
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com

Volume 14, Number 1, February 2024, 436–457 DOI:10.11948/20230266

RESEARCH ON SCHEDULING OF TWO
TYPES OF TASKS IN MULTI-CLOUD

ENVIRONMENT BASED ON MULTI-TASK
OPTIMIZATION ALGORITHM∗

Cuiyan Yi1, Tianhao Zhao1, Xingjuan Cai1,2,† and Jinjun Chen3

Abstract The multi-cloud environment (MCE) tasks can be classified as
CPU-intensive or I/O-intensive. Using a single model to handle two tasks
often results in system performance issues due to mismatches between task re-
quirements and resource demands, caused by differing data characteristics. In
this paper, a multi-task multi-objective optimization (MTMO) model is con-
structed. A multi-objective evolutionary algorithm with quadratic crossover
is used to simultaneously schedule two types of tasks. This improves schedul-
ing efficiency. First, according to the different data characteristics of tasks
in MCE, tasks are separated into CPU-intensive tasks with large amounts of
computation and high demand for CPU resources and I/O-intensive tasks that
require frequent memory access. Different multi-objective optimization mod-
els are constructed according to the characteristics of per-task. Secondly, each
multi-objective optimization model is constructed as a sub-task in a multi-task
environment to build a MTMO model. Then, a multi-objective multi-factor
evolutionary algorithm based on quadratic crossover, I-MOMFEA-II, is pro-
posed to schedule the two types of tasks simultaneously. Finally, the proposed
algorithm in this paper improved cost, time, and energy consumption for CPU-
intensive tasks by 7.6%, 20.1%, and 16.1% respectively, for I/O-intensive tasks,
it improved cost, time, and VM throughput by 10%, 17.7%, and 36.5% respec-
tively. The experimental results from simulations confirm the effectiveness of
I-MOMFEA-II in elevating task scheduling productivity.

Keywords Multi-tasking evolutionary algorithm, multi-objective optimiza-
tion, task scheduling, multi-cloud.

MSC(2010) 68M20, 68W99, 93A30.

†The corresponding author.
1Shanxi Key Laboratory of Big Data Analysis and Parallel Computing,
Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024,
China

2School of State Key Laboratory of Novel Software Technology, Nanjing Uni-
versity, Nanjing, China

3Department of Computing Technologies, Swinburne University of Technology,
Hawthorn, VIC 3122, Australia
∗The authors were supported by the National Natural Science Foundation
of China (No.61806138) and China University Industry-University-Research
Collaborative Innovation Fund (2021FNA04014).
Email: 17862078736@163.com(C. Yi), zhaotianhao1015@163.com(T. Zhao),
xingjuancai@163.com(X. Cai), jinjun.chen@gmail.com(J. Chen)

http://www.jaac-online.com
http://dx.doi.org/10.11948/20230266

Research on scheduling of two types of tasks in MCE based on MTMO 437

1. Introduction

Cloud computing allows computing power and applications to be accessed as ser-
vices through the Internet as needed. It has received considerable limelight from
businesses and academics. This is courtesy of the budget computing capabilities
and versatility of virtual machine technologies [2]. As Internet of Things (IoT)
technology has grown and advanced swiftly, the massive growth in data volume has
led to greater demand for computing resources [5]. However, the constraints in-
herent in traditional single-cloud environments make them insufficient for meeting
user needs. Therefore, MCEs have gained significant attention in both industry and
academia due to their numerous benefits [29]. They offer diverse virtual resources,
improve data security and quality of service, and avoid single points of failure and
vendor lock-in. This gives users more choices and better satisfies their demand for
quality of service(QoS) [1]. Optimizing task scheduling on MCE is a significant
research area. The goal is to map tasks and jobs to appropriate resources while
meeting user requirements [19]. These requirements include cost, deadline, quality
of service, and system throughput [32].

Scheduling issues are common. A good scheduling strategy impacts the perfor-
mance of cloud resources [30]. It also affects cost issues for users and cloud providers
who provide the infrastructure [25]. If a suitable and effective scheduling scheme is
not available, not only will it lengthen the time for task execution and cause subop-
timal utilization of cloud resources, but it will also lead to reduced availability and
scalability of the system [9, 18]. To improve the scheduling performance, scholars
have thoroughly investigated multi-cloud task scheduling from various angles [35].
In the past few years, numerous task scheduling schemes have been proposed in
the literature that are based on MCE and efficient scheduling algorithms. For
instance, the improved pigeon-inspired optimization algorithm and the enhanced
multi-objective particle swarm optimization algorithm have been widely used in
multi-cloud computing to schedule constrained cloud tasks in MCE [8]. These al-
gorithms aim to balance multiple optimization objectives in cloud task scheduling
in MCE [16].

However, previous studies have not considered the characteristics and demands
of CPU-intensive and I/O-intensive tasks, and only one model is built to process
the tasks. Tasks with different demands can be combined to optimize scheduling
towards a common goal. However, this can lead to a mismatch between the task
type and the required resource type. Existing scheduling methods are not capable
of processing multiple tasks concurrently which leads to longer task execution times,
especially when there is a large volume of tasks.

To solve these problems, a multitasking optimization algorithm is used in this
paper. While traditional optimization algorithms usually treat each task as an in-
dependent problem to be solved, multi-task optimization algorithms enable collab-
orative optimization of multiple concurrent tasks [7,17]. By facilitating interactions
and knowledge sharing between the tasks, overall performance can be enhanced.
Multi-task optimization algorithms have a wide range of applications. They have
the potential to improve system performance. This is achieved by enhancing compu-
tational efficiency and accelerating the learning process. Consequently, this paper
opts for an MTMO algorithm to optimize the scheduling of two task types in a
multi-cloud environment. Through multitask evolutionary optimization, these two
tasks can learn from each other’s experience, learn useful knowledge, and adjust

438 C. Yi, T. Zhao, X. Cai & J. Chen

their evolutionary process as a way to improve scheduling performance.
The main contributions of this paper are as follows:
1. Aimed at addressing the issue of multi-task scheduling optimization in multi-

cloud environments, this paper constructs a multi-task multi-objective model. Ac-
cording to the characteristics of CPU-intensive and I/O-intensive tasks, a multi-
objective optimization model is constructed for each of the two different types of
tasks by considering multiple optimization objectives, and the two multi-objective
optimization models are used as subtasks to construct a scheduling model of multi-
task multi-objective on MCE;

2. To augment the competency of the multi-objective optimization strategy,
a quadratic crossover-based multi-objective multi-factor evolutionary algorithm I-
MOMFEA-II is introduced in this paper. The algorithm can retain the superior
gene bits in the parent in each crossover, thus improving the convergence and per-
formance of the algorithm. The I-MOMFEA-II algorithm shows better performance
on the CEC17-MTMO test set by conducting comparative experiments with other
algorithms;

3. The simulation experiments conducted using the I-MOMFEA-II algorithm
to optimize the multi-task multi-objective scheduling model proposed in this paper
demonstrate its effectiveness in a multi-cloud environment. The results indicate that
I-MOMFEA-II can significantly enhance the scheduling efficiency of concurrently
managing the two types of tasks in MCE.

The remainder of this paper is organized as follows: Section 2 reviews relevant
literature and existing methodologies; Section 3 delineates the scheduling models
for two types of tasks within a multi-cloud environment and provides a detailed de-
scription of the quadratic crossover-based multi-objective multi-factor evolutionary
algorithm I-MOMFEA-II; Next, Section 4 validates the efficacy of I-MOMFEA-II
through experimental analyses and benchmarking; Finally, Section 5 concludes this
paper and discussing potential avenues for future research.

2. Related work

This section begins by reviewing pertinent research on task scheduling in multi-
cloud environments. We then delineate the evolutionary multitasking algorithm
utilized herein, along with its real-world applications.

2.1. Task scheduling in multi-cloud environments

In recent years, task scheduling for multi-cloud environments has garnered sig-
nificant attention from scholars. These researchers have explored task scheduling
problems in multi-cloud environments from various perspectives. For instance, to
optimize for security and reliability, Zhu et al. [36] to optimize for security and
reliability. This approach takes into account task priority sequences and aims to
meet related needs. Additionally, a multi-round allocation strategy is employed
to enhance scheduling performance and minimize the time objective. Experimen-
tal results demonstrate the algorithm’s effectiveness in reducing completion time
and cost savings. Kang et al. [15] introduced a segmented multi-round schedul-
ing method to address the goals of achieving high utilization of computing nodes
and load balancing in multi-cloud environments, considering both static and dy-
namic [28] aspects. The method was validated to be effective through simulated

Research on scheduling of two types of tasks in MCE based on MTMO 439

evaluations. Hubert Shanthan et al. [14] partitioned the multi-cloud scheduling
process into two divisions: the scheduling portion and the rescheduling portion.
The scheduling stage utilizes a cyclic scheduling algorithm, while the two-stage
scheduling achieves optimization of execution costs. SAMBIT et al. [20] proposed
an energy-aware multi-cloud network task scheduling algorithm. In the first stage
of execution, it selects virtual machines based on the expected completion time
(ETC) matrix using deadlines. In the second stage, through the energy consump-
tion (EC) matrix, it selects a VM that has enough resources to execute the task
and uses fewer resources when the task is executed among all available VMs, this
optimizes the schedule to minimize total energy consumption while reducing system
overhead. Roy et al. [24] concluded that large-scale tasks are better handled using
multi-cloud environments. They proposed a scheduling algorithm that combines
task priorities to minimize maximum completion time, task execution cost, energy
consumption, and delay as optimization objectives. The algorithm demonstrates
satisfactory capabilities based on simulation experiments. Mazen Farid et al. [10]
proposed a weighted adaptive inertia algorithm for optimizing multiple objectives
during scheduling in a multi-cloud environment. They use the minimum weight
algorithm to derive the Pareto frontier. They generate alternative weights using
the weighted adaptive inertia algorithm to determine the inertia weights, achieving
the effect of selecting the best trade-off arrangement among multiple conflicting
objectives. Cai et al. [4] constructed a multi-objective distributed scheduling model
based on the IoT, multi-cloud, and task scheduling. Accordingly, they developed
a sine function-based multi-objective algorithm to implement the model. Experi-
ments indicate the algorithm can schedule tasks with good efficiency. To enhance
multi-cloud scheduling efficiency, Hao et al. [13] developed a model to process par-
allel tasks in multi-cloud environments. As they predicted more parallel tasks with
increased virtual machines, they proposed a multi-objective algorithm optimizing
job wait times across queues. Experimental results have validated the efficacy of
this method.

However, in the above research, some researchers only consider the optimization
objectives from the perspective of users or service providers, without taking into
account the interests of both parties. In addition, these studies have low parallelism
in processing tasks and cannot handle multiple tasks simultaneously. Furthermore,
most of the above research ignores the differences in task data characteristics and
resource demand differences in a multi-cloud environment. This means that re-
gardless of the differences in data characteristics between tasks or the differences
in resource requirements, a unified model is established to handle tasks. However,
when the resource requirements between tasks differ greatly, system performance
will be affected.

2.2. Multi-tasking evolutionary algorithm

In 2016, Gupta et al. [11] originally conceived the notion of multi-task evolution.
Its essential goal is to concurrently solve multiple optimization challenges by ex-
ploiting their implicit parallelism, thereby reducing execution times and improving
performance across heterogeneous environments. The unified search space contain-
ing multiple task design spaces is used to achieve implicit parallel processing. On
this basis, Gupta et al. [11] pioneered the development of the Multi-Factor Evolu-
tionary Algorithm (MFEA). Subsequently, many improved and derived algorithms

440 C. Yi, T. Zhao, X. Cai & J. Chen

based on the MFEA algorithm have been proposed and applied in various research
fields. As an example, in the constrained vehicle routing problem with combination
optimization, Zhou et al. [34] developed a PMFEA algorithm integrating a unified
permutation-based representation and separation-driven decoding. By improving
the information sharing between tasks and the decoding operation, this algorithm
improves the performance of multi-task evolutionary algorithms in solving vehicle
routing problems. ThiThanh et al. [27] proposed a multi-task evolutionary algo-
rithm to solve the shortest path tree clustering problem and introduced a new
decoding scheme. This scheme can decode the solutions in the unified space to the
corresponding tasks to obtain better solutions. For classification problems, Tang
et al. [26] proposed MTM-ELM, a multi-task evolutionary algorithm. It trains
multi-pole learning models with different numbers of hidden neurons to improve
classification accuracy. Liang et al. [22] developed an algorithm called MFEA-VMP
to solve the virtual machine placement problem in cloud computing environments.
They introduced greedy placement operators as well as remigration and merger
algorithms to solve the virtual machine placement problem, thereby improving re-
source utilization efficiency in cloud computing environments. In power dispatch,
Liu et al. [23] introduced a multi-objective multi-factor evolutionary algorithm and
combined it with the characteristics of the power system to propose a multi-task
power dispatch method. This method can handle multiple objectives of multiple
tasks in parallel to improve dispatch efficiency. In addition, Zhao et al. [33] modeled
the multi-objective cloud task scheduling problem of the cloud environment and in-
troduced multi-factor optimization algorithms to handle large-scale multi-objective
cloud task scheduling problems.

These research works show that multi-task evolutionary algorithms have shown
wide application and potential in optimization problems in various fields. By uti-
lizing the inter-task information sharing and knowledge transfer mechanisms in
multi-task optimization algorithms, the two types of tasks within a multi-cloud
environment can learn useful knowledge from each other, thereby accelerating the
scheduling efficiency of CPU-intensive tasks and I/O-intensive tasks, and improving
the system performance across the multi-cloud environment. In summary, multi-
task optimization algorithms can provide better solutions and optimization results
for solving task scheduling problems in the MCE.

3. The proposed method

In the MCE, users can execute submitted tasks through multiple cloud providers.
MCE mitigates vendor lock-in and strengthens data security while expanding user
choices and reducing costs. However, due to the different data characteristics of
tasks within the multi-cloud environment, the requirements of tasks will differ.
Ignoring these differences will cause the resources allocated to tasks to mismatch the
resources they need when there are large differences in data characteristics between
tasks. This will not only cause unnecessary waste of resources but also reduce system
performance. This section proposes a multi-task multi-objective scheduling model in
MCE. According to the different data characteristics, the multi-cloud environment
divides the tasks into I/O-intensive tasks with higher demands for I/O resources
and CPU-intensive tasks with higher demands for CPU through Logistic regression.
According to the requirements of these two types of tasks, two multi-objective
optimization models are constructed. Then, these two multi-objective optimization

Research on scheduling of two types of tasks in MCE based on MTMO 441

models are used as two sub-tasks in the multi-task optimization environment, and
a one-time scheduling is performed using the multi-task optimization algorithm.

3.1. Classification method

In this paper, the task is classified using the logistic regression algorithm, which is
a common classification algorithm used to solve binary classification problems. It
estimates the relationship between input variables and output variables by building
a logistic regression model. The essential idea of logistic regression is to map a linear
combination of input features by a nonlinear function called a “sigmoid function”
to a probability value that denotes the chance of a sample getting designated to a
specific category. Samples with probabilities greater than or equal to a set threshold
are usually classified as positive classes and those with probabilities less than the
threshold are classified as negative classes.

The sigmoid function for logistic regression is expressed as follows:

σ(z) = (1 + e−z)−1. (3.1)

It is known from previous studies that the two factors affecting task classi-
fications are the task data size and computational complexity. Thus, the linear
combination z of input features in the sigmoid function can be expressed as:

z = w0DataSize+ w1Complexity. (3.2)

The probability of a classification result of 1 (I/O-intensive task) and 0 (CPU-
intensive task) can be respectively:

P (y = 1|x;w) = hw(x),

P (y = 0|x;w) = 1− hw(x).
(3.3)

Where hw(x) is the value of a linear regression obtained by regression calculation
after inputting the data size and computational complexity of the task, and then
the logistic regression result is obtained by mapping the activation function, and
hw(x) represents the value of this result.

In logistic regression, optimization is driven by a log-likelihood loss function and
is represented by the following log-likelihood function: where M denotes the total
of tasks to be classified and y(i) denotes the current classification result of logistic
regression:

f(w) =

M∑
i=1

[y(i) log(hw(x(i))) + (1− y(i)) log(1− hw(x(i)))]. (3.4)

To adjust the regression coefficients w0, and w1 of the classification function, we
leverage gradient descent as an optimization technique to diminish the loss function.
The gradient is denoted as ∇. The gradient of the function is then expressed as
follows:

∇f(w) =

 ∂f(w)
∂w0

∂f(w)
∂w1

 . (3.5)

442 C. Yi, T. Zhao, X. Cai & J. Chen

The step size of the move is α, and the iterative formula for gradient descent is
shown below:

w := w − α∇f(w)(w = [w0, w1]T). (3.6)

After determining the regression coefficients, a threshold value needs to be set
to determine the task type corresponding to the Sigmoid function value, which is
settled on 0.5 within this paper. Tasks are classified as I/O-intensive when the value
meets or exceeds the threshold, otherwise they are categorized as CPU-intensive.

3.2. Multi-objective multi-task scheduling model

In MCE, time and cost are the two most important metrics. Figure 1 illustrates the
general flow of a user submitting a task in a MCE. In the MCE, each cloud is in-
dependent and does not share resources. Users submit tasks to the cloud database.
Then, the data center produces the optimal scheduling scheme based on the op-
timization objectives and limitations specified by users, accessible resources from
cloud providers, and the chosen scheduling algorithm. These scheduling schemes
consist of a series of VM numbers, indicating the execution order and location of
tasks on different cloud resources.

Since there are differences in the data characteristics of tasks submitted by
users to the cloud, there are also differences in the resource requirements. For the
characteristics of I/O-intensive tasks and CPU-intensive tasks, this paper considers
the two objectives of task completion time and completion cost and considers the
objectives corresponding to their data characteristics separately for different types
of tasks. When handling I/O-intensive tasks, our objective is to optimize virtual
machine throughput, thereby maximizing the number of tasks fulfilled over a given
timeframe on each VM. For CPU-intensive tasks, we consider one of the CPU
energy-cost targets to optimize the high energy consumption problem due to the
large amount of computation.

Cloud2

Cloud1

Cloud3

HostHost

HostHost

HostHost

DataCenter

Database

Submited
tasks

Task
Transmission

VM

VM

VM Users

Task
Transmission

Task
Transmission

Figure 1. Task scheduling process in a multi-cloud environment

1) Task Execution Time Model
Task execution time includes task computation time and task transfer time.

Task computation time is affected by CPU computation power Ck and task size
TCi, whereas the time required for task transfer correlates with the data volume
TLi necessary for completing the task and the transfer bandwidth Lk available.

Research on scheduling of two types of tasks in MCE based on MTMO 443

Therefore, the expected completion time of task Ti when allocated on virtual ma-
chine VMk can be formulated as follows:

CTime(Ti, VMk) =
TCi

Ck
+
TLi

Lk
, (3.7)

where TCi/Ck denotes the computation time required for task Ti to execute on
the kth virtual machine on the cloud, and TLi/Lk denotes the transmission time
required for task Ti to execute on the kth task on the cloud, subject to the deadline,
which should be less than the task’s deadline TDi, that is CTime ≤ TDi;

Then the total task execution time is shown in Eq. (3.7), the variable i represents
the task number, while N denotes the total number of tasks:

TotalT ime =

N∑
i=1

CTime(Ti, V Mk). (3.8)

2) Task Completion Cost Model
Task completion cost includes computation cost, transmission cost, and storage

cost. The computational cost of task Ti on VMk is related to the task size TCi and
the unit cost Pk of task computation on VMk, and the transfer cost correlates to the
data size TLi requiring transmission for task completion, and the per-unit transfer
cost Qk on virtual machine VMk. Storage costs are incurred as the data needs to
be stored after the transfer of the data required for the task is completed. Storage
costs are related to the size of the data to be transferred for the task execution TLi
and the unit cost of data storage on the VMk of the virtual machine Sk. Thus, the
execution cost of the task Ti on the VMk is represented as follows:

TaskCost(Ti,VMk) = TCi × Pk + TLi ×Qk + TLi × Sk, (3.9)

where TCi×Pk denotes the computational cost required for task Ti to be executed
on the kth virtual machine in the cloud; TLi×Qk denotes the transfer cost required
for task Ti to be executed on the kth virtual machine in the cloud; TLi×Sk denotes
the storage cost required for task Ti to be executed on the kth virtual machine in
the cloud, Subject to the cost budget, the task execution cost should be less than
the budgeted cost TMi, that is TaskCost ≤ TMi.

Then the total task completion cost can be expressed as:

Cost =

N∑
i=1

TaskCost(Ti, V Mk). (3.10)

3) VM Throughput Model
This target is specific to I/O-intensive tasks. When performing I/O-intensive

tasks, most of the time is spent waiting for I/O operations to complete, so the CPU
will be in a longer waiting state, resulting in less energy consumption generation.
In this case, the optimization of CPU power consumption can be ignored for the
time being. However, there are memory contention problems due to more tasks
performing frequent I/O operations, which can lead to longer task execution times,
making a virtual machine serve one task for a long time. Therefore, this paper takes
the number of tasks completed on VMk per unit of time as the throughput of VMk
and reduces the possibility of the above problem by optimizing this objective.

444 C. Yi, T. Zhao, X. Cai & J. Chen

The throughput of each VMk is expressed as the ratio of the number of Countk
tasks executed on VMk to the total time required for the execution of Countk tasks,
expressed as follows:

VMThroughput(VMk) =
Countk∑countk

1 CTime(Ti, V Mk)
. (3.11)

Then the average throughput of the virtual machine can be expressed as:

Throughput =
1

K

K∑
i=1

VMThroughput(VMK). (3.12)

4) CPU Energy Consumption Model
This target is specific to CPU-intensive tasks. CPU-intensive tasks require high

CPU performance and high computation volume, resulting in long CPU compu-
tation time. During task execution, the CPU is almost always under high load,
so energy consumption is relatively high. For CPU resources, most of the time is
spent on performing task calculations, while CPU idle time is negligible. In this
case, CPU-intensive tasks are more concerned with optimizing energy consumption
compared to the throughput of virtual machines. Therefore, this paper specifically
considers the energy consumption target for CPU-intensive tasks.

The energy consumption generated by the task Ti when it is executed on the
resource VMk is related to the task execution time and the energy consumption Vk
generated per unit time. The task execution time is represented by the ratio of the
task size TCi to the CPU computing power Ck, then the energy consumption of
the task Ti executing on the resource VMk is expressed as follows:

EC(Ti, V MK) =
TCi

Ck
× Vk. (3.13)

Then the total energy consumption of the virtual machine can be expressed as:

EnergyConsumption=

K∑
i=1

EC(Ti, V MK). (3.14)

In summary, the scheduling model for multi-objective multitasking is constructed
as follows:

I/O − Intensive− task −model

TotalT ime =
N∑
i=1

CTime(Ti, V Mk),

Cost =
N∑
i=1

TaskCost(Ti, V Mk),

Throughput = 1
K

K∑
i=1

VMThroughput(VMk),

CPU − Intensive− task −model

TotalT ime =
N∑
i=1

CTime(Ti, V Mk),

Cost =
N∑
i=1

TaskCost(Ti, V Mk),

EnergyConsumption =
K∑
i=1

EC(Ti, V MK).

(3.15)

Research on scheduling of two types of tasks in MCE based on MTMO 445

3.3. Multi-objective multi-factor evolutionary algorithm
based on the quadratic crossover (I-MOMFEA-II)

The I-MOMFEA-II algorithm builds upon the MOMFEA-II algorithm to address
MTMO problems. In the I-MO-MFEA-II algorithm, each multi-objective prob-
lem is regarded as a sub-task, and multiple sub-tasks are solved uniformly by one
population. Using the vertical culture and mating selection transfer mechanism
of MO-MFEA-II, tasks can communicate knowledge with each other and share in-
formation in tasks to achieve better optimization results. To make the algorithm
converge faster and better, this paper introduces quadratic crossover. That is,
after completing the simulated binary crossover, cross over again at two points be-
tween offspring and parents to ensure that the offspring retains more excellent gene
locations from the parents. The pseudocode for the I-MOMFEA-II algorithm is
presented in Algorithm 1.

3.3.1. Encoding scheme

The issue of task scheduling within MCE adopts real number encoding, the specific
encoding form is depicted in Figure 2, where individual encodings represent the
mapping between tasks and virtual machines. In Figure 2, tasks t1, t4, and t6
are executed on VM2, tasks t2 and t3 are executed on VM1, tasks t5 and tN are
executed on VM3, and task t7 is executed on VMK.

Since this paper classifies tasks before task scheduling, the quantity of the two
task varieties may diverge, meaning the dimensions of the decision variables of the
two types of tasks may be different. As shown in Figure 3, assuming that the
dimension of the first type of task T1 is Dt, and the dimension of the second type
of task T2 is Dk, if Dt, then the dimension of the decision variable when multi-task
optimization processes these two types of tasks simultaneously are Dk, take the first
t dimension when decoding task T1.

1 2 3 K……
VM

number

t1 t2 t3 t4 t5 t6 t7 tNTask ……

Figure 2. Individual encoding of the cloud task scheduling model in the multi-cloud environment

3.3.2. Selective mating

In the I-MOMFEA-II algorithm, mating between parents is not completely ran-
dom. Individuals preferentially mate with others sharing the same skill factors,
while inter-cultural mating probabilities are dictated by the random mating prob-
ability matrix (RMP). In multi-task optimization, assuming K optimization tasks
are given, RMP is a K×K dimensional matrix. Matrix elements represent inter-
task knowledge transfer probabilities. This probability can be determined based
on factors such as the similarity between sub-tasks, the importance of tasks, and
the fitness of solutions. By adjusting the elements of the RMP matrix, knowledge

446 C. Yi, T. Zhao, X. Cai & J. Chen

Algorithm1: I-MOMFEA-II algorithm

1. Initialize P(0)

2. for each pi ∈ P(0)

3. τ i = mod (i, K) + 1 //τ i is skill factor, K is the total number of tasks

4. Evaluate pi on task τ i

5. Φi is computed through ranking based on NFi and CDi. // Φi is scalar fitness

6. t = 1

7. While stopping conditions not met

8. Pm(t)= ∅
9. Select n·K parents from P(t) using Tournament Selection

10. Learn RMP(t)

11. While offspring≤ N+1 per task:

12. Randomly select qi, qj from P(t)

13. if τ i == τ j

14. Intra-task crossover and mutate (qi, qj) to get [qa, qb] with skill τ i

15. else if rand ≤ rmpτ i,τ j

16. Inter-task crossover and mutate (qi, qj) to get [qa, qb] with random τ i or τ j

17. else

18. Select qi with τ i and qj with τ j

19. Mutate and Intra-task crossover each to get [qa, qb] with respective skills

20. Evaluate [qa, qb] on assigned tasks only

21. Pm(t) = Pm(t)∪ [qa, qb]

22. C(t) = Pm(t)∪ P(t)

23. Update Φi for each pi∈ C(t)

24. Select top N·K fittest from C(t) as P(t+1)

25. t = t + 1

D1 D2 D3 D4 D5 Dt-1 Dt Dk…… ……D1 D2 D3 D4 D5 Dt-1 Dt Dk…… ……

Task T1

Task T2

Figure 3. Multi-task individual encoding

transfer intensity between sub-tasks is controllable. Higher probability values indi-
cate that knowledge is more easily transmitted between two sub-tasks, while lower
probability values indicate less possibility of knowledge transfer. The MOMFEA-II
algorithm realizes selective mating between individuals by introducing the RMP

Research on scheduling of two types of tasks in MCE based on MTMO 447

matrix. Its specific representation is shown in formula (3.15):

RMP

rmp1,1 rmp1,2 . .

rmp2,1 rmp2,2 . .

. . . .

. . . .

 . (3.16)

Where rmpi,j represents the probability that sub-task i transfers knowledge to
sub-task j, and rmpk,k=1.To make the algorithm converge quickly, this paper in-
troduces a crossover strategy based on a quadratic crossover based on selective
mating in the original MOMFEA-II algorithm. In the multi-task optimization al-
gorithm, the population is implicitly segmented into multiple sub-populations per
skill factor, each sub-population optimizes a subtask, and multiple similar tasks are
optimized simultaneously. During crossover, there are intra-population crossover
and inter-population crossover. Intra-population crossover refers to two-parent in-
dividuals from the same sub-population, and the offspring also belong to the same
sub-population; inter-population crossover refers to two-parent individuals from dif-
ferent sub-populations and the offspring will be randomly assigned to any one of
the sub-populations to which the two parents belong.

First, a simulated binary crossover operator is used for the first crossover. In
simulated binary crossover, the size of the crossover distribution index parameter
affects the result of the crossover operation. When the crossover distribution index
parameter is large, the similarity between the offspring and the parents is higher. To
reduce the negative effect of negative transfer, this paper adopts different crossover
distribution index parameters in intra-population crossover and inter-population
crossover. The crossover distribution index parameter of inter-population crossover
is smaller so that it can reduce the negative impact of one type of task on the
subpopulation to which the current offspring belongs when the similarity between
the two task types is scant.

Secondly, the second crossover is performed using a two-point crossover. The
offspring generated by the first crossover again with one of their two parent indi-
viduals. In the intra-population crossover, each offspring randomly selects a parent
individual and randomly selects one to two gene bits from that parent individual
to exchange with the gene bits at the corresponding positions of the offspring. In
inter-population crossover, each offspring only exchanges one gene bit with a par-
ent individual. This crossover strategy enhances population diversity and boosts
the search capability of the population. When optimizing multiple similar tasks
simultaneously, the quadratic crossover operator, shown in Algorithm 2, effectively
reduces negative transfer impact.

4. Simulation experiment

To assess I-MOMFEA-II’s performance across different task scheduling models in
MCE, we first tested it against other algorithms using two types of models in an
MCE. Then, the performance of I-MOMFEA-II is evaluated through comparative
experiments with other algorithms on the CEC17-MTMO [31] benchmark suite,
demonstrating its capabilities in multi-task multi-objective optimization.

448 C. Yi, T. Zhao, X. Cai & J. Chen

Algorithm2: Crossover Operator Based on Quadratic Crossover

Input:

parent individuals pa and pb;

Inter-population crossover distribution index parameter:mu-between;

Intra-population crossover distribution index parameter:mu-in;

Output:

Offspring individuals ca and cb;

1. if τa==τb // Intra-task crossover

2. (ca1,cb1)=SBX(pa,pb,mu-in);

3. Generate two random numbers:s1,e1,and e1 ≤ s1+2;

4. if rand() ≥ 0.5

5. ca=Two-Point-Cross(ca1,pa,s1,e1);

6. else

7. ca=Two-Point-Cross(ca1,pb,s1,e1);

8. The cb undergoes the same steps as the ca to complete the crossover.

9. if τa 6=τb // Inter-task crossover

10. (ca1,cb1)=SBX(pa,pb,mu-between);

11. Generate two random numbers:s2,e2 and e2 ≤ s2+1;

12. if rand() ≥ 0.5

13. ca=Two-Point-Cross(ca1,pa,s2,e2);

14. else

15. ca=Two-Point-Cross(ca1,pb,s2,e2);

16. The cb undergoes the same steps as the ca to complete the crossover.

4.1. I-MOMFEA-II experiments to solve two types of task
scheduling models in multi-cloud environments

In this paper, the I-MOMFEA-II algorithm is compared with the MO-MFEA-II [3]
algorithm, the MO-MFEA algorithm [12], the EMT-PD algorithm [21], and the
AMT-NSGA-II [6] algorithm. To reflect multi-cloud characteristics, three different
clouds were set up in the simulations, differing primarily in execution speed and
cost. Cloud 1 has lower expenses but a slower speed, ideal for small tasks. Cloud 2
has medium speed and cost. Cloud 3 is faster but costlier, suitable for larger tasks.
The specific cloud parameters are shown in Table 1. We initialized 300 tasks, each
with 500 million instructions (MI), a 200KB file size, and a 100KB output file. The
length, file size and output size of each task were then gradually increased by 500MI,
10KB, and 10KB respectively.

In order to test the effectiveness of the proposed model in this paper, the de-
veloped algorithm and model were utilized to schedule tasks in MCE using 100,
300 and 600 cloud tasks scenarios. As we obtained a range of solutions for each of
the two types of tasks, we compared the objective values of the two types of tasks
across different scenarios, and evaluated the optimal, maximum and average values
to determine the performance of the objective values. The optimal and average val-

Research on scheduling of two types of tasks in MCE based on MTMO 449

ues give a good indication of the algorithm’s convergence on the multi-cloud model,
whereas the maximum value reflects the diversity of the algorithm.

Table 1. Multi-cloud environment simulation parameters settings.

Cloud provider Execution Speed Transmission Bandwidth Cost

Cloud1 300-500 MIPS 0.015 $/GB 1024-2048 Mbps 0.03 $/h

Cloud2 500-1000 MIPS 0.030 $/GB 2048-3072 Mbps 0.06 $/h

Cloud3 1500-2000 MIPS 0.045 $/GB 3072-4096 Mbps 0.09 $/h

As can be seen from Table 2, the I-MOMFEA-II algorithm performs best on
the three objectives of CPU-intensive tasks, with the minimum completion cost,
completion time, and energy consumption. However, in terms of the maximum
values of the three objectives, there is a slight underperformance in the efficacy of
the I-MOMFEA-II approach relative to alternative techniques.

From Table 3, it can be seen that under three different task quantities, the I-
MOMFEA-II algorithm performs best on the three objectives of I/O-intensive tasks.
When the number of tasks is 100 and 300, the I-MOMFEA-II algorithm achieves
good results in the mean and minimum values of the three objectives: completion
cost, completion time, and virtual machine throughput. When the number of tasks
is 600, the I-MOMFEA-II algorithm also performs well in the mean values of the
three objectives: completion cost, completion time, and virtual machine through-
put, but in other cases, the performance of the I-MOMFEA-II algorithm is slightly
inferior to other algorithms.

Figure 4 shows the convergence curves of the I-MOMFEA-II algorithm on three
target values for CPU-intensive tasks under the condition that the number of cloud
tasks is 300 and the number of iterations is 500. Among them, the first figure of Fig-
ure 4 presents the convergence of the total cost of CPU-intensive tasks, the second
figure of Figure 4 demonstrates the convergence of the total energy consumption
of CPU-intensive tasks, and the third figure of Figure 4 demonstrates the conver-
gence of the total time of CPU-intensive tasks. By looking at these three graphs,
it can be concluded that the I-MOMFEA-II algorithm shows good convergence on
all objectives for CPU-intensive tasks.

Figure 5 displays the convergence curves of the I-MOMFEA-II algorithm on
the three target values for IO-intensive tasks at a cloud task count of 300 and 500
iterations. Among them, the first figure of Figure 5 presents the convergence of the
total completion cost of IO-intensive tasks; the second figure of Figure 5 presents
the convergence of the throughput of the IO-intensive task virtual machine; the
third figure of Figure 5 presents the convergence of the total execution time of IO-
intensive tasks. The results show that while the I-MOMFEA-II algorithm performs
on par with the MOMFEA-II algorithm in terms of the VM throughput objective
of the IO-intensive task, it has good convergence on the other two objectives.

The above experiments demonstrate the superior optimization capabilities of
the I-MOMFEA-II algorithm in concurrently scheduling both task varieties across
MCE. These experimental results provide strong support for the application of the
I-MOMFEA-II algorithm to solve CPU-intensive and IO-intensive task scheduling
problems.

450 C. Yi, T. Zhao, X. Cai & J. Chen

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
6 . 4
6 . 6
6 . 8
7 . 0
7 . 2
7 . 4
7 . 6
7 . 8
8 . 0
8 . 2
8 . 4 × 1 0 5

Co
st

g e n e r a t i o n

 I - M O M F E A - I I
 M O M F E A - I I
 M O M F E A
 E M T - P D
 A M T - N S G A - I I

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
8 . 0

8 . 5

9 . 0

9 . 5

1 0 . 0

1 0 . 5

1 1 . 0
× 1 0 5

En
erg

yC
ons

um
pti

on

g e n e r a t i o n

 I - M O M F E A - I I
 M O M F E A - I I
 M O M F E A
 E M T - P D
 A M T - N S G A - I I

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

1 . 1

1 . 2

1 . 3

1 . 4

1 . 5

1 . 6 × 1 0 6

To
talt

im
e

g e n e r a t i o n

 I - M O M F E A - I I
 M O M F E A - I I
 M O M F E A
 E M T - P D
 A M T - N S G A - I I

Figure 4. CPU-intensive task target convergence curve

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

3 . 0

3 . 5

4 . 0

4 . 5

5 . 0
× 1 0 4

Co
st

g e n e r a t i o n

 I - M O M F E A - I I
 M O M F E A - I I
 M O M F E A
 E M T - P D
 A M T - N S G A - I I

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
1 9 . 4
1 9 . 6
1 9 . 8
2 0 . 0
2 0 . 2
2 0 . 4
2 0 . 6
2 0 . 8
2 1 . 0
2 1 . 2
2 1 . 4

Th
rou

ghp
ut

g e n e r a t i o n

 I - M O M F E A - I I
 M O M F E A - I I
 M O M F E A
 E M T - P D
 A M T - N S G A - I I

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

6 . 0

6 . 5

7 . 0

7 . 5

8 . 0

8 . 5

9 . 0
× 1 0 4

To
talt

im
e

g e n e r a t i o n

 I - M O M F E A - I I
 M O M F E A - I I
 M O M F E A
 E M T - P D
 A M T - N S G A - I I

Figure 5. IO-intensive task target convergence curve

4.2. Performance experiments of the I-MOMFEA-II algorithm

In this paper, the problem set CEC17-MTMO based on multi-task multi-objective
optimization is used as the test set. The CEC17-MTMO problem set contains tasks
from several different domains with different objective functions and constraints.
These tasks may have properties that affect or compete with each other, making
it necessary for the algorithm to balance and trade off between multiple tasks, Ta-
ble 4 details the features of the CEC17-MTMO test set. In the experiments, the
maximum number of iterations is set to 20,000 for all algorithms. In addition, the
genetic operation uses the quadratic crossover-based crossover strategy and poly-
nomial variation proposed in this paper. In the quadratic crossover-based crossover
strategy, the within-population crossover distribution index parameter mu-in=18,
the between-population crossover distribution index parameter mu-between=16,
and the polynomial variation probability pc=1/D.

Two commonly used performance metrics for evaluating multi-objective intelli-
gent algorithms are IGD [38] (Inverse Generation Distance) and HV [37] (Hypervol-
ume). A smaller IGD value indicates the algorithm’s solution set is closer to the true
frontier, signifying better convergence and diversity. The IGD can be calculated as:

IGD(U,W) =
1

|W|

|w|∑
i=1

|u|
min
j=1

d(wi, uj). (4.1)

The Euclidean distance d(wi,uj)=‖wi-ui‖2 represents the distance between refer-
ence point wi and individual ui. A sufficiently large reference set |W | can adequately
represent the PF by evenly distributing along it in objective space. Lower IGD val-
ues require individual ui to closely approach the entire PF without gaps. Thus,
IGD measures individual diversity and convergence to the PF to some degree.

Table 5 shows the comparative results of IGD values for six algorithms such as I-
MOMFEA-II on the CEC17-MTMO test set. Table 5 presents algorithm results for

Research on scheduling of two types of tasks in MCE based on MTMO 451

Table 2. Numerical analysis of the three objectives of different algorithms for CPU-intensive tasks in
different task number scenarios

Number Indicator Algorithm Cost Totaltime EnergyCost

I-MO-MFEA-II 21179.72894 88284.25423 75631.105

MO-MFEA-II 19940.38307 111757.8566 88735.275

100 Best MO-MFEA 23875.55307 128728.439 94879.68

EMT-PD 19723.43973 134386.4681 98417.94

AMT-NSGA-II 28395.99979 145586.2715 104945.7

I-MO-MFEA-II 31142.64415 168429.1646 111633.3242

MO-MFEA-II 32348.71931 171441.2934 116901.8965

100 Avg MO-MFEA 32259.67516 175290.548 117928.5396

EMT-PD 32142.44594 173416.7845 118332.3375

AMT-NSGA-II 32574.49725 168599.0866 116222.116

I-MO-MFEA-II 42078.34615 237359.4439 145846

MO-MFEA-II 45879.91768 242683.2795 144876.48

100 Worst MO-MFEA 40146.47789 221099.7724 139278.28

EMT-PD 39136.38272 252257.0596 150850.06

AMT-NSGA-II 36851.97372 191919.3569 127946.495

I-MO-MFEA-II 638630.051 1090622.473 832673.975

MO-MFEA-II 655320.4023 1109395.444 837881.81

300 Best MO-MFEA 677970.674 1345108.055 940069.14

EMT-PD 670555.5406 1306208.076 925187.48

AMT-NSGA-II 745073.983 1422042.322 975372.625

I-MO-MFEA-II 805204.0897 1448079.981 876880.2925

MO-MFEA-II 851781.0197 1476530.245 958920.18

300 Avg MO-MFEA 839696.4128 1598269.064 1024713.888

EMT-PD 841926.6476 1816515.319 1034011.113

AMT-NSGA-II 8216473.4982 1569904.877 1045709.05

I-MO-MFEA-II 1047031.03 1805537.49 1150850.72

MO-MFEA-II 1054619.114 1843665.045 1166835.1

300 Worst MO-MFEA 937010.2162 1851430.073 1192559.15

EMT-PD 977439.7797 2326822.562 1378464.26

AMT-NSGA-II 899860.8315 1717767.433 1127171.395

I-MO-MFEA-II 930623.7063 1490538.112 1097135.47

MO-MFEA-II 975778.2003 1508011.374 1102930.11

600 Best MO-MFEA 1090956.648 1646311.229 1163331.655

EMT-PD 975958.2079 1711638.441 1199973.335

AMT-NSGA-II 1104343.322 1734535.297 1214935.98

I-MO-MFEA-II 1143712.812 1831982.893 1244669.67

MO-MFEA-II 1193470.461 1889552.957 1265711.818

600 Avg MO-MFEA 1237128.824 1872127.675 1279238.934

EMT-PD 1210836.164 1928431.128 1309618.757

AMT-NSGA-II 1217746.142 1931142.884 1315836.338

I-MO-MFEA-II 1403211.894 2181834.984 1402274.345

MO-MFEA-II 1436035.36 2243946.812 1423787.155

600 Worst MO-MFEA 1388993.843 2141106.381 1419295.44

EMT-PD 1346440.367 2917590.421 1721938.02

AMT-NSGA-II 1340369.111 2146659.571 1426468.975

452 C. Yi, T. Zhao, X. Cai & J. Chen

Table 3. Numerical analysis of the three objectives of different algorithms for IO-intensive tasks in
different task number scenarios

Number Indicator Algorithm Cost Totaltime Throughput

I-MO-MFEA-II 2890.238864 12143.51318 5.825808331

MO-MFEA-II 3102.704178 13955.08161 5.85994726

100 Best MO-MFEA 3303.555609 16684.19355 6.220839813

EMT-PD 2893.731999 17017.18024 6.289308176

AMT-NSGA-II 3344.3125 18998.68991 6.226650062

I-MO-MFEA-II 4418.786534 24878.21412 6.953420237

MO-MFEA-II 4789.641631 25646.82982 7.497919156

100 Avg MO-MFEA 4601.182884 27155.37879 7.478445402

EMT-PD 4478.31604 28457.18911 7.640473168

AMT-NSGA-II 4582.58134 27712.28615 7.047596744

I-MO-MFEA-II 6787.610974 35855.98145 8.587376556

MO-MFEA-II 6932.383415 36976.44453 9.474182852

100 Worst MO-MFEA 6204.38716 38248.96081 8.729812309

EMT-PD 6180.329367 40956.99642 9.358914366

AMT-NSGA-II 6058.295301 36122.05033 8.025682183

I-MO-MFEA-II 30875.4249 59356.0348 19.45979606

MO-MFEA-II 32585.94356 63085.05889 19.50382275

300 Best MO-MFEA 40050.49861 78604.22959 20.37334057

EMT-PD 39851.62454 77198.88864 20.42400402

AMT-NSGA-II 41943.68086 72935.37292 20.42400402

I-MO-MFEA-II 47270.5969 97420.48162 20.95571817

MO-MFEA-II 47950.06081 99261.43062 21.27204433

300 Avg MO-MFEA 50069.66806 100516.5661 21.99025778

EMT-PD 47276.70667 104776.0142 22.97535003

AMT-NSGA-II 52135.45089 97665.03331 22.00189323

I-MO-MFEA-II 67872.1387 130135.2967 22.9273661

MO-MFEA-II 71010.98319 131613.4131 23.88002675

300 Worst MO-MFEA 60945.13684 123166.9512 23.11176851

EMT-PD 62232.44941 141840.25 26.93965517

AMT-NSGA-II 65473.05155 119054.7381 23.48961759

I-MO-MFEA-II 3540345.12 5312295.839 18.86080724

MO-MFEA-II 3555358.71 5484956.443 19.94893074

600 Best MO-MFEA 3960619.051 6410807.644 27.47932181

EMT-PD 3476506.099 6409351.036 17.68922811

AMT-NSGA-II 4169851.122 6657695.974 29.42820988

I-MO-MFEA-II 4162167.227 6497333.099 25.43393297

MO-MFEA-II 4472127.164 6669290.767 26.79803548

600 Avg MO-MFEA 4461393.272 7341211.767 39.53459907

EMT-PD 4371861.671 7894403.262 37.68551485

AMT-NSGA-II 4622232.663 7444146.455 40.06392349

I-MO-MFEA-II 5003848.539 8077400.911 35.77049649

MO-MFEA-II 5315973.197 8254824.852 37.38178012

600 Worst MO-MFEA 4986573.076 8443009.884 49.3973523

EMT-PD 5022926.84 11536508.27 52.523767

AMT-NSGA-II 5251084.323 8681919.372 52.523767

Research on scheduling of two types of tasks in MCE based on MTMO 453

Table 4. Multi-cloud environment simulation parameters settings.

CEC17-MTMO Test Set Features

1.Multi-tasking: The problems in the CEC17-MTMO test set contain mul-
tiple related optimization tasks, and there may be dependent or conflicting
relationships between these tasks. The algorithm needs to consider the opti-
mization objectives of multiple tasks simultaneously.

2.Multi-objective: The problems in the CEC17-MTMO test set involve mul-
tiple competing objective functions and require finding a balance point or
achieving an optimal solution set between different objectives.

3.Complexity: The problems in the CEC17-MTMO test set usually have
complex nonlinear characteristics, high dimensionality, and multimodal prop-
erties, making the solution space have multiple locally optimal solutions and
globally optimal solutions.

4.Diversity: The problems in the CEC17-MTMO test set contain multiple
different types of problems, covering multiple fields such as continuous opti-
mization, discrete optimization, and hybrid optimization.

each test problem as IGD value and standard deviation pairs, reflecting algorithm
performance and variability respectively. A smaller value of IGD indicates a better
performance of the algorithm on that problem. The standard deviation is used to
measure the reliability of the results, with smaller values indicating more stable
results. The “+/-/=” in the table indicates that the performance of the algorithm
is better/worse/equal to the algorithm proposed in this paper compared to the al-
gorithm proposed in this paper. By analyzing these data, the proposed algorithm
demonstrates reasonably favorable performance on most problems under examina-
tion, as evidenced by the results. However, the performance of the I-MOMFEA-II
algorithm on CEC17-MTMO2 is comparable to the other algorithms. In addition,
for the CEC17-MTMO8 problem, the I-MOMFEA-II algorithm performs relatively
poorly, probably because the complexity of the CEC17-MTMO8 problem is high,
its solution space can be of high dimensionality, and constraints may exist that am-
plify the difficulties faced by the algorithm during optimization. From the statistical
point of view, the I-MOMFEA-II algorithm outperforms the other algorithms.

5. Conclusion

With the development of IoT, task scheduling problems with multi-cloud environ-
ments are becoming increasingly complex. Multi-task optimization models can bet-
ter allocate resources to ensure that various scheduling tasks run at the fastest speed
and best effect. In this paper, according to the data characteristics and resource
requirements of CPU-intensive tasks and I/O-intensive tasks in multi-cloud envi-
ronments, we construct a multi-task multi-objective model. In order to schedule
these two types of tasks at the same time, we introduce the idea of multi-factor
optimization. And proposed a multi-objective multi-factor evolutionary algorithm
based on quadratic crossover, I-MOMFEA-II. Through experiments, we can con-
clude the following: First, in the experiment of solving the scheduling model of two
types of tasks in the MCE, under three different task quantities, the I-MOMFEA-II

454 C. Yi, T. Zhao, X. Cai & J. Chen

Table 5. Numerical analysis of the three objectives of different algorithms for IO-intensive tasks in
different task number scenarios

I-MO-
MFEA-II

MO-
MFEA-II

MO-
MFEA

EMT-PD AMT-
NSGA-II

CEC17-MTMO1-
CI-HS-T1

6.6762e-03
(7.83e-04)

7.0321e-03
(1.28e-03)
=

2.7681e-01
(5.78e-02) -

1.3412e-01
(2.79e-02) -

2.9384e-01
(2.64e-01) -

CEC17-MTMO1-
CI-HS-T2

4.1054e-02
(6.97e-03)

4.7409e-02
(9.61e-03) -

5.3060e-01
(6.73e-02) -

3.8413e-01
(4.59e-02) -

3.6205e-01
(1.75e-01) -

CEC17-MTMO2-
CI-MS-T1

7.2902e-03
(2.64e-03)

9.4576e-03
(5.43e-03)
=

9.7653e-03
(6.08e-03)
=

6.9870e-03
(2.45e-03)
=

1.0402e-02
(6.08e-03) -

CEC17-MTMO2-
CI-MS-T2

1.2344e-02
(5.32e-03)

9.5225e-02
(4.49e-01)
=

1.4965e-02
(6.48e-03)
=

1.1486e-02
(5.04e-03)
=

1.0472e-02
(4.37e-03)
=

CEC17-MTMO3-
CI-LS-T1

6.4362e-03
(5.38e-04)

6.8211e-03
(6.56e-04) -

1.8280e+00
(5.18e+00)
-

1.3280e+00
(6.43e+00)
-

7.5394e+00
(1.31e+01)
-

CEC17-MTMO3-
CI-LS-T2

4.9716e-03
(1.94e-04)

4.9694e-03
(2.25e-04)
=

1.6043e-02
(1.82e-02) -

1.2875e-02
(3.05e-02) -

1.4008e-02
(4.03e-03) -

CEC17-MTMO4-
PI-HS-T1

1.0459e-02
(3.24e-03)

1.0063e-02
(1.88e-03)
=

5.6257e-01
(1.62e-01) -

7.2766e-01
(2.07e-01) -

2.5821e-01
(2.28e-01) -

CEC17-MTMO4-
PI-HS-T2

3.8166e-01
(1.78e-01)

6.1772e-01
(4.37e-01) -

3.6630e+01
(8.39e+00)
-

3.6982e+01
(8.35e+00)
-

3.9510e+01
(9.18e+00)
-

CEC17-MTMO5-
PI-MS-T1

1.2592e-01
(3.05e-02)

1.3300e-01
(3.55e-02)
=

9.9677e-01
(1.58e-01) -

1.1360e+00
(5.10e-01) -

6.5402e-01
(9.60e-02) -

CEC17-MTMO5-
PI-MS-T2

4.5107e+02
(9.26e+01)

4.3336e+02
(1.12e+02)
=

1.1522e+03
(1.48e+02)
-

1.0883e+03
(2.50e+02)
-

1.3177e+03
(3.02e+02)
-

CEC17-MTMO6-
PI-LS-T1

7.9716e-03
(4.19e-03)

8.7751e-03
(4.00e-03)
=

8.0392e-02
(1.53e-02) -

1.1073e-01
(1.71e-02) -

2.1130e-02
(1.76e-02) -

CEC17-MTMO6-
PI-LS-T2

2.0045e+01
(2.51e-02)

2.0042e+01
(1.49e-02)
=

3.4612e+00
(2.83e-01)
+

3.7265e+00
(3.83e-01)
+

4.2312e-01
(3.24e-01)
+

CEC17-MTMO7-
NI-HS-T1

5.1470e+01
(2.06e+01)

4.7918e+01
(3.74e-01)
=

9.0859e+01
(1.25e+01)
-

7.2926e+01
(6.27e+00)
-

1.1440e+02
(5.00e+01)
-

CEC17-MTMO7-
NI-HS-T2

9.2787e-03
(3.68e-03)

9.6652e-03
(1.76e-03) -

3.0700e-01
(7.32e-02) -

1.6649e-01
(4.98e-02) -

1.4998e-01
(1.45e-01) -

CEC17-MTMO8-
NI-MS-T1

4.8994e+01
(3.64e+01)

5.0713e+01
(3.28e+01)
=

1.3548e+01
(5.48e+00)
+

1.4928e+01
(1.06e+01)
+

2.7387e+01
(2.50e+01)
=

CEC17-MTMO8-
NI-MS-T2

7.7138e-01
(6.19e-01)

1.0067e+00
(7.04e-01)
=

2.4486e-01
(3.56e-01)
+

3.1436e-01
(4.25e-01)
+

8.2170e-01
(1.32e+00)
=

CEC17-MTMO9-
NI-LS-T1

7.1922e-02
(3.89e-03)

7.1180e-02
(2.82e-03)
=

2.4881e-01
(6.38e-02) -

6.3871e-01
(2.47e-01) -

8.7098e-01
(1.89e-01) -

CEC17-MTMO9-
NI-LS-T2

2.0294e+01
(3.08e-04)

2.0295e+01
(2.14e-04)
=

2.0331e+01
(8.70e-03) -

2.0344e+01
(8.92e-03) -

2.0370e+01
(5.07e-02) -

+/-/= Base 0/4/14 3/13/2 2/13/3 3/14/1

Research on scheduling of two types of tasks in MCE based on MTMO 455

algorithm achieved the best results in three objectives: completion cost, completion
time, and energy consumption of CPU-intensive tasks. It also performed well in the
completion cost, completion time, and virtual machine throughput of I/O-intensive
tasks. In addition, the I-MOMFEA-II algorithm showed good convergence of the
objectives of the two types of tasks. In summary, the I-MOMFEA-II algorithm
performed well in solving the scheduling problems of two types of tasks in the MCE
and can provide new solutions to task scheduling problems in the multi-cloud envi-
ronment. Second, in the IGD performance experiment, the algorithm in this paper
performed better on most test sets, proving that this proposed algorithm surpasses
other existing approaches. Future research can further explore more complex multi-
cloud environment scheduling problems and further improve the algorithm to meet
more challenges and requirements.

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Grant
No. 61806138); China University Industry-University-Research Collaborative Inno-
vation Fund (Future Network Innovation Research and Application Project) (Grant
2021FNA04014).

References

[1] L. Abualigah and M. Alkhrabsheh, Amended hybrid multi-verse optimizer with
genetic algorithm for solving task scheduling problem in cloud computing, The
Journal of Supercomputing, 2021, 78(1), 740–765.

[2] T. A. Ahanger, H. A. Abdeljaber and M. Y. Uddin, Development of a hybrid
algorithm for efficient task scheduling in cloud computing environment using
artificial intelligence, International Journal of Computers Communications and
Control, 2021, 16(5).

[3] K. K. Bali, A. Gupta, Y. S. Ong, et al., Cognizant multitasking in multiobjec-
tive multifactorial evolution: MO-MFEA-II, IEEE Trans Cybern, 2021, 51(4),
1784–1796.

[4] X. Cai, S. Geng, D. Wu, et al., A multicloud-model-based many-objective intelli-
gent algorithm for efficient task scheduling in internet of things, IEEE Internet
of Things Journal, 2021, 8(12), 9645–9653.

[5] Z. H. Cui, X. H. Xu, F. Xue, et al., Personalized Recommendation System Based
on Collaborative Filtering for IoT Scenarios, IEEE Transactions on Services
Computing, 2020. DOI: 10.1109/TSC.2020.2964552.

[6] B. Da, A. Gupta and Y. -S. Ong, Curbing negative influences online for seam-
less transfer evolutionary optimization, IEEE Transactions on Cybernetics,
2019, 49(12), 4365–4378.

[7] R. Dai, J. Jie, H. Zheng, et al., Framework and experimental analysis of gener-
alised surrogate-assisted particle swarm optimization, International Journal of
Computing Science and Mathematics, 2022, 15(4), 332–346.

[8] G. Ding and F. Dong, An improved pigeon-inspired optimisation for continuous
function optimisation problems, International Journal of Computing Science
and Mathematics, 2023, 17(3), 207–219.

456 C. Yi, T. Zhao, X. Cai & J. Chen

[9] T. T. Dong, L. Zhou, L. Chen, et al., A Hybrid algorithm for workflow schedul-
ing in cloud environment, International Journal of Bio-Inspired Computation,
2023, 21(1), 48–56.

[10] M. Farid, R. Latip, M. Hussin, et al., Weighted-adaptive inertia strategy for
multi-objective scheduling in multi-clouds, Computers, Materials and Continua,
2022, 72(1), 1529–1560.

[11] A. Gupta, Y. S. Ong and L. Feng, Multifactorial evolution: Toward evolu-
tionary multitasking, IEEE Transactions on Evolutionary Computation, 2016,
20(3), 343–357.

[12] A. Gupta, Y. S. Ong, L. Feng, et al., Multiobjective multifactorial optimization
in evolutionary multitasking, IEEE Transactions on Cybernetics, 2017, 47(7),
1652–1665.

[13] Y. S. Hao, M. D. Xia, N. Wen, et al., Parallel task scheduling under multiclouds,
KSII Transactions on Internet and Information Systems, 2017, 11(1), 39–60.

[14] S. Hubert Shanthan and B. J. Arockiam, Rate aware meta task scheduling
algorithm for multi cloud computing (RAMTSA), 2nd National Conference on
Computational Intelligence, 2018, 012001, Bangalore, India.

[15] S. Kang, B. Veeravalli and K. M. M. Aung, Dynamic scheduling strategy with
efficient node availability prediction for handling divisible loads in multi-cloud
systems, Journal of Parallel and Distributed Computing, 2018, 113, 1–16.

[16] H. Lan, G. Xu and Y. Yang, An enhanced multi-objective particle swarm op-
timization with levy flight, International Journal of Computing Science and
Mathematics, 2023, 17(1), 79–94.

[17] X. Lin, T. Ren, J. Yang, et al., Multi-objective cellular memetic algorithm,
International Journal of Computing Science and Mathematics, 2022, 15(3),
213–223.

[18] Y. L. Lv, J. Zhang and L. L. Zuo, Genetic regulatory network-based optimiza-
tion of master production scheduling and mixed-model sequencing in assembly
lines, International Journal of Bio-Inspired Computing, 2022, 20(3), 150–159.

[19] J. P. B. Mapetu, Z. Chen and L. Kong, Low-time complexity and low-cost binary
particle swarm optimization algorithm for task scheduling and load balancing
in cloud computing, Applied Intelligence, 2019, 49(9), 3308–3330.

[20] S. K. Mishra, Energy-aware task allocation for multi-cloud networks, IEEE
Access, 2020, 8, 178825–178834.

[21] Z. Liang, W. Liang, Z. Wang, et al., Multiobjective evolutionary multitasking
with two-stage adaptive knowledge transfer based on population distribution,
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(7),
4457–4469.

[22] Z. Liang, J. Zhang, L. Feng, et al., A hybrid of genetic transform and hyper-
rectangle search strategies for evolutionary multi-tasking, Expert Systems with
Applications, 2019, 138.

[23] J. Liu, P. Li, G. Wang, et al., A multitasking electric power dispatch approach
with multi-objective multifactorial optimization algorithm, IEEE Access, 2020,
8, 155902–155911.

Research on scheduling of two types of tasks in MCE based on MTMO 457

[24] A. Roy, S. Midya, D. Hazra, et al., A hybrid task scheduling algorithm for
efficient task management in multi-cloud environment, Advances in Intelligent
Systems and Computing, 2018, 811, 47–57.

[25] W. H. Tan and J. Mohamad-Saleh, Alligator optimisation algorithm for solv-
ing unconstrainted optimisation problems, International Journal of Bio-Inspired
Computation, 2023, 21(1), 11–25.

[26] Z. Tang, M. Gong and M. Zhang, Evolutionary multi-task learning for modular
extremal learning machine, in 2017 Congress on Evolutionary Computation,
2017, 474–479.

[27] H. ThiThanh Binh, P. Dinh Thanh, T. Ba Trung, et al., Effective multifactorial
evolutionary algorithm for solving the cluster shortest path tree problem, in 2018
Congress on Evolutionary Computation, 2018, 1–8.

[28] L. J. Wu, D. Wu, T. H. Zhao, et al., Dynamic multi-objective evolutionary
algorithm based on knowledge transfer, Information Sciences, 2023, 636, 118886.

[29] F. Xue, Q. Hai, Y. Gong, et al., RVEA-based multi-objective workflow schedul-
ing in cloud environments, International Journal of Bio-Inspired Computation,
2022, 20(1), 49–57.

[30] W. S. Yang, L. Chen, Y. Y. Li, et al., A many-objective particle swarm opti-
mization algorithm based on convergence assistant strategy, International Jour-
nal of Bio-Inspired Computing, 2022, 20(2), 104–118.

[31] Y. Yuan, Y. S. Ong, L. Feng, et al., Evolutionary multitasking for multiobjec-
tive continuous optimization: Benchmark problems, performance metrics, and
baseline results, 2017. DOI: 10.48550/arXiv.1706.02766.

[32] Q. Zhang, S. Geng and X. Cai, Survey on task scheduling optimization strat-
egy under multi-cloud environment, Computer Modeling in Engineering and
Sciences, 2023, 135(3), 1863–1900.

[33] T. H. Zhao, L. J. Wu, D. Wu, et al., Multi-factor evolution for large-scale multi-
objective cloud task scheduling, KSII Transactions on Internet and Information
Systems, 2023, 17(4), 1100–1122.

[34] L. Zhou, L. Feng, J. Zhong, et al., Evolutionary multitasking in combinatorial
search spaces: A case study in capacitated vehicle routing problem, in 2017
Symposium Series on Computational Intelligence, 2017, 1–8.

[35] M. Zhou, R. Wu and H. Sun, An artificial bee colony algorithm with a distance
factor, International Journal of Computing Science and Mathematics, 2022,
16(4), 355–376.

[36] Q. H. Zhu, H. Tang, J. J. Huang, et al., Task scheduling for multi-cloud com-
puting subject to security and reliability constraints, IEEE/CAA Journal of
Automatica Sinica, 2021, 8(4), 848–865.

[37] E. Zitzler and L. Thiele, Multiobjective optimization using evolutionary algo-
rithms - A comparative case study, in 5th International Conference on Parallel
Problem Solving from Nature, PPSN 1998, Amsterdam, Netherlands, 1998,
292–301.

[38] E. Zitzler, L. Thiele, M. Laumanns, et al., Performance assessment of multiob-
jective optimizers: An analysis and review, IEEE Transactions on Evolutionary
Computation, 2003, 7(2), 117–132.

	Introduction
	Related work
	Task scheduling in multi-cloud environments
	Multi-tasking evolutionary algorithm

	The proposed method
	Classification method
	Multi-objective multi-task scheduling model
	Multi-objective multi-factor evolutionary algorithmbased on the quadratic crossover (I-MOMFEA-II)
	Encoding scheme
	Selective mating

	Simulation experiment
	I-MOMFEA-II experiments to solve two types of task scheduling models in multi-cloud environments
	Performance experiments of the I-MOMFEA-II algorithm

	Conclusion

