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Abstract The conjugate gradient method and the Newton method are both
numerical optimization techniques. In this paper, we aim to combine some
desirable characteristics of these two methods while avoiding their drawbacks,
more specifically, we aim to develop a new optimization algorithm that pre-
serves some essential features of the conjugate gradient algorithm, including
the simplicity, the low memory requirements, the ability to solve large scale
problems and the convergence to the solution regardless of the starting vector
(global convergence). At the same time, this new algorithm approches the
quadratic convergence behavior of the Newton method in the numerical sense
while avoiding the computational cost of evaluating the Hessian matrix directly
and the sensitivity of the selected starting vector. To do this, we propose a new
hybrid conjugate gradient method by linking (CD) and (WYL) methods in a
convex blend, the hybridization paramater is computed so that the new search
direction accords with the Newton direction, but avoids the computational cost
of evaluating the Hessian matrix directly by using the secant equation. This
makes the proposed algorithm useful for solving large scale optimization prob-
lems. The sufficient descent condition is verified, also the global convergence
is proved under a strong Wolfe Powel line search. The numerical tests show
that, the proposed algorithm provides the quadratic convergence behavior and
confirm its efficiency as it outperformed both the (WYL) and (CD) algorithms.
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1. Introduction

In this paper, we are interested in the minimization of a function with n variables,
n ∈ N∗. Consider the nonlinear unconstrained optimization problem

min
x∈Rn

f(x), (1.1)

where, f : Rn 7→ R is a smooth nonlinear function and its gradient is available and
denoted by g = ∇f(x). Mathematicians have developed many numerical techniques
to solve (1.1), among which the steepest descent methods (see e.g. [21, 30]), the
Newton methods (see e.g. [24, 25]) conjugate gradient methods (see e.g. [2, 19, 28])
and quasi-Newton methods (see e.g. [26, 27]).

The basis of all these methods is to start with an appropriate initial vector
x0 ∈ Rn and generate a sequence {xk}k≥0 , as follows

xk+1 = xk + αkdk, k ≥ 0, (1.2)

where, αk is the step size determined using a line search technique, and dk is the
search direction that identifies the various methods to solve the problem (1.1). In
this work we focus on the Newton method and the conjugate gradient method.

The search direction of the Newton method is calculated as follows

dk+1 = −∇2f(xk+1)−1gk+1, (1.3)

where, ∇2f(xk+1) is the Hessian matrix of f . When initialized point near the
solution, the Newton method provides a quadratic convergence rate because it uses
the second derivative information to generate the search direction. However, the
Newton method is efficient for small and medium-sized problems and is not suitable
for large scale problems in terms of the storage and the computational cost of
evaluating the Hessian matrix [20].

The conjugate gradient method is much more useful and practical for solving
(1.1), especially for large-scale cases, due to its simplicity, low memory requirements
as it only uses the first derivative information [20]. The conjugate gradient method
has the global convergence property, which allows it to converge to the optimal
solution regardless of the starting vector selected. The search direction given as

d0 = −g0, dk+1 = −gk+1 + βkdk, (1.4)

depending on the choice of the parameter βk ∈ R known as the conjugate gradi-
ent parameter, there are several different conjugate gradient algorithms. In the
following we are going to mention some famous formulas for this parameter.

βHSk =
gTk+1yk

dTk yk
, (HS - Hestenes and Stiefel [15]),

βFRk =
‖ gk+1 ‖2

‖ gk ‖2
, (FR - Fletcher and Reeves [13]),

βPRPk =
gTk+1yk

‖ gk ‖2
, (PRP - Polak and Ribére [22,23]),

βCDk =
‖ gk+1 ‖2

−dTk gk
, (CD - conjugate descent [12]),
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βLSk =
gTk+1yk

−dTk gk
, (LS - Liu and Storey [18]),

βDYk =
‖ gk+1 ‖2

dTk yk
, (DY - Dai and Yuan [8]),

βWYL
k =

gTk+1(gk+1 − ‖gk+1‖
‖gk‖ gk)

‖ gk ‖2
, (WYL- Wei, Yao and Liu [16,29] ).

Where, yk = gk+1 − gk.
Conjugate gradient algorithms are classified into three major categories:classical

methods, modified methods and hybrid methods.
The methods (HS),( FR), (PRP), (CD), (LS), (DY ) are known as classical

methods due to their simplicity.
The (WYL) conjugate gradient method was proposed by Wei [16,29] as a mod-

ified version of the PRP classical method in order to improve it and make it more
efficient. This method not only has nice numerical experiments but also satisfies
the sufficient descent condition and has global convergence properties.

Hybrid conjugate gradient methods are based on combining the classical or the
modified methods in order to build new practical ones that have the advantages of
the methods to be combined. So, several hybrid methods are suggested, for example,
Andrei [6] proposed combining the (DY) and (HS) conjugate gradient methods as
a convex combination and distinguished this method by making its search direction
is the Newtonian direction using the secant equation to avoid the evaluation of the
Hessien matrix. Motivated by Andrei’s idea [6], recently Fanar and Ghada [11],
Abdullah and Jamalaldeen [1] and Djordjević [9] derived new hybrid conjugate
gradient methods satisfy the sufficient descent property in such a way that Newton
directions are employed. Abubakar etc [3, 4] proposed a combination between two
conjugate gradient methods in such a way that the new search direction is close to
the direction of the memoryless Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-
Newton approach.

Here, in this paper, inspired by Andrei’s work [6], we propose a new hybrid
conjugate gradient algorithm that links (WYL) and (CD) methods based on the
Newton direction in order to gain some desirable properties of both conjugate gra-
dient and Newtonian methods while avoiding their disadvantages. more specifically,
our focus is to preserve the essential features of the conjugate gradient algorithm,
including its simplicity, ability to solve large scale problems, and global convergence
property, which allows the algorithm to converge to the optimal solution whatever
the starting vector selected. Additionally, we aim to retain the fast quadratic con-
vergence behavior of the Newton method in the numerical sense, while avoiding
the expensive computation of the Hessian matrix directly and the sensitivity of its
convergence to the starting vector selected.

Since the proposed method is constructed with the aim of approaching the
quadratic convergence behavior of the Newton method, we propose a new numeri-
cal test based on some test functions chosen from [7] with different dimensions and
following the next steps

• For each iteration we calculate the error ratios rk with two successive iterations

rk =
‖ xk+1 − x∗ ‖
‖ xk − x∗ ‖2

(1.5)
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where, x∗ is the exacte solution of the problem.

• Plotting log(rk) versus k and showing that rk tends to converge towards a
constant value, i.e. rk approches a constant value which proved that, the
proposed method provides a quadratic convergence behavior in the numerical
sense.

2. Hybrid conjugate gradient algorithm

In this section, we describe our new conjugate gradient method for large scale
unconstrained optimization problems, computing the parameter βk, denoted in this
paper by βwylcdk , as a convex combination between βCDk and βWYL

k , i.e.

βwylcdk = (1− γk)βWYL
k + γkβ

CD
k , (2.1)

where, γk ∈ [0, 1].
So the direction dk, is given by

d0 = −g0, dk+1 = −gk+1 + (1− γk)βWYL
k dk + γkβ

CD
k dk. (2.2)

If γk = 0, then βwylcdk = βWYL
k and if γk = 1, then βwylcdk = βCDk . On the other

hand if 0 < γk < 1 then βwylcdk is the convex combination between βCDk and βWYL
k .

Assume that ∇2f(xk)−1 exists for all k ≥ 0 for the objective function f .
As we know, the Newton method has quadratic convergence properties, so we

are going to build a new hybrid conjugate gradient method accords with the Newton
method. To do this, motivated by Andrei’s work [6] we compute the γk in such a
manner that our search direction given by the relation (2.2) is equal to the Newton
direction, i.e.

− gk+1 + (1− γk)βWYL
k dk + γkβ

CD
k dk = −∇2f(xk+1)−1gk+1. (2.3)

Multiplying both sides of the equation (2.3) by sTk∇2f(xk+1) from the left we obtain

− sTk∇2f(xk+1)gk+1 + (1− γk)βWYL
k sTk∇2f(xk+1)dk + γkβ

CD
k sTk∇2f(xk+1)dk

=− sTk gk+1, (2.4)

where sk = xk+1 − xk.
Following some algebraic computations, we arrive at

γk =
−sTk gk+1 + sTk∇2f(xk+1)gk+1 − βWYL

k sTk∇2f(xk+1)dk
(−βWYL

k + βCDk )sTk∇2f(xk+1)dk
. (2.5)

To compute γk, we have to get the Hessian matrix of the objective function, but
we know that for large-scale problems, computing the Hessian matrix is either
impossible or expensive in practice. knowing that, for quazi Newton algorithms the
approximation matrix Bk to the Hessien matrix ∇2f(xk) is updated so that the
new matrix Bk+1 satisfies the secant equation Bk+1sk = yk. So, to obtain a widely
used problem solving algorithm, we assume that the pair (sk, yk) satisfies the secant
equation

∇2f(xk+1)sk = yk,
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i.e.

sTk∇2f(xk+1) = yTk ,

therefore, we obtain

γk =
−sTk gk+1 + yTk gk+1 − βWYL

k yTk dk
(−βWYL

k + βCDk )yTk dk
. (2.6)

Clearly, we have constructed a new hybrid conjugate gradient method accords
with the Newton method, but the iterative process is simple and it is designed
to solve large-scale problems because we have avoided the computational cost of
evaluating the Hessian matrix directly by using the secant equation.

Now, we describe the proposed algorithm named “wylcd algorithm” which has
some good characteristics of both conjugate gradient algorithm and the Newton
algorithm.

2.1. Wylcd Algorithm

Step 0. Choose the initial point x0 ∈ Rn, ε > 0.
Calculate f0 = f(x0) and g0 = ∇f(x0).
Set d0 = −g0, the initial guess α0 = 1

‖g0‖ . Let k = 0 .

Step 1. Test a criterion to stop the iterations, i.e. if ‖ gk ‖≤ ε then stop. Otherwise
go to step 2.
Step 2. Compute the step size αk using the strong Wolfe Powell line search

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk, (2.7)

|gTk+1dk| ≤ σ|gTk dk|. (2.8)

Where, 0 < δ < 1
2 , 0 < σ < 1

5 .
Step 3. Updating the next iterate by xk+1 = xk + αkdk. Compute gk+1 =
∇f(xk+1), yk = gk+1 − gk and sk = xk+1 − xk.
Step 4. If (−βWYL

k + βCDk )yTk dk = 0, then γk = 0 , else calculate γk as in (2.6).

Step 5. If γk ≤ 0, then calculate βwylcdk = βWYL
k .

If γk ≥ 1, then calculate βwylcdk = βCDk .

If 0 < γk < 1, then calculate βwylcdk as in (2.1).

Step 6. Compute dk+1 = −gk+1 +βwylcdk dk. Set the initial guess αk = αk−1
‖dk−1‖
‖dk‖ .

Step 7. Let k = k + 1, go to step 1.

3. The sufficient descent condition

Theorem 3.1. Suppose that the sequences {gk}k≥0 and {dk}k≥0 are generated by
“wylcd Algorithm”, assume that αk is determined by the strong Wolfe powel line
search (2.7) and (2.8), if 0 < σ < 1

5 , then the sufficient descent condition

gTk+1dk+1 ≤ −c ‖ gk+1 ‖2 (3.1)

holds.
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Proof. If γk = 0, then βwylcdk = βWYL
k and if γk = 1, then βwylcdk = βCDk , the

sufficient decent condition is allready proven in [16,29] and [12] respectively.
Now, we poove the sufficient descent condition in the case 0 < γk < 1.
From (2.1)

|βwylcdk | ≤ |βWYL
k |+ |βCDk |

≤
‖ gk+1 ‖2 +‖gk+1‖

‖gk‖ ‖ gk+1 ‖‖ gk ‖
‖ gk ‖2

+
‖ gk+1 ‖2

| − gTk dk|

=
2 ‖ gk+1 ‖2

‖ gk ‖2
+
‖ gk+1 ‖2

| − gTk dk|
.

Then, from the above inequality we obtain

|βwyldk gTk+1dk| ≤
2 ‖ gk+1 ‖2

‖ gk ‖2
|gTk+1dk|+

‖ gk+1 ‖2

| − gTk dk|
|gTk+1dk|, (3.2)

using (2.8) we get

|βwylcdk gTk+1dk| ≤
2 ‖ gk+1 ‖2

‖ gk ‖2
σ|gTk dk|+ σ ‖ gk+1 ‖2, (3.3)

multiplying (2.2) by gk+1 we find

gTk+1dk+1 = − ‖ gk+1 ‖2 +βwylcdk gTk+1dk. (3.4)

Then
gTk+1dk+1

‖ gk+1 ‖2
= −1 + βwylcdk

gTk+1dk

‖ gk+1 ‖2
. (3.5)

Now, let’s prove the descent property of the direction dk by induction. We have
gT1 d1 = − ‖ g1 ‖2, we suppose that di, i = 1, 2, . . . , k are all descent directions
(gTi di < 0).

From (3.3), it results

|βwylcdk gTk+1dk| ≤ −2σ ‖ gk+1 ‖2
gTk dk
‖ gk ‖2

+ σ ‖ gk+1 ‖2 . (3.6)

Then

2σ ‖ gk+1 ‖2
gTk dk
‖ gk ‖2

− σ ‖ gk+1 ‖2

≤βwylcdk gTk+1dk

≤− 2σ ‖ gk+1 ‖2
gTk dk
‖ gk ‖2

+ σ ‖ gk+1 ‖2, (3.7)

from (3.5) and (3.7) we deduce

gTk+1dk+1

‖ gk+1 ‖2
≤ −1− 2σ

gTk dk
‖ gk ‖2

+ σ. (3.8)
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Repeating this process

gTk+1dk+1

‖ gk+1 ‖2

≤ −1− 2σ
gTk dk
‖ gk ‖2

+ σ

≤ −1− 2σ(−1− 2σ
gTk−1dk−1

‖ gk−1 ‖2
+ σ) + σ

≤ −1 + 2σ + (2σ)2(−1− 2σ
gTk−2dk−2

‖ gk−2 ‖2
+ σ)− 2σ2 + σ

≤ −1 + 2σ − (2σ)2 − (2σ)3(−1− 2σ
gTk−3dk−3

‖ gk−3 ‖2
+ σ) + σ(2σ)2 − 2σ2 + σ

≤ −1 + 2σ − (2σ)2 + (2σ)3 + (2σ)4(−1− 2σ
gTk−4dk−4

‖ gk−4 ‖2
+ σ)− σ(2σ)3 + σ(2σ)2

−2σ2 + σ
...

≤ −1 + 2σ − (2σ)2 + (2σ)3 − (2σ)4 + . . .

−(2σ)k−1(−1− 2σ
gTk−(k−1)dk−(k−1)

‖ gk−(k−1) ‖2
+ σ)− σ(2σ)3 + σ(2σ)2 − 2σ2 + σ

≤ −1 + 2σ − (2σ)2 + (2σ)3 − (2σ)4 + · · ·+ (2σ)k−1 + (2σ)k
gT1 d1

‖ g1 ‖2
− σ(2σ)k−1

−σ(2σ)3 + σ(2σ)2 − 2σ2 + σ, (3.9)

using gT1 d1 = − ‖ g1 ‖2, the inequality (3.9) becomes

gTk+1dk+1

‖ gk+1 ‖2
≤ −1 + [(2σ + (2σ)3 + · · ·+ (2σ)k−1)− ((2σ)2 + (2σ)4 + · · ·+ (2σ)k)]

+[(σ + σ(2σ)2 + · · ·+ σ(2σ)k−2)− (2σ2 + σ(2σ)3 + · · ·+ σ(2σ)k−1)]

≤ −1 + [(2σ + (2σ)3 + · · ·+ (2σ)k−1) + ((2σ)2 + (2σ)4 + · · ·+ (2σ)k)]

+[(σ + σ(2σ)2 + · · ·+ σ(2σ)k−2) + (2σ2 + σ(2σ)3 + · · ·+ σ(2σ)k−1)]

= −1 +

k∑
j=1

(2σ)j + σ

k−1∑
j=0

(2σ)j

= −2 +

k∑
j=0

(2σ)j + σ

k−1∑
j=0

(2σ)j , (3.10)

we have

k∑
j=0

(2σ)j <

∞∑
j=0

(2σ)j =
1

1− (2σ)
and

k−1∑
j=0

(2σ)j <

∞∑
j=0

(2σ)j =
1

1− (2σ)
.

Therefore, the inequality (3.10) becomes

gTk+1dk+1

‖ gk+1 ‖2
≤ −(2− 1 + σ

1− (2σ)
), (3.11)
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taking 0 < σ < 1
5 , then

gTk+1dk+1 ≤ −(2− 1 + σ

1− (2σ)
) ‖ gk+1 ‖2< 0. (3.12)

So, by induction gTk dk < 0 holds for all k ≥ 0.
Now, we prove the sufficient descent condition of dk. If 0 < σ < 1

5 , it suffices to
take c = 2− 1+σ

1−(2σ) , where 0 < c < 1. Then from the inequality (3.12), it results

gTk+1dk+1 ≤ −c ‖ gk+1 ‖2, (3.13)

which indicates that the sufficient descent condition holds.

4. Convergence properties

The following assumptions on the objective function f are required to establish the
global convergence of the proposed algorithm.

Assumption 1 ( [5]). H1. The level set H = {x ∈ Rn/f(x) ≤ f(x0)} is bounded
where x0 is the initial vector.

H2. In some neighborhood Q of H, the function f is continuously differentiable
and its gradient is Lipschitz continuous, i.e. ∃l > 0 such that

‖ g(x)− g(y) ‖≤ l ‖ x− y ‖ for all x, y ∈ Q. (4.1)

These hypotheses imply that ∃r̄ > 0 such that

‖ g(x) ‖≤ r̄,∀x ∈ H. (4.2)

Lemma 1 ( [8]). Let the above assumptions H1 and H2 hold and consider the
methods formulated by (1.2), (1.4), where {dk} is a descent direction, and αk is
calculatd by the strong Wolfe Powel line search. If∑

k≥0

1

‖ dk ‖
= +∞ (4.3)

then
lim
k 7→∞

inf ‖ gk ‖= 0. (4.4)

Lemma 2 ( [17]). Suppose that the above assumptions H1 and H2 hold. If dk is a
descent direction and the step length αk satisfies

gTk+1dk ≥ σgTk dk, σ < 1, (4.5)

then

αk ≥
1− σ
l

|dTk gk|
‖ dk ‖2

. (4.6)

Proof. From (4.5), (4.1) it results that:

− (1− σ)gTk dk

≤σgTk dk − gTk dk
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≤dTk (gk+1 − gk)

=dTk yk

≤ ‖ dk ‖‖ yk ‖
≤lαk ‖ dk ‖2 .

Then, (4.6) holds.
According to the Lemma 2, conditions (2.8), (3.1) and (4.2) we deduce that αk

obtained in the new wylcd algorithm is not equal to 0, i.e. ∃p > 0 such that

αk ≥ p, for all k ≥ 0. (4.7)

Theorem 4.1. Suppose that Assumption 1 holds. Let the sequence {xk}k≥0 be
generated by the proposed “wylcd Algorithm”. Then

lim
k 7→∞

inf ‖ gk ‖= 0. (4.8)

Proof. Suppose that (4.8) is false. Then there exists r > 0 such that

‖ gk ‖> r. (4.9)

From (4.9) and (3.1) we have

− gTk dk ≥ c ‖ gk ‖2≥ cr2, (4.10)

1

−gTk dk
≤ 1

cr2
. (4.11)

Knowing that sk = xk+1 − xk, let A = max{‖ x − y ‖ /x, y ∈ H} be the diameter
of the level set H.i.e ‖ sk ‖≤ A.

From (2.1) and (2.2), we have

‖ dk+1 ‖≤‖ gk+1 ‖ +|βwylcdk | ‖ dk ‖ . (4.12)

Concerning the boundedness of the βwylcdk there are three cases. If γk = 0, then

βwylcdk = βWYL
k and if γk = 1, then βwylcdk = βCDk , these two cases are allready

proven in [16,29] and [12] respectively.
Now, if 0 < γk < 1

|βwylcdk | = |(1− γk)βWYL
k + γkβ

CD
k |

≤ |βWYL
k |+ |βCDk |

≤
‖ gk+1 ‖2 +‖gk+1‖

‖gk‖ ‖ gk+1 ‖‖ gk ‖
‖ gk ‖2

+
‖ gk+1 ‖2

| − gTk dk|

=
2 ‖ gk+1 ‖2

‖ gk ‖2
+
‖ gk+1 ‖2

| − gTk dk|
. (4.13)

From (4.9), (4.11) and(4.2) it results

|βwylcdk | ≤ 2r̄2

r2 + r̄2

cr2 = E. (4.14)
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According to (4.14) and (4.2), the relation (4.12) becomes

‖ dk+1 ‖≤ r̄ + E ‖ dk ‖ . (4.15)

Using ‖ dk ‖= ‖sk‖
αk

and from (4.7), we get

‖ dk+1 ‖≤ r̄ + E
‖ sk ‖
αk

≤ r̄ + E
A

p
.

Therefore ∑
k≥0

1

‖ dk ‖
= +∞. (4.16)

Now, applying Lemma 1, we conclude that

lim
k 7→∞

inf ‖ gk ‖= 0

this is a contradiction with (4.9), so we have proved (4.8).

5. Numerical experiments

In this section, we are going to describe the numerical results of the new proposed
algorithm (wylcd algorithm). Firstly, we prove numerically that, the proposed al-
gorithm has the quadratic convergence behavior, secondly, we analyze the efficiency
of the proposed algorithm by comparing it to the (WYL) and (CD) methods. In
the next numerical experiments, all codes are compiled with a PC with the follow-
ing specifications: Intel(R) Core(TM) i5-3210M CPU 2.50GHz 2.50 GHz, 4.00 Go
RAM, using the profile of Dolan and Moré [10] as an evaluation tool. All algo-
rithms employ the strong Wolfe Powel line search conditions with the parameters
δ = 0.0001 and σ = 0.1 and terminate when ‖ gk ‖∞≤ 10−6.

The quadratic convergence behavior of the proposed algorithm

As we say in section 2, the Newton method has a quadratic convergence rate and
this property is very favorable because it means a fast convergence to the optimal
solution, so we have constructed a new hybrid conjugate gradient algorithm based
on the Newton direction, with the aim of obtaining the fast convergence behavior of
the Newton method in the numerical sense and achieving some essential features of
the conjugate gradient algorithm. In the following, we propose a new numerical test
which demonstrates the quadratic convergence behavior of the proposed algorithm
using some test problems chosen from [7] with dimensions n: 150, 250, 258, 360,
365, 1950, 2000, 2005 and for each iteration we calculate the error ratios rk with two
successive iterations

rk =
‖ xk+1 − x∗ ‖
‖ xk − x∗ ‖2

(5.1)

where, x∗ is the exacte solution of the selected problem. We plot log(rk) versus k
(see figure 1).
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(c) n = 258
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(d) n = 360
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(e) n = 365
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(f) n = 1950
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(g) n = 2000
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(h) n = 2005

Figure 1. The quadratic convergence behavior of the proposed algorithm
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As shown by figure 1, log(rk) < 0 i.e. rk < 1. Then, we can observe that rk
tends to converge to a constant value i.e. rk approches a constant value. This
observation proves the quadratic convergence behavior of the new algorithm in the
numerical sense.

Numerical comparisons

For the evaluation of the effectiveness of our “wylcd algorithm”, we tested it
against the (WYL) [16,29] and (CD) [12] algorithms from which it was built using
the same test problems chosen from [7], for each function we performed numerical
experiments for the number of variables: 2, 10, . . . , 10000. Figure 2, 3 and 4 plot
the performance of these algorithms based on these indicators: CPU time, Number
of iterations, gradient evaluations.
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Figure 2. Performance profile for CPU time
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Figure 3. Performance profile for the number of iterations.
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Figure 4. Performance profile for gradient evaluations.

As all the above figures show, the new wylcd algorithm is clearly superior to the
other algorithms.

6. Conclusion

In this research paper we have presented a new optimization algorithm that com-
bines some essential features of both the conjugate gradient and Newtonian methods
while avoiding their disadvantages. Specifically, we focused on preserving the sim-
plicity, the low memory requirements, the suitability for solving problems when the
dimension is large and the global convergence of the conjugate gradient method.
Simultaneously, we focused on retaining the fast quadratic convergence behavior of
the Newton method in the numerical sense, while avoiding the computational cost
of evaluating the Hessian matrix directly and the sensitivity of its convergence to
the initial vector chosen. The proposed algorithm is a hybrid conjugate gradient
method that blends the (CD) and (WYL) methods in a convex manner. This algo-
rithm is constructed to be closely related to the Newton method without needing
to evaluate the Hessian matrix due to the use of the secant equation, this makes
it useful for solving large scale optimization problems. The sufficient descent con-
dition and global convergence have been proved. The effectiveness of the proposed
method has been checked with a set of standard test problems, which showed that
the proposed algorithm approches the quadratic convergence behavior of the New-
ton method and confirmed its superiority over the (WYL) and (CD) algorithms in
most cases.
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