 (5z2 —8)
250

= 500(R2a2 + Rias + Reag + Rgas + Rioa1o + Ri2612
+ Rysa14 + Rigais + Ris)
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where
2@ x2m _ (§)m
RZ—:/ 5 . dr, 1<m <9, i=2m,
1 (50026 — 3775x* 4+ 764022 — 3888)2 (52 — B)
and

Ry =0.002010818873 - - -, R4 = 0.005788571050---, R¢ = 0.01261172859--- |
Rg =0.02462290372 - - -, Rio = 0.04539362244 --- , Ry2 = 0.08085102069 - - - ,
Ry4 =0.1407954475- - -, Ri6 = 0.2413815522- -, R;g = 0.4091684847 - - - .

To compute c30(0), we make the variable transformation

rT=u—"u,
8v5
v=" )

which carries the system (3.1) into

U= —{E[Hw(u—v,&;g(u+v)> - (Sgl(u—&-v)} +ef(u,v),
0= \1/65[Hm(uv,8\5/5(u+11)> + 654(u+v)} +ef(u,v),

where f(u,v) = 1—‘/65 (bo(u —v)+b1(u—v)>+go(u— v)%/5 (u—i—v)) . The Hamiltonian
function of system (3.1) is

H(u,v) = ‘ffgﬂ(u—u,%(uﬂ))
- %ﬁ(uﬂ)? - %(u — )2
X (4(u o) — 1w —v)? + 16) (u—v—2)2(u— v+ 2)?
— ST\/guv—l-O(\(u,v)P)

Then it implies from (2.2) that

5 (- . I S
030(6) = _% {(fuu'u + fuv'u) - % [Huvv(fuu + fu'u) + Huuv(fuv + fv'u)}} w0

_ V5,

= -5 ax

(3.9)
Similarly, to compute c31(d), we make the variable transformation
2v1
r=u—v-+ @,
24+/2
= \[(u +v),
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under which system (3.1) becomes

i = —% [625Hx —1152(u +v)] +ef(u,0),
b= —% {625Hw +1152(u + v)} +ef(u,v),
where
A, v) = %H( g 2—? %(uw)) _ 2‘;\5/§uv+ O(|(u, v)[?),
Flu,v) = %(bo(u—vﬁ-@)ﬁ-bl(u—vﬁ-@)
+90(U_U+25ﬂ)¥(u+v)).

Then we have from (2.5) that

V2
e31(0) =375500
+ 89600000a10 + 19660800015 + 412876900a,14 + 838860800a15). (3.10)

(1660944384 +1171875a5 +5000000a4+15000000as + 38400000as

Combining (3.2)—(3.8), solving the equations My () = M11(6) = M12(6) = 1(6) =
c;(8) = c11(0) = c2() = c21(6) = c22(0) = 0 gives

ao = 9.226513336, ap = 17.18815710, a4 = 32.10371920,
ae¢ = 60.11415378, as = 112.8375462, a9 = 212.2978888,
a12 = 400.3246508, a14 = 756.5074514, a;6 = 1432.545119.

Thus, we can take dg = (ao, Go, 44, Gg, ds, 10, A12, 14, a16). In this case, we have

Mo(é) = M11(5) = Mlg((S) = 61(5) = CT((S) = 611(6) = 62(5) = 621(5) = 622(5) = 0,
O(My, M1, Mya,c1, ¢, ci1,Ca,Co1,Co2,)

det
a(CLO, a2, 04,06, 0ag, A10, @12, G414, a16)

= —2.794147105 x 10** # 0.

Furthermore, from (3.9) and (3.10) we have

c30(00) = 314.4911458V/5 £ 0, c31(80) = —2.406510261 x 10°/5 # 0.

Then (2.9) of Theorem 2.1 are satisfied, which implies that Theorem 1.1(ii) is true.
It completes the proof of Theorem 1.1.
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