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Abstract In this paper, we present a study of the set-valued functional dif-
ferential equations, of which the right functions are the product of two terms.
First, the global averaging method of the equations is considered. Then, by
introducing the concept of semi-deviation metric, we consider the averaging
method of the above equations for the case in which the limit of a method
of an average does not exist. The proof is based on the analysis of support
functions and measurable choice sets.
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1. Introduction

Due to the difficulty of solving the exact solutions of differential equations, the
averaging method has become an effective method to analyze the approximate solu-
tions of ordinary differential equations, the related results can be seen in the refer-
ences [4–6]. Set-valued differential systems [2,7], as one of the generalized forms of
ordinary differential equations, has been widely used in physics, astronomy, biology
and engineering. So it is of great significance to study the properties of approximate
solutions of set-valued differential equations by using averaging method.

Recently, Plotnikov [11, 14] studied using the average method the asymptotic
properties of solutions of different types of set-valued differential equations with
Hukuhara derivatives and delay differential equations. Skripnik [19] established
a three-step averaging method for set-valued differential equations with general-
ized derivatives. Wang and Yang considered the averaging method of set-valued
impulsive differential equations with initial boundary value conditions. There are
numerous results available, including [1, 10,12].

In addition, functional differential equations are widely used in the real world,
it is very important to study the properties of the solutions for such equations.
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Some research results on functional differential equations can be found in literature
[3, 9, 16,17,20].

Inspired by these results, in this paper, we mainly study the set-valued func-
tional differential equations whose right-hand side are the product of two functions.
By introducing the concepts of Hausdorff metric and semi-deviation metric, using
the corresponding properties of the support functions and the analysis of measur-
able choice sets, we discuss two cases respectively when the averaging limit of the
function on the right-hand side of the equations exists and does not exist. The
asymptotic relationship between the solutions of the original equations and its av-
eraging equations is shown.

2. Preliminaries

In what follows we define the necessary elements for the statements of our main
results.

Let conv(Rn) denote the collection of nonempty, compact and convex subsets of
Rn. Given A, B ∈ conv(Rn) the Hausdorff distance between A and B is defined as

H[A,B] = max
{

sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖

}
,

where ‖ · ‖ denotes the Euclidean norm in Rn and {0} is the zero points set in
conv(Rn).

Given an inteval I in R+. We say that the set mapping F : I → conv(Rn) has
a Hukuhara derivative DHF (t0) at a point t0 ∈ I, if

lim
h→0+

F (t0 + h)− F (t0)

h
, lim

h→0+

F (t0)− F (t0 − h)

h

exist in the topology of conv(Rn) and are equal to DHF (t0). By embedding
conv(Rn) as a complete cone in a corresponding Banach space and taking into
account result on the differentiation of Bochner integral, we find that if

F (t) = X0 + ε

∫ t

t0

Φ(s)ds, X0 ∈ conv(Rn),

where Φ : I → conv(Rn) is integrable in the sense of Bochner, then DHF (t) exist
and the equality DHF (t) = Φ(t) a.e. on I holds.

The Hukuhara integral of F is given by∫
I

F (s)ds = cl
[ ∫

I

f(s)ds : f is a continuous selector of F
]

for any compact set I ⊂ R+, where clA is a closure of set A.
If F, G : I → conv(Rn) are integrable, then D[F (·), G(·)] : I → R+ is integrable

and

H
[ ∫ t

t0

F (s)ds,

∫ t

t0

G(s)ds
]
≤
∫ t

t0

H[F (s), G(s)]ds.

The properties of Hausdorff metric and more details in continuity, Hukuhara
derivative, Hukuhara integral of the set mapping can be found in the literature [7,8].
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Lemma 2.1 ( [14]). (Gronwall-Bellman lemma) Set Θ(t) as a real continue func-
tion on R+ and P,Q are positive real numbers. If

Θ(t) ≤ P +Q

∫ t

0

Θ(s)ds, t ∈ [0, T ],

then
Θ(t) ≤ P exp{QT}.

3. Main results

In this part of the paper, we consider multi-point boundary value problem for set-
valued functional differential equations

DHX(t) = ε
(
F
(
t,X(t), X(t− δ(t))

)⊗
G
(
t,X(t), X(t− δ(t))

))
,

K∑
k=0

αk(ε)X(tk) = Φ
(
X(t0), · · · , X(tK), DHX(t0), · · · , DHX(tK), ε

)
,

(3.1)

where t ∈ [0, T ], DHX is Hukuhara derivative of X(t) on [0, T ], F, G : I ×
conv(Rn)× conv(Rn)→ conv(Rn),

⊗
represent cartesian product. δ : R+ → R+

is a delay function. Boundary value condition αk are n×n−dimensional nonsingular
matrix, k = 0, 1, · · · ,K. Φ ∈ conv(Rn) is a continuous function.

3.1. When the average limit of right-hand side function exists

Suppose the following limits exist

F (X(t), U(t)) = lim
T→∞

1

T

∫ t+T

t

F (s,X(s), U(s))ds, (3.2)

G(X(t)) = lim
T→∞

1

T

∫ t+T

t

G(s,X(s), U(s))ds. (3.3)

We associate Eq.(3.1) with the global averaged equation
DHY (t) = ε

(
F
(
Y (t), Y (t− δ(t))

)⊗
G
(
Y (t)

))
,

K∑
k=0

αk(ε)Y (tk) = Φ
(
Y (t0), · · · , Y (tK), DHY (t0), · · · , DHY (tK), ε

)
.

(3.4)

Theorem 3.1. Suppose that the following conditions are satisfied in the domain
D = {(t,X,U)| t ≥ 0, X, U ∈ conv(Rn)}

(A3.11) The set-value mapping F,G : D → conv(Rn) are continuous and bounded,
i.e. there exist constants M1, λ11, λ12 > 0, for X ′, X ′′, U ′, U ′′ ∈ conv(Rn)
such that

H[F (t,X,U), {0}]
∨
H[G(t,X,U), {0}] ≤M1,

H[F (t,X ′, U ′), F (t,X ′′, U ′′)]
∨
H[G(t,X ′, U ′), G(t,X ′′, U ′′)]

≤λ11H[X ′, X ′′] + λ12H[U ′, U ′′]

where a
∨
b = max{a, b};
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(A3.12) The limits (3.2) and (3.3) exist uniformly in t ≥ 0;

(A3.13) The following inequality

H
[
Φ
(
X(t0), · · · , X(tK), DHX(t0), · · · , DHX(tK), ε

)
,

Φ
(
Y (t0), · · · , Y (tK), DHY (t0), · · · , DHY (tK), ε

)]
≤

K∑
k=0

µk(ε)
(
H
[
X(tk), Y (tk)] +H[DHX(tk), DHY (tk)

])
holds, and for any ε ∈ (0, ε1] we have

0 <
∥∥( K∑

k=0

αk(ε)
)−1∥∥× ( K∑

k=0

µk(ε)
)
< 1,

where µk > 0 are continuous functions, k = 0, 1, · · · ,K.
K∑
k=0

αk(ε) is n ×

n−dimensional nonsingular matrix, A−1 is called the inverse of the matrix
A;

(A3.14) The solutions Y (t) of the systems (3.4) at t ∈ [0, T ] together with its δ1-
neighbourhood belong to domain D, i.e. O(Y (t), δ1) ⊂ D, where δ1 > 0 is a
constant.

Then for any η > 0 and L > 0, there exists ε1(η, L) > 0 such that for ε ∈ (0, ε1]
and t ∈ [0, Lε−1] the following estimate is correct

H[X(t), Y (t)] ≤ η,

where X(t) is the set of solutions of equations (3.1), Y (t) is the set of solutions of
equations (3.4).

Proof. Due to (A3.11) and (A3.12) we know, for any ε1 > 0, there exists T1, for
all T > T1, such that

H
[
F (Y,U), {0}

]
≤H

[
F (Y,U),

1

T

∫ T

0

F (s, Y, U)ds
]

+H
[ 1

T

∫ T

0

F (s, Y, U)ds, {0}
]

<ε1 +
1

T

∫ T

0

H[F (s, Y, U), {0}]ds

≤ε1 +M1,

H
[
G(Y ), {0}

]
≤H

[
G(Y ),

1

T

∫ T

0

G(s, Y, U)ds
]

+H
[ 1

T

∫ T

0

G(s, Y, U)ds, {0}
]

<ε1 +
1

T

∫ T

0

H[G(s, Y, U), {0}]ds

≤ε1 +M1,

H[F (Y ′, U ′), F (Y ′′, U ′′)]
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≤H
[
F (Y ′, U ′),

1

T

∫ T

0

F (s, Y ′, U ′)ds
]

+H
[ 1

T

∫ T

0

F (s, Y ′, U ′)ds,
1

T

∫ T

0

F (s, Y ′′, U ′′)ds
]

+H
[ 1

T

∫ T

0

F (s, Y ′′, U ′′)ds, F (Y ′′, U ′′)
]

<2ε1 +
1

T

∫ T

0

H[F (s, Y ′, U ′), F (s, Y ′′, U ′′)]ds

≤2ε1 + λ11H[Y ′, Y ′′] + λ12H[U ′, U ′′],

H[G(Y ′), G(Y ′′)]

≤H
[
G(Y ′),

1

T

∫ T

0

G(s, Y ′, U ′)ds
]

+H
[ 1

T

∫ T

0

G(s, Y ′, U ′)ds,
1

T

∫ T

0

G(s, Y ′′, U ′′)ds
]

+H
[ 1

T

∫ T

0

G(s, Y ′′, U ′′)ds,G(Y ′′)
]

<2ε1 +
1

T

∫ T

0

H[G(s, Y ′, U ′), G(s, Y ′′, U ′′)]ds

≤2ε1 + λ11H[Y ′, Y ′′] + λ12H[U ′, U ′′].

Thus, for any small ε1 > 0, the following estimates hold

H[F (Y,U), {0}]
∨
H[G(Y ), {0}] ≤M1, (3.5)

H[F (Y ′, U ′), F (Y ′′, U ′′)]
∨
H[G(Y ′), G(Y ′′)] (3.6)

≤λ11H[Y ′, Y ′′] + λ12H[U ′, U ′′].

The solutions of the set-valued differential systems (3.1) satisfy the following
equations

X(t) = X0 + ε

∫ t

t0

(
F
(
s,X(s), X(s− δ(s))

)⊗
G
(
s,X(s), X(s− δ(s))

))
ds,

K∑
k=0

αk(ε)(Zk) = Φ
(
Z0, · · · , ZK , DHX(t0), · · · , DHX(tK), ε

)
,

(3.7)

whereX0 = X(t0), %k =
∫ tk
t0

(
F
(
s,X(s), X(s−δ(s))

)⊗
G
(
s,X(s), X(s−δ(s))

))
ds,

Zk = X0 + ε%k.
Similarly, the solutions of the average systems (3.4) are equivalent to integral

equations
Y (t) = Y0 + ε

∫ t

t0

(
F
(
Y (s), Y (s− δ(s))

)⊗
G(Y (s))

)
ds,

K∑
k=0

αk(ε)(Z̄k) = Φ
(
Z̄0, · · · , Z̄K , DHY (t0), · · · , DHY (tK), ε

)
,

(3.8)

where Y0 = Y (t0), %̄k =
∫ tk
t0

(
F
(
Y (s), Y (s − δ(s))

)⊗
G
(
Y (s))

))
ds and Z̄k =

Y0 + ε%̄k.
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From the integral equations (3.7) and (3.8), it can be obtained

H[X(t), Y (t)]

≤εH
[ ∫ t

t0

(
F
(
s,X(s), X(s− δ(s))

)⊗
G
(
s,X(s), X(s− δ(s))

))
ds,∫ t

t0

(
F
(
s,X(s), X(s− δ(s))

)⊗
G
(
s, Y (s), Y (s− δ(s))

))
ds
]

+ εH
[ ∫ t

t0

(
F
(
s,X(s), X(s− δ(s))

)⊗
G
(
s, Y (s), Y (s− δ(s))

))
ds,∫ t

t0

(
F
(
s, Y (s), Y (s− δ(s))

)⊗
G
(
s, Y (s), Y (s− δ(s))

))
ds
]

+ εH
[ ∫ t

t0

(
F
(
s, Y (s), Y (s− δ(s))

)⊗
G
(
s, Y (s), Y (s− δ(s))

))
ds,∫ t

t0

(
F
(
s, Y (s), Y (s− δ(s))

)⊗
G
(
Y (s)

))
ds
]

+ εH
[ ∫ t

t0

(
F
(
s, Y (s), Y (s− δ(s))

)⊗
G
(
Y (s)

))
ds,∫ t

t0

(
F
(
Y (s), Y (s− δ(s))

)⊗
G
(
Y (s)

))
ds
]

+H[X0, Y0]

≤εM1H
[ ∫ t

t0

G
(
s,X(s), X(s− δ(s))

)
ds,

∫ t

t0

G
(
s, Y (s), Y (s− δ(s))

)
ds
]

+ εM1H
[ ∫ t

t0

F
(
s,X(s), X(s− δ(s))

)
ds,

∫ t

t0

F
(
s, Y (s), Y (s− δ(s))

)
ds
]

+ εM1H
[ ∫ t

t0

G
(
s, Y (s), Y (s− δ(s))

)
ds,

∫ t

t0

G
(
Y (s)

)
ds
]

+ εM1H
[ ∫ t

t0

F
(
s, Y (s), Y (s− δ(s))

)
ds,

∫ t

t0

F
(
Y (s), Y (s− δ(s))

)
ds
]

+H[X0, Y0]

≤2εM1λ11

∫ t

t0

H[X(s), Y (s)]ds

+ 2εM1λ12

∫ t

t0

H[X(s− δ(s)), Y (s− δ(s))]ds

+ εM1H
[ ∫ t

t0

G
(
s, Y (s), Y (s− δ(s))

)
ds,

∫ t

t0

G
(
Y (s)

)
ds
]

+ εM1H
[ ∫ t

t0

F
(
s, Y (s), Y (s− δ(s))

)
ds,

∫ t

t0

F
(
Y (s), Y (s− δ(s))

)
ds
]

+H[X0, Y0], (3.9)

where

I1 = 2εM1λ11

∫ t

t0

H[X(s), Y (s)]ds,
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I2 = 2εM1λ12

∫ t

t0

H[X(s− δ(s)), Y (s− δ(s))]ds,

I3 = εM1H
[ ∫ t

t0

G
(
s, Y (s), Y (s− δ(s))

)
ds,

∫ t

t0

G
(
Y (s)

)
ds
]
,

I4 = εM1H
[ ∫ t

t0

F
(
s, Y (s), Y (s− δ(s))

)
ds,

∫ t

t0

F
(
Y (s), Y (s− δ(s))

)
ds
]
,

I5 = H[X0, Y0].

Supposing that δ : [0, T1]→ R+, then t−δ(t) ∈ [t∗−T1, T ]. When t ∈ [t∗−T1, 0],
obviously X(t− δ(t)) = Y (t− δ(t)). Therefore we can get

I2 ≤ 2εM1λ12

∫ 0

t∗−T1

H[X(s− δ(s)), Y (s− δ(s))]ds

+ 2εM1λ12

∫ t

0

H[X(s− δ(s)), Y (s− δ(s))]ds

= 2εM1λ12

∫ t

0

H[X(τ), Y (τ)]dτ, (3.10)

where τ = s− δ(s). Since δ(t) ∈ R+, obviously ds = dτ .
From the assumption (3.12) of Theorem 3.1, we know that for any ξ(t) > 0,

there exists T ′ such that for all t > T ′, we have

H
[1

t

∫ t

0

F (s,X,U)ds, F (X,U)
]
≤ ξ(t),

H
[1

t

∫ t

0

G(s,X,U)ds,G(X)
]
≤ ξ(t).

Thus, there exists a decreasing function ξ(t), such that

H
[ ∫ t

0

F (s,X,U)ds,

∫ t

0

F (X,U)ds
]
≤ tξ(t), (3.11)

H
[ ∫ t

0

G(s,X,U)ds,

∫ t

0

G(X)ds
]
≤ tξ(t), (3.12)

where lim
t→∞

ξ(t) = 0.

From the above inequality (3.11), we obtain

I3 ≤ εM1(t− t0)ξ(t). (3.13)

By analogy and (3.12), we get

I4 ≤ εM1(t− t0)ξ(t). (3.14)

Next, to deal with boundary value problems, we give the definition and proper-
ties of the support function.

Let A be a nonempty subset of conv(Rn). The support function of A is defined
for all ψ ∈ Rn by

S(ψ,A) = sup
{
〈ψ, a〉 : a ∈ A

}
.



Averaging method for multi-point boundary value problems of SFDEs 567

The properties of the support function

S(ψ, αA) = S(αψ,A) = ‖α‖S(ψ,A),

where α is n× n−matrix.
The Hausdorff metric is related to the support function for A,B ∈ conv(Rn),

since we have

H[A,B] = sup{‖S(ψ,A)− S(ψ,B)‖, ψ ∈ Sn−1},

where Sn−1 = {ψ ∈ Rn : ‖ψ‖ = 1} is the unit sphere in Rn.
From the boundary conditions (3.7), (3.8) and the condition (A3.13), the prop-

erties of the support function, we have

H
[ K∑
k=0

αk(ε)(Zk),

K∑
k=0

αk(ε)(Z̄k)
]

=
∥∥∥ K∑
k=0

αk(ε)
∥∥∥(H[X0, Y0] + εH[%k, %̄k]

)
≤

K∑
k=0

µk(ε)
(
H[X0, Y0] + εH[%k, %̄k] +H[DHX(tk), DHY (tk)]

)
.

Furthermore, we get

H[X0, Y0]

≤
‖
K∑
k=0

αk(ε)‖−1

1− ‖
( K∑
k=0

αk(ε)
)−1‖ ×

( K∑
k=0

µk(ε)
)

×
(
ε

K∑
k=0

(
µk(ε)− ‖αk(ε)‖

)
H[%k, %̄k] +

K∑
k=0

µk(ε)H[DHX(tk), DHY (tk)]
)

≤A(ε)H[%k, %̄k] +B(ε)H[DHX(tk), DHY (tk)], (3.15)

where

A(ε) =

‖
K∑
k=0

αk(ε)‖−1ε
K∑
k=0

(
µk(ε)− ‖αk(ε)‖

)
1− ‖

( K∑
k=0

αk(ε)
)−1‖ ×

( K∑
k=0

µk(ε)
) ,

B(ε) =

‖
K∑
k=0

αk(ε)‖−1
K∑
k=0

(
µk(ε)

)
1− ‖

( K∑
k=0

αk(ε)
)−1‖ ×

( K∑
k=0

µk(ε)
) .

According to (3.1) and (3.4), we have

H[DHX(tk), DHY (tk)]

≤εH
[
F
(
tk, X(tk), X(tk − δ(tk))

)⊗
G
(
tk, X(tk), X(tk − δ(tk))

)
,
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F
(
Y (tk), Y (tk − δ(tk))

)⊗
G
(
Y (tk)

)]
≤εH

[
F
(
tk, X(tk), X(tk − δ(tk))

)⊗
G
(
tk, X(tk), X(tk − δ(tk))

)
, {0}

]
+ εH

[
{0}, F

(
Y (tk), Y (tk − δ(tk))

)⊗
G
(
Y (tk)

)]
≤2εM2

1 . (3.16)

From the inequality (3.11) and (3.12), it can be obtained

H[%k, %̄k] ≤ H
[ ∫ tk

t0

(
F
(
s,X(s), X(s− δ(s))

)⊗
G
(
s,X(s), X(s− δ(s))

))
ds,∫ tk

t0

(
F
(
s,X(s), X(s− δ(s))

)⊗
G
(
s, Y (s), Y (s− δ(s))

))
ds
]

+ εH
[ ∫ tk

t0

(
F
(
s,X(s), X(s− δ(s))

)⊗
G
(
s, Y (s), Y (s− δ(s))

))
ds,∫ tk

t0

(
F
(
s, Y (s), Y (s− δ(s))

)⊗
G
(
s, Y (s), Y (s− δ(s))

))
ds
]

+H
[ ∫ tk

t0

(
F
(
s, Y (s), Y (s− δ(s))

)⊗
G
(
s, Y (s), Y (s− δ(s))

))
ds,∫ tk

t0

(
F
(
s, Y (s), Y (s− δ(s))

)⊗
G
(
Y (s)

))
ds
]

+H
[ ∫ tk

t0

(
F
(
s, Y (s), Y (s− δ(s))

)⊗
G
(
Y (s)

))
ds,∫ tk

t0

(
F
(
Y (s), Y (s− δ(s))

)⊗
G
(
Y (s)

))
ds
]

≤M1H
[ ∫ tk

t0

G
(
s,X(s), X(s− δ(s))

)
ds,

∫ tk

t0

G
(
s, Y (s), Y (s− δ(s))

)
ds
]

+M1H
[ ∫ tk

t0

F
(
s,X(s), X(s− δ(s))

)
ds,

∫ t

t0

F
(
s, Y (s), Y (s− δ(s))

)
ds
]

+M1H
[ ∫ tk

t0

G
(
s, Y (s), Y (s− δ(s))

)
ds,

∫ tk

t0

G
(
Y (s)

)
ds
]

+M1H
[ ∫ tk

t0

F
(
s, Y (s), Y (s− δ(s))

)
ds,

∫ tk

t0

F
(
Y (s), Y (s− δ(s))

)
ds
]

≤ 2M1(λ11 + λ12)

∫ tk

t0

H[X(s), Y (s)]ds+ 2M1(tk − t0)ξ(t). (3.17)

On the base of (3.15), (3.16) and (3.17), we get

H[X0, Y0] ≤ 2A(ε)M1(λ11 + λ12)

∫ tk

t0

H[X(s), Y (s)]ds

+ 2A(ε)M1(tk − t0)ξ(t) + 2εB(ε)M2
1 . (3.18)

Using (3.9), (3.10), (3.13), (3.14) and (3.18), we have

H[X(t), Y (t)] ≤ 2εM1(λ11 + λ12)

∫ t

t0

H[X(s), Y (s)]ds+ 2εM1(t− t0)ξ(t)
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+ 2A(ε)M1(λ11 + λ12)

∫ tk

t0

H[X(s), Y (s)]ds

+ 2A(ε)M1(tk − t0)ξ(t) + 2εB(ε)M2
1

≤ P (ε)

∫ t

t0

H[X(s), Y (s)]ds+Q(ε, t), (3.19)

where

P (ε) = 2M1(λ11 + λ12)
(
ε+A(ε)

)
,

Q(ε, t) = 2M1(A(ε) + ε)(t− t0)ξ(t) + 2εB(ε)M2
1 .

In view of the Lemma 2.1, we can get following estimate

H[X(t), Y (t)] ≤ Q(ε, t) exp{P (ε)L}. (3.20)

Therefore, by selecting the appropriate k and ε1, for all η > 0, ε ∈ (0, ε1], such
that

H[X(t), Y (t)] ≤ η.

Theorem 3.1 is proved.

3.2. When the average limit of right-hand side one function
is absent

We notice that the study of the averaging method of set-valued differential equations
is under the condition that the average limit of the right-hand side functions exists.
When the average limit of the functions does not exist, in [13,15,18], the possibility
of application of averaging method for differential inclusions is proved. Therefore we
discuss the averaging method for the cases when the average limit of the functions
on the right-hand side of the equations not exist.

Supposing the following limit not exist

lim
T→∞

1

T

∫ t+T

t

G(s,X(s), U(s))ds.

We introduce the concept of semi-deviation metric, which is defined as

β1[A,B] = sup
a∈A

inf
b∈B
‖a− b‖, β2[A,B] = sup

b∈B
inf
a∈A
‖a− b‖.

Suppose that there be functions G1, G2 : conv(Rn)→ conv(Rn), such that

lim
T→∞

β1

[
G1(X),

1

T

∫ T

0

G(s,X,U)ds
]

= 0, (3.21)

lim
T→∞

β2

[ 1

T

∫ T

0

G(s,X,U)ds,G2(X)
]

= 0, (3.22)

where for G1(X) and G2(X), the following relationships are satisfied respectively

G1(X) ⊂ G1(X), lim
T→∞

β1

[
G1(X),

1

T

∫ t+T

t

G(s,X,U)ds
]

= 0,
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G2(X) ⊂ G2(X), lim
T→∞

β2

[ 1

T

∫ t+T

t

G(s,X,U)ds,G2(X)
]

= 0.

Therefore, for any ε′ > 0, there exists a T > 0, for any T > T ′, we have

G1(X) ⊂ 1

T

∫ t+T

t

G(s,X,U)ds+ Sε′(0),

1

T

∫ t+T

t

G(s,X,U)ds ⊂ G2(X) + Sε′(0),

where for ε′ ≥ 0, Sε′(0) = {x ∈ Rn, ‖x‖ ≤ ε′}.
When the average limit of (3.1) does not exist, the average equations are respec-

tively equivalent to
DHY1(t) = ε

(
F
(
Y1(t), Y1(t− δ(t))

)⊗
G1

(
Y1(t)

))
,

K∑
k=0

αk(ε)Y1(tk) = Φ
(
Y1(t0), · · · , Y1(tK), DHY1(t0), · · · , DHY1(tK), ε

)
,

(3.23)


DHY2(t) = ε

(
F
(
Y2(t), Y2(t− δ(t))

)⊗
G2

(
Y2(t)

))
,

K∑
k=0

αk(ε)Y2(tk) = Φ
(
Y2(t0), · · · , Y2(tK), DHY2(t0), · · · , DHY2(tK), ε

)
.

(3.24)

Now we present the following conditions that will be used in the following proof.

(H1) The set-valued function F (t,X,U), G1(X) ∈ conv(Rn) are continuous and
bounded, i.e. there exist M1, λ21, λ22 > 0, for X ′, X ′′, U ′, U ′′ ∈ conv(Rn),
such that

β1[F (t,X,U), {0}]
∨
β1[G(t,X,U), {0}] ≤M1,

β1[F (Y1, U), {0}]
∨
β1[G1(Y1), {0}] ≤M1,

β1[F (t,X ′, U ′), F (t,X ′′, U ′′)]
∨
β1[G(t,X ′, U ′), G(t,X ′′, U ′′)]

≤λ21β1[X ′, X ′′] + λ22β1[U ′, U ′′],

β1[F (Y ′1 , U
′), F (Y ′′1 , U

′′)] ≤ λ21β1[Y ′1 , Y
′′
1 ] + λ22β1[U ′, U ′′],

β1[G1(Y ′1), G1(Y ′′1 )] ≤ λ21β1[Y ′1 , Y
′′
1 ]

hold, where a
∨
b = max{a, b};

(H2) The following inequality

β1

[
Φ
(
X(t0), · · · , X(tK), DHX(t0), · · · , DHX(tK), ε

)
,

Φ
(
Y1(t0), · · · , Y1(tK), DHY1(t0), · · · , DHY1(tK), ε

)]
≤

K∑
k=0

µk(ε)
(
β1

[
X(tk), Y1(tk)] + β1[DHX(tk), DHY1(tk)

])
holds, and for ε ∈ (0, ε2] we have

0 <
∥∥( K∑

k=0

αk(ε)
)−1∥∥× ( K∑

k=0

µk(ε)
)
< 1,
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where µk > 0 are continuous functions, k = 0, 1, · · · ,K.
K∑
k=0

αk(ε) is n ×

n−dimensional nonsingular matrix, A−1 is called the inverse of the matrix
A.

we assume that F and G appearing in (3.1) all the conditions (H1) − (H2) are
satisfied. By applying the properties of the semi-deviation metric, we can get the
following conclusions.

Theorem 3.2. Suppose that the following conditions are satisfied in the domain D

(A3.21) The limits (3.2) and (3.21) exist uniformly in t ≥ 0;

(A3.22) The solutions Y1(t) of the systems (3.23) at t ∈ [0, T ] together with its δ2-
neighbourhood belong to domain D, i.e. O(Y (t), δ2) ⊂ D, where δ2 > 0 is a
constant.

Then for any η > 0 and L > 0, there exists ε2(η, L) > 0 such that, for ε ∈ (0, ε2],
the following inequality is true

β1[X(t), Y1(t)] ≤ η.

Proof. The solutions of the set-valued differential systems (3.1) satisfy the fol-
lowing equations

X(t) = X0 + ε

∫ t

t0

(
F
(
s,X(s), X(s− δ(s))

)⊗
G
(
s,X(s), X(s− δ(s))

))
ds,

K∑
k=0

αk(ε)(Zk) = Φ
(
Z0, · · · , ZK , DHX(t0), · · · , DHX(tK), ε

)
,

(3.25)

whereX0 = X(t0), %k =
∫ tk
t0

(
F
(
s,X(s), X(s−δ(s))

)⊗
G
(
s,X(s), X(s−δ(s))

))
ds,

Zk = X0 + ε%k.
Similarly, the solutions of the average systems (3.23) satisfy the following integral

equations
Y1(t) = Y0 + ε

∫ t

t0

(
F
(
Y1(s), Y1(s− δ(s))

)⊗
G1(Y1(s))

)
ds,

K∑
k=0

αk(ε)(Z̄k) = Φ
(
Z̄0, · · · , Z̄K , DHY1(t0), · · · , DHY1(tK), ε

)
,

(3.26)

where Y0 = Y1(t0), %̄k =
∫ tk
t0

(
F
(
Y1(s), Y1(s − δ(s))

)⊗
G1

(
Y1(s))

))
ds, Z̄k =

Y0 + ε%̄k.
From the integral equations (3.25) and (3.26), we can write

β1[X(t), Y1(t)] (3.27)

≤εβ1

[ ∫ t

t0

(
F
(
s,X(s), X(s− δ(s))

)⊗
G
(
s,X(s), X(s− δ(s))

))
ds,∫ t

t0

(
F
(
s,X(s), X(s− δ(s))

)⊗
G
(
s, Y1(s), Y1(s− δ(s))

))
ds
]

+ εβ1

[ ∫ t

t0

(
F
(
s,X(s), X(s− δ(s))

)⊗
G
(
s, Y1(s), Y1(s− δ(s))

))
ds,
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t0

(
F
(
s, Y1(s), Y1(s− δ(s))

)⊗
G
(
s, Y1(s), Y1(s− δ(s))

))
ds
]

+ εβ1

[ ∫ t

t0

(
F
(
s, Y1(s), Y1(s− δ(s))

)⊗
G
(
s, Y1(s), Y1(s− δ(s))

))
ds,∫ t

t0

(
F
(
s, Y1(s), Y1(s− δ(s))

)⊗
G1

(
Y1(s)

))
ds
]

+ εβ1

[ ∫ t

t0

(
F
(
s, Y1(s), Y1(s− δ(s))

)⊗
G1

(
Y1(s)

))
ds,∫ t

t0

(
F
(
Y1(s), Y1(s− δ(s))

)⊗
G1

(
Y1(s)

))
ds
]

+ β1[X0, Y0]

≤εM1β1

[ ∫ t

t0

G
(
s,X(s), X(s− δ(s))

)
ds,

∫ t

t0

G
(
s, Y1(s), Y1(s− δ(s))

)
ds
]

+ εM1β1

[ ∫ t

t0

F
(
s,X(s), X(s− δ(s))

)
ds,

∫ t

t0

F
(
s, Y1(s), Y1(s− δ(s))

)
ds
]

+ εM1β1

[ ∫ t

t0

G
(
s, Y1(s), Y1(s− δ(s))

)
ds,

∫ t

t0

G1

(
Y1(s)

)
ds
]

+ εM1β1

[ ∫ t

t0

F
(
s, Y1(s), Y1(s− δ(s))

)
ds,

∫ t

t0

F
(
Y1(s), Y1(s− δ(s))

)
ds
]

+ β1[X0, Y0]

≤2εM1λ21

∫ t

t0

β1[X(s), Y1(s)]ds

+ 2εM1λ22

∫ t

t0

β1[X(s− δ(s)), Y1(s− δ(s))]ds

+ εM1β1

[ ∫ t

t0

G
(
s, Y1(s), Y1(s− δ(s))

)
ds,

∫ t

t0

G1

(
Y1(s)

)
ds
]

+ εM1β1

[ ∫ t

t0

F
(
s, Y1(s), Y1(s− δ(s))

)
ds,

∫ t

t0

F
(
Y1(s), Y1(s− δ(s))

)
ds
]

+ β1[X0, Y0], (3.28)

where

I1 = 2εM1λ21

∫ t

t0

β1[X(s), Y1(s)]ds,

I2 = 2εM1λ22

∫ t

t0

β1[X(s− δ(s)), Y1(s− δ(s))]ds,

I3 = εM1β1

[ ∫ t

t0

G
(
s, Y1(s), Y1(s− δ(s))

)
ds,

∫ t

t0

G1

(
Y1(s)

)
ds
]
,

I4 = εM1β1

[ ∫ t

t0

F
(
s, Y1(s), Y1(s− δ(s))

)
ds,

∫ t

t0

F
(
Y1(s), Y1(s− δ(s))

)
ds
]
,

I5 = β1[X0, Y0].

For δ : [0, T1] → R+, such that t − δ(t) ∈ [t∗ − T1, T ]. When t ∈ [t∗ − T1, 0],
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obviously X(t− δ(t)) = Y (t− δ(t)). We can get

I2 ≤ 2εM1λ22

∫ 0

t∗−T1

β1[X(s− δ(s)), Y1(s− δ(s))]ds

+ 2εM1λ22

∫ t

0

β1[X(s− δ(s)), Y1(s− δ(s))]ds

= 2εM1λ22

∫ t

0

β1[X(τ), Y1(τ)]dτ, (3.29)

where τ = s− δ(s). Since δ(t) ∈ R+, obviously ds = dτ .

By the limit (3.21) and conditions (A3.21), for any η2 > 0, there exist ε2(L, η2) >
0 and T2 > 0 such that for ε ≤ ε2(L, η2) and t > T2, we have

G1(X) ⊂ 1

∆t

∫ t+∆t

t

G(s,X,U)ds+ Sη2(0).

So there is a measurable set of choices gi(s, x, u) ∈ G(s,X,U) such that

∥∥ 1

∆t

∫ t+∆t

t

gi(s, x, u)ds− gi(x)
∥∥ < η2 (3.30)

hold, where gi(x) ∈ G1(X), i = 1, 2, · · · .
Then ∥∥∫ t+∆t

t

gi(s, x, u)ds−
∫ t+∆t

t

gi(x)ds
∥∥ < ∆tη2. (3.31)

From the (3.31), we can obtain

I3 ≤ εM1(t− t0)η2. (3.32)

By analogy, we get

I4 ≤ εM1(t− t0)ξ(t). (3.33)

From the boundary conditions (3.25), (3.26) and the condition (H2), we can
know

β1

[ K∑
k=0

αk(ε)(Zk),

K∑
k=0

αk(ε)(Z̄k)
]

≤
K∑
k=0

µk(ε)
(
β1[X0, Y0] + εH1[%k, %̄k] + β1[DHX(tk), DHY1(tk)]

)
.

Furthermore, similar to (3.15) of Theorem 3.1, we have

β1[X0, Y0] ≤ A(ε)β1[%k, %̄k] +B(ε)β1[DHX(tk), DHY1(tk)]. (3.34)
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According to (3.1) and (3.23), we have

β1[DHX(tk), DHY1(tk)]

≤εβ1

[
F
(
tk, X(tk), X(tk − δ(tk))

)⊗
G
(
tk, X(tk), X(tk − δ(tk))

)
,

F
(
Y1(tk), Y1(tk − δ(tk))

)⊗
G1

(
Y1(tk)

)]
≤εβ1

[
F
(
tk, X(tk), X(tk − δ(tk))

)⊗
G
(
tk, X(tk), X(tk − δ(tk))

)
, {0}

]
+ εβ1

[
{0}, F

(
Y1(tk), Y1(tk − δ(tk))

)⊗
G1

(
Y1(tk)

)]
≤2εM2

1 .

(3.35)

From the inequality (3.30) and (3.31), we have

β1[%k, %̄k]

≤β1

[ ∫ tk

t0

(
F
(
s,X(s), X(s− δ(s))

)⊗
G
(
s,X(s), X(s− δ(s))

))
ds,∫ tk

t0

(
F
(
s,X(s), X(s− δ(s))

)⊗
G
(
s, Y1(s), Y1(s− δ(s))

))
ds
]

+ εβ1

[ ∫ tk

t0

(
F
(
s,X(s), X(s− δ(s))

)⊗
G
(
s, Y1(s), Y1(s− δ(s))

))
ds,∫ tk

t0

(
F
(
s, Y1(s), Y1(s− δ(s))

)⊗
G
(
s, Y1(s), Y1(s− δ(s))

))
ds
]

+ β1

[ ∫ tk

t0

(
F
(
s, Y1(s), Y1(s− δ(s))

)⊗
G
(
s, Y1(s), Y1(s− δ(s))

))
ds,∫ tk

t0

(
F
(
s, Y1(s), Y1(s− δ(s))

)⊗
G1

(
Y1(s)

))
ds
]

+ β1

[ ∫ tk

t0

(
F
(
s, Y1(s), Y1(s− δ(s))

)⊗
G1

(
Y1(s)

))
ds,∫ tk

t0

(
F
(
Y1(s), Y1(s− δ(s))

)⊗
G1

(
Y1(s)

))
ds
]

≤M1β1

[ ∫ tk

t0

G
(
s,X(s), X(s− δ(s))

)
ds,

∫ tk

t0

G
(
s, Y1(s), Y1(s− δ(s))

)
ds
]

+M1β1

[ ∫ tk

t0

F
(
s,X(s), X(s− δ(s))

)
ds,

∫ t

t0

F
(
s, Y1(s), Y1(s− δ(s))

)
ds
]

+M1β1

[ ∫ tk

t0

G
(
s, Y1(s), Y1(s− δ(s))

)
ds,

∫ tk

t0

G1

(
Y1(s)

)
ds
]

+M1β1

[ ∫ tk

t0

F
(
s, Y1(s), Y1(s− δ(s))

)
ds,

∫ tk

t0

F
(
Y1(s), Y1(s− δ(s))

)
ds
]

≤2M1(λ21 + λ22)

∫ tk

t0

β1[X(s), Y1(s)]ds+M1(tk − t0)(ξ(t) + η2). (3.36)
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On the base of (3.34), (3.35) and (3.36), we get

β1[X0, Y0] ≤ 2A(ε)M1(λ21 + λ22)

∫ tk

t0

β1[X(s), Y1(s)]ds

+A(ε)M1(tk − t0)(ξ(t) + η2) + 2εB(ε)M2
1 .

(3.37)

According to (3.27), (3.29), (3.32), (3.33) and (3.37), we have

β1[X(t), Y1(t)] ≤ 2εM1(λ21 + λ22)

∫ t

t0

β1[X(s), Y1(s)]ds+ 2εM1(t− t0)ξ(t)

+ 2A(ε)M1(λ21 + λ22)

∫ tk

t0

β1[X(s), Y1(s)]ds

+ 2A(ε)M1(tk − t0)ξ(t) + 2εB(ε)M2
1

≤ P (ε)

∫ t

t0

β1[X(s), Y1(s)]ds+Q(ε, t),

where
P (ε) = 2M1(λ11 + λ12)

(
ε+A(ε)

)
,

Q(ε, t) = M1(A(ε) + ε)(t− t0)(ξ(t) + η2) + 2εB(ε)M2
1 .

Using the Lemma 2.1, we get

β1[X(t), Y1(t)] ≤ Q(ε, t) exp{P (ε)L}. (3.38)

So, by selecting the appropriate k and ε2, For any η > 0 and ε ∈ (0, ε2], then
we obtain

β1[X(t), Y1(t)] ≤ η.
Theorem 3.2 is proved.
Similar to the analysis of theorem 3.2, we can come to the following conclusions.

Theorem 3.3. Let in the domain D, the following conditions hold

(A3.31) The limits (3.2) and (3.22) exist uniformly in t ≥ 0;

(A3.32) The solutions Y2(t) of the systems (3.24) at t ∈ [0, T ] together with its δ3-
neighbourhood belong to domain D, i.e. O(Y (t), δ3) ⊂ D, where δ3 > 0 is a
constant.

Then for any η > 0 and L > 0, there exist ε3(η, L) > 0 such that for ε ∈ (0, ε3] and
t ∈ [0, Lε−1] the inequality holds

β2[X(t), Y2(t)] ≤ η.

Proof. The proof of this theorem is similar to the proof in Theorem 3.1 and 3.2,
so it is omitted.

3.3. When the average limit of right-hand side two function
are absent

When the following limit

lim
T→∞

1

T

∫ t+T

t

F (s,X(s), U(s))ds,

lim
T→∞

1

T

∫ t+T

t

G(s,X(s), U(s))ds
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are absent, base on the concept of semi-deviation metric, suppose thatG1(X),G2(X)
satisfy the limit (3.21) and (3.22). There exist functions F 1, F 2 : conv(Rn) ×
conv(Rn)→ conv(Rn), such that

lim
T→∞

β1

[
F 1(X,U),

1

T

∫ T

0

F (s,X,U)ds
]

= 0, (3.39)

lim
T→∞

β2

[ 1

T

∫ T

0

F (s,X,U)ds, F 2(X,U)
]

= 0 (3.40)

hold.
The averging equations are equivalent to
DHY1(t) = ε

(
F 1

(
Y1(t), Y1(t− δ(t))

)⊗
G1

(
Y1(t)

))
,

K∑
k=0

αk(ε)Y1(tk) = Φ
(
Y1(t0), · · · , Y1(tK), DHY1(t0), · · · , DHY1(tK), ε

)
,

(3.41)


DHY2(t) = ε

(
F 2

(
Y2(t), Y2(t− δ(t))

)⊗
G2

(
Y2(t)

))
,

K∑
k=0

αk(ε)Y2(tk) = Φ
(
Y2(t0), · · · , Y2(tK), DHY2(t0), · · · , DHY2(tK), ε

)
.

(3.42)

Theorem 3.4. Suppose that the following conditions are satisfied in the domain
D, as following

(A3.41) For the set-value mappings F 1(X,U), G1(X), all the conditions (H1)−(H2)
are satisfied;

(A3.42) The limits (3.21) and (3.39) exist uniformly in t ≥ 0;

(A3.43) The solutions Y1(t) of the systems (3.41) at t ∈ [0, T ] together with its δ4-
neighbourhood belong to domain D, i.e. O(Y (t), δ4) ⊂ D, where δ4 > 0 is a
constant.

Then for any η > 0 and L > 0, there exist ε4(η, L) > 0 such that for ε ∈ (0, ε4] and
t ∈ [0, Lε−1] the inequality holds

β1[X(t), Y1(t)] ≤ η.

Similar to the analysis of theorem 3.4, we can get the following conclusion.

Theorem 3.5. Suppose that the following conditions are satisfied in the domain
D, as following

(A3.51) For the set-value mappings F 2(X,U), G2(X), all the conditions (H1)−(H2)
are satisfied;

(A3.52) The limits (3.22) and (3.40) exist uniformly in t ≥ 0;

(A3.53) The solutions Y2(t) of the systems (3.42) at t ∈ [0, T ] together with its δ5-
neighbourhood belong to domain D, i.e. O(Y (t), δ5) ⊂ D, where δ5 > 0 is a
constant.

Then for any η > 0 and L > 0, there exist ε5(η, L) > 0 such that for ε ∈ (0, ε5] and
t ∈ [0, Lε−1] the following estimate is ture

β2[X(t), Y2(t)] ≤ η.

Proof. The proof of the Theorem 3.4 and Theorem 3.5 are carried on similarly to
the proof of Theorem 3.1 and Theorem 3.2, so they are omitted.
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