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GREEN FUNCTION OF A CLASS OF
EIGENPARAMETER DEPENDENT

THIRD-ORDER DIFFERENTIAL OPERATORS
WITH DISCONTINUITY

Yulin Bai1, Wanyi Wang2 and Kun Li3,†

Abstract This paper is concerned with a class of third-order boundary value
problems with discontinuity, and the eigenparameter is contained in two of
boundary conditions, the transmission conditions are imposed on the discon-
tinuous point. Using operator theoretic formulation, we transfer the considered
problem to a new operator T in a modified Hilbert space H. It is proved that
T is a self-adjoint operator in H, and we introduce some properties of the
spectrum. The Green function and the resolvent operator are obtained. The
completeness of eigenfunctions is also proved.
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1. Introduction

In this paper, we consider the following third-order boundary value transmission
problems (BVTP)

`y :=
1

w
{−i[q0(q0y

′)′]′ − (p0y
′)′ + i[q1y

′ + (q1y)′] + p1y} = λy, x ∈ I, (1.1)

with boundary conditions

L1y := (α1λ+ α̃1)y(a)− (α2λ+ α̃2)y[2](a) = 0, (1.2)

L2y := (β1λ+ β̃1)y(b) + (β2λ+ β̃2)y[2](b) = 0, (1.3)

L3y := (i+ sin θ)y[1](a) +
√
r1r2(1 + i sin θ)y[1](b) = 0, (1.4)

and transmission conditions

T1y := y(c−)− r1y(c+) = 0, (1.5)
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T2y := y[1](c−)−
√
r1r2y

[1](c+) = 0, (1.6)

T3y := y[2](c−)− r2y[2](c+) = 0, (1.7)

where I = [a, c) ∪ (c, b], λ ∈ C is the spectral parameter, q0, q1, p0, p1, w are real-
valued continuous functions on each interval [a, c) and (c, b] and satisfy the following
conditions

q−10 , q−20 , p0, q1, p1, w ∈ L1(I,R), q0 > 0, w > 0. (1.8)

θ, αj , α̃j , βj , β̃j , rj (j = 1, 2) are arbitrary real numbers with

ρ1 = α̃1α2 − α1α̃2 > 0, ρ2 = β̃1β2 − β1β̃2 > 0, r1r2 > 0. (1.9)

It is well known that the spectral theory of ordinary differential operators is
an important research topic in the differential equation boundary value problems.
The research field of differential operators is also very plentiful, such as self-adjoint
expansion, the properties of eigenvalues and eigenfunctions, inverse problems, etc.
Such problems are well understood for even order differential operators, especially
for the so called Sturm-Liouville problems, see for example [14,19,21,22] and refer-
ences cited therein. However, little is known for odd order differential operators.

Third-order differential equations arise in many physical phenomenons, for ex-
ample, three-layer beam problem, more backgrounds we refer to [7]. Recently, Hao,
Zhang etc in [8] characterized the self-adjoint domain of odd order differential op-
erators by using real parameter solutions, and Niu etc.gave all canonical forms of
self-adjoint boundary conditions for regular third-order differential operators [15].
Uǧurlu also studied a class of third-order self-adjoint boundary value problems and
introduced the dependence of eigenvalues on the problem [17], and generalized these
results to boundary value problems with discontinuity [18]. In a very recent paper,
Li etc in [10] considered a regular third order differential operators with mixed and
eigenparameter dependent boundary conditions and investigated self-adjointness,
the properties of eigenvalues, Green function of the operator.

However, there is still lots of work which need to be done for third-order dif-
ferential operators, namely, differential operators with transmission conditions and
eigenparameter dependent boundary conditions which arise in many mathematical
physical phenomenon, for example, in electrostatics and magnetostatics, the model
problem which describes the heat transfer through an infinitely conductive layer is
a transmission problem [5,6,16]. For such problems of second-order Sturm-Liouville
operators or Dirac operators, we refer to [1–4,6, 11–13,23].

In this paper, we consider third-order boundary value transmission conditions
(1.1)-(1.7). By using the classical analysis techniques and spectral theory of linear
operator, we transfer the BVTP (1.1)-(1.7) to a self-adjoint operator T in an
appropriate Hilbert space H such that the eigenvalues of the problem (1.1)-(1.7)
coincide with those of T. This paper is organized as follows: In Section 2, we
investigate some basic notations and preliminaries. In Section 3, we introduce a new
Hilbert space and construct an operator T associated with the problem (1.1)-(1.7),
the self-adjointness, the properties of eigenvalues of this operator are discussed.
The Green function and the resolvent operator are discussed in Section 4. The
completeness of eigenfunctions is proved in Section 5.
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2. Notations and preliminaries

Let the quasi-derivatives of y be defined as [9]

y[0] = y, y[1] = −1 + i√
2
q0y
′, y[2] = iq0(q0y

′)′ + p0y
′ − iq1y,

and Hw = L2
w(I) = L2

w[a, c) ⊕ L2
w(c, b] be a weighted Hilbert space consisting of

functions y which satisfy
∫ c
a
|y1|2wdx + r1r2

∫ b
c
|y2|2wdx < ∞ equipped with the

inner product 〈y, z〉w =
∫ b
a
y1z1wdx+r1r2

∫ b
a
y2z2wdx. Where y(x), z(x) ∈ Hw and

y(x) =

{
y1(x), x ∈ [a, c),

y2(x), x ∈ (c, b],
z(x) =

{
z1(x), x ∈ [a, c),

z2(x), x ∈ (c, b],

w(x) =

{
w1(x), x ∈ [a, c),

w2(x), x ∈ (c, b].

Denote by Lmax the maximal operator with the domain

Dmax ={y ∈ L2
w(I) | y[0], y[1], y[2] ∈ AC(I),

y(c±), y[1](c±), y[2](c±) <∞, `y ∈ Hw},

and the rule

Lmaxy = `y, y ∈ Dmax, x ∈ I.

Then for arbitrary y, z ∈ Dmax, integration by parts yields Lagrange identity

〈Lmaxy, z〉w − 〈y, Lmaxz〉w = [y, z]c−a + r1r2[y, z]bc+,

where

[y, z]σ2
σ1

= [y, z](σ2)− [y, z](σ1),

[y, z](x) = y(x)z[2](x)− y[2](x)z(x) + iy[1](x)z[1](x).

We can transfer the equation (1.1) to the following first-order system

Y′ + QY = λWY, (2.1)

where

Y =


y[0]

y[1]

y[2]

 , W =


0 0 0

0 0 0

−w 0 0

 , Q =


0

√
2

(1+i)q0
0

(1+i)q1√
2q0

− ip0
q20

√
2

(1+i)q0

−p1 (1+i)q1√
2q0

0

 . (2.2)

Then the following result holds.

Theorem 2.1. [4] There exists a unique solution for the equation (1.1) with initial
conditions y[k](d, λ) = dk(λ), where d ∈ I, k = 0, 1, 2, dk(λ) are arbitrary complex
numbers. Moreover, y[k](x, λ) are entire functions of λ.
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3. Operator theoretic formulation and self-
adjointness

Using the methods of Mukhtarov [4, 12], one can construct a new Hilbert space
H = Hw ⊕ C2 under a suitable inner product by combining the parameters in the
boundary and transmission conditions. To this end, the inner product is defined by

〈Y,Z〉 =

∫ c

a

yzwdx+ r1r2

∫ b

c

yzwdx+
1

ρ1
y1z1 +

r1r2
ρ2

y2z2, (3.1)

where Y = (y(x), y1, y2)T , Z = (z(x), z1, z2)T ∈ H.
We shall use the following notations:

M1(y) = α1y(a)− α2y
[2](a), M2(y) = β1y(b) + β2y

[2](b),

N1(y) = α̃2y
[2](a)− α̃1y(a), N2(y) = −[β̃1y(b) + β̃2y

[2](b)].
(3.2)

Define the operator T in the Hilbert space H with domain

D(T) ={Y = (y(x), y1, y2)T ∈ H | L3y = T1y = T2y = T3y = 0,

y1 =M1(y), y2 =M2(y), y ∈ Dmax},
(3.3)

and

Y = (y(x),M1(y),M2(y))T ∈ D(T), TY = (`y,N1(y),N2(y))T . (3.4)

Then we get that the eigenvalue problem of BVTP (1.1)-(1.7) is transferred to the
spectra problem of the operator T. And it is easily seen that the following results
hold.

Lemma 3.1. BVTP problem (1.1)-(1.7) has the same eigenvalues with the operator
T, and the eigenfunctions of BVTP problem (1.1)-(1.7) are the first component of
the corresponding eigenvectors of the operator T.

Proof. For arbitrary Y = (y(x), y1, y2)T ∈ D(T), by (3.2) and (3.4), we have

TY = (`y,N1(y),N2(y))T = λ(y(x),M1(y),M2(y))T .

Comparing this with BVTP problem (1.1)-(1.7) yields the conclusions.

Lemma 3.2. The domain D(T) is dense in H.

Proof. Let F = (f(x), f1, f2) ∈ H, F⊥D(T), and

C∞0 (I) =

{
ψ(x) =

{
ψ1(x), x ∈ [a, c);

ψ2(x), x ∈ (c, b].

∣∣∣∣∣ψ1(x) ∈ C∞0 [a, c), ψ2(x) ∈ C∞0 (c, b]

}
.

Since C∞0 (I)⊕0⊕0 ⊂ D(T) ( 0 ∈ C ), for arbitrary G = {g(x), 0, 0} ∈ C∞0 (I)⊕0⊕0,
we have

〈F,G〉 =

∫ c

a

fgwdx+ r1r2

∫ b

c

fgwdx = 0.

In light of C∞0 (I) is dense in Hw, f(x) = 0, that is, F = (0, f1, f2). For any
U = (u(x), u1, 0) ∈ D(T), we have

〈F,U〉 =
1

ρ1
f1u1 = 0
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by the inner product in H. Through the arbitrariness of u1, then f1 = 0. Moreover,
for all V = (v(x), v1, v2) ∈ D(T), we have

〈F, V 〉 =
r1r2
ρ2

f2v2 = 0.

By arbitrariness of v2 and r1r2 > 0, we have f2 = 0. Hence F = (0, 0, 0), and the
proof is completed.

Lemma 3.3. The operator T is symmetric.

Proof. For any U, V ∈ D(T), integration by parts yields

〈TU, V 〉 − 〈U,TV 〉 =[u, v]c−a + r1r2[u, v]bc+ +
1

ρ1
[N1(u)M1(v)−M1(u)N1(v)]

+
r1r2
ρ2

[N2(u)M2(v)−M2(u)N2(v)].

(3.5)
By boundary and transmission conditions (1.2)-(1.7), we have

u[2](a)v(a)− u(a)v[2](a) =
1

ρ1
[M1(u)N1(v)−N1(u)M1(v)], (3.6)

u[2](b)v(b)− u(b)v[2](b) =
1

ρ2
[N2(u)M2(v)−M2(u)N2(v)], (3.7)

u[1](a)v[1](a) = r1r2u
[1](b)v[1](b), (3.8)

u(c−)v[2](c−) = r1r2u(c+)v[2](c+), (3.9)

u[1](c−)v[1](c−) = r1r2u
[1](c+)v[1](c+), (3.10)

u[2](c−)v(c−) = r1r2u
[2](c+)v(c+). (3.11)

Inserting (3.6)-(3.11) into (3.5), we have

〈TU, V 〉 − 〈U,TV 〉 = 0.

Therefore, the operator T is symmetric.

Theorem 3.4. The operator T is a selfadjoint operator in H.

Proof. Since T is symmetric, it suffices to prove that for any U = (u(x), u1, u2) ∈
D(T) and some V ∈ D(T∗), Z ∈ H satisfying 〈TU, V 〉 = 〈U, Z〉, then V ∈ D(T)
and TV = Z, where V = (v(x), v1, v2), Z = (z(x), z1, z2), i.e.,

(i) v[j](x) ∈ AC(I), j = 0, 1, 2, and `v ∈ Hw;
(ii) v1 = α1v(a)− α2v

[2](a), v2 = β1v(b) + β2v
[2](b);

(iii) L3v = T1v = T2v = T3v = 0;
(iv) z(x) = `v;

(v) z1 = α̃2v
[2](a)− α̃1v(a), z2 = −[β̃1v(b) + β̃2v

[2](b)].
For any U = {u(x), 0, 0} ∈ C∞0 (I) ⊕ 0 ⊕ 0 ∈ D(T), by 〈TU, V 〉 = 〈U, Z〉 we

have ∫ c

a

(`u)vwdx+ r1r2

∫ b

c

(`u)vwdx =

∫ c

a

uzwdx+ r1r2

∫ b

c

uzwdx,

that is, 〈`u, v〉w = 〈u, z〉w. By the classical differential operator theory, we have (i)
and (iv) hold. By (3.1), (3.4) and (iv) we get that for all U = (u(x), u1, u2) ∈ D(T),
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〈TU, V 〉 = 〈U,Z〉 turns to

〈`u, v〉w − 〈u, `v〉w =
1

ρ1
[M1(u)z1 −N1(u)v1] +

r1r2
ρ2

[M2(u)z2 −N2(u)v2].

In light of

〈`u, v〉w = 〈u, `v〉w + [u, v̄]c−a + r1r2[u, v̄]bc+,

hence

1

ρ1
[M1(u)z1−N1(u)v1]+

r1r2
ρ2

[M2(u)z2−N2(u)v2] = [u, v̄]c−a +r1r2[u, v̄]bc+. (3.12)

Using Naimark Patching Lemma, there exists a Û = (û(x), û1, û2) ∈ D(T) such
that

û[n](b) = û[n](c−) = û[n](c+) = 0, n = 0, 1, 2,

û(a) = α2, û
[1](a) = 0, û[2](a) = α1.

Substituting this into (3.12) yields v1 = α1v(a) − α2v
[2](a). Similarly, there exists

a Ũ = (ũ(x), ũ1, ũ2) ∈ D(T) such that

ũ[n](a) = ũ[n](c−) = ũ[n](c+) = 0, n = 0, 1, 2,

ũ(b) = β2, ũ
[1](b) = 0, ũ[2](b) = −β1.

Then by (3.12), we have v2 = β1v(b)+β2v
[2](b). Therefore, (ii) holds. Using similar

methods, one can prove (v) is true.
Choosing U∗ = (u∗(x), u∗1, u

∗
2) ∈ D(T) such that

u∗(a) = u∗[2](a) = u∗(b) = u∗[2](b) = u∗[n](c−) = u∗[n](c+) = 0, n = 0, 1, 2,

u∗[1](a) = i− sin θ, u∗[1](b) = (1− i sin θ)/
√
r1r2.

Then by (3.12), we have L3v = 0. Similarly, there exists a Ü = (ü(x), ü1, ü2) ∈ D(T)
such that

ü(c−) = ü[1](c−) = ü(c+) = ü[1](c+) = ü[n](a) = ü[n](b) = 0, n = 0, 1, 2,

ü[2](c−) = r2, ü
[2](c+) = 1.

Substituting this into (3.12) yields T1v = 0. Using similar methods, we can obtain
T2v = 0 and T3v = 0. Therefore, (iii) holds. Hence, the operator T is selfadjoint.

By self-adjointness of the operator T, we have the following conclusions.

Corollary 3.5. The eigenvalues of T are real-valued.

Corollary 3.6. Let λ1 and λ2 be two different eigenvalues of T, Y1 =(y1(x), y11, y12)
and Y2 = (y2(x), y21, y22) be the corresponding eigenfunctions respectively, then
y1(x) and y2(x) are orthogonal in the sense of∫ c

a

y1y2wdx+ r1r2

∫ b

c

y1y2wdx+
1

ρ1
M1(y1)M1(y2) +

r1r2
ρ2

M2(y1)M2(y2) = 0.



48 Y. Bai, W. Wang & K. Li

Let

Aλ =


α1λ+ α̃1 0 −(α2λ+ α̃2)

0 0 0

0 i+ sin θ 0

 ,

Bλ =


0 0 0

β1λ+ β̃1 0 β2λ+ β̃2

0 1 + i sin θ 0

 ,

C =


r1 0 0

0
√
r1r2 0

0 0 r2

 .

Then the boundary and transmission conditions of (1.1)-(1.7) can be rewritten in
the following matrix forms

AλY(a) +BλY(b) = 0, (3.13)

and

Y(c−)− CY(c+) = 0, (3.14)

where Y(x) = (y(x), y[1](x), y[2](x))T .
Let ψ11(x, λ), ψ12(x, λ), ψ13(x, λ) be the system of linearly independent funda-

mental solutions of equation (1.1) on interval [a, c), and

Ψ1(x, λ) = (Ψ11(x, λ), Ψ12(x, λ), Ψ13(x, λ)) (3.15)

satisfy initial conditions

Ψ1(a, λ) =


1 0 0

0 1 0

0 0 1

 , (3.16)

where

Ψ1k(x, λ) =
(
ψ1k(x, λ), ψ

[1]
1k(x, λ), ψ

[2]
1k(x, λ)

)T
, k = 1, 2, 3.

Then their Wronskian w1(λ) is independent of x and is an entire function of λ, and
we have

w1(λ) = det Ψ1(x, λ) = det Ψ1(a, λ) = 1. (3.17)

Let ψ21(x, λ), ψ22(x, λ), ψ23(x, λ) be the solutions of equation (1.1) on interval
(c, b], and satisfying initial conditions

Ψ2(c+, λ) = (Ψ21(c+, λ), Ψ22(c+, λ), Ψ23(c+, λ))

= C−1(Ψ11(c−, λ), Ψ12(c−, λ), Ψ13(c−, λ))

= C−1Ψ1(c−, λ),

(3.18)
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where

Ψ2k(x, λ) =
(
ψ2k(x, λ), ψ

[1]
2k(x, λ), ψ

[2]
2k(x, λ)

)T
, k = 1, 2, 3.

Thus, their Wronskian w2(λ) is independent of x and is an entire function of λ, and
we have

w2(λ) = det Ψ2(c+, λ) = detC−1λ det Ψ1(c−, λ) =
1

r1r2
√
r1r2

, (3.19)

therefore, ψ21(x, λ), ψ22(x, λ), ψ23(x, λ) are linearly independent on interval (c, b]
and

ψ1(x, λ) =

{
ψ11(x), x ∈ [a, c),

ψ21(x), x ∈ (c, b],
ψ2(x, λ) =

{
ψ12(x), x ∈ [a, c),

ψ22(x), x ∈ (c, b],

ψ3(x, λ) =

{
ψ13(x), x ∈ [a, c),

ψ23(x), x ∈ (c, b],

are the solutions of equation (1.1) on interval I satisfying transmission conditions
(1.5)-(1.7).

We assume that

Ψ(x, λ) =

{
Ψ1(x, λ), x ∈ [a, c),

Ψ2(x, λ), x ∈ (c, b],

then

Ψ(c−, λ) = Ψ1(c−, λ), Ψ(c+, λ) = Ψ2(c+, λ),

and for any x ∈ I, Ψ(x, λ) is an entire function of λ.

Lemma 3.7. Let

y(x) =

{
y1(x), x ∈ [a, c),

y2(x), x ∈ (c, b],

be an arbitrary solution of equation (1.1), then y(x) can be expressed by

y(x) =

{
c11ψ11(x) + c12ψ12(x) + c13ψ13(x), x ∈ [a, c),

c21ψ21(x) + c22ψ22(x) + c23ψ23(x), x ∈ (c, b],

where cjk ∈ C (j = 1, 2, k = 1, 2, 3). If the solution y(x) satisfy the transmission
conditions (1.5)-(1.7), then c1k = c2k(k = 1, 2, 3).

Proof. (i) The first conclusion is clearly true.

(ii) Assume

y(x) =

{
c11ψ11(x) + c12ψ12(x) + c13ψ13(x), x ∈ [a, c),

c21ψ21(x) + c22ψ22(x) + c23ψ23(x), x ∈ (c, b],

is a solution of equation (1.1) satisfying transmission conditions (1.5)-(1.7).
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Inserting y(x) into the transmission conditions matrix form (3.14) yields
∑3
k=1 c1kψ1k(c−)∑3
k=1 c1kψ

[1]
1k(c−)∑3

k=1 c1kψ
[2]
1k(c−)

− C

∑3
k=1 c2kψ2k(c+)∑3
k=1 c2kψ

[1]
2k(c+)∑3

k=1 c2kψ
[2]
2k(c+)

 = 0.

The above equation can be expressed as

Ψ1(c−, λ)(c11, c12, c13)T = CΨ2(c+, λ)(c21, c22, c23)T ,

and by (3.18), we have

Ψ1(c−, λ)(c11, c12, c13)T = Ψ1(c−, λ)(c21, c22, c23)T ,

namely,

Ψ1(c−, λ)(c11 − c21, c12 − c22, c13 − c23)T = 0, (3.20)

by virtue of

det(Ψ1(c−, λ)) = 1,

hence, the system (3.20) have only zero solution, so c11 = c21, c12 = c22, c13 = c23.

Lemma 3.8. A complex number λ is an eigenvalue of the problem (1.1)-(1.7) if
and only if

∆(λ) = det[Aλ +BλΨ(b, λ)] = 0.

Proof. Suppose λ0 is an eigenvalue of the problem (1.1)-(1.7) and y0(x) is the
corresponding eigenfunction. Then we have

y0(x) =

{
c11ψ11(x, λ0) + c12ψ12(x, λ0) + c13ψ13(x, λ0), x ∈ [a, c),

c11ψ21(x, λ0) + c12ψ22(x, λ0) + c13ψ23(x, λ0), x ∈ [a, c),

where at least one of coefficients c1k (k = 1, 2, 3) is not zero. Inserting y0(x) into
boundary condition (3.13) yields

Aλ


∑3
k=1 c1kψ1k(a, λ0)∑3
k=1 c1kψ

[1]
1k(a, λ0)∑3

k=1 c1kψ
[2]
1k(a, λ0)

+Bλ


∑3
k=1 c1kψ2k(b, λ0)∑3
k=1 c1kψ

[1]
2k(b, λ0)∑3

k=1 c1kψ
[2]
2k(b, λ0)

 = 0,

that is (
AλΨ1(a, λ0) +BλΨ2(b, λ0)

)
(c11, c12, c13)T = 0,

from (3.16), we can see

(Aλ +BλΨ(b, λ0))(c11, c12, c13)T = 0. (3.21)

Due to c11, c12, c13 are not all zero, hence det(Aλ +BλΨ(b, λ0)) = 0.
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On the contrary, if det(Aλ+BλΨ(b, λ0)) = 0, then the system of the linear equa-
tions (3.21) for the constants c1k (k = 1, 2, 3) has non-zero solution (c̃11, c̃12, c̃13)T .
Let

y(x) =

{
c̃11ψ11(x, λ0) + c̃12ψ12(x, λ0) + c̃13ψ13(x, λ0), x ∈ [a, c),

c̃21ψ21(x, λ0) + c̃22ψ22(x, λ0) + c̃23ψ23(x, λ0), x ∈ (c, b],

then y(x) is the non-trivial solution of equation (1.1) satisfying the conditions (1.2)-
(1.7), which implies λ0 is an eigenvalue of the problem (1.1)-(1.7).

Theorem 3.9. The eigenvalues of T are discrete and have no finite point of accu-
mulation. Moreover, the multiplicity of each eigenvalue at most 3.

Proof. By Lemma 3.8 and the self-adjointness of T, we know that the zeros of
∆(λ) are the eigenvalues of operator T, and all the eigenvalues of T are real, that
is to say, for any λ ∈ C with its imaginary part not vanishing, then ∆(λ) 6= 0.
Therefore, by the distribution of zeros of entire functions, the first part holds. The
second conclusion follows from the fact that there at most 3 linearly independent
solutions exist for the equation (1.1).

4. Green’s function

In this section, we discuss the Green’s function of BVTP (1.1)-(1.7) when λ is not an
eigenvalue of the problem (1.1)-(1.7). To this end, consider the following operator
equation

(T− λI)Y = F, F = (f(x), f1, f2) ∈ H. (4.1)

By the definition of the operator T, the equation (4.1) can be transferred to the
following inhomogeneous boundary value problems

− i[q0(q0y
′)′]′ − (p0y

′)′ + i[q1y
′ + (q1y)′] + (p1 − λw)y = fw, (4.2)

L1y := (α1λ+ α̃1)y(a)− (α2λ+ α̃2)y[2](a) = −f1, (4.3)

L2y := (β1λ+ β̃1)y(b) + (β2λ+ β̃2)y[2](b) = −f2, (4.4)

L3y := (sin θ + i)y[1](a) + (i sin θ + 1)y[1](b) = 0, (4.5)

T1y := y(c−)− r1y(c+) = 0, (4.6)

T2y := y[1](c−)−
√
r1r2y

[1](c+) = 0, (4.7)

T3y := y[2](c−)− r2y[2](c+) = 0. (4.8)

The general solution of homogeneous equation (1.1) can be represented as follows

y(x, λ) =

{
d11ψ11(x, λ) + d12ψ12(x, λ) + d13ψ13(x, λ), x ∈ [a, c),

d21ψ21(x, λ) + d22ψ22(x, λ) + d23ψ23(x, λ), x ∈ (c, b],
(4.9)

where djk (j = 1, 2, k = 1, 2, 3) are the arbitrary constants. From the method
of variation of constant, we can get the general solution of the non-homogeneous
differential equation (4.2) as

y(x, λ) =


d11(x, λ)ψ11(x, λ) + d12(x, λ)ψ12(x, λ)

+d13(x, λ)ψ13(x, λ), x ∈ [a, c),

d21(x, λ)ψ21(x, λ) + d22(x, λ)ψ22(x, λ)

+d23(x, λ)ψ23(x, λ), x ∈ (c, b].

(4.10)
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When x ∈ [a, c), functions d1k(x, λ) (k = 1, 2, 3) satisfy the following conditions
d

′

11(x, λ)ψ11(x, λ) + d
′

12(x, λ)ψ12(x, λ) + d
′

13(x, λ)ψ13(x, λ) = 0,

d
′

11(x, λ)ψ
[1]
11 (x, λ) + d

′

12(x, λ)ψ
[1]
12 (x, λ) + d

′

13(x, λ)ψ
[1]
13 (x, λ) = 0,

d
′

11(x, λ)ψ
[2]
11 (x, λ) + d

′

12(x, λ)ψ
[2]
12 (x, λ) + d

′

13(x, λ)ψ
[2]
13 (x, λ) = f(x)w(x).

(4.11)
When x ∈ (c, b], functions d2k(x, λ) (k = 1, 2, 3) satisfy the following conditions

d
′

21(x, λ)ψ21(x, λ) + d
′

22(x, λ)ψ22(x, λ) + d
′

23(x, λ)ψ23(x, λ) = 0,

d
′

21(x, λ)ψ
[1]
21 (x, λ) + d

′

22(x, λ)ψ
[1]
22 (x, λ) + d

′

23(x, λ)ψ
[1]
23 (x, λ) = 0,

d
′

21(x, λ)ψ
[2]
21 (x, λ) + d

′

22(x, λ)ψ
[2]
22 (x, λ) + d

′

23(x, λ)ψ
[2]
23 (x, λ) = f(x)w(x).

(4.12)
Since λ is not an eigenvalue, both linear system (4.11) and (4.12) has a unique

solution, and hence

ω1(λ) = W (ψ11(x, λ), ψ12(x, λ), ψ13(x, λ))

=

∣∣∣∣∣∣∣∣∣
ψ11(x, λ) ψ12(x, λ) ψ13(x, λ)

ψ
[1]
11 (x, λ) ψ

[1]
12 (x, λ) ψ

[1]
13 (x, λ)

ψ
[2]
11 (x, λ) ψ

[2]
12 (x, λ) ψ

[2]
13 (x, λ)

∣∣∣∣∣∣∣∣∣
= 1,

ω2(λ) = W (ψ21(x, λ), ψ22(x, λ), ψ23(x, λ))

=

∣∣∣∣∣∣∣∣∣
ψ21(x, λ) ψ22(x, λ) ψ23(x, λ)

ψ
[1]
21 (x, λ) ψ

[1]
22 (x, λ) ψ

[1]
23 (x, λ)

ψ
[2]
21 (x, λ) ψ

[2]
22 (x, λ) ψ

[2]
23 (x, λ)

∣∣∣∣∣∣∣∣∣
=

1

r1r2
√
r1r2

,

and when x ∈ [a, c) yields

d11(x, λ) =

∫ x

a

f(t)w(t)∇11(t, λ)dt+ d∗11,

d12(x, λ) =

∫ x

a

f(t)w(t)∇12(t, λ)dt+ d∗12,

d13(x, λ) =

∫ x

a

f(t)w(t)∇13(t, λ)dt+ d∗13,

(4.13)

where d∗11, d
∗
12, d

∗
13 are arbitrary constants and

∇11 =

∣∣∣∣∣∣ψ12 ψ13

ψ
[1]
12 ψ

[1]
13

∣∣∣∣∣∣ , ∇12 =

∣∣∣∣∣∣ψ13 ψ11

ψ
[1]
13 ψ

[1]
11

∣∣∣∣∣∣ , ∇13 =

∣∣∣∣∣∣ψ11 ψ12

ψ
[1]
11 ψ

[1]
12

∣∣∣∣∣∣ .
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When x ∈ (c, b], we can obtain

d21(x, λ) = r1r2
√
r1r2

∫ x

c

f(t)w(t)∇21(t, λ)dt+ d∗21,

d22(x, λ) = r1r2
√
r1r2

∫ x

c

f(t)w(t)∇22(t, λ)dt+ d∗22,

d23(x, λ) = r1r2
√
r1r2

∫ x

c

f(t)w(t)∇23(t, λ)dt+ d∗23,

(4.14)

where d∗21, d
∗
22, d

∗
23 are arbitrary constants and

∇21 =

∣∣∣∣∣∣ψ22 ψ23

ψ
[1]
22 ψ

[1]
23

∣∣∣∣∣∣ , ∇22 =

∣∣∣∣∣∣ψ23 ψ21

ψ
[1]
23 ψ

[1]
21

∣∣∣∣∣∣ , ∇23 =

∣∣∣∣∣∣ψ21 ψ22

ψ
[1]
21 ψ

[1]
22

∣∣∣∣∣∣ .
Inserting djk(x, λ)(j = 1, 2, k = 1, 2, 3) into (4.10), one gets that the general solu-
tion of (4.2) has the following representation

y1(x, λ) =ψ11(x, λ)

∫ x

a

f(t)w(t)∇11(t, λ)dt

+ ψ12(x, λ)

∫ x

a

f(t)w(t)∇12(t, λ)dt

+ ψ13(x, λ)

∫ x

a

f(t)w(t)∇13(t, λ)dt (4.15)

+ d∗11ψ11(x, λ) + d∗12ψ12(x, λ) + d∗13ψ13(x, λ), x ∈ [a, c),

y2(x, λ) =r1r2
√
r1r2ψ21(x, λ)

∫ x

c

f(t)w(t)∇21(t, λ)dt

+ r1r2
√
r1r2ψ22(x, λ)

∫ x

c

f(t)w(t)∇22(t, λ)dt

+ r1r2
√
r1r2ψ23(x, λ)

∫ x

c

f(t)w(t)∇23(t, λ)dt (4.16)

+ d∗21ψ21(x, λ) + d∗22ψ22(x, λ) + d∗23ψ23(x, λ), x ∈ (c, b].

Inserting (4.15),(4.16) into transmission condition (3.14), one gets that

CΨ2(c+, λ)(d∗21, d
∗
22, d

∗
23)T = Y(c−, λ), (4.17)

from (3.18), we can get

Ψ1(c−, λ)(d∗21, d
∗
22, d

∗
23)T = Y(c−, λ),

thus,

d∗21 = det
(
Y(c−, λ),Ψ12(c−, λ),Ψ13(c−, λ)

)
,

d∗22 = det
(
Ψ11(c−, λ),Y(c−, λ),Ψ13(c−, λ)

)
,

d∗23 = det
(
Ψ11(c−, λ),Ψ12(c−, λ),Y(c−, λ)

)
.

At the same time, we have

CΨ2(c+, λ)


d∗21

d∗22

d∗23

 = Ψ1(c−, λ)(


∫ c
a
f(t)w(t)∇11(t, λ)dt∫ c

a
f(t)w(t)∇12(t, λ)dt∫ c

a
f(t)w(t)∇13(t, λ)dt

+


d∗11

d∗12

d∗13

),
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by (3.18) we can get
d∗21

d∗22

d∗23

 =


∫ c
a
f(t)w(t)∇11(t, λ)dt∫ c

a
f(t)w(t)∇12(t, λ)dt∫ c

a
f(t)w(t)∇13(t, λ)dt

+


d∗11

d∗12

d∗13

 . (4.18)

Substituting (4.18) into (4.16) we obtain

y2(x, λ) =r1r2
√
r1r2ψ21(x, λ)

∫ x

c

f(t)w(t)∇21(t, λ)dt

+ r1r2
√
r1r2ψ22(x, λ)

∫ x

c

f(t)w(t)∇22(t, λ)dt

+ r1r2
√
r1r2ψ23(x, λ)

∫ x

c

f(t)w(t)∇23(t, λ)dt

+ ψ21(x, λ)

∫ c

a

f(t)w(t)∇11(t, λ)dt

+ ψ22(x, λ)

∫ c

a

f(t)w(t)∇12(t, λ)dt

+ ψ23(x, λ)

∫ c

a

f(t)w(t)∇13(t, λ)dt

+ d∗11ψ21(x, λ) + d∗12ψ22(x, λ) + d∗13ψ23(x, λ), x ∈ (c, b].

(4.19)

The equation (4.15) and (4.16) can be represented as follows

y1(x, λ) =

∫ b

a

K1(x, t, λ)f(t)w(t)dt+ d∗11ψ11(x, λ) + d∗12ψ12(x, λ)

+ d∗13ψ13(x, λ), x ∈ [a, c),

(4.20)

y2(x, λ) =

∫ b

a

K2(x, t, λ)f(t)w(t)dt+ d∗11ψ21(x, λ) + d∗12ψ22(x, λ)

+ d∗13ψ23(x, λ), x ∈ (c, b],

(4.21)

where

K1(x, t, λ) =


S1(x, t, λ), a ≤ t ≤ x < c,

0, a ≤ x ≤ t < c,

0, a ≤ x < c, c < t ≤ b,

K2(x, t, λ) =


S2(x, t, λ), a ≤ t < c, c < x ≤ b,
(r1r2)

3
2S3(x, t, λ), c < t ≤ x ≤ b,

0, a ≤ x ≤ t ≤ c,

S1(x, t, λ) =

∣∣∣∣∣∣∣∣∣
ψ11(t, λ) ψ12(t, λ) ψ13(t, λ)

ψ
[1]
11 (t, λ) ψ

[1]
12 (t, λ) ψ

[1]
13 (t, λ)

ψ11(x, λ) ψ12(x, λ) ψ13(x, λ)

∣∣∣∣∣∣∣∣∣ ,
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S2(x, t, λ) =

∣∣∣∣∣∣∣∣∣
ψ11(t, λ) ψ12(t, λ) ψ13(t, λ)

ψ
[1]
11 (t, λ) ψ

[1]
12 (t, λ) ψ

[1]
13 (t, λ)

ψ21(x, λ) ψ22(x, λ) ψ23(x, λ)

∣∣∣∣∣∣∣∣∣ ,

S3(x, t, λ) =

∣∣∣∣∣∣∣∣∣
ψ21(t, λ) ψ22(t, λ) ψ23(t, λ)

ψ
[1]
21 (t, λ) ψ

[1]
22 (t, λ) ψ

[1]
23 (t, λ)

ψ21(x, λ) ψ22(x, λ) ψ23(x, λ)

∣∣∣∣∣∣∣∣∣ .
Obviously,

y(x, λ) =

{
y1(x, λ), x ∈ [a, c),

y2(x, λ), x ∈ (c, b],
(4.22)

is the solution of inhomogeneous equation (4.2) satisfying transmission conditions
(1.5)-(1.7). Let (4.22) be expressed as follows

y(x, λ) =

∫ b

a

K(x, t, λ)f(t)w(t)dt+ d∗11ψ1(x, λ) + d∗12ψ2(x, λ)

+ d∗13ψ3(x, λ), x ∈ I,

where

K(x, t, λ) =

{
K1(x, t, λ), x ∈ [a, c),

K2(x, t, λ), x ∈ (c, b].

Substituting the general solution y = y(x, λ) into (4.3)-(4.5), one gets that

d∗11L1(ψ1(x, λ)) + d∗12L1(ψ2(x, λ)) + d∗13L1(ψ3(x, λ))

=−
∫ b

a

f(t)w(t)L1(K(x, t, λ))dt− f1, (4.23)

d∗11L2(ψ1(x, λ)) + d∗12L2(ψ2(x, λ)) + d∗13L2(ψ3(x, λ))

=−
∫ b

a

f(t)w(t)L2(K(x, t, λ))dt− f2, (4.24)

d∗11L3(ψ1(x, λ)) + d∗12L3(ψ2(x, λ)) + d∗13L3(ψ3(x, λ))

=−
∫ b

a

f(t)w(t)L3(K(x, t, λ))dt. (4.25)

Due to λ is not an eigenvalue, hence the determinant of coefficients of d∗11, d
∗
12, d

∗
13

satisfies ∣∣∣∣∣∣∣∣∣
L1(ψ1(x, λ)) L1(ψ2(x, λ)) L1(ψ3(x, λ))

L2(ψ1(x, λ)) L2(ψ2(x, λ)) L2(ψ3(x, λ))

L3(ψ1(x, λ)) L3(ψ2(x, λ)) L3(ψ3(x, λ))

∣∣∣∣∣∣∣∣∣
=det(Aλ +BλΨ(b, λ)) = ∆(λ) 6= 0.

(4.26)
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Therefore, d∗11, d
∗
12, d

∗
13 are uniquely determined, and

d∗11 =
<11(λ) + =11(λ)

∆(λ)
, d∗12 =

<12(λ) + =12(λ)

∆(λ)
, d∗13 =

<13(λ) + =13(λ)

∆(λ)
,

where

<11(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

−
∫ b

a

f(t)w(t)L1(K(x, t, λ))dt L1(ψ2(x, λ)) L1(ψ3(x, λ))

−
∫ b

a

f(t)w(t)L2(K(x, t, λ))dt L2(ψ2(x, λ)) L2(ψ3(x, λ))

−
∫ b

a

f(t)w(t)L3(K(x, t, λ))dt L3(ψ2(x, λ) L3(ψ3(x, λ))

∣∣∣∣∣∣∣∣∣∣∣∣
,

=11(λ) =

∣∣∣∣∣∣∣∣∣
−f1 L1(ψ2(x, λ)) L1(ψ3(x, λ))

−f2 L2(ψ2(x, λ)) L2(ψ3(x, λ))

0 L3(ψ2(x, λ)) L3(ψ3(x, λ))

∣∣∣∣∣∣∣∣∣ .
Similarly, <12(λ),<13(λ) and =12(λ),=13(λ) can be obtained by using Cramer’s
Rule. Hence the general solution have the following form

y(x, λ) =

∫ b

a

K(x, t, λ)f(t)w(t)dt

+
1

∆(λ)
(<11(λ)ψ1(x, λ) + <12(λ)ψ2(x, λ) + <13(λ)ψ3(x, λ))

+
1

∆(λ)
(=11(λ)ψ1(x, λ) + =12(λ)ψ2(x, λ) + =13(λ)ψ3(x, λ))

=

∫ b

a

G(x, t, λ)f(t)w(t)dt+
1

∆(λ)
Θ(x, λ),

(4.27)

where

G(x, t, λ) = K(x, t, λ)− 1

∆(λ)
K̃(x, t, λ), (4.28)

K̃(x, t, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

L1(ψ1(x, λ)) L1(ψ2(x, λ)) L1(ψ3(x, λ)) L1(K(x, t, λ))

L2(ψ1(x, λ)) L2(ψ2(x, λ)) L2(ψ3(x, λ)) L2(K(x, t, λ))

L3(ψ1(x, λ)) L3(ψ2(x, λ)) L3(ψ3(x, λ)) L3(K(x, t, λ))

ψ1(x, λ) ψ2(x, λ) ψ3(x, λ) 0

∣∣∣∣∣∣∣∣∣∣∣∣
,

Θ(x, t, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

L1(ψ1(x, λ)) L1(ψ2(x, λ)) L1(ψ3(x, λ)) −f1

L2(ψ1(x, λ)) L2(ψ2(x, λ)) L2(ψ3(x, λ)) −f2

L3(ψ1(x, λ)) L3(ψ2(x, λ)) L3(ψ3(x, λ)) 0

ψ1(x, λ) ψ2(x, λ) ψ3(x, λ) 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

In conclusion, for any F = (f(x), f1, f2) ∈ H, there is an unique Y ∈ D(T),
satisfying (T− λI)Y = F .
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By the definition of D(T), the components of Y are determined by the first one,
i.e., in order to find Y , we only need to find its first component y(x), and y(x) is
determined by (4.27).

Definition 4.1. The integral kernel G(x, t, λ) in (4.28) is called Green’s function
of the operator T.

Theorem 4.2. If λ is not an eigenvalue of the operator T, then for any F =
(f(x), f1, f2) ∈ H, there exists an unique solution Y = (y(x),M1(y),M2(y)) of
equation (T− λI)Y = F satisfying

y(x, λ) =

∫ b

a

G(x, t, λ)f(t)w(t)dt+
1

∆(λ)
Θ(x, λ).

The operator (T − λI)−1 is defined in the whole space by Theorem 4.2. It
follows from the facts T is symmetric and Closed Graph Theorem that (T− λI)−1

is bounded. Therefore, λ is a regular point of T provided that it is not an eigenvalue
of T.

5. Completeness of eigenfunctions

In this part, we study the completeness of the eigenfunctions system of boundary
value problem (1.1)-(1.7).

Theorem 5.1. The operator T has only point spectrum, that is to say, σ(T) =
σp(T).

Proof. We just need to prove that if λ is not an eigenvalue, then λ ∈ ρ(T). Since
T is a self-adjoint operator, thus we only need to consider the case where λ is a real
number.

We assume that λ is not an eigenvalue. Let’s consider equation (T− λ)Y = F ,
where F = (f(x), f1, f2) ∈ H, λ ∈ R. With the definition of operator T, we can
divide problem into two parts: initial value problem

`y − λy = f, x ∈ I, (5.1)

Y(c−) + CY(c+) = 0, (5.2)

and system of equations
λM1(y)−N1(y) = −f1,
λM2(y)−N2(y) = −f2,
(i+ sin θ)y[1](a) +

√
r1r2(1 + i sin θ)y[1](b) = 0.

(5.3)

By Lemma 3.7, we know that the general solution of the system of equations{
`y − λy = 0, x ∈ I,
Y(c−) + CY(c+) = 0,

can be expressed as follows

y(x) =

{
c11ψ11(x) + c12ψ12(x) + c13ψ13(x), x ∈ [a, c),

c11ψ21(x) + c12ψ22(x) + c13ψ23(x), x ∈ (c, b],
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where c1k ∈ C, ψjk (j = 1, 2, k = 1, 2, 3) are defined in Section 3.
Let

φ(x) =

{
φ1(x), x ∈ [a, c),

φ2(x), x ∈ (c, b],

be a special solution of equation (5.1), then the initial value problem (5.1)-(5.2) has
the general solution as follows

y(x) =

{
c11ψ11(x) + c12ψ12(x) + c13ψ13(x) + φ1(x), x ∈ [a, c),

c11ψ21(x) + c12ψ22(x) + c13ψ23(x) + φ2(x), x ∈ (c, b].
(5.4)

Take the general solution (5.4) into system of equations (5.3) yields

(α̃1 + λα1)c11 − (α̃2 + λα2)c13

=− f1 − (α̃1 + λα1)φ1(a) + (α̃2 + λα2)φ
[2]
1 (a),

(5.5)

[(β̃1 + λβ1)ψ21(b) + (β̃2 + λβ2)ψ
[2]
21 (b)]c11

+ [(β̃1 + λβ1)ψ22(b) + (β̃2 + λβ2)ψ
[2]
22 (b)]c12

+ [(β̃1 + λβ1)ψ23(b) + (β̃2 + λβ2)ψ
[2]
23 (b)]c13

=− f2 − (β̃1 + λβ1)φ2(b)− (β̃2 + λβ2)φ
[2]
2 (b),

(5.6)

√
r1r2(1 + i sinβ)ψ

[1]
21 (b)c11

+ [(i+ sinβ) +
√
r1r2(1 + i sinβ)ψ

[1]
22 (b)]c12

+
√
r1r2(1 + i sinβ)ψ

[1]
2 (b)c13

=− (i+ sinβ)φ
[1]
1 (b)−

√
r1r2(1 + i sinβ)φ

[1]
2 (b).

(5.7)

System of equations (5.5)-(5.7) can be expressed as follows(
Aλ +BλΨ(b, λ)

)
(c11, c12, c13)T

=(−f1,−f2, 0)−Aλ
(
φ1(a), φ

[1]
1 (a), φ

[2]
1 (a)

)T −Bλ(φ1(b), φ
[1]
1 (b), φ

[2]
1 (b)

)T
.

Since λ is not an eigenvalue of operator T, therefore
(
Aλ + BλΨ(b, λ)

)
6= 0,

thus c11, c12 and c13 are uniquely determined. Hence, the general solution of the
boundary value problem (5.1)-(5.3) is uniquely determined.

From the above discussion, we can see that (T − λ)−1 is defined on the whole
space H. By the self-adjointness of operator T and the closed image theorem, we
know that (T− λ)−1 is bounded. Hence λ ∈ ρ(T), so σ(T) = σp(T).

Lemma 5.2. The operator T has compact resolvents, ie., for each δ ∈ R/σp(A),
(T− δI)−1 is compact on H (c.f.[ [22], Theorem 6.3.3]).

By the above lemmas and the spectral theorem for compact operator, we obtain
the following theorem.

Theorem 5.3. The eigenfunctions of the problem (1.1)-(1.7), expanded to become
eigenfunctions of T, are complete in H, i.e., let {Φn = (φn(x),M1(φn),M2(φn));n ∈
N} be a maximum set of orthonormal eigenfunctions of T, where {φn(x);n ∈
N} are eigenfunctions of the problem (1.1)-(1.7). Then for all F ∈ H, F =∑∞
n=1〈F,Φn〉Φn.
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