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EFFECT OF NONLOCAL DELAY WITH
STRONG KERNEL ON VEGETATION

PATTERN

Juan Liang1,2,3 and Guiquan Sun2,4,†

Abstract In order to understand the mechanism of water uptake by vegeta-
tion, we propose a vegetation-water model with nonlocal effect which is char-
acterised by nonlocal delay with strong kernel in this paper. By mathematical
analysis, the condition of producing steady pattern is obtained. Furthermore,
the amplitude equation which determines the type of Turing pattern is ob-
tained by nonlinear analysis method. The corresponding vegetation pattern
and evolution process under different intensity of nonlocal effect in roots of veg-
etation are given by numerical simulations. The numerical results show that as
intensity of nonlocal effect increases, the isolation degree of vegetation pattern
increases which indicates that the robustness of the ecosystem decreases. Be-
sides, the results reveal that with the water diffusion coefficient increases, the
change of pattern structure is: stripe pattern→mixed pattern→spot pattern.
Our results show the effects of diffusion coefficient and intensity of nonlocal
effect on vegetation distribution, which provide theoretical basis for the study
of vegetation.
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1. Introduction

Vegetation plays an extremely important role in ecological protection. It is bene-
ficial to changing the abiotic environment and redistribution of resources [12]. In
particular, in the process of photosynthesis, plants absorb a large amount of car-
bon dioxide and release oxygen, which can achieve the purpose of purifying air and
improving air quality. In addition, vegetation has a strong role in soil and wa-
ter conservation. The roots of the vegetation retain water to form fertile soil [43].
Therefore, the destruction of vegetation can inevitably lead to the imbalance of
ecological system.

In arid or semi-arid areas, water is the decisive factor restricting the growth of
vegetation. A univariate vegetation model was studied and described the dynamics
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of vegetation growth. This paper revealed that water resource was scarce in arid
or semi-arid regions, there were spatial mechanisms of short distance promotion
and long distance inhibition between vegetation [31]. In 1999, Klausmeier proposed
the reaction-diffusion equation of two-variable vegetation and water, and the for-
mation mechanism of stripe pattern was revealed [29]. Then, a three-dimensional
model was proposed by Rietkerk et al., which was divided into vegetation, surface
water and ground water [22]. So far, there has been much research on vegetation
models [3, 4, 11, 27, 34, 35, 53]. Vegetation pattern is the direct reflection of vege-
tation spatial distribution. The spatial density distribution of vegetation and the
stability of spatial structure can be seen [8,16,23–26,30,32,44,50]. Vegetation pat-
tern can provide early warning of desertification and theoretical basis for vegetation
protection [28,41,46,57,58].

In recent years, there are many researches on nonlocal interaction [1,10,13,37,48].
Nonlocal actions are generally expressed as integrals in mathematical models. The
dispersal of plants can be described by nonlocal integrals and thus the dispersal
of seeds over long distances can be proved. The increase of seed dispersal rate is
not conducive to the formation of spot pattern structure [9]. Zaytseva et al. con-
structed a grass sedimension dynamic model with nonlocal term, the integral term
was represented by a Mexican kernel function which could reflect the scale depen-
dence mechanism. They deduced the conditions for the generation of pattern and
the factors affecting the structure of pattern [67]. In addition, nonlocal intraspecies
competition can also be coupled to the predator-prey model, and it is found that
nonlocal competition can lead to the formation of spatial patterns [42].

So far, most studies on vegetation are concerned with the local effects of vegeta-
tion models. In fact, the spatial organization of vegetation is generated through a
new mechanism of nonlocal promotion and local inhibition [55]. There are two pro-
cesses for vegetation to absorb water. First, precipitation which is the main source
of water resources permeates the soil. Second, the roots of vegetation absorb water,
and then convert it into their own biomass [52]. Consequently, in arid or semi-arid
areas, the roots of the vegetation absorb water in a certain area around it through
a certain time, and this phenomenon is called nonlocal delay mathematically.

Nonlocal delay has been studied in many fields [7, 20, 21, 54, 65, 68]. A reaction-
diffusion model for studying plankton communities was developed with nonlocal
delay. In particular, this model included two delays of nutrient cycle and plankton
growth response and it was proved that delay can induce space-time periodic solu-
tions [5]. Guo et al. studied the properties of spatial inhomogeneous steady-state
solutions for the reaction-diffusion systems with nonlocal delay [17,18]. Some schol-
ars have studied the properties of traveling wave solutions for systems of partial
differential equations with nonlocal time delays [19, 36, 40, 59, 61–63]. A class of
systems with Lotka-Volterra competition and nonlocal delay were studied, and the
properties of the solution were verified [38,39,60]. Chen et al. considered a univari-
ate diffusive logistic model with nonlocal delay. The authors studied the stability of
spatial inhomogeneous equilibrium solutions and Hopf bifurcation [6]. To sum up,
there are few studies on the nonlocal processes of water absorption by roots. This
paper mainly studies the vegetation-water reaction-diffusion model with nonlocal
delay to reveal the growth process of vegetation.

The structure of this article is as follows. Firstly, through stability analysis
we get the conditions for the generation of stationary pattern. Next, amplitude
equation is obtained by multiscale analysis. Finally, the influence of intensity of
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nonlocal effect τ and diffusion coefficient β on the pattern structure are analyzed
by numerical simulations and some important conclusions are given.

2. Model derivation and stability analysis

The two-variable mathematical model which was composed by Klausmeier in 1999
is the following form [29]:

∂N

∂T
= FJWN2 −BN +D∆N,

∂W

∂T
= R− IW − FWN2 + V̄ ∂W

∂X ,

(2.1)

where N and W represent plant biomass (N) and water (W ), respectively. R
represents the rate of rainfall which is the supply of water and IW denotes lost
rate due to evaporation. Plant absorbs water at a rate of FWN2 and the rate of
conversion to biomass is J . BN is the natural mortality of plant. V̄ ∂W

∂X is the run-off

and the water flows downhill. D is the diffusion rate of plant and ∆ = ∂2

∂X2 + ∂2

∂Y 2 .
In this paper, we mainly study the nonlocal process of water uptake by plants,

a integra is introduced as follows [15,66]:

Ṽ =

∫
Φ

∫ t

−∞
G(x, y, t− s)f(t− s)W (y, s)dsdy,

where Φ ∈ [ã, b̃] × [ã, b̃] and x, y ∈ Φ, G(x, y, t)f(t) represents the weight of the
water from other positions to current position before time t. The integral is the
average value of water absorption by roots of vegetation at position x.

G(x, y, t) is the solution of the following equation

∂G

∂t
= D

(
∂2G

∂x2
+
∂2G

∂y2

)
and

∂G

∂n
= 0, G(x, y, 0) = δ(x− y).

Time distribution function f(t) represents the water absorption strength of the
roots and is selected the Gamma function (K = 0, 1, 2, ...):

f(t) =
tKe−

t
τ

τK+1Γ(K + 1)
.

Choose K = 0 and K = 1, and function f(t) have the following forms [15]:

f0(t) =
1

τ
e−

t
τ , f1(t) =

t

τ2
e−

t
τ ,

which represent weak kernel and strong kernel, respectively. Figure 1 shows the
variations of the weak kernel and strong kernel with respect to time t, respectively.
As can be seen from Figure 1(A), the weak kernel function f0(t) decreases with
as time goes on, which biologically reflects that the water absorption strength of
the roots decreases over time. For strong kernel f1(t), its graph increases firstly



476 J. Liang & G. Sun

and then decreases over time, which reflects in arid or semi-arid areas vegetation is
severely short of water, the strength of water absorption of the root is strong at first,
then water resource near the roots of vegetation is reduced and the water absorption
intensity is weakened. Obviously, strong kernel are more practical. Besides, there
are few studies on nonlocal delay with strong kernel in vegetation system. Hence,
this paper mainly considers the effect of strong kernel on vegetation pattern. Incor-
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Figure 1. Image of the weak kernel (A) and strong kernel (B) over time.

porating the above mentioned nonlocal action into (2.1), the following system can
be obtained:

∂N

∂T
= FJN2

∫
Φ

∫ t
−∞G(x, y, t− s)f(t− s)W (y, s)dsdy −BN +D∆N,

∂W

∂T
= R− IW − FN2

∫
Φ

∫ t
−∞G(x, y, t− s)f(t− s)W (y, s)dsdy

+V̄ ∂W
∂X + D̄∆W.

(2.2)

Suppose the boundary condition of system (2.2) is Neuman boundary, and the
initial value is nonnegative. We mainly consider the growth of vegetation on flat
ground. Consequently, system (2.2) can be rewritten as follows:

∂N

∂T
= FJN2

∫
Φ

∫ t
−∞G(x, y, t− s)f(t− s)W (y, s)dsdy −BN +D∆N,

∂W

∂T
= R− IW − FN2

∫
Φ

∫ t
−∞G(x, y, t− s)f(t− s)W (y, s)dsdy + D̄∆W.

(2.3)

Let Ṽ =
∫

Φ

∫ t
−∞G(x, y, t− s) t−sτ2 e

− t−sτ W (y, s)dsdy, f(t) = t
τ2 e
− t
τ , system (2.3)

becomes the following form [15]:

∂N

∂T
= FJN2Ṽ −BN +D∆N,

∂W

∂T
= R− IW − FN2Ṽ + D̄∆W,

∂Ṽ

∂T
=

1

τ
(P − Ṽ ) +D∆Ṽ ,

∂P

∂T
=

1

τ
(W − P ) +D∆P,

(2.4)

where P =
∫

Φ

∫ t
−∞G(x, y, t− s) 1

τ e
− t−sτ W (y, s)dsdy.
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Next, we prove that systems (2.3) and (2.4) are equivalent. Firstly, the following
lemma is given.

Lemma 2.1. Let Φ is a bounded domain in R2 and the boundary is smooth,
W (x, t) : Φ × (t0,+∞) is continuous and P (x, t) ∈ C2,1(Φ × [t0,+∞))

⋂
C0(Φ ×

[t0,+∞)) satisfies 

∂P

∂T
=

1

τ
(W − P ) +D∆P, x ∈ Φ, t > t0,

∂P

∂−→n
= 0, x ∈ ∂Φ, t ≥ t0,

P (x, t0) = P0(x), x ∈ Φ.

(2.5)

Then P =
∫

Φ

∫ t
−∞G(x, y, t− s) 1

τ e
− t−sτ W (y, s)dsdy as t→ +∞.

Proof. Suppose that {(υn, ψn(x))}|∞n=1 is the eigenvalues and the corresponding
normalized eigenfunctions of

−4ψ(x) = υψ(x), x ∈ Φ,

∂ψ

∂−→n
= 0, x ∈ ∂Φ.

The for the equation
µt(x, t) = −

1

τ
µ+D∆µ, x ∈ Φ, t > t0,

∂µ

∂−→n
= 0, x ∈ ∂Φ, t ≥ t0,

µ(x, t0) = µ0(x), x ∈ Φ,

the solution of this equation is µ(x, t) =
∞∑
n=1

cne
−(Dυn+ 1

τ )(t−t0)ψn(x), where cn =∫
Φ
ψn(y)µ0(y)dy. Therefore, one has:

µ(x, t) =

∫
Φ

(

∞∑
n=1

e−(Dυn)(t−t0)ψn(x)ψn(y))e−
1
τ (t−t0)µ0(t0)dy

=

∫
Φ

G(x, y, t− t0)e−
1
τ (t−t0)µ0(y)dy.

(2.6)

Similarly, let 
µt(x, t) =

1

τ
W (x, t) +D∆µ, x ∈ Φ,

∂µ

∂−→n
= 0, x ∈ ∂Φ, t ≥ t0,

µ(x, t0) = µ0(x), x ∈ Φ,

a particular solution to the above equation is

µt(x, t) =

∫ t

t0

∫
Φ

G(x, y, t− t0)e−
1
τ (t−s)W (y, s)dyds.
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Applying the Duhamel principle, the solution of (2.5) is

P (x, t) =

∫
Φ

G(x, y, t− t0)e−
1
τ (t−t0)P(y, t0)dy

+

∫ t

t0

∫
Φ

G(x, y, t− t0)e−
1
τ (t−s)W (y, s)dyds.

Then µ(x, t)→ 0 as t→∞. Therefore, we have

P =

∫
Φ

∫ t

−∞
G(x, y, t− s) 1

τ
e−

t−s
τ W (y, s)dsdy as t→ +∞.

It is important to note that Turing pattern generation is the asymptotic behavior
when t → ∞. According to the Lemma 2.1 and the conclusions of references [14,
15], (2.3) and (2.4) can be regarded as equivalent. Therefore, if (N(x, y),W (x, y),
Ṽ (x, y), P (x, y)) is the steady state solution of system (2.4), then (N(x, y),W (x, y))
is the steady state solution of (2.3).

We perform nondimensionalization:

n =

√
F√
I
N, w =

√
FJ√
I
W, t = IT, γ =

B

I
, β =

D̄

D
, η =

√
FJ

I
√
I
R,

v =

√
FJ√
I
Ṽ , p =

√
FJ√
I
P, x =

√
I√
D
x, y =

√
I√
D
y.

Then the resulted nondimensionalized system is:

∂n

∂t
= n2v − γn+ ∆n,

∂w

∂t
= η − w − n2v + β∆w,

∂v

∂t
=

1

τ
(p− v) + ∆v,

∂p

∂t
=

1

τ
(w − p) + ∆p.

(2.7)

By calculating that system (2.7) has three equilibria:

E0 =(n0, w0, v0, p0) = (0, η, η, η),

E1 =(n1, w1, v1, p1)

=

(
2γ

η +
√
η2 − 4γ2

,
η +

√
η2 − 4γ2

2
,
η +

√
η2 − 4γ2

2
,
η +

√
η2 − 4γ2

2

)
,

E2 =(n2, w2, v2, p2)

=

(
2γ

η −
√
η2 − 4γ2

,
η −

√
η2 − 4γ2

2
,
η −

√
η2 − 4γ2

2
,
η −

√
η2 − 4γ2

2

)
.

The equilibrium E0 is also called as the bare-soil and the two nonnegative equi-
libria should satisfy η > 2γ. Next, we mainly analyze the stability of the positive
equilibria E1 and E2.
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2.1. Stability of the equilibrium E1

Next we linearize system (2.7) at the equilibrium E1 when there is in the absence
of diffusion, and obtain the following system:

dn

dt
= a11n+ a12w + a13v + a14p,

dw

dt
= a21n+ a22w + a23v + a24p,

dv

dt
= a31n+ a32w + a33v + a34p,

dp

dt
= a41n+ a42w + a43v + a44p,

(2.8)

where,

a11 = γ, a12 = 0, a13 =
η −

√
η2 − 4γ2

η +
√
η2 − 4γ2

, a14 = 0,

a21 = −2γ, a22 = −1, a23 = −η −
√
η2 − 4γ2

η +
√
η2 − 4γ2

, a24 = 0,

a31 = 0, a32 = 0, a33 = −1

τ
, a34 =

1

τ
,

a41 = 0, a42 =
1

τ
, a43 = 0, a44 = −1

τ
.

The characteristic equation of system (2.8) is as follows:

λ4 + Ῡ1(0)λ3 + Ῡ2(0)λ2 + Ῡ3(0)λ+ Ῡ4(0) = 0,

where,

Ῡ1(0) = 1− γ +
2

τ
, Ῡ2(0) =

2

τ2
+

2(1− γ)

τ
− γ,

Ῡ3(0) =
a13 + 1− 2γ

τ2
− 2γ

τ
, Ῡ4(0) =

γ

τ2
(a13 − 1).

According to Routh-Hurwite criterion, E1 is stable if and only if Reλi < 0, then
the following conditions hold:

Ῡ1(0) > 0, Ῡ2(0) > 0, Ῡ4(0) > 0,

Ῡ1(0)Ῡ2(0)Ῡ3(0) > Ῡ2
3(0) + Ῡ2

1(0)Ῡ4(0),

Ῡ1(0)Ῡ2(0) > Ῡ3(0).

(2.9)

Since a13 < 1, it is easy to see that Ῡ4(0) < 0. This is a contradiction with
(2.9). Therefore, E1 is unstable.
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2.2. Stability of the equilibrium E2

Linearzing system (2.7) near E2(n2, w2, v2, p2), we obtain the linear system as fol-
lows: 

∂n

dt
= b11n+ b12w + b13v + b14p+ ∆n,

∂w

dt
= b21n+ b22w + b23v + b24p+ β∆w,

∂v

dt
= b31n+ b32w + b33v + b34p+ ∆v,

∂p

dt
= b41n+ b42w + b43v + b44p+ ∆p,

(2.10)

where,

b11 = γ, b12 = 0, b13 =
η +

√
η2 − 4γ2

η −
√
η2 − 4γ2

, b14 = 0,

b21 = −2γ, b22 = −1, b23 = −η +
√
η2 − 4γ2

η −
√
η2 − 4γ2

, b24 = 0,

b31 = 0, b32 = 0, b33 = −1

τ
, b34 =

1

τ
,

b41 = 0, b42 =
1

τ
, b43 = 0, b44 = −1

τ
.

Let 
n

w

v

p

 =


n∗

w∗

v∗

p∗

+


c1

c2

c3

c4

 eλt+i
~k~r + c.c+O(ε2),

where ~k = (kx, ky), ~r = (X,Y ), c.c represents all complex conjugate, λ is the growth
rate of perturbation in time t and i2 = −1. We substitute the above equation into
(2.10) to get the characteristic equation:

detA =

∣∣∣∣∣∣∣∣∣∣∣∣

b11 − κ2 − λ b12 b13 b14

b21 b22 − βk2 − λ b23 b24

b31 b32 b33 − k2 − λ b34

b41 b42 b43 b44 − κ2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

which is equivalent to:

λ4 + Ῡ1(k)λ3 + Ῡ2(k)λ2 + Ῡ3(k)λ+ Ῡ4(k) = 0,

where,

Ῡ1(k)

=(β + 3)k2 +
− γτ + τ + 2

τ
,
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Ῡ2(k)

=(3β + 3)k4 − βγτ + 2γτ − 2β − 3τ − 4

τ
k2 − γτ2 + 2γτ − 2τ − 1

τ2
,

Ῡ3(k)

=(3β + 1)k6 − 2βγτ + γτ − 4β − 3τ − 2

τ
k4 − 2βγτ + 2γτ2 + 2γτ − β − 4τ − 1

τ2
k2

− 1

τ2(ηρ− η2 + 2γ2)
(2ρηγτ − 2η2γτ + 4γ3τ + ρηγ − η2γ + 2γ3 − ηρ+ η2),

Ῡ4(k)

=βk8 − βγτ − 2β − τ
τ

k6 − 2βγτ + γτ2 − β − 2τ

τ2
k4 − 1

τ2(ηρ− η2 + 2γ2)

(ρηβγ + 2ρηγτ − η2βγ − 2η2γτ + 2βγ3 + 4γ3τ − ηρ+ η2)k2

− γ(ηρ− η2 + 4γ2)

τ2(ηρ− η2 + 2γ2)
,

where ρ =
√

(η + 2γ)(η − 2γ).
The characteristic equation of the system (2.7) without the diffusion term is:

µ4 + Ῡ1(0)µ3 + Ῡ2(0)µ2 + Ῡ3(0)µ+ Ῡ4(0) = 0,

where,

Ῡ1(0) =
− γτ + τ + 2

τ
, Ῡ2(0) = −

γτ2 + 2γτ − 2τ − 1

τ2
,

Ῡ3(0) = − 1

τ2(ηρ− η2 + 2γ2)
(2ρηγτ − 2η2γτ + 4γ3τ

+ ρηγ − η2γ + 2γ3 − ηρ+ η2),

Ῡ4(0) = − γ(γρ− η2 + 4γ2)

τ2(ηρ− η2 + 2γ2)
.

We have that E2 is stable if and only if (2.9) holds. In the case when there
is diffusion in system (2.7), the conditions for stability of the equilibrium are as
follows: 

(1)Ῡ1(k) > 0, Ῡ2(k) > 0, Ῡ4(k) > 0,

(2)Ῡ1(k)Ῡ2(k)Ῡ3(k) > Ῡ2
3(k) + Ῡ2

1(k)Ῡ4(k),

(3)Ῡ1(k)Ῡ2(k) > Ῡ3(k).

(2.11)

The steady state E2 of the model (2.7) without diffusion is stable and if it
is unstable in presence of diffusion, then Turing instability occurs [45]. Hence,
the characteristic equation must have at least one positive eigenvalue or complex
eigenvalues with positive real part. When (2.9) is established and one of (1)-(3) of
(2.11) is not satisfied, the equilibrium becomes unstable and the Turing pattern is
induced. Next, we will consider two cases in which patterns are induced.

Case 1. (a) Ῡ1(k) = (β + 3)k2 +
− γτ + τ + 2

τ
.

Since all the parameters are nonnegative, Ῡ1(k) > 0 is always established under
the condition Ῡ1(0) > 0.
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(b) Let Ῡ2(k) = f22z
2 + f21z + f20, z = k2,

where,

f22 = 3β + 3,

f21 = −βγτ + 2γτ − 2β − 3τ − 4

τ
,

f20 = −γτ
2 + 2γτ − 2τ − 1

τ2
.

Since f22 > 0, then Ῡ2(k) takes the minimum value when z = − f21
2f22

,

Ῡ2(k)min =
4f22f20 − f2

21

4f22
.

In summary, Turing patterns are induced by combining (2.9) and the following
conditions: {

4f22f20 − f2
21 < 0,

f21 < 0.

(c) Let Ῡ4(k) = R(k2) = f44z
4 + f43z

3 + f42z
2 + f41z + f40 and z = k2, where,

f44 = β,

f43 = −
βγτ − 2β − τ

τ
,

f42 = −
2βγτ + γτ2 − β − 2τ

τ2
,

f41 = − 1

τ2(ηρ− η2 + 2γ2)
(ρηβm+ 2ρηγτ − η2βγ − 2η2γτ

+ 2βγ3 + 4γ3τ − ηρ+ η2)),

f40 = − γ(ηρ− η2 + 4γ2)

τ2(ηρ− η2 + 2γ2)
.

It is noted that f44 > 0 and f40 > 0. The first derivative of R(z) is:

dR(z)

dz
= 4f44z

3 + 3f43z
2 + 2f42z + f41.

Let e = 4f44, f = 3f43, g = 2f42 and h = f41, then we have:

dR(z)

dz
= ez3 + fz2 + gz + h.

Suppose that

ϕ = f2 − 3eg,

χ = fg − 9eh,

ψ = g2 − 3fh,

∆ = χ2 − 4ϕψ,

we can obtain some properties about polynomials R(z):
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For any z = k2, f40 > 0 and R(z) → +∞ as z → +∞. Besides, according to
Shengjin’s criterion [21], we have:

When ϕ = χ = 0, dR(z)
dz = 0 has three equal real roots:

z1 = z2 = z3 = − f

3e
= − g

f
= −3h

g
.

When ∆ = 0, dR(z)
dz = 0 has the roots:

z1 = −f
e

+K, z2 = z3 = −K
2
,

where K = χ
ψ (ψ 6= 0).

When ∆ > 0, dR(z)
dz = 0 has the following roots:

z1 = −
f + 3
√
y1 + 3

√
y2

3e
,

z2,3 =
−f + 1

2 ( 3
√
y1 + 3

√
y2)±

√
3

2 ( 3
√
y1 − 3

√
y2)i

3e
,

where y1,2 = ϕf + 3e(
−χ±
√
χ2−4ϕψ

2 ).

When ∆ < 0, dR(z)
dz = 0 has the roots as follows:

z1 = −
f + 2

√
ϕ cos(φ3 )

3e
,

z2,3 =
−f +

√
ϕ(cos φ3 ±

√
3 sin φ

3 )

3e
,

where φ = arccosT, T = 2ϕf−3eχ
2ϕ
√
ϕ (ϕ > 0,−1 < T < 1).

When Ῡ4(k) < 0 and (2.9) hold, Turing pattern occurs. As a consequence, we
have the following conclusion:

(1) If ϕ = χ = 0, R(z) has an extreme point z1 = − f
3e = − g

f = − 3h
g and it is

a minimum point and z2 is the maximum point. The sufficient conditions for the
occurrence of Turing pattern are as follows:{

z1 > 0,

R(z1) < 0.

(2) If ∆ = 0, R(z) has two extreme points z1, z2 and the minimum is to the right
of the maximum. The sufficient conditions for the occurrence of Turing pattern are
as follows: {

max(z1, z2) > 0,

R(max(z1, z2)) < 0.

(3) If ∆ > 0, R(z) has a real extreme point z1. The following inequalities are
the conditions for producing Turing pattern:{

z1 > 0,

R(z1) < 0.



484 J. Liang & G. Sun

(4) If ∆ < 0, R(z) has three extreme points z1, z2, z3. Suppose z1 < z2 < z3, then
z1 and z3 are the minimum points. We consider the conditions for the occurrence
of Turing pattern in two cases:

When z1 > 0,

min{R(z1), R(z3)} < 0.

When z1 < 0, {
z3 > 0,

R(z3) < 0.

Case 2. Ῡ1(k)Ῡ2(k) < Ῡ3(k).

Let R1(k2) = Ῡ1(k)Ῡ2(k)− Ῡ3(k) and z = k2, then

R1(z) = r13z
3 + r12z

2 + r11z + r10,

where,

r13 = 3β2 + 9β + 8,

r12 = −1

τ
(β2γτ + 10βγτ − 2β2 − 6βτ + 10γτ − 20β − 15τ − 20),

r11 =
1

τ2
(βγ2τ2 − 2βγτ2 + 2γ2τ2 − 8βγτ − 10γτ2 + 4βτ − 16γτ + 3τ2

+ 6β + 20τ + 12),

r10 =
1

τ3(ηρ− η2 + 2γ2)
(ρηγ2τ3 − η2γ2τ3 + 2γ4τ3 + 2ρηγ2τ2 − ρηγτ3 − 2η2γ2τ2

+ η2γτ3 + 4γ2τ2 − 2γ3τ3 − 8ρηγτ2 + 8η2γτ2 − 16γ3τ2 − 6ρηγτ + 2ρητ2

+ 6η2γτ − 2η2τ2 − 12γ3τ + 6ρητ − 6η2τ + 10γ2τ + 2ηρ− 2η2 + 4γ2).

It is easy to verify that for any z = k2, R1(z) → +∞ when z → +∞. Further-
more, the first derivative of R1(z) is:

dR1(z)

dz
= 3r13z

2 + 2r12z + r11 = 0.

The equation has two roots, which implies R1(z) has two extreme points:

z1 =
−r12 +

√
r2
12 − 3r13r11

3r13

and

z2 =
−r12 −

√
r2
12 − 3r13r11

3r13
.

Applying the above analysis, it yields

zmax = z2 < zmin = z1.

When R1(z)min = R1(z1) < 0, the pattern is induced. The minimum point z1

is the square of the wave number k, and it should be guaranteed to be positive.
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Based the above analysis, the system (2.7) produces Turing bifurcation when the
conditions are certified: 

r2
12 − 3r13r11 > 0,

z1 > 0,

R1(z1) < 0.

Case 3. Ῡ1(k)Ῡ2(k)Ῡ3(k) > Ῡ2
3(k) + Ῡ2

1(k)Ῡ4(k).

This case is complicated to analyze and we do not consider it in this paper.
We show the dispersion relation in Fig. 2 with fixed parameters: η = 2.6, γ =

1.2, β = 30, and τ has different values. Turing patterns are induced under the
conditions Re(λ) < 0 when k = 0 and Re(λ) > 0 when k > 0.

0 0.2 0.4 0.6 0.8 1 1.2

-1.8

-1.5

-1.2

-0.9

-0.6

-0.3

0

0.3

0.6

0.90.9

Re(λ)

k

=0.22

=0.15

=0.10

. .

Figure 2. Dispersion relation of system (2.7). In the case of fixed other parameters: η = 2.6, γ =
1.2, β = 30, τ takes four different values. When τ takes different values, with the increase of k, the real
part of the characteristic root is greater than zero, the spatial pattern of system (2.7) is generated. The
black dots is the critical points of Re(λ) < 0.

3. Multiple scale analysis

In this part, we derive the amplitude equation to reveal the spatiotemporal behavior
of the attachment of Turing bifurcation points [21,52]. Only when the wave number
disturbance approaches the critical value kT , the steady state solution will become
unstable. This paper mainly studies the vegetation-water model, and the process
of changing pattern structure by controlling the parameters of amplitude equation
is studied. In order to obtain the control parameter τ , the critical wave number
k = kT is calculated at first. Substituting kT into Υ4(k) = 0, bifurcation threshold
τT is obtained.
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We rewrite the system (2.7) at the equilibrium E2 = (N2,W2, V2, P2):

∂n

∂t
= b11n+ b12w + b13v + b14p+N1(n,w, v, p) + ∆n,

∂w

∂t
= b21n+ b22w + b23v + b24p+N2(n,w, v, p) + β∆w,

∂v

∂t
= b31n+ b32w + b33v + b34p+N3(n,w, v, p) + ∆v,

∂p

∂t
= b41n+ b42w + b43v + b44p+N4(n,w, v, p) + ∆p,

(3.1)

where,

N1(n,w, v, p) = n2w,

N2(n,w, v, p) = −n2w,

N3(n,w, v, p) = 0,

N4(n,w, v, p) = 0.

Since near the onset τ = τT , the following expression is a form of the solution
of system (2.7):

U = Uu +

3∑
j=1

U0[Aje
i ~kj ·~r + ~Aje

−i ~kj ·~r],

where ~kj and −~kj are a pair of oscilatory wave vectors and |kj | = kT , and the
direction is different.

Take advantage of the above formula, we can obtain the solution of (2.7) as the
following form:

U0 =

3∑
j=1

U0[Aje
i ~kj ·~r + Āje

−i ~kj ·~r].

Let U = (n,w, v, p)T and N = (N1, N2, N3, N4)T , then system (2.7) can be
rewritten as:

∂U

∂t
= LU +N, (3.2)

where,

L =


b11 + ∆ b12 b13 b14

b21 b22 + δ∆ b23 b24

b31 b32 b33 + ∆ b34

b41 b42 b43 b44 + ∆

 .

Let

L = LT + (τT − τ)M, (3.3)
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where,

LT =


a∗11 + ∆ a∗12 a∗13 a∗14

a∗21 a∗22 + δ∆ a∗23 a∗24

a∗31 a∗32 a∗33 + ∆ a∗34

a∗41 a∗42 a∗43 a∗44 + ∆

 ,

and

M =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 ,

a∗11 = b11, a
∗
12 = 0, a∗13 = b13, a

∗
14 = 0,

a∗21 = b21, a
∗
22 = b22, a

∗
23 = b23, a

∗
24 = 0,

a∗31 = 0, a∗32 = 0, a∗33 = − 1
τ , a

∗
34 = 1

τ ,

a∗41 = 0, a∗42 = 1
τ , a

∗
43 = 0, a∗44 = − 1

τ ,

m11 =
b11−a∗11
τT−τ , m12 =

b12−a∗12
τT−τ , m13 =

b13−a∗13
τT−τ , m14 =

b14−a∗14
τT−τ ,

m21 =
b21−a∗21
τT−τ , m22 =

b22−a∗22
τT−τ , m23 =

b23−a∗23
τT−τ , m24 =

b24−a∗24
τT−τ ,

m31 =
b31−a∗31
τT−τ , m32 =

b32−a∗32
τT−τ , m33 =

b33−a∗33
τT−τ , m34 =

b34−a∗34
τT−τ ,

m41 =
b41−a∗41
τT−τ , m42 =

b42−a∗42
τT−τ , m43 =

b43−a∗43
τT−τ , m44 =

b44−a∗44
τT−τ .

Next we will use multiscale analysis, let

τT − τ = ετ1 + ε2τ2 + ε3τ3 + o(ε4), (3.4)

U =


n

w

v

p

 = ε


n1

w1

v1

p1

+ ε2


n2

w2

v2

p2

+ ε3


n3

w3

v3

p3

+ o(ε4), (3.5)

N = ε2h2 + ε3h3 + o(ε4), (3.6)

where,

h2 =


h21

h22

0

0

 , h3 =


n2

1w1

−n2
1w1

0

0

 ,
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h21 =
η −

√
η2 − 4γ2

2
n2

1 +
γ

η −
√
η2 − 4γ2

n1w1,

h22 = −η −
√
η2 − 4γ2

2
n2

1 −
γ

η −
√
η2 − 4γ2

n1w1.

Let
∂

∂t
=

∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ o(ε3). (3.7)

∂
∂T0

corresponds to the fast variable. Then we can obtain the following deriva-
tive:

∂A

∂t
= ε

∂A

∂T1
+ ε2 ∂A

∂T2
+ o(ε3), (3.8)

where T0 = t, T1 = εt, T2 = ε2t.
Noting (3.2) and (3.3), it can be verified the following equation:

∂U

∂t
= (LT + (τT − τ)M)U +N = LTU + (τT − τ)MU +N. (3.9)

We substitute (3.4)-(3.7) into (3.9) and obtain the following equations:

LT


n1

w1

v1

p1

 = 0, (3.10)

LT


n2

w2

v2

p2

 =
∂

∂T1


n1

w1

v1

p1

− τ1M

n1

w1

v1

p1

− h2, (3.11)

LT


n3

w3

v3

p3

 =
∂

∂T1


n2

w2

v2

p2

+
∂

∂T2


n1

w1

v1

p1

− τ1M

n2

w2

v2

p2

− τ2M

n1

w1

v1

p1

− h3.

(3.12)

Clearly, LT is a linear operator at a critical point. (n1, w1, v1, p1)T is a linear
combination of eigenvectors which is corresponding to eigenvalue of zero. It then
follows from (3.10) that:

n1

w1

v1

p1

 =


l1

l2

l3

1

 (Θ1e
i ~k1·~r + Θ2e

i ~k2·~r + Θ3e
i ~k3·~r) + c.c., (3.13)
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where,

l1 =
a∗13

(k2
T − a∗11)(1 + τk2

T )
, l2 = 1 + τk2

T , l3 =
1

1 + τk2
T

,

and Kj = KT , j = 1, 2, 3. Θj is the amplitude of ei
~kj ·~r under the first order

perturbation.
The following expression can be deduced by Eq. (3.11) directly:

LT


n2

w2

v2

p2



=
∂

∂T1


n1

w1

v1

p1

− τ1M

n1

w1

v1

p1

− h2

=
∂

∂T1


n1

w1

v1

p1

− τ1

m11n1 +m12w1 +m13v1 +m14p1

m21n1 +m22w1 +m23v1 +m24p1

m31n1 +m32w1 +m33v1 +m34p1

m41n1 +m42w1 +m43v1 +m44p1

−

h21

h22

0

0



=


Fn

Fw

Fv

Fp

 .

(3.14)

Applying the Fredholm solvability condition, we conclude that a sufficient con-
dition for (3.14) to have a nontrivial solution is that the function of the right of
(3.14) is orthogonal to zero eigenvector of L+

T and the expression is as follows:
1

l+2

l+3

l+4

 e−i
~kj ·~r, j = 1, 2, 3,

where,

l+2 =
d1k

2
T − a∗11

a∗21

,
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l+3 =
τT (d1k

2
T − a∗11)(d2k

2
T − a∗22)− τTa∗12a

∗
21

a∗21

,

l+4 =
a∗11

a∗21

l+2 l
+
3 .

According to the orthogonal condition, we can obtain that

(
1, l+2 , l

+
3 , l

+
4

)

F jn

F jw

F jv

F jp

 = 0,

where F jn, F
j
w, F

j
v , F

j
p represent the coefficients corresponding to ei

~kj ·~r in Fn, Fw, Fv,
Fp, then we have:

Fn

Fw

Fv

Fp

 =


Fn

Fw

Fv

Fp

 ei
~k1·~r +


Fn

Fw

Fv

Fp

 ei
~k2·~r +


Fn

Fw

Fv

Fp

 ei
~k3·~r.

Combining (3.13) with (3.14), one has:
F 1
n

F 1
w

F 1
v

F 1
p

 =


l1
∂Θ1

∂T1

l2
∂Θ1

∂T1

l3
∂Θ1

∂T1

∂Θ1

∂T1

− τ1

m11l1 +m12l2 +m13l3 +m14

m21l1 +m22l2 +m23l3 +m24

m31l1 +m32l2 +m33l3 +m34

m41l1 +m42l2 +m43l3 +m44

Θ1 +


h21

h22

0

0

Θ2Θ3,

(3.15)
F 2
n

F 2
w

F 2
v

F 2
p

 =


l1
∂Θ2

∂T1

l2
∂Θ2

∂T1

l3
∂Θ2

∂T1

∂Θ2

∂T1

− τ1

m11l1 +m12l2 +m13l3 +m14

m21l1 +m22l2 +m23l3 +m24

m31l1 +m32l2 +m33l3 +m34

m41l1 +m42l2 +m43l3 +m44

Θ2 +


h21

h22

0

0

Θ1Θ3,

(3.16)
F 3
n

F 3
w

F 3
v

F 3
p

 =


l1
∂Θ3

∂T1

l2
∂Θ3

∂T1

l3
∂Θ3

∂T1

∂Θ3

∂T1

− τ1

m11l1 +m12l2 +m13l3 +m14

m21l1 +m22l2 +m23l3 +m24

m31l1 +m32l2 +m33l3 +m34

m41l1 +m42l2 +m43l3 +m44

Θ3 +


h21

h22

0

0

Θ1Θ2.

(3.17)



Effect of nonlocal delay with strong kernel on vegetation pattern 491

Applying the Fredholm solvability condition, we get that:

(l1 + l2l
+
2 + l3l

+
3 + l+4 )

∂Θ1

∂T1
=τ1[(m11l1 +m12l2 +m13l3 +m14) + l+2 (m21l1

+m22l2 +m23l3 +m24) + l+3 (m31l1 +m32l2

+m33l3 +m34) + (m41l1 +m42l2 +m43l3

+m44)]Θ1 − (h21 + l+2 h22)Θ2Θ3,

(l1 + l2l
+
2 + l3l

+
3 + l+4 )

∂Θ2

∂T1
=τ1[(m11l1 +m12l2 +m13l3 +m14) + l+2 (m21l1

+m22l2 +m23l3 +m24) + l+3 (m31l1 +m32l2

+m33l3 +m34) + (m41l1 +m42l2 +m43l3

+m44)]Θ2 − (h21 + l+2 h22)Θ1Θ3,

(l1 + l2l
+
2 + l3l

+
3 + l+4 )

∂Θ3

∂T1
=τ1[(m11l1 +m12l2 +m13l3 +m14) + l+2 (m21l1

+m22l2 +m23l3 +m24) + l+3 (m31l1 +m32l2

+m33l3 +m34) + (m41l1 +m42l2 +m43l3

+m44)]Θ3 − (h21 + l+2 h22)Θ1Θ2.
(3.18)

The second formula of equation (3.11) is solved as follows:
n2

w2

v2

p2

 =


N0

W0

V0

P0

+

3∑
i=1


Ni

Wi

Vi

Pi

 ei
~ki·~r +

3∑
i=1


Nii

Wii

Vii

Pii

 ei2
~ki·~r +


N12

W12

V12

P12

 ei(
~k1− ~k2)·~r

+


N23

W23

V23

P23

 ei(
~k2− ~k3)·~r +


N31

W31

V31

P31

 ei(
~k3− ~k1)·~r + c.c.,

(3.19)

where,

N0 = n0(|Θ1|2 + |Θ2|2 + |Θ3|2),

W0 = w0(|Θ1|2 + |Θ2|2 + |Θ3|2),

V0 = v0(|Θ1|2 + |Θ2|2 + |Θ3|2),

P0 = p0(|Θ1|2 + |Θ2|2 + |Θ3|2),

Ni = l1Pi,
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Wi = l2Pi,

Vi = l3Pi,

Nii = n11Θ2
i ,

Wii = w11Θ2
i ,

Vii = v11Θ2
i ,

Pii = p11Θ2
i ,

Nij

Wij

Vij

Pij

 =


n12

w12

v12

p12

ΘiΘj ,

where n0, w0, v0, p0, n11, w11, v11, p11, n12, w12, v12, p12 are known.
For ε3, we get

LT


n3

w3

v3

p3

 =
∂

∂T1


n2

w2

v2

p2

+
∂

∂T2


n1

w1

v1

p1

− τ1

m11n2 +m12w2 +m13v2 +m14p2

m21n2 +m22w2 +m23v2 +m24p2

m31n2 +m32w2 +m33v2 +m34p2

m41n2 +m42w2 +m43v2 +m44p2



− τ2M


m11n1 +m12w1 +m13v1 +m14p1

m21n1 +m22w1 +m23v1 +m24p1

m31n1 +m32w1 +m33v1 +m34p1

m41n1 +m42w1 +m43v1 +m44p1

−


n2
1w1

−n2
1w1

0

0



=


En

Ew

Ev

Ep

 .

(3.20)

Therefore, the following expression can be derived by the above equation:


E1
n

E1
w

E1
v

E1
p

 =


l1
∂P1

∂T1

l2
∂P1

∂T1

l3
∂P1

∂T1

∂P1

∂T1

+


l1
∂Θ1

∂T2

l2
∂Θ1

∂T2

l3
∂Θ1

∂T2

∂Θ1

∂T2

− τ1

l1m11 + l2m12 + l3m13 +m14

l1m21 + l2m22 + l3m23 +m24

l1m31 + l2m32 + l3m33 +m34

l1m41 + l2m42 + l3m43 +m44

P1
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− τ2


l1m11 + l2m12 + l3m13 +m14

l1m21 + l2m22 + l3m23 +m24

l1m31 + l2m32 + l3m33 +m34

l1m41 + l2m42 + l3m43 +m44

Θ1

+


G11|Θ1|2 +G12|Θ2|2 + |Θ3|2

G21|Θ1|2 +G22|Θ2|2 + |Θ3|2

0

0

Θ1, (3.21)


E2
n

E2
w

E2
v

E2
p

 =


l1
∂P2

∂T1

l2
∂P2

∂T1

l3
∂P2

∂T1

∂P2

∂T1

+


l1
∂Θ2

∂T2

l2
∂Θ2

∂T2

l3
∂Θ2

∂T2

∂Θ2

∂T2

− τ1

l1m11 + l2m12 + l3m13 +m14

l1m21 + l2m22 + l3m23 +m24

l1m31 + l2m32 + l3m33 +m34

l1m41 + l2m42 + l3m43 +m44

P2

(3.22)

− τ2


l1m11 + l2m12 + l3m13 +m14

l1m21 + l2m22 + l3m23 +m24

l1m31 + l2m32 + l3m33 +m34

l1m41 + l2m42 + l3m43 +m44

Θ2

+


G11|Θ1|2 +G12|Θ2|2 + |Θ3|2

G21|Θ1|2 +G22|Θ2|2 + |Θ3|2

0

0

Θ2,


E3
n

E3
w

E3
v

E3
p

 =


l1
∂P3

∂T1

l2
∂P3

∂T1

l3
∂P3

∂T1

∂P3

∂T1

+


l1
∂Θ3

∂T2

l2
∂Θ3

∂T2

l3
∂Θ3

∂T2

∂Θ3

∂T2

− τ1

l1m11 + l2m12 + l3m13 +m14

l1m21 + l2m22 + l3m23 +m24

l1m31 + l2m32 + l3m33 +m34

l1m41 + l2m42 + l3m43 +m44

P3

(3.23)

− τ2


l1m11 + l2m12 + l3m13 +m14

l1m21 + l2m22 + l3m23 +m24

l1m31 + l2m32 + l3m33 +m34

l1m41 + l2m42 + l3m43 +m44

Θ3
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+


G11|Θ1|2 +G12|Θ2|2 + |Θ3|2

G21|Θ1|2 +G22|Θ2|2 + |Θ3|2

0

0

Θ3,

where G11 = G12 = G13 = l21l2, G21 = G22 = G23 = −l21l2.
By the Fredholm solvability condition, then it is combined with (3.21)-(3.23)

allows us to deduce the following expression:

(l1 + l2l
+
2 + l3l

+
3 + l+4 )(

∂P1

∂T1
+
∂Θ1

∂T2
)

=(τ1P1 + τ2Θ1)[(l1m11 + l2m12 + l3m13 +m14) + l+2 (l1m21 + l2m22 + l3m23

+m24) + l+3 (l1m31 + l2m32 + l3m33 +m34) + l+4 (l1m41 + l2m42 + l3m43

+m44)]− (G11|Θ1|2 +G12|Θ2|2 + |Θ3|2)Θ1 − l+2 (−G11|Θ1|2 −G12|Θ2|2

+ |Θ3|2)Θ1,

(l1 + l2l
+
2 + l3l

+
3 + l+4 )(

∂P2

∂T1
+
∂Θ2

∂T2
)

=(τ1P2 + τ2Θ2)[(l1m11 + l2m12 + l3m13 +m14) + l+2 (l1m21 + l2m22 + l3m23

+m24) + l+3 (l1m31 + l2m32 + l3m33 +m34) + l+4 (l1m41 + l2m42 + l3m43

+m44)]− (G11|Θ1|2 +G12|Θ2|2 + |Θ3|2)Θ2 − l+2 (−G11|Θ1|2 −G12|Θ2|2

+ |Θ3|2)Θ2,

(l1 + l2l
+
2 + l3l

+
3 + l+4 )(

∂P3

∂T1
+
∂Θ3

∂T2
)

=(τ1P3 + τ2W3)[(l1m11 + l2m12 + l3m13 +m14) + l+2 (l1m21 + l2m22 + l3m23

+m24) + l+3 (l1m31 + l2m32 + l3m33 +m34) + l+4 (l1m41 + l2m42 + l3m43

+m44)]− (G11|Θ1|2 +G12|Θ2|2 + |Θ3|2)Θ3 − l+2 (−G11|Θ1|2 −G12|Θ2|2

+ |Θ3|2)Θ3.
(3.24)

Let Ai = Ani = l3A
w
i = l2A

v
i = l1A

p
i be the coefficient of ei

~kj ·~r (j = 1, 2, 3), then


Ani

Awi

Avi

Api

 = ε


l1

l2

l3

1

Wi + ε2


l1

l2

l3

1

Pi + o(ε3), i = 1, 2, 3. (3.25)

Multiply (3.18) by ε and multiply (3.24) by ε2, and merge variables using (3.8)
and (3.25). Therefore, the following equation is obtained:

ε0
∂A1

∂t = ξA1 + hA2A3 − [α1|A1|2 + α2(|A2|2 + |A3|2)]A1,

ε0
∂A2

∂t = ξA2 + hA1A3 − [α1|A2|2 + α2(|A1|2 + |A3|2)]A2,

ε0
∂A3

∂t = ξA3 + hA1A2 − [α1|A3|2 + α2(|A1|2 + |A2|2)]A3,

(3.26)
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where,

ε0 = − l1 + l2l
+
2 + l3l

+
3 + l+4

qτT
, ξ = −τT − τ

τT
, h =

l2l3
qτT

,

α1 = −G11 + l+2 G21

qτT
, α2 = −G21 + l+2 G22

qτT
,

q = (l1m11 + l2m12 + l3m13 +m14) + l+2 (l1m21 + l2m22 + l3m23 +m24)

+ l+3 (l1m31 + l2m32 + l3m33 +m34) + l+4 (l1m41 + l2m42 + l3m43 +m44).

Substituting Ai = ϑie
iςi into (3.26), we can obtain the following form:

ε0
∂ς
∂t = −hϑ

2
1ϑ

2
2+ϑ2

1ϑ
2
3+ϑ2

2ϑ
2
3

ϑ1ϑ2ϑ3
,

ε0
∂ϑ1

∂t = σϑ1 + hϑ2ϑ3cosς − α1ϑ
3
1 − α2(ϑ2

2 + ϑ2
3)ϑ1,

ε0
∂ϑ2

∂t = σϑ2 + hϑ1ϑ3cosς − α1ϑ
3
2 − α2(ϑ2

1 + ϑ2
3)ϑ2,

ε0
∂ϑ3

∂t = σϑ3 + hϑ1ϑ2cosς − α1ϑ
3
3 − α2(ϑ2

1 + ϑ2
2)ϑ3,

(3.27)

where ς = ς1 + ς2 + ς3.
System (3.27) corresponds to four kinds of different pattern structures. Ta-

ble 1 shows that the corresponding generation conditions of four different pattern
structures.

Table 1. Four different pattern structures corresponding to the generation conditions

Pattern structure Expression Generation conditions

mixed state ϑ1 = |h|
α2−α1

, ϑ2 =ϑ3 =
√

σ−α1ϑ2
1

α2+α1
α2>α1, σ>σ3 = h2α1

(α2−α1)2

spots pattern ϑ1 =ϑ2 =ϑ3 =
|h|±
√
h2+4(α1+2ḡ2)σ

2(α1+2α2) σ > σ1 = −h2

4(α1+2α2)

stripes pattern ϑ1 =
√

σ
α1
, ϑ2 = ϑ3 = 0 σ > 0

stationary state ϑ1 = ϑ2 = ϑ3 = 0 always

4. Numerical results

We conduct numerical simulations according to the results of the above theoretical
analysis in this part. The boundary condition is the Neumann boundary condition.
The space region studied is a two-dimensional space region with a size of [0, 100]×
[0, 100], the time interval is 500. The space and time steps are ∆x = 1 and ∆t =
0.001, respectively. Several types of vegetation patterns are obtained by using multi-
scale theory. The following is mainly to study the effect of intensity of nonlocal effect
τ and diffusion coefficient β on vegetation pattern.

Selecting the following parameter values: η = 2.6, γ = 1.2. Through calcu-

lation, the parameters values can be obtained: h = l2l3
qτT

, α1 = −G11+l+2 G21

qτT
, α2 =

−G21+l+2 G22

qτT
, σ1 = −h2

4(α1+2α2) , σ2 = 0, σ3 = h2α1

(α2−α1)2 , σ4 = (2α1+α2)h2

(α2−α1)2 can be given.

According to reference [21], the pattern structure corresponding to different control
parameters is shown in Table 2.

We choose τ = 0.22 and other parameters can be obtained h = l2l3
qτT

, σ =
0.6273504, σ3 = 4.3764255. Obviously, inequality 0 = σ2 < σ < σ3 holds and
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Table 2. The pattern structure corresponding to different control parameters

Interval Pattern structure

σ ∈ (σ2, σ3) spot pattern

σ ∈ (σ3, σ4) mixed pattern

σ ∈ (σ4,+∞) stripe pattern

system (2.7) will present spot pattern. Fig. 3 shows that the temporal succession of
vegetation pattern when τ = 0.22, β = 30. The vegetation is uniformly distributed
at the start. With the increase of time, the vegetation pattern becomes spot pat-
tern, and the vegetation gathers together in the form of clusters. Fig. 4 shows that
the evolution of water pattern over time. By comparing Fig. 3 and Fig. 4, it can be
concluded that the densities of vegetation and water present a reverse relationship
at the same location which is related to the local soil quality [37].

(a) (b)

(c) (d)

Figure 3. When τ = 0.22, the evolution of vegetation pattern over time. The pattern finally presents
spot structure. Other parameters are fixed as: η = 2.6, γ = 1.2, β = 30. The evolution process of pattern
is (a)→ (b)→ (c)→ (d).

In order to explore the influences of diffusion coefficient β on vegetation pattern,
the simulation results are shown in Figure 5. Obviously, the pattern structure
changes with increase of β. When β = 8, vegetation pattern shows the stripe
structure and control parameter σ is greater σ4 (Fig. 5(a)). With the increase of β,
strip pattern loses stability and spot pattern appears gradually, now σ is between
σ3 and σ4, and the mixed patterns appear in Fig. 5(b). When β increases further,
pattern shows spot structure in Fig. 5(c) and Fig. 5(d), and σ is between σ2 and σ3.
In the process, the stripe pattern disappears gradually and the whole space presents
spot pattern structure [21]. One can conclude that with the increase of diffusion
coefficient, the change of pattern structure is as follows: stripe pattern−→mixed
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(a) (b)

(c) (d)

Figure 4. When τ = 0.22, the evolution of water density over time. Other parameters are fixed as:
η = 2.6, γ = 1.2, β = 30. The evolution process of pattern is (a)→ (b)→ (c)→ (d).

pattern−→ spot pattern.
Moreover, we run another set of simulations for different τ in Fig. 6 with

η = 2.6, γ = 1.2, β = 30. As can be seen from Fig. 6, the number of spot patterns
increases with the increase of τ . This means the number of vegetation clusters
formed increases. Besides, that vegetation forms smaller clusters as the intensity of
nonlocal effect increases by numerical simulation. One can conclude that the isola-
tion degree of vegetation pattern increases which is not conducive to the robustness
of the ecosystem.The spatial distribution of vegetation is shown in Fig. 7 which is
more intuitively.

In order to further study the influence of parameter values on pattern formation,
we carry out relevant numerical simulation. In Fig. 8, we plot the effect τ on the
recovery rate and recovery time. Select the initial state of steady-state pattern at
τ = 0.24, the time required for different τ to reach the initial state under small
perturbation is simulated which is called recovery time. The recovery rate is the
rate at which the initial state is reached and is as shown in Figure 8(b). The results
show that the recovery time decrease gradually with the increase of τ . On the
contrary, the recovery rate increases as τ increases, that is, τ is more closer to 2.4
and the recovery rate is more higher.

5. Conclusions and discussions

In this study, the nonlocal delay term with strong kernel is introduced into the
vegetation-water model which is considered the nonlocal effect of water uptake by
vegetation roots. A two-variable model with nonlocal delay is transformed into
a four-variable reaction diffusion equation. Through mathematical analysis, we
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(a) (b)

(c) (d)

Figure 5. Different β corresponds to the vegetation patterns. With the increase of β, the pattern
changes from stripe structure to spot structure. Other parameters are fixed as: η = 2.6, γ = 1.2, τ = 0.22.
(a) β = 8; (b) β = 10; (c) β = 12; (d) β = 14.
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Figure 6. The number of spot patterns at different parameter τ with η = 2.6, γ = 1.2, β = 30.
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Figure 7. Different τ corresponds to the spatial distribution of vegetation. Other parameters are fixed
as: η = 2.6, γ = 1.2, β = 30. (a) τ = 0.01; (b) τ = 0.1; (c) τ = 0.15; (d) τ = 0.24.
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Figure 8. Different τ corresponds to recovery time and recovery rate. Other parameters are fixed
as: η = 2.6, γ = 1.2, β = 30. (a) Recovery time; (b) Recovery rate. The recovery time is negatively
correlated with τ and the recovery rate is positively correlated with τ .
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deduce the conditions for stability of ODE model and Turing instability of the
model with diffusion. The amplitude equation is derived from the theory of multi-
scale analysis. According to the coefficients of the amplitude equation, the four
kinds of structures and stability of the pattern can be determined.

By numerical simulations, the relation between intensity of nonlocal effect τ
and vegetation density is obtained. The results show that the isolation degree of
vegetation pattern increases as τ increases, the increased intensity of nonlocal effect
is not conducive to improving the robustness of the ecosystem which provides a
theoretical basis for vegetation protection. Our results point to the recovery time
is negatively correlated with τ , and the recovery rate is positively correlated with
τ which implies that the effect of τ on ecosystem resilience.

We next explore the effect of diffusion coefficient of water on pattern structure.
The results show that the increase of β leads to the change of pattern structure:
stripe pattern→mixed pattern→spot pattern. This implies that water diffusion has
an important influence on vegetation distribution and may lead to desertification
in this area.

It is worth noting that strong kernel are studied in this paper, which is very
different from the weak kernel. In fact, the roots of vegetation not only absorb
water at the current location, but also absorb water near the roots over a certain
period of time, which suggests that it is necessary to introduce nonlocal effect
into the vegetation model. We expand on the existing work and specifically study
the effect of strong kernel on vegetation distribution. According to the numerical
simulations of strong kernel, we can get that the intensity of water absorption by
roots of vegetation increases firstly and then decreases which is more consistent
with the characteristics of water absorption by vegetation in arid and semi-arid
regions. It can be seen from our conclusions that the nonlocal delay plays a great
role in vegetation growth. Our findings provide a theoretical basis for vegetation
protection and early warning of desertification.

It is rewarding mentioning that our methods and results can also be applied to
other fields, such as infectious disease models [2, 33, 47], population models [64,
69] and so on. Meanwhile, the slope is also a significant factor for vegetation
growth. Hence, the vegetation system should be coupled with the slope factor. An
interesting topic for future work is that the noise factors and meteorological factors
(e.g., temperature, light and rainfall) are coupled into the vegetation model and the
future vegetation distribution is predicted based on the actual data [49,51,56].
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