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1. Introduction

As we all know, many authors have researched the Sturm-Liouville problems for
these wide applications in various fields such as finance, mathematical physics,
quantum mechanics, and acoustic scattering. Among these results, Sturm-Liouville
problems containing eigenparameter on the boundary condition have recently been
widely researched (see [2–8, 13–16, 18, 21, 22] and the reference cited therein) since
the foundation work of Walter [20]. However, most of these results researched
Sturm-Liouville problems with eigenparameter dependent linearly on the boundary
conditions.

In [5,6], Binding et al. researched the following Sturm-Liouville problem firstly
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using Prüfer transformation
− y′′ + q(x)y = λy, x ∈ [0, 1],

y(0) cosα = y′(0) sinα, α ∈ [0, π),

y′(1)

y(1)
= g(λ) = eλ+ f −

M∑
h=1

bh
λ− ch

,

here g(λ) is a rational function called Herglotz-Nevanlinna type. They considered
the oscillation property of eigenfunctions, the inverse problems, and the existence
of eigenvalues.

Meanwhile, operator pencil theory in Hilbert space is widely researched (see
[8–12, 19]). In [11], Ladyzhenskaia introduced the concept of weak solutions in
Hilbert space. This concept allows the authors to reduce the eigenvalue problem to
an operator pencil. Belinskiy and Dauer in [3] investigated the weak eigenfunctions
of a regular Sturm-Liouville problem with eigenparameter dependent linearly on
the boundary conditions. By reducing the considered Sturm-Liouville problem to
an operator pencil, they concluded that the spectrum of the considered problem
is discrete, and the system of weak eigenfunctions constructs a Riesz basis in the
Hilbert space H := H1 ⊕ C. Later, Olǧar et al. in [15–17] studied the weak
eigenfunctions of some discontinuous Sturm-Liouville problems, where the boundary
condition is also dependent linearly on the eigenparameter. Meanwhile, the similar
results to [3] were obtained.

Inspired and motivated by the above works, we consider the Sturm-Liouville
equation

l1y := −(p(x)y′)′ + q(x)y = µw(x)y, x ∈ (a, b), (1.1)

subject to the boundary conditions of the form

l2y :=
(py′)(a)

y(a)
= −f(µ), l3y :=

(py′)(b)

y(b)
= F (µ), (1.2)

where p(x) > 0, q(x) > 0, and w(x) > 0 are bounded and Lebesgue integrable
on the interval (a, b); µ ∈ C is an eigenparameter; f(µ) and F (µ) are rational
Herglotz-Nevanlinna type functions of the form

f(µ) = z0µ+ z −
n∑
i=1

αi
µ− zi

, F (µ) = Z0µ+ Z −
N∑
j=1

βj
µ− Zj

,

here z0, Z0 ≥ 0, z ∈ R, Z ∈ R, αi, βj > 0, α1 < α2 < · · · < αn, β1 < β2 <
· · · < βN , n, N ∈ Z+. If f(µ) = ∞, then left boundary condition is interprets as
a Dirichlet boundary condition y(a) = 0. Similarly, hypothesis y(b) = 0 holds if
F (λ) = ∞. It is worth mentioning that both boundary conditions of the Sturm-
Liouville problem (1.1)-(1.2) are dependent rationally on the eigenparameter µ.
This paper purports to consider the weak eigenfunctions of the Sturm-Liouville
problem (1.1)-(1.2). By defining a suitable Hilbert space and exact operator pencil
formulae, we prove that the system of weak eigenfunctions of the Sturm-Liouville
problem (1.1)-(1.2) constructs a Riesz basis in the Hilbert space.

The rest of this paper is laid out as follows: after this section, we not only recall
some notions, definitions, and lemmas but also introduce a new Hilbert space Ξ in
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Sect. 2. In Sect. 3, using suitable integral transformation, we reduce the Sturm-
Liouville problem (1.1)-(1.2) to an operator pencil by defining the weak (generalized)
solutions and introducing some compact operators in this new Hilbert space Ξ.
Finally, the main result is established and proved.

2. Preliminaries and lemmas

Firstly, we define some useful spaces. Let L2[a, b] be the Hilbert space, its inner
product is defined by

〈y, z〉0 :=

∫ b

a

y(x)z(x)dx

and H1[a, b] be the Sobolev space, its inner product is defined by

〈y, z〉1 :=

∫ b

a

(
y′(x)z′(x) + y(x)z(x)

)
dx.

Since p(x) > 0 and q(x) > 0 are bounded in [a, b], then, for y, z ∈ H1[a, b],

〈y, z〉2 :=

∫ b

a

(
p(x)y′(x)z′(x) + q(x)y(x)z(x)

)
dx

define a new inner product in H1[a, b], and the norms ‖ ·‖2 and ‖ ·‖1 are equivalent.
For Φ = (φ(x), φ1, . . . , φn, ϕ1, . . . , ϕN )T and Ψ = (ψ(x), ψ1, . . . , ψn, ξ1, . . . , ξN )T

∈ Ξ := H1[a, b]⊕ Cn+N , we define the inner product as follows:

〈Φ,Ψ〉Ξ := 〈φ(x), ψ(x)〉1 +

n∑
i=1

φiψi +

N∑
j=1

ϕjξj . (2.1)

It is easy to see that Ξ is a Hilbert space.

Definition 2.1. (c.f. [16]) For a given Hilbert space H, a family of elements
{Φm}∞m=1 in H is called a Riesz basis in H if the series

∑∞
m=0 amΦm with real

coefficients am converges in H if and only if
∑∞
m=0 a

2
m <∞.

Lemma 2.1. (c.f. [3]) An arbitrary invertible bounded operator A in a given Hilbert
space H transforms the orthonormal basis of H into a Riesz basis.

Lemma 2.2. (c.f. [4]) Suppose that y(x) ∈ H1[a, b], then

|y(a)|2 ≤ 2

(θ1 − a)
‖y‖2L2[a,b] + (θ1 − a)‖y′‖2L2[a,b], (2.2)

|y(b)|2 ≤ 2

(b− θ2)
‖y‖2L2[a,b] + (b− θ2)‖y′‖2L2[a,b], (2.3)

here (θ1 − a), (b− θ2) ∈ (0, b− a] are constants.

Proof. Since y(x) ∈ H1[a, b], we obtain

y(a) = y(x)−
∫ x

a

y′(t)dt, x ∈ [a, θ1], (2.4)



The basis property of weak eigenfunctions 427

using the Cauchy-Schwarz inequality, one has∣∣∣∣∫ x

a

y′(t)dt

∣∣∣∣2 ≤ (x− a)‖y′‖2L2[a,b].

This inequality implies that∥∥∥∥∫ x

a

y′(t)dt

∥∥∥∥2

L2[a,θ1]

=

∫ θ1

a

∣∣∣∣∫ x

a

y′(t)dt

∣∣∣∣2 dx ≤ ‖y′‖2L2[a,b]

∫ θ1

a

(x− a)dx,

i.e., ∥∥∥∥∫ x

a

y′(t)dt

∥∥∥∥2

L2[a,θ1]

≤ (θ1 − a)2

2
‖y′‖2L2[a,b].

Then, taking L2[a, θ1]-norm in both sides of (2.4) and using the inequality

(a+ b)2 ≤ 2(a2 + b2),

we have

(θ1 − a)|y(a)|2 ≤ 2‖y‖2L2[a,b] + (θ1 − a)2‖y′‖2L2[a,b],

i.e.,

|y(a)|2 ≤ 2

(θ1 − a)
‖y‖2L2[a,b] + (θ1 − a)‖y′‖2L2[a,b].

We can obtain (2.3) in a similar method, the proof is completed.
By using Lemma 2.2, the following result is given.

Corollary 2.1. For any y(x) ∈ H1[a, b], we have

|y(x)|2 ≤ B(x)‖y‖21 ≤ B1(x)‖y‖22, (2.5)

where the constants B,B1 are independent of the selection of function y(x).

3. Main results

For all η ∈ H1[a, b], multiplying the equation (1.1) by η and integrating by parts
over the interval [a, b], we get

− (py′)(b)η(b) + (py′)(a)η(a) +

∫ b

a

(py′)(x)η′(x)dx+

∫ b

a

q(x)y(x)η(x)dx

=µ

∫ b

a

w(x)y(x)η(x)dx.

(3.1)

Next, we use the following notations

yi := − αi
zi − µ

y(a), i = 1, 2, . . . , n,

hj := − βj
µ− Zj

y(b), j = 1, 2, . . . , N.
(3.2)
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For z0 > 0, Z0 > 0, the relation (3.2) implies that

y(a) +
zi
αi
yi = µ

yi
αi
, i = 1, 2, . . . , n,

− y(b) +
Zj
βj
hj = µ

hj
βj
, j = 1, 2, . . . , N.

(3.3)

With the new parameters yi and hj , the boundary conditions (1.2) imply that

(py′)(a) = −(z0µ+ z)y(a) +

n∑
i=1

yi,

(py′)(b) = (Z0µ+ Z)y(b) +

N∑
j=1

hj .

(3.4)

Plugging (3.4) into identity (3.1), then

− Zy(b)η(b)− zy(a)η(a) +

n∑
i=1

yiη(a)−
N∑
j=1

hjη(b)

+

∫ b

a

(py′)(x)η′(x)dx+

∫ b

a

q(x)y(x)η(x)dx

=µ

∫ b

a

w(x)y(x)η(x)dx+ µZ0y(b)η(b) + µz0y(a)η(a).

(3.5)

Now, we define weak solutions and weak eigenfunctions of the Sturm-Liouville prob-
lem (1.1)-(1.2).

Definition 3.1. The element Π = (y(x), y1, . . . , yn, h1, . . . , hN )T of the Hilbert
space Ξ := H1[a, b]⊕Cn+N satisfying (3.3), and (3.5) for all η ∈ H1[a, b] is called a
weak solution of the Sturm-Liouville problem (1.1)-(1.2). The first component, y(x)
of Π, is called a weak eigenfunction of the corresponding Sturm-Liouville problem
(1.1)-(1.2).

Theorem 3.1. The system of the weak eigenfunctions for the Sturm-Liouville prob-
lem (1.1)-(1.2) constructs a Riesz basis of Hilbert space Ξ := H1[a, b] ⊕ Cn+N .
Meanwhile, the eigenvalues {µm} of the considered problem (1.1)-(1.2) are real and
discrete with µm → +∞ as m→ +∞.

For η ∈ H1[a, b], we define some linear forms as follows:

σ0(y, η) := −Zy(b)η(b)− zy(a)η(a), (3.6)

σ1(y, η) :=

∫ b

a

w(x)y(x)η(x)dx, (3.7)

σ2(y, η) := Z0y(b)η(b) + z0y(a)η(a), (3.8)

τi(yi, η) := yiη(a), i = 1, n, (3.9)

δj(hj , η) := −hjη(b), j = 1, N, (3.10)
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where y ∈ H1[a, b], yi ∈ C, and hj ∈ C. Like the proof of [3], we obtain that all
these linear forms are linear functionals in H1[a, b]. Using the equivalence of ‖ · ‖1
and ‖ ·‖2, noticing the positivity of w(x), the classical Riesz representation theorem
implies the following theorem.

Theorem 3.2. Suppose σ0, σ1, σ2, τi, and δj is defined as (3.6)-(3.10). Then there
are bounded linear operators Y0, W , K: H1[a, b]→ H1[a, b], and Yi: C→ H1[a, b],
i = 1, n, Hj : C→ H1[a, b], j = 1, N , such that the following representations hold:

〈Y0y, η〉2 = σ0(y, η), (3.11)

〈Wy, η〉2 = σ1(y, η), (3.12)

〈Ky, η〉2 = σ2(y, η), (3.13)

〈Yiyi, η〉2 = τi(yi, η), (3.14)

〈Hjhj , η〉2 = δj(hj , η), (3.15)

where the functions y, η ∈ H1[a, b] are arbitrary.

Lemma 3.1. The operators Y0, W , and K are self-adjoint and compact. Moreover,
operators W and K are also positive in the Hilbert Space H1[a, b].

Proof. Firstly, assume that sequence {gk} converges weakly to an element g in
H1[a, b]. The boundedness of operators Y0, W and K imply the weak convergence
of {Y0gk} to Y0g, {Wgk} to Wg, and {Kgk} to Kg in H1[a, b], respectively. It
follows from the embedding theorems that the sequence {gk} converges strongly in
L2[a, b], and the sequences {gk(d)}, d = a or b converge in C.

Then by using Theorem 3.2, there is a constant C1 > 0 such that

‖Y0(gk − gl)‖22 =σ0

(
gk − gl, Y0(gk − gl)

)
≤C1

(
|(gk − gl)(b)| · |(Y0(gk − gl)(b)|

+ |(gk − gl)(a)| · |(Y0(gk − gl)(a)|
)
,

similarly, there are two constants C2 > 0, C3 > 0 such that

‖K(gk − gl)‖22 =σ2

(
gk − gl,K(gk − gl)

)
≤C2

(
|(gk − gl)(b)| · |(K(gk − gl)(b)|

+ |(gk − gl)(a)| · |K(gk − gl)(a)|
)
,

and

‖W (gk − gl)‖22 = σ1

(
gk − gl,W (gk − gl)

)
≤ C3‖(gk − gl)‖0 · ‖W (gk − gl)‖2.

Therefore, the compactness of operators Y0, W and K is got.
Next, we will prove that operators Y0, W , and K are self-adjoint. Suppose y,

η ∈ H1[a, b] are arbitrary functions. Then it follows from (3.6) and (3.11) that

〈y, Y0η〉2 = 〈Y0η, y〉2 = σ0(η, y) = σ0(y, η) = 〈Y0y, η〉2.
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Relations (3.7) and (3.12) imply that

〈y,Wη〉2 = 〈Wη, y〉2 = σ1(η, y) = σ1(y, η) = 〈Wy, η〉2.

Similarly, (3.8) and (3.13) imply that

〈y,Kη〉2 = 〈Kη, y〉2 = σ2(η, y) = σ2(y, η) = 〈Ky, η〉2.

So, the operators Y0, W and K are self-adjoint in the Hilbert space H1[a, b].
Finally, the positiveness of operators W and K is obvious since z0 > 0 and

Z0 > 0, function w(x) > 0 is bounded.

Lemma 3.2. The operators Yi, i = 1, n, and Hj, j = 1, N , are compact.

Proof. The proof of Lemma 3.2 is similar to the proof of Lemma 3.1.
Using Theorem 3.2, we observe that the relations (3.3) and (3.5) can be rewritten

as follows:

〈y, η〉2 + 〈Y0y, η〉2 +

n∑
i=1

〈Yiyi, η〉2 +

N∑
j=1

〈Hjhj , η〉2 = µ〈Wy, η〉2 + µ〈Ky, η〉2,

Y ∗i y +
zi
αi
yi = µ

yi
αi
, i = 1, n,

H∗j y +
Zj
βj
hj = µ

hj
βj
, i = 1, N.

Then, the arbitrariness of η ∈ H1[a, b] implies that

y + Y0y +

n∑
i=1

Yiyi +

N∑
j=1

Hjhj = µWy + µKy. (3.16)

The following result is given by introducing two (n+N + 1)-order square matrices
U and V , and an unknown (n+N + 1)-dimensional vector Π.

Lemma 3.3. Let I be an identity operator in Ξ. The weak eigenfunctions of Sturm-
Liouville problem (1.1)-(1.2) satisfy the following operator pencil equation in Ξ.

A(µ)Π = 0, A(µ) = U − µV, (3.17)

here Π is defined as above, and

U =



I + Y0 Y1 · · · Yn H1 · · · HN

Y ∗1
z1
α1
I 0 0 0 · · · 0

...
...

. . .
...

...
...

...

Y ∗n 0 0 zn
αn
I 0 · · · 0

H∗1 0 0 0 Z1

β1
I · · · 0

...
...

...
...

...
. . .

...

H∗N 0 0 0 0 · · · ZN

βN
I



,
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V =



W +K 0 0 0 0 · · · 0

0 1
α1
I 0 0 0 · · · 0

...
...

. . .
...

...
...

...

0 0 0 1
αn
I 0 · · · 0

0 0 0 0 1
β1
I · · · 0

...
...

...
...

...
. . .

...

0 0 0 0 0 · · · 1
βN
I



.

Theorem 3.3. For µ0 > 0 sufficiently large, the operator pencil A(−µ0) is positive
definite.

Proof. It follows from relations (3.11)-(3.15) and (3.17) that

〈A(−µ0)Π,Π〉Ξ

=‖y‖22 + 〈Y0y(x), y(x)〉2 +

n∑
i=1

〈Yiyi, y(x)〉2 +

N∑
j=1

〈Hjhj , y(x)〉2

+

n∑
i=1

(Y ∗i y(x))yi +

N∑
j=1

(H∗j y(x))hj +

n∑
i=1

zi
αi
|yi|2 +

N∑
j=1

Zj
βj
|hj |2

+ µ0

(
〈Wy(x), y(x)〉2 + 〈Ky(x), y(x)〉2 +

n∑
i=1

|yi|2

αi
+

N∑
j=1

|hj |2

βj

)

≥‖y‖22 + 〈Y0y(x), y(x)〉2 +

n∑
i=1

〈Yiyi, y(x)〉2 +

N∑
j=1

〈Hjhj , y(x)〉2

+

n∑
i=1

(Y ∗i y(x))yi +

N∑
j=1

(H∗j y(x))hj +

n∑
i=1

zi
αi
|yi|2 +

N∑
j=1

Zj
βj
|hj |2

+ µ0

(
〈Wy(x), y(x)〉2 +

n∑
i=1

|yi|2

αi
+

N∑
j=1

|hj |2

βj

)
,

(3.18)

where 〈Ky(x), y(x)〉2 = z0|y(a)|2 + Z0|y(b)|2 ≥ 0 since z0 > 0 and Z0 > 0.

We denote

G1(y) =

∫ b

a

p(x)|y′′(x)|2dx,

G2(y) =

∫ b

a

q(x)|y(x)|2dx,

G3(y) =

∫ b

a

w(x)|y(x)|2dx,

(3.19)

one has

‖y(x)‖22 = G1(y) +G2(y). (3.20)
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Meanwhile, since q(x) > 0 and w(x) > 0 are bounded, there are positive constants
Ci1, and Ci2, i = 1, 2 such that

|y(a)|2 ≤ C11δ1G1(y) +
C12

δ1
G2(y), (3.21)

|y(b)|2 ≤ C21δ2G1(y) +
C22

δ2
G2(y). (3.22)

By using (3.19) and inequalities (3.21)-(3.22), one has

〈Y0y(x), y(x)〉2 = −Z|y(b)|2 − z|y(a)|2

≥ −
(
|z|C11δ1 + |Z|C21δ2

)
G1(y)

−
(
|z|C12

δ1
+ |Z|C22

δ2

)
G2(y).

(3.23)

Using Theorem 3.2 and the Young inequality, we obtain

〈Yiyi, y(x)〉2 + (Y ∗i y(x))yi = 2Re(yiy(a))

≥ − 1

γi
|y(a)|2 − γi|yi|2

≥ − 1

γi

(
C11δ1G1(y) +

C12

δ1
G2(y)

)
− γi|yi|2,

(3.24)

here γi > 0, i = 1, n, are arbitrary constants. Similarly,

〈Hjhj , y(x)〉2 + (H∗j y(x))hj = −2Re(hjy(b))

≥ − 1

ρj
|y(b)|2 − ρj |hj |2

≥ − 1

ρj

(
C21δ2G1(y) +

C22

δ2
G2(y)

)
− ρj |hj |2,

(3.25)

here ρj > 0, j = 1, N , are arbitrary constants.
Since q(x) > 0 and w(x) > 0 are bounded, then

〈Wy(x), y(x)〉2 = σ1(y, y) ≥ QG2(y), (3.26)

where Q > 0 is a constant. Substituting (3.20), (3.23)-(3.26) into (3.18) yields that

〈A(−µ0)Π,Π〉Ξ ≥S1G1(y) + S2(µ0)G2(y)

+

n∑
i=1

Ei(µ0)|yi|2 +

N∑
j=1

Fj(µ0)|hj |2,
(3.27)

where

S1 := 1−
(
|z|+

n∑
i=1

1

γi

)
C11δ1 −

(
|Z|+

N∑
j=1

1

ρj

)
C21δ2, (3.28)

S2(µ0) := 1−
(
|z|+

n∑
i=1

1

γi

)C12

δ1
−
(
|Z|+

N∑
j=1

1

ρj

)C22

δ2
+ µ0Q, (3.29)
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Ei(µ0) := −γi +
zi
αi

+
µ0

αi
, i = 1, n, (3.30)

Fj(µ0) := −ρj +
Zj
βj

+
µ0

βj
, j = 1, N. (3.31)

Since αi > 0, βj > 0, we can choose the arbitrary small parameters δ1 > 0, δ2 > 0
and the parameter µ0 > 0 large enough such that S1, S2(µ0) > 0, Ei(µ0) > 0,
Fj(µ0) > 0. Meanwhile, we know that 〈Ky(x), y(x)〉2 ≥ 0. Then,

〈A(−µ0)Π,Π〉Ξ ≥ S(µ0)‖Π‖2Ξ, for ∀Π ∈ Ξ, (3.32)

where

S(µ0) := min
(
S1, S2(µ0), E1(µ0), . . . , En(µ0), F1(µ0), . . . , FN (µ0)

)
.

Thus, for µ0 > 0 sufficiently large, the operator pencil A(−µ0) is positive definite,
the proof is completed.

To reduce the operator pencil equation to a standard equation of Fredholm type,
we substitute a spectral parameter λ = µ0+µ in the operator pencil equation (3.17).
Then, the spectral problem has the following form:(

A(−λ0)− λV
)

Π = 0. (3.33)

We introduce a new unknown parameter Λ = A(−µ0)
1
2 Π, hereA(−µ0)

1
2 is a positive

square root of A(−µ0).

Lemma 3.4. The function Λ = A(−µ0)
1
2 Π satisfies the following operator equation

Λ− λTΛ = 0,

T = A(−µ0)−
1
2VA(−µ0)−

1
2 ,

(3.34)

where operator T is compact self-adjoint. Moreover, it is also positive. The spec-
trum {λm} of equation (3.34) is positive, discrete, and has a unique accumulation
point at +∞. In addition, the system of corresponding eigenfunctions constructs an
orthogonal basis of Ξ.

Proof. This result can be proved via the Fredholm theorems for the compact self-
adjoint operator. Note that the operator V is positive since the unknown parameters
αi and βj are positive.

Then the Theorem 3.1 can be obtained directly from Lemma 2.1.

Remark 3.1. For n = 0 and N > 0; n > 0 and N = 0; and n = N = 0, using a
similar method, we obtain that the system of the weak eigenfunctions of the Sturm-
Liouville problem (1.1)-(1.2) constructs Riesz basis in H1[a, b]⊕CN , H1[a, b]⊕Cn,
H1[a, b], respectively.

Remark 3.2. When z0=0 and Z0 > 0, we define the linear function σ2(y, η) :=
Z0y(b)η(b). Similarly, when Z0=0 and z0 > 0, we define the linear function
σ2(y, η) := z0y(a)η(a). When z0 = 0 and Z0 = 0, we don’t introduce the linear
function σ2(y, η), i.e., (3.8). Then, a similar discussion can obtain results similar to
Theorem 3.1.

Remark 3.3. It is an interesting topic of spectral theory for the discontinuous
Sturm-Liouville problem (1.1)-(1.2) with certain interface conditions (see [1,14–16,
18] for details), we will study the weak eigenfunctions for this kind of operator later.
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