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A STOCHASTIC MULTI-SCALE COVID-19
MODEL WITH INTERVAL PARAMETERS∗

Qigui Yang1,† and Jiabing Huang1

Abstract A stochastic multi-scale COVID-19 model that coupling within-
host and between-host dynamics with interval parameters is established. The
model is composed of a within-host fast model and a between-host slow stochas-
tic model. The dynamics of fast model can be governed by basic reproduc-
tion number R0w. The uninfected equilibrium E0w is globally asymptotically
stable (g.a.s) when R0w < 1, but infected equilibrium E∗fast is g.a.s when
R0w > 1. The dynamics of the coupling slow stochastic model can be gov-
erned by stochastic threshold Rs. The disease will die out when Rs < 1
and will persistent in mean when Rs > 1. One finds that Rs is an increasing
function of R0w. Further, some numerical simulations are presented to demon-
strate the results and reveal that the dynamics of the slow stochastic model
are approximate to the stochastic multi-scale model. It provides us a method
to investigate the stochastic multi-scale model. Furthermore, some effective
measures are given to control the COVID-19. Moreover, our work contributes
basic understandings of coupling within-host and between-host models with
interval parameters and environmental noises.

Keywords COVID-19, stochastic multi-scale, interval parameter, stochastic
threshold, persistence in mean.
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1. Introduction

In March 2020, a novel coronavirus disease (COVID-19) was declared as a major
global health threat by World Health Organization(WHO). As of 2 August 2023,
have been 768983095 confirmed cases of COVID-19 including 6953743 deaths re-
ported to the WHO [42]. Epidemic models are useful for us to understand infectious
disease dynamics and develop preventive measures [20,22,35,38,47]. At microscale
scale, many models about COVID-19 have been proposed [1, 24]. For instance, the
authors in [24] investigate the within-host viral dynamics of COVID-19 of the model
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as follows 

dEp(s)
ds = dp(Ep(0)− Ep(s))− βwEp(s)V (s),

dEpν(s)
ds = βwEp(s)V (s)− dpνEpν(s),

dV (s)
ds = πνEpν(s)− dνV (s),

(1.1)

where Ep, Epν and V are the number of uninfected pulmonary epithelial cells,
infected pulmonary epithelial cells and the virus. They obtain a basic reproductive

number R01w =
βwπνEp(0)
dpνdν

of the within-host scale model (1.1). At macroscale scale,

a lot of mathematical models of COVID-19 have been studied [21, 28, 34, 44]. The
authors investigate the between-host transmission dynamics of COVID-19 and give
effective control measures. Obviously, when a person infected with COVID-19 is
found, he should be quarantined. It should be noted that the people who have
recovered from COVID-19 can also become infected again. SIQS epidemic model
is an important model in diseases control [6,10,15,40]. For simplicity’s sake, many
researchers use SIQS model to investigate the COVID-19 [23,37].

The authors in [1, 23, 24, 37] establish single scale models to investigate within-
host virus dynamics at the individual level and provide some treatment measures,
or explore between-host transmission dynamics at the group level. However, many
studies have shown that viral load at an individual level can significantly affect the
progression of infection [14,45]. The higher the viral load, the greater the between-
host transmission rate. This means that the dynamics at different scales are not
independent of each other, but closely related. Then, it is important to construct a
multi-scale model that can combine within-host and between-host scales [13].

In recent years, some multi-scale models have been proposed in the area of math-
ematical biology [2, 12, 25, 27, 39]. They integrated the within-host model into the
between-host model by introducing the viral load-dependent between-host trans-
mission rate or disease-induced mortality rate to explore the potential effect of
micro dynamics on the macro dynamics. In 2012, Feng et al. [12] investigated a
model for coupling within-host and between-host dynamics in an infectious dis-
ease. They further showed that the two dynamic processes are explicitly depend
on each other. In 2018, Almocera et al. [2] mainly studied that the basic repro-
duction number for between-host dynamics is an increasing function of the basic
reproduction number for within-host dynamics. In 2021, Li et al. [25] researched
a two-strain model with coinfection that links immunological and epidemiological
dynamics across scales. In 2022, Wang et al. [39] investigated a multi-scale model
of COVID-19 for coupling within-host and between-host dynamics. They showed
that immune response play a significant role in controlling viral replication within
infected individuals. In 2023, Liu et al. [27] presented a coupled model linking
the evolutionary dynamics of viral virulence to transmission dynamics in order to
investigate the influence of evolutionary dynamics on transmission dynamics. How-
ever, the multi-scale models [2, 12, 25, 27, 39] are deterministic. Many studies have
shown that environmental noises have a significant impact on the development of
epidemic [30]. Stochastic epidemic models are more appropriate to investigate epi-
demic model in many circumstances [18,33,41]. To the best of our knowledge, there
are very few studies of stochastic epidemic models that coupling within-host viral
dynamics and between-host transmission dynamics under environmental noises. It
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is very difficult to investigate stochastic multi-scale epidemic model that coupling
within-host and between-host dynamics, since it requires data from within-host and
between-host for the same individual. Inspired by [39], one uses a conceptual “av-
erage” individual to avoid the complexity of keeping track of the dynamics within
each individual. The within-host dynamics usually occur on the time scale of hours
to days, which corresponding to fast dynamics. However, the between-host trans-
mission dynamics occur on the scale of weeks, months to years, which corresponding
to slow dynamics.

Inspired by the above discussions, one establishes a stochastic multi-scale model
of slow-fast system which coupling within-host and between-host dynamics with
precise parameters as follows:

dS(t) =
{

Λ− ψ0(S, I)− µS + γI + εQ
}

dt+ σ1SdB1(t),

dI(t) =
{
ψ0(S, I)−

[
µ+ ω2 + δ + γ

]
I
}

dt+ σ2IdB2(t),

dQ(t) =
{
δI −

[
µ+ ω3 + ε

]
Q
}

dt+ σ3QdB3(t),

dEp(t) = 1
ε

[
dp(Ep(0)− Ep)− βwEpV

]
dt,

dEpν(t) = 1
ε

[
βwEpV − dpνEpν

]
dt,

dV (t) = 1
ε

[
πνEpν − dνV

]
dt,

where S, I and Q are the number of susceptible, infective and quarantined individ-
uals, respectively. 0 < ε� 1 is a small dimensionless parameter. Bi(t) (i = 1, 2, 3)
are standard one-dimensional independent Brownian motions with intensity σi >
0 (i = 1, 2, 3). Considering inhibition effect of susceptible individuals and infectives
individuals, one chooses the incidence rate of the Crowley-Martin type as

ψ0(S, I) =
β0(V )SI

1 + α1S + α2I + α1α2SI
,

where α1 represent the measure of inhibition effect, such as preventive measure
taken by susceptible individuals, α2 represent the measure of inhibition effect such
as treatment with respect to infectives [8, 11]. β0(V ) = rV

KwV+1 is the coupling
function of the viral load [45].

Further, the parameters of the models [2, 12, 25, 27, 39] are assumed to be pre-
cisely known. However, parameters of model may be imprecise due to the lack of
the accurate information data or the errors in the measurements. Therefore, epi-
demic models with imprecise parameters must be considered [3, 4]. Fortunately,
the imprecise parameter can be expressed by interval number [9]. For instance, let
Λ̂ represents the corresponding imprecise parameter of Λ. Λ̂ can be expressed by
interval number Λ̂ = [Λl,Λu], where Λl and Λu are the lower and upper limit of
the interval number Λ̂, respectively. Meanwhile, interval number can be expressed
by interval-valued function [9]. Hence, Λ̂ = (Λl)1−k(Λu)k, k ∈ [0, 1]. Similarly,
imprecise parameters of other parameters can be represented by interval paramet-
ric function. Therefore, one obtains a stochastic multi-scale model which coupling
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within-host and between-host dynamics with interval parameters as follows:

dS(t) =
{

(Λl)1−k(Λu)k − ψ1(S, I)− (µl)1−k(µu)kS + (γl)1−k(γu)kI

+(εl)1−k(εu)kQ
}

dt+ (σl1)1−k(σu1 )kSdB1(t),

dI(t) =
{
ψ1(S, I)−A1I

}
dt+ (σl2)1−k(σu2 )kIdB2(t),

dQ(t) =
{

(δl)1−k(δu)kI −A2Q
}

dt+ (σl3)1−k(σu3 )kQdB3(t),

dEp(t) = 1
ε

[
(dlp)

1−k(dup)k(Ep(0)− Ep)− (βlw)1−k(βuw)kEpV
]
dt,

dEpν(t) = 1
ε

[
(βlw)1−k(βuw)kEpV − (dlpν)1−k(dupν)kEpν

]
dt,

dV (t) = 1
ε

[
(πlν)1−k(πuν )kEpν − (dlν)1−k(duν )kV

]
dt,

(1.2)

where

ψ1(S, I) =
β(V )SI

1 + (αl1)1−k(αu1 )kS + (αl2)1−k(αu2 )kI + (αl1α
l
2)1−k(αu1α

u
2 )kSI

,

A1 = (µl)1−k(µu)k + (ωl2)1−k(ωu2 )k + (δl)1−k(δu)k + (γl)1−k(γu)k, (1.3)

A2 = (µl)1−k(µu)k + (ωl3)1−k(ωu3 )k + (εl)1−k(εu)k,

with β(V ) = (rl)1−k(ru)kV
(Kl

w)1−k(Ku
w)kV+1

and parameter imprecision k ∈ [0, 1]. The descrip-

tion of the model’s parameters are shown in Table 1.
This paper is organized as follows. In Section 2, one presents several prelimi-

naries. In Section 3, stability and bifurcation of the fast model of multi-scale model
(1.2) are given. In Section 4, dynamics of slow stochastic model of multi-scale model
(1.2) are investigated. In Section 5, some numerical simulations are presented. In
Section 6, some conclusions and suggestions are given.

2. Preliminaries

In this section, one gives several preliminaries in the following. Let (Ω,F , {Ft}t≥0,P)
be a complete probability space with the filtration {Ft}t≥0 satisfying the usual con-
ditions. Bi(t) (i = 1, 2, 3) are Ft-adapted defined on the complete probability space.
Let R3

+ := {(X1, X2, X3) : Xi > 0, i = 1, 2, 3}.
Consider a 3-dimensional stochastic differential equation as follows:

dX(t) = f(X(t), t)dt+ g(X(t), t)dB(t), t ≥ 0, (2.1)

with initial value X(0) = X0 ∈ R3
+, where B(t) is a standard 3-dimensional Brow-

nian motion. An operator L related to equation (2.1) is defined by [29],

L =
∂

∂t
+

3∑
i=1

fi(X, t)
∂

∂Xi
+

1

2

3∑
i,j=1

[
g>(X, t)g(X, t)

]
ij

∂2

∂Xi∂Xj
.

By operating L on V(x, t) (functions from space C2,1(R3
+ × [t0,∞),R+), one has

LV(X, t) = Vt(X, t) + VX(X, t)f(X, t) +
1

2
trac

[
g>(X, t)VXX(X, t)g(X, t)

]
,
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where (·)> is the transpose and

Vt =
∂V

∂t
, VX =

( ∂V

∂X1
,
∂V

∂X2
,
∂V

∂X3

)>
, VXX =

( ∂2V

∂Xi∂Xj

)
3×3

.

Applying the Itô’s formula, one obtains

dV(X(t), t) = LV(X(t), t)dt+ VX(X(t), t)g(X(t), t)dB(t).

Definition 2.1. [9] (Interval number) An interval number A is denoted by a closed
interval [al, au] and defined by A = [al, au] = {x|al ≤ x ≤ au, x ∈ R}, where R is
the set of real numbers. al and au are the lower and upper limit of the interval
number, respectively. Especially, every real number can be denoted by the interval
number [a, a].

For any two interval numbers A = [al, au] and B = [bl, bu], one defines the
following arithmetic operations

(i) Addition: A + B = [al, au] + [bl, bu] = [al + bl, au + bu];

(ii) Subtraction: A− B = [al, au]− [bl, bu] = [al − bu, au − bl];
(iii) Scalar multiplication:

αA = α[al, au] =

 [αal, αau], if α ≥ 0,

[αau, αal], if α < 0.

(iv) Multiplication:
A · B = [al, au] · [bl, bu] =

[
min{albl, albu, aubl, albu},max{albl, albu, aubl, albu}

]
;

(v) Division: A/B = [al, au]/[bl, bu] = [al, au] · [ 1
bu ,

1
bl

].

Definition 2.2. [9] (Interval-valued function) An interval-valued function for the
interval [al, au] can be represented by a function h(k) = (al)1−k(au)k for k ∈ [0, 1].

Definition 2.3. [5] (Stochastically ultimate boundedness) The solution X(t) of
(2.1) is called to be stochastically ultimately bounded, if for any ξ ∈ (0, 1), there is
a positive constant ρ = ρ(ξ), such that

lim sup
t→∞

P[|X(t)| > ρ] < ξ.

Definition 2.4. [5] (Stochastic permanence) The solution X(t) of (2.1) is called
to be stochastically permanence, if for any ξ ∈ (0, 1), there is a pair of positive
constants ρ = ρ(ξ) and % = %(ξ) such that

lim inf
t→∞

P[|X(t)| ≤ ρ] ≥ 1− ξ, lim inf
t→∞

P[|X(t)| ≥ %] ≥ 1− ξ.

Definition 2.5. [26] (Persistence in mean) The solution X(t) of (2.1) is called
persistence in mean, if there exists a positive constant m such that

lim inf
t→∞

〈X(t)〉 > m > 0, a.s. where, 〈X(t)〉 =
1

t

∫ t

0

X(s)ds.



520 Q. Yang & J. Huang

3. Stability and bifurcation of fast model of (1.2)

This section investigates the stability and bifurcation of the fast model of multi-
scale model (1.2). In the fast time scale τ = t

ε , the multi-scale model (1.2) can be
written as

dS(τ) = ε
{

(Λl)1−k(Λu)k − ψ1(S, I)− (µl)1−k(µu)kS + (γl)1−k(γu)kI

+(εl)1−k(εu)kQ
}

dτ +
√
ε(σl1)1−k(σu1 )kSdB1(τ),

dI(τ) = ε
{
ψ1(S, I)−A1I

}
dτ +

√
ε(σl2)1−k(σu2 )kIdB2(τ),

dQ(τ) = ε
{

(δl)1−k(δu)kI −A2Q
}

dτ +
√
ε(σl3)1−k(σu3 )kQdB3(τ),

dEp(τ) =
[
(dlp)

1−k(dup)k(Ep(0)− Ep)− (βlw)1−k(βuw)kEpV
]
dτ,

dEpν(τ) =
[
(βlw)1−k(βuw)kEpV − (dlpν)1−k(dupν)kEpν

]
dτ,

dV (τ) =
[
(πlν)1−k(πuν )kEpν − (dlν)1−k(duν )kV

]
dτ.

Let ε→ 0 yields,
dEp(τ)

dτ = (dlp)
1−k(dup)k(Ep(0)− Ep)− (βlw)1−k(βuw)kEpV,

dEpν(τ)
dτ = (βlw)1−k(βuw)kEpV − (dlpν)1−k(dupν)kEpν ,

dV (τ)
dτ = (πlν)1−k(πuν )kEpν − (dlν)1−k(duν )kV.

(3.1)

Obviously, the within-host fast model (3.1) has an uninfected equilibrium E0fast =
(Ep(0), 0, 0). By the method of next generation matrix [36], the basic reproductive
number of the fast model (3.1) is

R0w =
(βlwπ

l
ν)1−k(βuwπ

u
ν )kEp(0)

(dlpνd
l
ν)1−k(dupνd

u
ν )k

. (3.2)

Further, if R0w > 1, the model (3.1) has an infected equilibrium E∗fast =
(E∗p , E

∗
pν , V

∗), where

E∗p =
Ep(0)

R0w
, E∗pν =

(dlpd
l
ν)1−k(dupd

u
ν )k

(βlwπ
l
ν)1−k(βuwπ

u
ν )k

(R0w − 1), V ∗ =
(dlp)

1−k(dup)k

(βlw)1−k(βuw)k
(R0w − 1).

(3.3)

Theorem 3.1. The uninfected equilibrium E0fast of the deterministic fast model
(3.1) is globally asymptotically stable if R0w < 1.

Proof. Define a Lyapunov function

L1 =
(πlν)1−k(πuν )k

(dlpν)1−k(dupν)k
Epν + V.

It follows that

dL1

dτ
= (dlν)1−k(duν )k

[
(βlwπ

l
ν)1−k(βuwπ

u
ν )kEp

(dlpνd
l
ν)1−k(dupνd

u
ν )k

− 1

]
V ≤ (dlν)1−k(duν )k(R0w − 1)V.

Obviously, when R0w < 1, dL1

dτ < 0. When V = 0, then dL1

dτ = 0. By the LaSalle’s
Invariance Principle, E0fast is globally asymptotically stable if R0w < 1.



A stochastic multi-scale COVID-19 model 521

Theorem 3.2. The infected equilibrium E∗fast of the model (3.1) is globally asymp-
totically stable if R0w > 1.

Proof. The proof of this theorem is similar to [31], so one omits it.

Theorem 3.3. Suppose the infection rate of virus is βlw = βuw = βw. When βw
crosses β∗w from below, the model (3.1) undergoes forward bifurcation at R0w = 1,
where

β∗w =
(dlpνd

l
ν)1−k(dupνd

u
ν )k

(πlν)1−k(πuν )kEp(0)
. (3.4)

Proof. It follows from R0w = 1 that (3.4) holds. Let Y = (y1, y2, y3)> =
(Ep, Epν , V )>. Hence, the model (3.1) can be written as Ẏ = (g1, g2, g3)>. The
Jacobian matrix of the model (3.1) at the disease-free E0fast is given by

J(E0fast) =


−(dlp)

1−k(dup)k 0 −βwEp(0)

0 −(dlpν)1−k(dupν)k βwEp(0)

0 (πlν)1−k(πuν )k −(dlν)1−k(duν )k

 .
Hence, one obtains the characteristic polynomial of J(E0fast) as follows

f(λ) =− (λ+ (dlp)
1−k(dup)k)

[
(λ+ (dlpν)1−k(dupν)k)(λ+ (dlν)1−k(duν )k)

− βw(πlν)1−k(πuν )kEp(0)
]
.

The Jacobian J(E0fast) at βw = β∗w has eigenvalues

λ1 = −(dlp)
1−k(dup)k, λ2 = 0, λ3 = −(dlpν)1−k(dupν)k − (dlν)1−k(duν )k,

then E0fast is the non-hyperbolic equilibrium point. Let ν = (ν1, ν2, ν3)> and
w = (w1, w2, w3)> represent the left and right eigenvectors corresponding to the
eigenvalue zero of J(E0fast, β

∗
w), respectively. Hence, one can calculate that

ν1 = 0, ν2 = 1, ν3 =
β∗wEp(0)

(dlν)1−k(duν )k
, w1 = β∗wEp(0),

w2 =
(dlpd

l
ν)1−k(dupd

u
ν )k

(πlν)1−k(πuν )k
, w3 =

β∗wEp(0)(dlp)
1−k(dup)k

(dlpν)1−k(dupν)k
.

According to the Theorem 4.1 in [7], the local dynamic behavior near R0w = 1 can
be determined by constants a and b in the following:

a =

3∑
κ,i,j=1

νκwiwj
∂2gκ
∂yi∂yj

(E0fast, β
∗
w), b =

3∑
κ,i=1

νκwi
∂2gκ
∂yi∂βw

(E0fast, β
∗
w).

In order to calculate a and b, one just to find the nonzero partial derivative of g2

at J(E0fast, β
∗
w), hence

∂2g2

∂y1∂y3
(E0fast, β

∗
w) =

∂2g2

∂y3∂y1
(E0fast, β

∗
w) = β∗w,

∂2g2

∂y3∂βw
(E0fast, β

∗
w) = Ep(0).
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It follows that

a = −2(β∗w)2(πlνd
l
p)

1−k(πuν d
u
p)k < 0, b = (dlp)

1−k(dup)kEp(0) > 0.

By the Theorem 4.1 in [7], model (3.1) has forward bifurcation at R0w = 1.

Remark 3.1. As R0w crosses 1, E0fast changes its stability from stable to unstable
and a globally asymptotically infected equilibrium E∗fast appears.

4. Dynamics of slow stochastic model of (1.2)

This section investigates the dynamics of the following slow stochastic model (4.1)
of multi-scale model (1.2). In the slow time scale t = ετ , the within-host dynamics
of multi-scale model (1.2) can be rewritten as

ε
dEp(t)

dt = (dlp)
1−k(dup)k(Ep(0)− Ep)− (βlw)1−k(βuw)kEpV,

ε
dEpν(t)

dt = (βlw)1−k(βuw)kEpV − (dlpν)1−k(dupν)kEpν ,

εdV (t)
dt = (πlν)1−k(πuν )kEpν − (dlν)1−k(duν )kV.

Letting ε = 0, it leads to (3.3). When R0w < 1, the virus V (t) dies out quickly,
then β(V ) = 0 of multi-scale model (1.2). It follows that

lim
t→∞

I(t) = lim
t→∞

Q(t) = 0.

When R0w > 1, V (t) will quickly stabilize to V ∗ which is shown in (3.3). Thus, one
takes V ∗ replaces V (t) in the model (1.2). Therefore, one obtains a between-host
slow stochastic model as follows:

dS(t) =
{

(Λl)1−k(Λu)k − ψ(S, I)− (µl)1−k(µu)kS + (γl)1−k(γu)kI

+(εl)1−k(εu)kQ
}

dt+ (σl1)1−k(σu1 )kSdB1(t),

dI(t) = {ψ(S, I)−A1I}dt+ (σl2)1−k(σu2 )kIdB2(t),

dQ(t) =
{

(δl)1−k(δu)kI −A2Q
}

dt+ (σl3)1−k(σu3 )kQdB3(t),

(4.1)

where

ψ(S, I) =
β(V ∗)SI

1 + (αl1)1−k(αu1 )kS + (αl2)1−k(αu2 )kI + (αl1α
l
2)1−k(αu1α

u
2 )kSI

,

with β(V ∗) = (rl)1−k(ru)kV ∗

(Kl
w)1−k(Ku

w)kV ∗+1
.

4.1. Stability of the slow deterministic model (4.1)

When noise intensity (σli)
1−k(σui )k = 0, (i = 1, 2, 3), the stochastic model (4.1)

become a deterministic model. Obviously, the disease-free equilibrium of the deter-

ministic model of model (4.1) is E0 =
(

(Λl)1−k(Λu)k

(µl)1−k(µu)k
, 0, 0

)
. The basic reproduction

number of the deterministic model (4.1) is

R0b =
β(V ∗)(Λl)1−k(Λu)k[

(µl)1−k(µu)k + (αl1Λl)1−k(αu1 Λu)k
]
A1

, (4.2)
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where A1 is given in (1.3).

Theorem 4.1. The disease-free equilibrium E0 of the deterministic model (4.1) is
globally asymptotically stable if R0b < 1.

Proof. Let N(t) = S(t) + I(t) +Q(t), one has

dN(t)

dt
= (Λl)1−k(Λu)k − (µl)1−k(µu)kN − (ωl2)1−k(ωu2 )kI − (ωl3)1−k(ωu3 )kQ.

It leads to

lim sup
t→∞

N(t) ≤ (Λl)1−k(Λu)k

(µl)1−k(µu)k
.

Consider the Liapunov function L2 = I, it follows that

dL2

dt
=

{
β(V ∗)S

Φ
−A1

}
I

≤
{

β(V ∗)(Λl)1−k(Λu)k

[(µl)1−k(µu)k + (αl1Λl)1−k(αu1 Λu)k]
−A1

}
I

=A1(R0b − 1)I,

where

Φ = 1 + (αl1)1−k(αu1 )kS + (αl2)1−k(αu2 )kI + (αl1α
l
2)1−k(αu1α

u
2 )kSI. (4.3)

Obviously, when R0b < 1, dL2

dt < 0. dL2

dt = 0, iff I = 0. Meanwhile, it leads to

Q → 0 and S → (Λl)1−k(Λu)k

(µl)1−k(µu)k
. According to the LaSalle’s Invariance Principle, E0

is globally asymptotically stable if R0b < 1.

Remark 4.1. The large inhibition effect [αl1, α
u
1 ] of S can lead the basic reproduc-

tion number R0b small. When the parameters are precise and β(V ∗) = β, the basic
reproduction number R0b degrades to the basic reproduction number R0 which has
been investigated in [15].

4.2. Existence and uniqueness of positive solution of (4.1)

This subsection investigates the existence and uniqueness of positive solution of
(4.1) of multi-scale model (1.2).

Theorem 4.2. For any given initial value (S(0), I(0), Q(0)) ∈ R3
+, the model (4.1)

has a unique positive solution (S(t), I(t), Q(t)) and it stays in R3
+ with probability

one for all t ≥ 0.

Proof. Because the coefficients of the stochastic model (4.1) are locally Lipschitz
continuous, then the model (4.1) has a unique local solution (S(t), I(t), Q(t)) for
0 ≤ t < τe, where τe be the explosion time. In order to prove the globality of the
solution, one will proof τe = ∞ a.s. One chooses n0 > 0 large enough such that
S(0) > 0, I(0) > 0 and Q(0) > 0 in the interval [ 1

n0
, n0]. For any n > n0, defining

a stop-time

τn = inf
{
t ∈ [0, τe) : min{S, I,Q} ≤ 1

n
or max{S, I,Q} ≥ n

}
.
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Let inf ∅ =∞ (∅ denotes the empty set). Obviously, τn is increases as n→∞. Set
τ∞ = limn→∞ τn, hence τ∞ ≤ τe. If one can demonstrate τ∞ = ∞, it means that
τe =∞. Assuming τ∞ 6=∞, then there are two positive constants T1 and 0 < η < 1
such that P{τ∞ ≤ T1} ≥ η. Therefore, for each integer n1 ≥ n0, one can obtain

P[τn ≤ T1] ≥ η, n ≥ n1.

Define a Liapunov function

V1(S, I,Q) =
(
S − a− a ln

S

a

)
+
(
I − 1− ln I

)
+
(
Q− 1− lnQ

)
.

By the Itô’s formula, one has

dV1

=
(

1− a

S

){[
(Λl)1−k(Λu)k − β(V ∗)SI

Φ
− (µl)1−k(µu)kS + (γl)1−k(γu)kI

+ (εl)1−k(εu)kQ
]
dt+ (σl1)1−k(σu1 )kSdB1

}
+
a(σl1)2−2k(σu1 )2k

2
dt

+
(

1− 1

I

){[β(V ∗)SI

Φ
−A1I

]
dt+ (σl2)1−k(σu2 )kIdB2

}
+
(

1− 1

Q

){[
(δl)1−k(δu)kI −A2Q

]
dt+ (σl3)1−k(σu3 )kQdB3

}
+

(σl2)2−2k(σu2 )2k

2
dt+

(σl3)2−2k(σu3 )2k

2
dt

=
{

(Λl)1−k(Λu)k − (µl)1−k(µu)k(S + I +Q)− (ωl2)1−k(ωu2 )kI − (ωl3)1−k(ωu3 )kQ

− a(Λl)1−k(Λu)k

S
+
aβ(V ∗)I

Φ
+ a(µl)1−k(µu)k − a(γl)1−k(γu)kI

S
+A1 +A2

− a(εl)1−k(εu)kQ

S
− β(V ∗)S

Φ
− (δl)1−k(δu)kI

Q
+
a(σl1)2−2k(σu1 )2k

2

+
(σl2)2−2k(σu2 )2k

2
+

(σl3)2−2k(σu3 )2k

2

}
dt+

(
1− a

S

)
(σl1)1−k(σu1 )kSdB1

+
(

1− 1

I

)
(σl2)1−k(σu2 )kIdB2 +

(
1− 1

Q

)
(σl3)1−k(σu3 )kQdB3.

Obviously, β(V ∗)I
Φ ≤ (rl)1−k(ru)kI. Let a =

(ωl2)1−k(ωu2 )k

(rl)1−k(ru)k
, it follows that

dV1 ≤K1dt+ (σl1)1−k(σu1 )k(S − a)dB1

+ (σl2)1−k(σu2 )k(I − 1)dB2 + (σl3)1−k(σu3 )k(Q− 1)dB3,

where

K1 =(Λl)1−k(Λu)k + a(µl)1−k(µu)k +A1 +A2

+
a(σl1)2−2k(σu1 )2k

2
+

(σl2)2−2k(σu2 )2k

2
+

(σl3)2−2k(σu3 )2k

2
.

The rest part of the proof is similar to [5].
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4.3. Stochastically ultimately bounded and permanent

Theorem 4.3. The solutions of model (4.1) are stochastically ultimately bounded
and permanent for any initial value (S(0), I(0), Q(0)) ∈ R3

+.

Proof. Let N(t) = S(t) + I(t) +Q(t) and V2(X(t)) = N + 1
N . Applying the Itô’s

formula, one has

dV2(X(t)) =
(

1− 1

N2

){[
(Λl)1−k(Λu)k − (µl)1−k(µu)kN − (ωl2)1−k(ωu2 )kI

− (ωl3)1−k(ωu3 )kQ
]
dt+ (σl1)1−k(σu1 )kSdB1 + (σl2)1−k(σu2 )kIdB2

+ (σl3)1−k(σu3 )kQdB3

}
+

1

N3

[
(σl1)2−2k(σu1 )2kS2 + (σl2)2−2k(σu2 )2kI2

+ (σl3)2−2k(σu3 )2kQ2
]
dt

=
[
(Λl)1−k(Λu)k − (µl)1−k(µu)kN − (ωl2)1−k(ωu2 )kI − (ωl3)1−k(ωu3 )kQ

− (Λl)1−k(Λu)k − (µl)1−k(µu)kN − (ωl2)1−k(ωu2 )kI − (ωl3)1−k(ωu3 )kQ

N2

+
(σl1)2−2k(σu1 )2kS2 + (σl2)2−2k(σu2 )2kI2 + (σl3)2−2k(σu3 )2kQ2

N3

]
dt

+
(

1− 1

N2

)[
(σl1)1−k(σu1 )kSdB1 + (σl2)1−k(σu2 )kIdB2

+ (σl3)1−k(σu3 )kQdB3

]
≤

{
2(µl)1−k(µu)k + (ωl2)1−k(ωu2 )k + (ωl3)1−k(ωu3 )k +

∑3
i (σ

l
i)

1−k(σui )k

N

−(µl)1−k(µu)k(N +
1

N
) + (Λl)1−k(Λu)k − (Λl)1−k(Λu)k

N2

}
dt

+
(

1− 1

N2

)[
(σl1)1−k(σu1 )kSdB1 + (σl2)1−k(σu2 )kIdB2

+ (σl3)1−k(σu3 )kQdB3

]
≤
[
K2 − (µl)1−k(µu)kV2(t)

]
dt+

(
1− 1

N2

)[
(σl1)1−k(σu1 )kSdB1

+ (σl2)1−k(σu2 )kIdB2 + (σl3)1−k(σu3 )kQdB3

]
,

where

K2 =

[
2(µl)1−k(µu)k + (ωl2)1−k(ωu2 )k + (ωl3)1−k(ωu3 )k +

∑3
i (σ

l
i)

1−k(σui )k
]2

4(Λl)1−k(Λu)k

+ (Λl)1−k(Λu)k.

It follows that

E[e(µl)1−k(µu)ktV2(t)] =E[V2(0)] + E
[∫ t

0

e(µl)1−k(µu)ks[(µl)1−k(µu)kV2 + LV2]ds

]
≤E[V2(0)] +K2E

[∫ t

0

e(µl)1−k(µu)ksds

]
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=E[V2(0)] +
K2

(µl)1−k(µu)k
E
[
e(µl)1−k(µu)kt − 1

]
.

Hence,

E[V2(t)] ≤e−(µl)1−k(µu)ktE[V(0)] +
K2

(µl)1−k(µu)k
E
[
1− e−(µl)1−k(µu)kt

]
≤E[V2(0)] +

K2

(µl)1−k(µu)k

:=H.

One chooses ρ sufficiently large such that H
ρ < 1. By Chebyshev’s inequality,

P
[
N +

1

N
> ρ
]
≤ 1

ρ
E
[
N +

1

N

]
≤ H

ρ
:= ξ.

Then,

1− ξ ≤ P
[
N +

1

N
≤ ρ
]
≤ P

[1

ρ
≤ N ≤ ρ

]
.

Since

N2 ≤ 3|X|2 ≤ 3N2.

One gets

P
[

1√
3ρ
≤ N√

3
≤| X |≤ N ≤ ρ

]
≥ 1− ξ.

According to Definition 2.3 and Definition 2.4, the model (4.1) is stochastically
ultimately bounded and permanent.

Remark 4.2. The definition of stochastically permanent implies that the sum of
all subpopulation of the model (4.1) is bounded above zero and below a certain
number with probability arbitrary close to 1.

Next, one considers the region as follows:

Γ =

{
(S, I,Q) ∈ R3

+ : S + I +Q ≤ (Λl)1−k(Λu)k

(µl)1−k(µu)k

}
.

Theorem 4.4. The region Γ is almost surely positive invariant for the stochastic
model (4.1).

Proof. Let X(0) ∈ Γ, positive n0 is sufficiently large such that X(0) is contained

within
(

1
n0
, (Λl)1−k(Λu)k

(µl)1−k(µu)k

]
. For each integer n ≥ n0, define the stopping times

τn = inf

{
t > 0 : X(t) ∈ Γ and (S(t), I(t), Q(t)) ∈

( 1

n
,

(Λl)1−k(Λu)k

(µl)1−k(µu)k

]}
,

τ = inf
{
t > 0 : X(t) /∈ Γ

}
.
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It is sufficient to show that P[τ = ∞] = 1, equivalently, P[τ < t] = 0, ∀t > 0. It is
easy to see that P[τ < t] ≤ P[τn < t]. Hence, one only needs to prove that

lim sup
n→∞

P[τn < t] = 0.

One chooses a C2-function V3 : R3
+ → R+

V3(X) =
1

S
+

1

I
+

1

Q
. (4.4)

Applying Itô’s formula on (4.4), one has

dV3(X(s))

=− 1

S2

{[
(Λl)1−k(Λu)k − β(V ∗)SI

Φ
− (µl)1−k(µu)kS + (γl)1−k(γu)kI

+ (εl)1−k(εu)kQ
]
ds+ (σl1)1−k(σu1 )kSdB1(s)

}
− 1

I2

{[β(V ∗)SI

Φ
−A1I

]
ds+ (σl2)1−k(σu2 )kIdB2(s)

}
− 1

Q2

{[
(δl)1−k(δu)kI −A2Q

]
ds+ (σl3)1−k(σu3 )kQdB3(s)

}
+

(σl1)2−2k(σu1 )2k

S
ds+

(σl2)2−2k(σu1 )2k

I
ds+

(σl3)2−2k(σu3 )2k

Q
ds

≤
[
β(V ∗)I

Φ
+ (µl)1−k(µu)k + (σl1)2−2k(σu1 )2k

]
1

S
ds− (σl1)1−k(σu1 )k

S
dB1(s)

+
[
A1 + (σl2)2−2k(σu2 )2k

]1

I
ds+

[
A2 + (σl3)2−2k(σu3 )2k

] 1

Q
ds

− (σl2)1−k(σu2 )k

I
dB2(s)− (σl3)1−k(σu3 )k

Q
dB3(s).

It follows that

dV3(X(s)) ≤ K3V3(X(s))ds− (σl1)1−k(σu1 )k

S dB1(s)

− (σl2)1−k(σu2 )k

I dB2(s)− (σl3)1−k(σu3 )k

Q dB3(s).
(4.5)

where

K3 = max
{ (Λl)1−k(Λu)kβ(V ∗)

(µl)1−k(µu)k
+ (µl)1−k(µu)k + (σl1)2−2k(σu1 )2k,

A1 + (σl2)2−2k(σu2 )2k, A2 + (σl3)2−2k(σu3 )2k
}
.

Taking integral and expectation both sides of (4.5), using Fubini’s theorem, one has

E[V3(X(s))] ≤ V3(X(0)) +K3

∫ s

0

E[V3(X(u))]du. (4.6)

By Gronwall’s inequality, (4.6) becomes

E[V3(X(s))] ≤ V3(X(0))eK3s, ∀s ∈ [0, t ∧ τn].
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Hence

E[V3(X(t ∧ τn))] ≤ V3(X(0))eK3(t∧τn) ≤ V3(X(0))eK3t,∀t ≥ 0. (4.7)

Since V3(X(t ∧ τn)) and some component of X(τn) is less than or equal to 1
n

E[V3(X(t ∧ τn))] ≥ E[V3(X(τn)Iτn<t)] ≥ nP[τn < t]. (4.8)

It follows from (4.7) and (4.8), one obtains

P[τn < t] ≤ V3(X(0))eK3t

n
, ∀t ≥ 0.

Therefore,

lim sup
n→∞

P[τn < t] = 0, ∀ t ≥ 0.

4.4. Extinction of the COVID-19

In order to control the COVID-19, one investigates the stochastic threshold of the
model (4.1) of multi-scale model (1.2).

Lemma 4.1. [29] Suppose that M = {Mt}t≥0 be a real-valued continuous local
martingle vanishing at t = 0, then

lim
t→∞
〈M,M〉 =∞, a.s.⇒ lim

t→∞

Mt

〈M,M〉
= 0, a.s.,

and

lim sup
t→∞

〈M,M〉
t

<∞, a.s.⇒ lim
t→∞

Mt

t
= 0. a.s.

Lemma 4.2. Suppose that (µl)1−k(µu)k > (σl)2−2k(σu)2k

2 . Let (S(t), I(t), Q(t)) be
a solution of model (4.1) with any initial value (S(0), I(0), Q(0)) ∈ Γ, then one has

lim
t→∞

S(t)

t
= lim
t→∞

I(t)

t
= lim
t→∞

Q(t)

t
= 0,

and

lim
t→∞

1

t

∫ t

0

S(s)dB1(s) = lim
t→∞

1

t

∫ t

0

I(s)dB2(s) = lim
t→∞

1

t

∫ t

0

Q(s)dB3(s) = 0,

where

(σl)2−2k(σu)2k = max
{

(σl1)2−2k(σu1 )2k, (σl)2−2k
2 (σu2 )2k, (σl)2−2k

3 (σu3 )2k
}
.

Proof. The proof is analogous to [46].
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Theorem 4.5. Suppose that (µl)1−k(µu)k > (σl)2−2k(σu)2k

2 . Let (S(t), I(t), Q(t))
be a solution of the stochastic model (4.1) with initial value (S(0), I(0), Q(0)) ∈ Γ.
Then, when Rs < 1, the disease of model (4.1) will go to extinction almost surely,
i.e

lim
t→∞

I(t) = 0, a.s.,

and

lim
t→∞
〈S(t)〉 =

(Λl)1−k(Λu)k

(µl)1−k(µu)k
, a.s., lim

t→∞
〈Q(t)〉 = 0, a.s.,

where

Rs = (Λl)1−k(Λu)kβ(V ∗)[
(µl)1−k(µu)k+(αl1Λl)1−k(αu1 Λu)k

]
A1

− (σl2)2−2k(σu2 )2k

2A1
= R0b − (σl2)2−2k(σu2 )2k

2A1
.

(4.9)

A1 is given in (1.3).

Proof. Applying the Itô’s formula on ln I(t), one has

d ln I(t) =

[
β(V ∗)S(t)

Φ
− (σl2)2−2k(σu2 )2k

2
−A1

]
dt+ (σl2)1−k(σu2 )kdB2(t)

≤
[

(Λl)1−k(Λu)kβ(V ∗)

(µl)1−k(µu)k + (αl1Λl)1−k(αu1 Λu)k
− (σl2)2−2k(σu2 )2k

2
−A1

]
dt

+ (σl2)1−k(σu2 )kdB2(t)

=A1(Rs − 1)dt+ (σl2)1−k(σu2 )kdB2(t). (4.10)

Integrating the above inequality (4.10) from 0 to t and then dividing by t on
both sides, one gets

ln I(t)

t
≤ ln I(0)

t
+A1(Rs − 1) +

1

t

∫ t

0

(σl2)1−k(σu2 )kdB2(s).

By Lemma 4.1 and the strong law of large numbers for martingales [29], one has

lim
t→∞

1

t

∫ t

0

(σl2)1−k(σu2 )kdB2(s) = 0.

Then,

lim sup
t→∞

ln I(t)

t
≤ A1(Rs − 1),

when Rs < 1, it leads that
lim
t→∞

I(t) = 0. (4.11)

Integrating the third equation of the model (4.1) in interval [0, t] and dividing by t,
one has

Q(t)−Q(0)

t
= (δl)1−k(δu)k〈I(t)〉 −A2〈Q(t)〉+

1

t

∫ t

0

(σl3)1−k(σu3 )kQ(s)dB3(s).
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Hence,

〈Q(t)〉 =
1

A2

[
(δl)1−k(δu)k〈I(t)〉 − Q(t)−Q(0)

t
+

1

t

∫ t

0

(σl3)1−k(σu3 )kQ(s)dB3(s)

]
.

(4.12)

From the (4.11) and Lemma 4.2, taking the limit of the equality (4.12), one gets

lim
t→∞
〈Q(t)〉 = 0. a.s. (4.13)

Similarly, integrating the first equation of the model (4.1) from 0 to t and dividing
by t, one gets

S(t)− S(0)

t
=(Λl)1−k(Λu)k − (µl)1−k(µu)k〈S(t)〉+ (γl)1−k(γu)k〈I(t)〉

− β(V ∗)〈SI
Φ
〉+ (εl)1−k(εu)k〈Q(t)〉+

1

t

∫ t

0

(σl1)1−k(σu1 )kS(s)dB1(s).

It follows that

〈S(t)〉 =
1

(µl)1−k(µu)k

{
(Λl)1−k(Λu)k − β(V ∗)〈SI

Φ
〉+ (γl)1−k(γu)k〈I(t)〉

+(εl)1−k(εu)k〈Q(t)〉+
1

t

∫ t

0

(σl1)1−k(σu1 )kS(s)dB1(s)− S(t)− S(0)

t

}
.

(4.14)

According to (4.11), (4.13), Lemma 4.2 and taking the limit of (4.14), one gets

lim
t→∞
〈S(t)〉 =

(Λl)1−k(Λu)k

(µl)1−k(µu)k
, a.s.

Remark 4.3. When (σl2)1−k(σu2 )k = 0, Rs degrades to the basic reproduction
number R0b. When the parameters of the deterministic model (4.1) are precise,
α1 = 0 and β(V ∗) = β, the basic reproduction number Rs degrades to the basic
reproduction number Rs which has been investigated in [6, 10].

4.5. Persistence in mean of the COVID-19

Lemma 4.3. [19] Let f(t) ∈ C([0,∞] × Ω, (0,∞)), if there are two positive con-
stants λ00 and λ01 such that

log(f(t)) ≥ λ01t− λ00

∫ t

0

f(s)ds+ F (t), a.s.,

for all t ≥ 0, where F (t) ∈ C([0,∞)× Ω,R), and limt→∞
F (t)
t = 0, a.s. then

lim
t→∞

inf
1

t

∫ t

0

f(s)ds ≥ λ01

λ00
. a.s.



A stochastic multi-scale COVID-19 model 531

Theorem 4.6. Suppose that (µl)1−k(µu)k > (σl)2−2k(σu)2k

2 . Let (S(t), I(t), Q(t))
be a solution of the stochastic model (4.1) with initial value (S(0), I(0), Q(0)) ∈ Γ.
Then, when Rs > 1, the disease will be persistent in mean, i.e.

lim inf
t→∞

〈S(t)〉 ≥ (Λlµl)1−k(Λuµu)k

(Λl)1−k(Λu)kβ(V ∗) + (µl)2−2k(µu)2k
,

lim inf
t→∞

〈I(t)〉 ≥ A1(Rs − 1)

m3
, a.s.,

lim inf
t→∞

〈Q(t)〉 ≥ (δl)1−k(δu)kA1(Rs − 1)

A2m3
, a.s.,

where

m3 =
(Λl)1−k(Λu)kβ2(V ∗)

A2
3

+m2, (4.15)

with

m2 =

[
(Λlαl2)1−k(Λuαu2 )kβ(V ∗)

A3
+

(αl1α
l
2)1−k(αu1α

u
2 )k(Λl)2−2k(Λu)2kβ(V ∗)

(µl)1−k(µu)kA3

]
.

(4.16)

A1, A2 are given in (1.3) and

A3 = (µl)1−k(µu)k + (αl1Λl)1−k(αu1 Λu)k. (4.17)

Proof. Nothing that the function β(V ∗)S
Φ can be written as

β(V ∗)S

Φ
=−

[
(Λl)1−k(Λu)k

(µl)1−k(µu)k
− S

]
(µl)1−k(µu)kβ(V ∗)

A3Φ
+

(Λl)1−k(Λu)kβ(V ∗)

A3

− (Λlαl2)1−k(Λuαu2 )kβ(V ∗)I

A3Φ
− (Λlαl1α

l
2)1−k(Λuαu1α

u
2 )kβ(V ∗)IS

A3Φ

≥−
[

(Λl)1−k(Λu)k

(µl)1−k(µu)k
− S

]
(µl)1−k(µu)kβ(V ∗)

A3
+

(Λl)1−k(Λu)kβ(V ∗)

A3

−
[

(Λlαl2)1−k(Λuαu2 )kβ(V ∗)

A3
+

(Λlαl1α
l
2)1−k(Λuαu1α

u
2 )kβ(V ∗)S

A3

]
I

≥ (µl)1−k(µu)kβ(V ∗)S

A3
−
[

(Λlαl2)1−k(Λuαu2 )kβ(V ∗)

A3

+
(αl1α

l
2)1−k(αu1α

u
2 )k(Λl)2−2k(Λu)2kβ(V ∗)

(µl)1−k(µu)kA3

]
I.

It follows that

d ln I(t) =

[
β(V ∗)S(t)

Φ
−A1 −

(σl2)2−2k(σu2 )2k

2

]
dt+ (σl2)1−k(σu2 )kdB2(t)

≥
{

(µl)1−k(µu)kβ(V ∗)S(t)

A3
−
[ (αl1α

l
2)1−k(αu1α

u
2 )k(Λl)2−2k(Λu)2kβ(V ∗)

(µl)1−k(µu)kA3

+
(Λlαl2)1−k(Λuαu2 )kβ(V ∗)

A3

]
I −A1 −

(σl2)2−2k(σu2 )2k

2

}
dt
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+ (σl2)1−k(σu2 )kdB2(t).

Integrating the above inequality from 0 to t and then dividing by t on both sides,
one gets

ln I(t)

t
≥
{

(µl)1−k(µu)kβ(V ∗)〈S(t)〉
A3

−m2〈I(t)〉

−A1 −
(σl2)2−2k(σu2 )2k

2
+

1

t

∫ t

0

(σl2)1−k(σu2 )kdB2(s)

}
+

ln I(0)

t
,

where m2 are given in (4.16). From (4.14), one has

ln I(t)

t
≥
{
β(V ∗)

A3

[
(Λl)1−k(Λu)k − (Λl)1−k(Λu)kβ(V ∗)

A3
〈I(t)〉

+
1

t

∫ t

0

(σ1)1−k(σu1 )kS(s)dB1(s)− S(t)− S(0)

t

]
−m2〈I(t)〉 −A1

− (σl2)2−2k(σu2 )2k

2
+

1

t

∫ t

0

(σl2)1−k(σ2)kdB2(s)

}
+

ln I(0)

t
.

It leads to that

ln I(t)

t
≥ (Λl)1−k(Λu)kβ(V ∗)

A3
−A1 −

(σl2)1−k(σu2 )k

2
−m3〈I(t)〉+ ϕ(t),

where

ϕ(t) =
β(V ∗)

A3

[
1

t

∫ t

0

(σl1)1−k(σu1 )kS(s)dB1(s)− S(t)− S(0)

t

]
+

1

t

∫ t

0

(σl2)1−k(σu2 )kdB2(s) +
ln I(0)

t
.

By the Lemma 4.1 and Lemma 4.2, one has

lim
t→∞

ϕ(t) = 0.

Using Lemma 4.3, then

lim inf
t→∞

〈I(t)〉 ≥ A1(Rs − 1)

m3
:= I∗, (4.18)

where m3 are given in (4.15). From (4.12) and (4.18), has

lim inf
t→∞

〈Q(t)〉 = lim inf
t→∞

{
(δl)1−k(δu)k

A2
〈I(t)〉+

1

A2t

∫ t

0

(σl3)1−k(σu3 )kdB3(s)

−Q(t)−Q(0)

A2t

}
≥ (δl)1−k(δu)k

A2
I∗

>0.



A stochastic multi-scale COVID-19 model 533

From the first equation of model (4.1), one has

dS(t) ≥
{

(Λl)1−k(Λu)k − ψ(S, I)− (µl)1−k(µu)kS
}

dt+ (σl1)1−k(σu1 )kSdB1(t)

≥
{

(Λl)1−k(Λu)k −
[

(Λl)1−k(Λu)kβ(V ∗)

(µl)1−k(µu)k
+ (µl)1−k(µu)k

]
S(t)

}
dt

+ (σl1)1−k(σu1 )kS(t)dB1(t).

Integrating the above inequality from 0 to t and then dividing by t on both sides,
one has

〈S(t)〉 ≥

{
(Λl)1−k(Λu)k − S(t)−S(0)

t + 1
t

∫ t
0
(σl1)1−k(σu1 )kS(s)dB1(s)

}
[

(Λl)1−k(Λu)kβ(V ∗)
(µl)1−k(µu)k

+ (µl)1−k(µu)k
] .

It follows that

lim inf
t→∞

〈S(t)〉 ≥ (Λlµl)1−k(Λuµu)k

(Λl)1−k(Λu)kβ(V ∗) + (µl)2−2k(µu)2k
.

Remark 4.4. Rs is actually a stochastic threshold that determines the extinction
or persistence in mean of the disease of the stochastic model (4.1). According to the
expression of Rs in (4.9), one can see that Rs depends not only on the amount of
virus, but also on the intensity of noise. One concludes that larger stochastic noises
and small amount of virus are able to suppress the emergence of disease outbreaks.

4.6. Sensitivity factors ( SF) of Rs

In order to study the influence of imprecise parameters of the multi-scale model
(1.2). In following, one presents some sensitivity factors of interval parameters of
Rs. For convenience, one rewrites Rs in the following form:

Rs =
β(V ∗)[Λl,Λu](

[µl, µu] + [αl1, α
u
1 ][Λl,Λu]

)(
[µl, µu] + [ωl2, ω

u
2 ] + [δl, δu] + [γl, γu]

)
− [σl2, σ

u
2 ]2

2
(

[µl, µu] + [ωl2, ω
u
2 ] + [δl, δu] + [γl, γu]

) , (4.19)

where

β(V ∗) =
[rl, ru]V ∗

[Kw,Kw]V ∗ + 1
,

with

V ∗ =
[dlp, d

u
p ]

[βlw, β
u
w]

( ([βlw, β
u
w][πlν , π

u
ν ]Ep(0)

[dlpν , d
u
pν ][dlν , d

u
ν ]

− 1
)
.

Firstly, one presents some knowledge about the sensitivity of interval parameters
[32]. For a structure which there is n parameters, the parameter vector is denoted
by Z = {z1, z2, · · ·, zn}, where zj = [zlj , z

u
j ] (j = 1, 2, · · ·, n) [48]. The uncertainty

and interval medium-value of zj are defined by

∆zj = (zuj − zlj)/2, zcj = (zlj + zuj )/2,
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respectively. Then, the variation coefficient of zj is defined by δj =
∆zj
zcj

. To

investigate the sensitivity factor, the variation coefficients of all parameters should
be same, i.e., δi = δj (i, j = 1, · · ·, n). Suppose there is a decision-making target
[Rls, R

u
s ]. Let [Rlsj , R

u
sj ] be the boundary influence value interval of parameters zj ∈

[zlj , z
u
j ], (j = 1, 2, ···, n) to the decision-making target [Rls, R

u
s ]. When zj = [zlj , z

u
j ] is

an interval number but the other parameters are assumed to be constant and equal
to interval medium-values, the boundary influence value interval [Rlsj , R

u
sj ] can be

obtained by interval operation. [Rlsj , R
u
sj ] is a subset of [Rls, R

u
s ]. A sensitivity factor

θ′j is defined by

θ′j = (Rusj −R
l
sj )/(R

u
s −Rls),

where θ′j is the sensitivity factor of the parameter zj = [zlj , z
u
j ] to the decision-

making target [Rls, R
u
s ]. The larger the θ′j , the greater the effect the parameter

zj = [zlj , z
u
j ] has on the decision-making target [Rls, R

u
s ]. Hence, the sensitivity

factors of model parameters are represented by

θ′ =
[
θ′1 θ

′
2 · · · θ′n

]
. (4.20)

Finally, according to the method (4.20), one can obtain the sensitivity factors of
[Rls, R

u
s ] in the following

θ′Rs =
[
θ′µ θ

′
Λ θ′α1

θ′γ θ
′
ω2
θ′δ θ

′
σ2
θ′r θ

′
Kw

θ′dp θ
′
dν
θ′dpν θ

′
βw

θ′πν

]
,

where θ′µ = (Rusµ −R
l
sµ)/(Rus −Rls) is the sensitivity factor of parameter [µl, µu] to

[Rls, R
u
s ], [Rlsµ , R

u
sµ ] is the boundary influence value interval of the model parameter

[µl, µu] to [Rls, R
u
s ]. Similarly, one also can compute the other sensitivity factors,

such as θ′Λ, θ′α1
, and so on. One can use the sensitivity factors to measure the relative

change with respect to the interval parameters of the [Rls, R
u
s ]. The sensitivity

factors can provide us some useful strategies to control the COVID-19.

5. Numerical simulations

This section gives some numerical simulations to confirm the theoretical results of
section 3 and 4 by using real COVID-19 data of Hong Kong from December 21,
2021 to February 28, 2022 [43]. Least Square Method is used to fit the parameters
of the deterministic model of the multi-scale model (1.2). For convenience, one
supposes dlp = dup and considers chest radiograph score [24] as a way to reflect
the infected pulmonary epithelial cells of the within-host fast model. The fitting
results and parameters are given in Fig 1 (a) and Table 1, respectively. Based on
the parameters in Table 1 and (3.3), one has V ∗ = 0.01. It follows from (4.2) one
obtains R0b = 1.91. One used 70 days of data to predict the results of the next 10
days and found that the fitting results were consistent with the data, as shown in
Fig 1 (a).

5.1. The effect of parameter imprecision k and stochastic noise

Based on the parameters in Table 1, one plots the variation of R0b and Rs as k varies.
From Fig 1 (b), one can see that the basic reproduction number R0b and Rs decrease
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Table 1. Parameter descriptions and values of the deterministic model (1.2).

Variables Description Initial value Source

S(0) Susceptible population 7413070 [17]

I(0) Infected population 200 Fitted

Q(0) quarantined population 145 [43]

Parameters Description Value Source

Ep(0) Uninfected epithelial cells without virus 25 [24]

[βlw, β
u
w] The infection rate of virus [0.44, 0.66] [24]

[dlp, d
u
p ] Death rate of uninfected epithelial cells [1× 10−3, 1× 10−3] [24]

[dlpν , d
u
pν ] Death rate of infected epithelial cells [0.088, 0.132] [24]

[πlν , π
u
ν ] Viral production rate [0.192, 0.288] [24]

[dlν , d
u
ν ] Viral elimination rate [4.288, 6.432] [24]

k ∈ [0, 1] Parameter imprecision 0.00113 Fitted

[Λl,Λu] Recruitment rate of S [448, 1246] Fitted

[rl, ru] Transmission rate due to viral load [0.0409, 0.307] Fitted

[Kl
w,K

u
w] Half-saturation constant [63, 604] Fitted

[ωl2, ω
u
2 ] Disease-related death rate in I [1.00× 10−5, 2.47× 10−4] Fitted

[ωl3, ω
u
3 ] Disease-related death rate in Q [2.86× 10−5, 1.14× 10−4] Fitted

[αl1, α
u
1 ] Measure of inhibition effect of S [8.28× 10−4, 5.60× 10−3] Fitted

[αl2, α
u
2 ] Measure of inhibition effect of I [1.16×10−7, 8.99×10−5] Fitted

[δl, δu] Rate from I to Q [0.0758, 0.397] Fitted

[εl, εu] Recover rate from Q to S [0.0200, 0.528] Fitted

[µl, µu] The natural death rate [3.77× 10−5, 4.56× 10−5] Fitted

[γl, γu] Recover rate from I to S [0.0867, 0.3] Fitted

ε Small dimensionless parameter 0.0306 Fitted
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Figure 1. (a) Fitting the deterministic model (1.2) to the real data in Hongkong: the number of
COVID-19 infected person; (b) Variation of R0b and Rs as k varies. The parameter values are given in

Table 1 and [σli, σ
u
i ] = [0.2, 0.3], (i = 1, 2, 3).
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as the parameter imprecision k increasing. At the same k, Rs is smaller than R0b.
This means that stochastic noise can suppress disease spreading. The times series
diagrams of the multi-scale stochastic model (1.2) and slow stochastic model (4.1)
are obtained by the method in [16]. When [σli, σ

u
i ] = [0.003, 0.01], (i = 1, 2, 3), from

(4.9), one has (µl)1−k(µu)k > (σl)2−2k(σu)2k

2 , Rs = 1.9091 > 1. According to the
Theorem 4.6, the disease will persistent in mean, as shown in Fig 2. Similarly,
increasing isolation rate to [δl, δu] = [0.3, 0.4] and [σli, σ

u
i ] = [0.003, 0.01], (i =

1, 2, 3), one gets Rs = 0.8032 < 1. According to Theorem 4.5, the disease will go
to extinction, as shown in Fig. 3. It implies that increasing isolation rate is a good
way to control the disease.
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Figure 2. (a) Times series of I(t) andQ(t) of multi-scale full model (1.2) and slow model (4.1); (b) Times

series of S(t) of multi-scale full model (1.2) and slow model (4.1). [σli, σ
u
i ] = [0.003, 0.01], (i = 1, 2, 3),

other parameters are given in Table 1. Initial value (S(0), I(0), Q(0)) = (7413070, 200, 145).
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Figure 3. (a) Times series of I(t) and Q(t) of the multi-scale full model (1.2) and slow model

(4.1); (b) Times series of S(t) of the multi-scale full model (1.2) and slow model (4.1). [δl, δu] =

[0.3, 0.4], [σli, σ
u
i ] = [0.003, 0.01], (i = 1, 2, 3), other parameters are given in Table 1. Initial value

(S(0), I(0), Q(0)) = (7413070, 200, 145).

5.2. The effect of within-host on between-host dynamics

Now, one investigates the potential effect of within-host viral dynamics on the
between-host transmission dynamics. Considering the infection rate [βlw, β

u
w] =

[0.01, 0.05] of virus, it follows from (3.2) that Rw = 0.1274 < 1. According to
Theorem 3.1, one has V ∗ = 0. From Fig 4, one can see that

lim
t→∞

I(t) = lim
t→∞

Q(t) = 0, lim
t→∞
〈S(t)〉 =

(Λl)1−k(Λu)k

(µl)1−k(µu)k
= 1.189× 107.

Similarly, decreasing the viral production rate to [πlν , π
u
ν ] = [0.0192, 0.0288], one

obtains Rw = 0.5597 < 1. It leads to the disease will go to extinction, as shown in
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Figure 4. (a) Times series of I(t) and Q(t) of the multi-scale full model (1.2) and slow model (4.1);

(b) Times series of S(t) of the multi-scale full model (1.2) and slow model (4.1). [βlw, β
u
w] = [0.01, 0.05],

other parameter values are given in Table 1. Initial value (S(0), I(0), Q(0)) = (7413070, 200, 145).
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Figure 5. (a) Times series of I(t) and Q(t) of the multi-scale full model (1.2) and slow model (4.1). (b)

Times series of S(t) of the multi-scale full model (1.2) and slow model (4.1). [πlν , π
u
ν ] = [0.0192, 0.0288],

other parameter values are given in Table 1. Initial value (S(0), I(0), Q(0)) = (7413070, 200, 145).

Fig 5. This suggests that improving the viral clearance rate and inhibiting the viral
replication rate is a good way to control the disease. Therefore, it is very important
to eliminate the virus at the lowest level on within-host scale. Further, one plots
the variation of R0b and Rs as R0w varies. Clearly, R0b and Rs is increasing as Rw
increasing, as shown in Fig 6 (a). Moreover, from (3.4), one obtains β∗w = 0.0786.
According to Theorem 3.3, the uninfected equilibrium E0fast of fast model (3.1)
changes its stability from stable to unstable and a globally asymptotically infected
equilibrium appears when βw from βw < β∗w = 0.0786 ⇔ R0w < 1 to βw > β∗w ⇔
R0w > 1, as shown in Fig 6 (b). It implies that fast model (3.1) undergoes forward
bifurcation at βw = β∗w ⇔ R0w = 1. Meanwhile, from Fig. 2 to Fig. 5, one can see
that the dynamics of the stochastic multi-scale model (1.2) is consistent with the
slow stochastic model (4.1). It is helpful for us to use slow stochastic model (4.1)
to approximate to investigate the stochastic multi-scale model (1.2).

5.3. Sensitivity factors (SF) of Rs

Next, one gives some sensitivity analysis of Rs. For convenience and precision,
based on the same variation coefficient δ = 0.1, one assumes parameters in Table
2. By the method of section 4 and the arithmetic operations of interval numbers
in definition 2.1, the sensitivity factors of Rs can be calculated and given in Table
2. From the Table 2, one can see the most sensitive parameter of Rs is [βlw, β

u
w].

Meanwhile, [Λl,Λu], [πlν , π
u
ν ] and [dlp, d

u
p ] have an important effect on Rs. The

sensitivity factors are useful for us to make some control strategies. For instance,
reducing the recruitment rate of susceptible population, reducing viral production
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Figure 6. (a) Variation of R0b and Rs as R0w varies. [σli, σ
u
i ] = [0.2, 0.3], (i = 1, 2, 3), other parameters

are given in Table 1. (b) Forward bifurcation diagram of fast model (3.1) with parameters in Table 1.

rate, social distancing, wearing masks, and so on.

Table 2. Parameter values and sensitivity factors (SF) of Rs

Parameter [Λl,Λu] [µl, µu] [αl1, α
u
1 ] [γl, γu] [ωl2, ω

u
2 ] [δl, δu] [σl2, σ

u
2 ]

Values [500, 5500
9 ] [ 4

105 , 44
9×105 ] [ 1

103 , 11
9×103 ][ 1

10 , 11
90 ][ 5

105 , 55
9×105 ] [ 1

5 , 11
45 ] [ 8

102 , 88
9×102 ]

SF 0.1195 1.234× 10−5 0.0598 0.0199 1× 10−5 0.0400 0.0011

Parameter [rl, ru] [Kl
w,K

u
w] [dlp, d

u
p ] [dlν , d

u
ν ] [dlpν , d

u
pν ] [βlw, β

u
w] [πlν , π

u
ν ]

Values [ 1
10 , 11

90 ] [100, 1100
9 ] [ 1

103 ,
11

9×103 ] [5, 55
9 ] [ 1

10 ,
11
90 ] [ 1

2 ,
55
90 ] [ 1

5 ,
22
90 ]

SF 0.0592 0.0279 0.0872 0.0533 0.0533 0.1418 0.1091

6. Conclusions and suggestions

In order to explore the potential effect of within-host viral dynamics on the between-
host transmission dynamics under environmental noises. This paper uses interval-
valued functions to investigate the dynamics of a stochastic multi-scale COVID-19
model (1.2) that coupling within-host viral and between-host transmission dynam-
ics. The model is composed of the within-host fast time model and the between-host
slow time stochastic model. One obtains some results which can provide us some
helpful measures to control the COVID-19 in the uncertain stochastic environment.
More precisely, these results can be concluded as follows:

(i) The dynamics of the fast model (3.1) can be governed by the basic reproduc-
tion number R0w. When R0w < 1, uninfected equilibrium E0w is globally
asymptotically stable. When R0w > 1, infected equilibrium E∗fast is glob-
ally asymptotically stable. The model (3.1) undergoes forward bifurcation at
R0w = 1.

(ii) The dynamics of the coupling slow stochastic model (4.1) can be governed by
the stochastic threshold Rs. When Rs < 1, the disease will go to extinction.
When Rs > 1, the disease will persistent in mean. One finds that Rs is an
increasing function of R0w.

(iii) Numerical analysis reveals that the dynamics of the stochastic model (4.1)
are similar to the multi-scale stochastic model (1.2), it provides us a simple
method to investigate the multi-scale model (1.2). When R0w < 1 or (R0w > 1
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and Rs < 1), the disease will go to extinction of the multi-scale model (1.2).
When R0w > 1 and Rs > 1, the disease will persistent in mean of the multi-
scale model (1.2).

(iv) Some numerical simulations are presented to demonstrate the results. One
finds that large noise intensity [σl2, σ

u
2 ], quarantine rate [δl, δu], inhibition effect

[αl1, α
u
1 ] of S, parameter imprecision k, small viral infection rate [βlw, β

u
w] and

viral production rate [πlν , π
u
ν ] can suppress the breakout of COVID-19.

Based on the obtained results, one presents some suggestions which can effectively
control the COVID-19 in the world. The suggestions are given in the following:

(i) Improve the true accuracy of epidemic data. The more realistic the data, the
better the control of the disease.

(ii) When the COVID-19 epidemic occurs, the quarantine of infected individual
should be used immediately. It’s worth saying that the quarantine policy is
very useful for the mutating COVID-19, such as Delta, Omicron and so on.

(iii) Medical scientist should speed up the research on miracle drugs to suppress
the virus’s replication and promote viral clearance.

(iv) Some protective measures, such as wearing masks, speeding up the disease
detection, avoiding crowds should be continued and encouraged in society. At
the same time, it is also necessary to exercise regularly to improve immunity.
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