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SPECTRAL-GALERKIN APPROXIMATION
BASED ON REDUCED ORDER SCHEME FOR

FOURTH ORDER EQUATION AND ITS
EIGENVALUE PROBLEM WITH SIMPLY

SUPPORTED PLATE BOUNDARY
CONDITIONS
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Abstract We develop in this paper a high-order numerical method for fourth-
order equation with simply supported plate boundary conditions in a circular
domain. By introducing an auxiliary function and using the dimension re-
duction technique, we reduce the fourth-order problem to a one-dimensional
second-order coupled problem. Based on the one-dimensional second-order
coupled problem, we prove the uniqueness of the weak solution and approxi-
mation solutions and the error estimation between them. Moreover, we extend
the approach to fourth-order eigenvalue problem with simply supported plate
boundary conditions in a circular domain. Finally, we carry out some numer-
ical experiments to validate the theoretical analysis and algorithm.
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1. Introduction

Fourth-order problems appear in many mathematical models for scientific and engi-
neering applications, such as the structural and continuum mechanics with applica-
tions to thin beams and plates [8,9,14,28], the vibration problems involving various
boundary conditions [1, 10, 11, 25], and so on. In addition, the numerical computa-
tion of many complex nonlinear problems like Allen-Cahn equation, Cahn-Hilliard
equation and transmission eigenvalue problem can also be accomplished by solving
a fourth-order equation repeatedly [16,19,23,24,26].

Up to now, there have been various numerical methods for solving fourth-order
problems with different boundary conditions in multifarious geometric domain, in-
cluding finite element methods [5, 7, 15, 27], spectral methods and some high-order
numerical methods [2,4,6,12,13,17,18,22]. For finite element methods, the regional
division and requirement of C1 finite element spaces will generate a large num-
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ber of degrees of freedom, especially for the fourth-order problems in some special
domains similar to circular domain. As we all know, spectral method is a high-
order numerical method with spectral accuracy, which plays an important role in
solving partial differential equations [21]. However, for some fourth-order problems
with simply supported plate boundary conditions in a circular/spherical domain,
spectral method can not be directly applied to solve them. Although An et al.
can convert a circular or spherical domain into a standard domain by using polar
or spherical coordinate transformation, the pole singularity and the complexity of
boundary conditions introduced by polar/spherical coordinate transformation bring
some difficulties to theoretical analysis and algorithm implementation. It is signifi-
cant to propose an effective spectral method for solving the fourth-order problems
with complex boundary conditions in some special domains.

Thus, the goal of this paper is to develop a high-order numerical method for
fourth-order equation with simply supported plate boundary conditions in a circu-
lar domain. By introducing an auxiliary function and using the dimension reduction
technique, we reduce the fourth-order problem to a one-dimensional second-order
coupled problem. Based on the one-dimensional second-order coupled problem, we
prove the uniqueness of the weak solution and approximation solutions and the er-
ror estimation between them. Moreover, we extend the approach to fourth-order
eigenvalue problem with simply supported plate boundary conditions in a circular
domain. Finally, we carry out some numerical experiments to validate the theoret-
ical analysis and algorithm.

The rest of this paper is organized as follows: In Section 2, we reduce the fourth
order problem to a coupled second order problem and derive the corresponding
dimension reduction scheme. In Section 3, we deduce the weak form and its spectral-
Galerkin approximation for the couple second order problem. We give the error
estimation of approximation solution in Section 4. An efficient implementation of
algorithm is developed in the Section 5. In Section 6, we extend the numerical
approaches to eigenvalue problems. In Section 7, some numerical experiments are
carried out to validate the results of theoretical analysis and algorithm. Finally we
give some concluding remarks.

2. Fourth order problem and its reduced order
scheme

As a model, we consider the following fourth-order problem:

∆2û(x, y) = f̂(x, y), in Ω, (2.1)

û(x, y) = ϕ̂(x, y), on ∂Ω, (2.2)

∆û(x, y) = ψ̂(x, y), on ∂Ω, (2.3)

where Ω = {(x, y) : x2 + y2 ≤ R2}.
We shall transform the original problem (2.1)-(2.3) into a second-order coupled

problem. Based on the second-order coupled problem, we further derive the equiv-
alent dimension reduction scheme. We first introduce an auxiliary function:

ŵ(x, y) = −∆û(x, y). (2.4)
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Inserting (2.4) into (2.1) results in:

−∆ŵ(x, y) = f̂(x, y), in Ω, (2.5)

−∆û(x, y) = ŵ(x, y), in Ω, (2.6)

ŵ(x, y) = −ψ̂(x, y), on ∂Ω, (2.7)

û(x, y) = ϕ̂(x, y), on ∂Ω. (2.8)

Recall the polar coordinate transformation: x = r cos θ, y = r sin θ. Let

u(r, θ) = û(x, y), w(r, θ) = ŵ(x, y), f(r, θ) = f̂(x, y),

ϕ(r, θ) = ϕ̂(x, y), ψ(r, θ) = ψ̂(x, y).

Thus the problem (2.5)-(2.8) can be rewritten as the following equivalent form:

− 1

r

∂

∂r
(r
∂w(r, θ)

∂r
)− 1

r2

∂2w(r, θ)

∂θ2
= f(r, θ), (r, θ) ∈ D, (2.9)

− 1

r

∂

∂r
(r
∂u(r, θ)

∂r
)− 1

r2

∂2u(r, θ)

∂θ2
= w(r, θ), (r, θ) ∈ D, (2.10)

w(R, θ) = −ψ(R, θ), θ ∈ [0, 2π), (2.11)

u(R, θ) = ϕ(R, θ), θ ∈ [0, 2π), (2.12)

where D = [0, R) × [0, 2π). Without loss of generality, supposing that ψ(R, θ) =
ϕ(R, θ) = 0. We derive from the Fourier expansion of the periodic function that

w(r, θ) =

∞∑
|m|=0

ŵm(r)eimθ, u(r, θ) =

∞∑
|m|=0

ûm(r)eimθ, f(r, θ) =

∞∑
|m|=0

f̂m(r)eimθ.

(2.13)

Note that

∆ŵ(x, y) = ∆w(r, θ) =
∂2w(r, θ)

∂r
+

1

r

∂w(r, θ)

∂r
+

1

r2

∂2w(r, θ)

∂θ

=

∞∑
|m|=0

[
∂2ŵm(r)

∂r
+

1

r

∂ŵm(r)

∂r
− m2

r2
ŵm(r)]eimθ. (2.14)

In order to ensure the boundedness of (2.14), we know from [2,3] that the following
essential pole conditions should be imposed in order to overcome the singularity
introduced by the polar coordinate transformation, i.e.,

mŵm|r=0 = 0, mûm|r=0 = 0,

that is

ŵm(0) = 0, ûm(0) = 0, (m 6= 0). (2.15)

Let

r =
t+ 1

2
R, wm(t) = ŵm(r), fm(t) = f̂m(r), um(t) = ûm(r).
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From (2.13), the pole conditions (2.15) and the orthogonality of Fourier basis func-
tions, (2.9)-(2.12) can be simplified to one-dimensional coupled second order prob-
lems:

− 1

t+ 1
∂t((t+ 1)∂twm) +

m2

(t+ 1)2
wm =

R2

4
fm, t ∈ (−1, 1), (2.16)

− 1

t+ 1
∂t((t+ 1)∂tum) +

m2

(t+ 1)2
um =

R2

4
wm, t ∈ (−1, 1), (2.17)

wm(1) = um(1) = 0, (m = 0), (2.18)

wm(±1) = um(±1) = 0, (m 6= 0). (2.19)

3. Weak form and its spectral-Galerkin approxima-
tion

Let I = (−1, 1), ω = 1 + t. Define the usual weighted Sobolev space:

L2
ω(I) :=

{
p :

∫
I

ω|p|2dt <∞
}

with the following inner product and norm:

(p, q)ω =

∫
I

ωpq̄dt, ‖p‖ω = [

∫
I

ω|p|2dt] 1
2 .

We further introduce non-uniformly weighted Sobolev spaces H1
0,ω,m(I):

H1
0,ω,m(I) := {pm : ∂kt wm ∈ L2

ω(I), k = 1, pm(1) = 0}, (m = 0);

H1
0,ω,m(I) := {pm : ∂kt wm ∈ L2

ω2k−1(I), k = 0, 1, pm(±1) = 0}, (m 6= 0),

with the following inner products and norms:

(p0, q0)1,ω,0 := (∂tp0, ∂tq0)w, ‖p0‖1,ω,0 =
√

(p0, p0)1,ω,0;

(pm, qm)1,ω,m :=

1∑
k=0

(∂kt pm, ∂
k
t qm)w2k−1 , ‖pm‖1,ω,m = (pm, pm)

1
2
1,ω,m, (m 6= 0).

Then the weak form of (2.16)-(2.19) is : Find (wm, um) ∈ H1
0,ω,m(I) ×H1

0,ω,m(I),
such that

am(wm, vm) = Fm(vm), ∀vm ∈ H1
0,ω,m(I), (3.1)

am(um, hm) = bm(wm, hm), ∀hm ∈ H1
0,ω,m(I), (3.2)

where

am(wm, vm) =

∫
I

(t+ 1)w′mv
′
m +

m2

t+ 1
wmvmdt,

Fm(vm) =
R2

4

∫
I

(t+ 1)fmvmdt, bm(wm, hm) =
R2

4

∫
I

(t+ 1)wmhmdt.
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Denote by PN the space of polynomials of degree less than or equal to N . Define
an approximation space XN (m) = PN ∩ H1

0,ω,m(I). Then the spectral-Galerkin
approximation to (3.1)-(3.2) are: Find (wmN , umN ) ∈ XN (m)×XN (m), such that

am(wmN , vmN ) = Fm(vmN ), ∀vmN ∈ XN (m), (3.3)

am(umN , hmN ) = bm(wmN , hmN ), ∀hmN ∈ XN (m). (3.4)

4. Error estimation of approximation solution

Lemma 4.1. am(wm, vm) is a continuous and coercive bilinear functional on
H1

0,ω,m(I)×H1
0,ω,m(I), i.e.,

|am(wm, vm)| ≤ max{1,m2}‖wm‖1,ω,m‖vm‖1,ω,m,
am(wm, wm) ≥ ‖wm‖21,ω,m.

Proof. When m = 0, from Cauchy-Schwarz inequality we have

|a0(w0, v0)| = |
∫
I

(1 + t)w′0(t)v′0(t)dt|

≤
∫
I

(t+ 1)|w′0(t)v′0(t)|dt

≤
[ ∫

I

(t+ 1)|w′0(t)|2dt
] 1

2
[ ∫

I

(t+ 1)|v′0(t)|2dt
] 1

2

= ‖w0‖1,ω,0‖v0‖1,ω,0,

a0(w0, w0) =

∫
I

(t+ 1)|w′0(t)|2dt = ‖w0‖21,ω,0.

When m 6= 0, from Cauchy-Schwarz inequality we derive that

|am(wm, vm)| = |
∫
I

((1 + t)w′m(t)v′m(t) +
m2

t+ 1
wm(t)vm(t))dt|

≤ m2

∫
I

((t+ 1)|w′m(t)v′m(t)|+ 1

t+ 1
|wm(t)vm(t)|)dt

≤ m2

[ ∫
I

((t+ 1)|w′m(t)|2 +
1

t+ 1
|wm(t)|2)dt

] 1
2

,[ ∫
I

((t+ 1)|v′m(t)|2 +
1

t+ 1
|vm(t)|2)dt

] 1
2

= m2‖wm‖1,ω,m‖vm‖1,ω,m,

am(wm, wm) =

∫
I

((t+ 1)|w′m(t)|2 +
m2

1 + t
|wm(t)|2)dt

≥
∫
I

((t+ 1)|w′m|2 +
1

1 + t
|wm|2)dt = ‖wm‖21,ω,m.

This finishes our proof.

Lemma 4.2. For ∀wm ∈ H1
0,ω,m(I), the following inequality holds:∫

I

(t+ 1)w2
m(t)dt ≤

∫
I

(t+ 1)[w′m(t)]2dt.
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Proof. It follows from the boundary condition w(1) = 0 that

−wm(t) =

∫ 1

t

w′m(s)ds. (4.1)

From Cauchy-Schwarz inequality and (4.1), we derive that∫ 1

−1

(t+ 1)w2
m(t)dt =

∫ 1

−1

[ ∫ 1

t

1√
s+ 1

√
s+ 1w′m(s)ds

]2

(t+ 1)dt

≤
∫ 1

−1

∫ 1

t

(s+ 1)[w′m(s)]2ds[ln 2− ln(t+ 1)](t+ 1)dt

≤
∫ 1

−1

(s+ 1)[w′m(s)]2ds

∫ 1

−1

[(t+ 1) ln 2− (t+ 1) ln(t+ 1)]dt

=

∫ 1

−1

(s+ 1)[w′m(s)]2ds =

∫ 1

−1

(t+ 1)[w′m(t)]2dt.

This finishes our proof.

Lemma 4.3. If fm(t) ∈ L2
ω(I), then Fm(vm) is a bounded linear functional on

H1
0,ω,m(I), i.e.,

|Fm(vm)| . ‖vm‖1,ω,m.

Proof. From the Cauchy-Schwarz inequality and Lemma 4.2, we have

|Fm(vm)| = |
∫
I

(t+ 1)fm(t)vm(t)dt|

≤
[ ∫

I

(t+ 1)|fm(t)|2dt
] 1

2
[ ∫

I

(t+ 1)|vm(t)|2dt
] 1

2

. (

∫
I

(t+ 1)|vm(t)|2dt) 1
2

. (

∫
I

(t+ 1)|v′m|2dt)
1
2

= ‖vm‖1,ω,m.

This finishes our proof.
From Lemma 4.1, Lemma 4.3 and Lax-Milgram Lemma, we have following The-

orem:

Theorem 4.1. If fm(t) ∈ L2
ω(I), then problems (3.1)-(3.2) and (3.3)-(3.4) have

unique solutions (wm, um) ∈ H1
0,ω,m×H1

0,ω,m and (wmN , umN ) ∈ XN (m)×XN (m),
respectively.

Lemma 4.4. Assuming that wm and wmN are the solutions of (3.1) and (3.3),
respectively, there holds:

‖wm − wmN‖1,ω,m ≤ max{
√

2, 4m3} inf
vmN∈XN (m)

‖∂t(wm − vmN )‖.

Proof. From (3.1) and (3.3), we have

am(wm, vmN ) = Fm(vmN ), ∀vmN ∈ XN (m), (4.2)
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am(wmN , vmN ) = Fm(vmN ), ∀vmN ∈ XN (m), (4.3)

which leads to

am(wm − wmN , vmN ) = 0, ∀vmN ∈ XN (m). (4.4)

When m = 0, one can deduce form Lemma 4.1 and (4.4) that

‖wm − wmN‖21,ω,m
≤am(wm − wmN , wm − wmN )

=am(wm − wmN , wm − vmN + vmN − wmN )

=am(wm − wmN , wm − vmN ) + am(wm − wmN , vmN − wmN )

≤‖wm − wmN‖1,ω,m‖wm − vmN‖1,ω,m,

this implies that

‖wm − wmN‖1,ω,m ≤ ‖wm − vmN‖1,ω,m, ∀vmN ∈ XN (m).

Since

‖wm − vmN‖21,ω,m =

∫
I

(t+ 1)[∂t(wm − vmN )]2dt ≤ 2‖∂t(wm − vmN )‖2,

it is easy to show that

‖wm − wmN‖1,ω,m ≤
√

2‖∂t(wm − vmN )‖. (4.5)

When m 6= 0, we obtain from Lemma 4.1 and (4.4) that

‖wm − wmN‖21,ω,m
≤am(wm − wmN , wm − wmN )

=am(wm − wmN , wm − vmN + vmN − wmN )

=am(wm − wmN , wm − vmN ) + am(wm − wmN , vmN − wmN )

≤m2‖wm − wmN‖1,ω,m‖wm − vmN‖1,ω,m,

that is

‖wm − wmN‖1,ω,m ≤ m2‖wm − vmN‖1,ω,m, ∀vmN ∈ XN (m).

Using the pole condition wm(−1) = 0 and Hardy inequality (cf. B8.6 in [21]), we
obtain that ∫

I

1

(1 + t)2
w2
mdt ≤ 4

∫
I

(∂twm)2dt.

We then have

‖wm − vmN‖21,ω,m =

∫
I

(t+ 1)[∂t(wm − vmN )]2dt+

∫
I

m2

t+ 1
(wm − vmN )2dt

≤
∫
I

(t+ 1)[∂t(wm − vmN )]2dt+ 2m2

∫
I

1

(t+ 1)2
(wm − vmN )2dt
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≤
∫
I

(t+ 1)[∂t(wm − vmN )]2dt+ 8m2

∫
I

[∂t(wm − vmN )]2dt

≤ 16m2

∫
I

[∂t(wm − vmN )]2dt.

Thus

‖wm − wmN‖1,ω,m ≤ 4m3

[ ∫
I

(∂t(wm − vmN ))2dt

] 1
2

= 4m3‖∂t(wm − vmN )‖.

(4.6)

The expected result follows from inequalities (4.5), (4.6) and the arbitrariness of
vmN . This finishes our proof.

For proving the error estimation, we need to introduce two non-uniformly
weighted Sobolev spaces as follows:

Hs
ωα,β ,∗(I) := {w : ∂kt w ∈ L2

ωα+k,β+k , 0 ≤ k ≤ s},

equipped with the inner product and the associated norm

(w, v)s,ωα,β ,∗ =

s∑
k=0

(∂kt w, ∂
k
t v)ωα+k,β+k , ‖w‖s,ωα,β ,∗ =

√
(w,w)s,ωα,β ,∗

and

Ĥsω−1,−1,m(I) := {wm ∈ H1
0,ω,m(I) : ∂kt wm ∈ L2

ω−1+k,−1+k , 1 ≤ k ≤ s},

equipped with the inner product and the associated norm

(wm, vm)s,ω−1,−1,m = (wm, vm)1,ω,m +

s∑
k=1

(∂kt wm, ∂
k
t vm)ω−1+k,−1+k ,

‖wm‖s,ω−1,−1,m =
√

(wm, wm)s,ω−1,−1,m,

where ωα,β(t) = (1− t)α(1 + t)β is Jacobi weight function.
Define an orthogonal projection operator ΠN,ω−1,−1 : L2

ω−1,−1(I)→ P−1,−1
N such

that

(w −ΠN,ω−1,−1w, vN )ω−1,−1 = 0, ∀vN ∈ P−1,−1
N , (4.7)

where P−1,−1
N = {p ∈ PN : p(±1) = 0}.

From Theorem 1.8.2 in [20] we have following Lemma:

Lemma 4.5. For ∀w ∈ Hs
ω−1,−1,∗(I), the following inequality holds:

‖∂t(ΠN,ω−1,−1w − w)‖ . N1−s‖∂stw‖ω−1+s,−1+s .

Theorem 4.2. There exist an operator Π1,0
N : H1

0,ω,0(I) → P 0
N such that

Π1,0
N w0(−1) = w0(−1), Π1,0

N w0(1) = w0(1) = 0, for any w0 ∈ Ĥsω−1,−1,0(I) (s ≥ 1),
there holds

‖∂t(Π1,0
N w0 − w0)‖ . N1−s‖∂stw0‖ω−1+s,−1+s ,

where P 0
N = {p0 ∈ PN : p0(1) = 0}.
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Proof. Let w∗0(t) = 1−t
2 w0(−1), ∀w0 ∈ H1

0,ω,0(I). Then for ∀w0 ∈ Ĥsω−1,−1,0(I),

we have (w0 − w∗0)(±1) = 0, and w0 − w∗0 ∈ Hs
ω−1,−1,∗(I). In fact, we derive from

Hardy inequality (cf. B8.8 in [21]) that∫
I

ω−1,−1(w0 − w∗0)2dt .
∫
I

ω−2,−2(w0 − w∗0)2dt .
∫
I

[∂t(w0 − w∗0)]2dt.

Since ∫
I

[∂tw
∗
0 ]2dt =

∫
I

1

4
[w0(−1)]2dt =

1

2
[w0(−1)]2

=
1

2

[ ∫
I

(∂tw0)dt

]2

.
∫
I

(∂tw0)2dt,

we then obtain∫
I

[∂t(w0 − w∗0)]2dt .
∫
I

(∂tw0)2dt+

∫
I

(∂tw
∗
0)2dt .

∫
I

(∂tw0)2dt. (4.8)

For k > 2, we have∫
I

ω−1+k,−1+k[∂kt (w0 − w∗0)]2dt .
∫
I

ω−1+k,−1+k(∂kt w0)2dt. (4.9)

Thus w0 − w∗0 ∈ Hs
ω−1,−1,∗(I). Define

Π1,0
N w0 = ΠN,ω−1,−1(w0 − w∗0) + w∗0 ∈ P 0

N , ∀w0 ∈ Hsω−1,−1,0(I).

In light of Lemma 4.5 we have

‖∂t(Π1,0
N w0 − w0)‖ = ‖∂t[ΠN,ω−1,−1(w0 − w∗0)− (w0 − w∗0)]‖

. N1−s‖∂st (w0 − w∗0)‖ω−1+s,−1+s

. N1−s‖∂stw0‖ω−1+s,−1+s .

This finishes our proof.

Theorem 4.3. Let wm and wmN be the solutions of (3.1) and (3.3), respectively.
If m = 0, and wm ∈ Ĥsω−1,−1,m(I)(s ≥ 1), then the following inequality holds

‖wm − wmN‖1,ω,m . N1−s‖∂stwm‖ω−1+s,−1+s .

If m 6= 0 and wm ∈ H1
0,ω,m(I) ∩Hs

ω−1,−1,∗(I)(s ≥ 1), then the following inequality
holds

‖wm − wmN‖1,ω,m . N1−s‖∂stwm‖ω−1+s,−1+s .

Proof. When m = 0, for ∀v0N ∈ XN (0), from Lemma 4.4 and Theorem 4.2 we
have

‖w0 − w0N‖1,ω,0 ≤ inf
v0N∈XN (0)

√
2‖∂t(w0 − v0N )‖

. ‖∂t(w0 −Π1,0
N w0)‖

. N1−s‖∂stw0‖ω−1+s,−1+s .
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When m 6= 0, for ∀vmN ∈ XN (m), from Lemma 4.4 and Lemma 4.5 we arrive at

‖wm − wmN‖1,ω,m ≤ inf
vmN∈XN (m)

4m3‖∂t(wm − vmN )‖

. ‖∂t(wm −ΠN,ω−1,−1wm)‖ . N1−s‖∂stwm‖ω−1+s,−1+s .

This finishes our proof.

Theorem 4.4. Let um and umN be the solutions of (3.2) and (3.4), respectively.
Then the following inequality holds

‖um − umN‖1,ω,m . N1−s[‖∂st um‖ω−1+s,−1+s + ‖∂stwm‖ω−1+s,−1+s

]
.

Proof. From(3.2) and (3.4) we have

am(um, hmN ) = bm(wm, hmN ), ∀ hmN ∈ XN (m), (4.10)

am(umN , hmN ) = bm(wmN , hmN ), ∀ hmN ∈ XN (m), (4.11)

which leads to

am(um − umN , hmN ) = bm(wm − wmN , hmN ), ∀hmN ∈ XN (m). (4.12)

When m = 0, for ∀qmN ∈ XN (m), we obtain from Lemma 4.1, Lemma 4.2 and
(4.12) that

‖um − umN‖21,ω,m
≤am(um − umN , um − umN )

=am(um − umN , um − qmN + qmN − umN )

=am(um − umN , um − qmN ) + am(um − umN , qmN − umN )

=am(um − umN , um − qmN ) + bm(wm − wmN , qmN − umN )

≤‖um − umN‖1,ω,m‖um − qmN‖1,ω,m

+
R2

4
‖wm − wmN‖1,ω,m‖qmN − umN‖1,ω,m.

By taking qmN = Π1,0
N um, we obtain

‖um − umN‖21,ω,m ≤‖um − umN‖1,ω,m‖um −Π1,0
N um‖1,ω,m

+
R2

4
‖wm − wmN‖1,ω,m‖Π1,0

N um − umN‖1,ω,m.

Since

‖Π1,0
N um − umN‖1,ω,m = ‖Π1,0

N um − um + um − umN‖1,ω,m
≤ ‖Π1,0

N um − um‖1,ω,m + ‖um − umN‖1,ω,m,

then

‖um − umN‖21,ω,m
≤‖um − umN‖1,ω,m‖um −Π1,0

N um‖1,ω,m

+
R2

4
‖wm − wmN‖1,ω,m‖Π1,0

N um − um‖1,ω,m
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+
R2

4
‖wm − wmN‖1,ω,m‖um − umN‖1,ω,m

≤1

4
‖um − umN‖21,ω,m + ‖um −Π1,0

N um‖21,ω,m +
R4

32
‖wm − wmN‖21,ω,m

+
1

2
‖Π1,0

N um − um‖21,ω,m +
R4

16
‖wm − wmN‖21,ω,m +

1

4
‖um − umN‖21,ω,m.

One can derive from above inequality that

‖um − umN‖21,ω,m ≤ 3[‖um −Π1,0
N um‖21,ω,m +

R4

16
‖wm − wmN‖21,ω,m].

From Theorem 4.2 and Theorem 4.3, we have

‖um − umN‖21,ω,m . [N1−s‖∂st um‖ω−1+s,−1+s ]2 + [N1−s‖∂stwm‖ω−1+s,−1+s ]2

≤ [N1−s‖∂st um‖ω−1+s,−1+s +N1−s‖∂stwm‖ω−1+s,−1+s ]2,

that is

‖um − umN‖1,ω,m . N1−s(‖∂st um‖ω−1+s,−1+s + ‖∂stwm‖ω−1+s,−1+s). (4.13)

When m 6= 0, for ∀qmN ∈ XN (m), in accordance with Lemma 4.1, Lemma 4.2 and
(4.12) we obatin

‖um − umN‖21,ω,m
≤am(um − umN , um − umN )

=am(um − umN , um − qmN + qmN − umN )

=am(um − umN , um − qmN ) + am(um − umN , qmN − umN )

=am(um − umN , um − qmN ) + bm(wm − wmN , qmN − umN )

≤m2‖um − umN‖1,ω,m‖um − qmN‖1,ω,m

+
R2

4
‖wm − wmN‖1,ω,m‖qmN − umN‖1,ω,m.

By qmN = ΠN,ω−1,−1um, we have

‖um − umN‖21,ω,m ≤m2‖um − umN‖1,ω,m‖um −ΠN,ω−1,−1um‖1,ω,m

+
R2

4
‖wm − wmN‖1,ω,m‖ΠN,ω−1,−1um − umN‖1,ω,m.

Since

‖ΠN,ω−1,−1um − umN‖1,ω,m = ‖ΠN,ω−1,−1um − um + um − umN‖1,ω,m
≤ ‖ΠN,ω−1,−1um − um‖1,ω,m + ‖um − umN‖1,ω,m,

then

‖um − umN‖21,ω,m ≤m2‖um − umN‖1,ω,m‖um −ΠN,ω−1,−1um‖1,ω,m

+
R2

4
‖wm − wmN‖1,ω,m‖ΠN,ω−1,−1um − um‖1,ω,m

+
R2

4
‖wm − wmN‖1,ω,m‖um − umN‖1,ω,m
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≤1

4
‖um − umN‖21,ω,m +m4‖um −ΠN,ω−1,−1um‖21,ω,m

+
R4

32
‖wm − wmN‖21,ω,m +

1

2
‖ΠN,ω−1,−1um − um‖21,ω,m

+
R4

16
‖wm − wmN‖21,ω,m +

1

4
‖um − umN‖21,ω,m,

that is

‖um − umN‖21,ω,m ≤ (2m4 + 1)‖um −ΠN,ω−1,−1um‖21,ω,m +
3R4

16
‖wm − wmN‖21,ω,m.

According to Lemma 4.5 and Theorem 4.3 we arrive at

‖um − umN‖21,ω,m . [N1−s‖∂st um‖ω−1+s,−1+s ]2 + [N1−s‖∂stwm‖ω−1+s,−1+s ]2

. [N1−s‖∂st um‖ω−1+s,−1+s +N1−s‖∂stwm‖ω−1+s,−1+s ]2.

Thus

‖um − umN‖1,ω,m . N1−s(‖∂st um‖ω−1+s,−1+s + ‖∂stwm‖ω−1+s,−1+s). (4.14)

The desirable result follows from (4.13) and (4.14). This finishes our proof.

5. Efficient implementation of algorithm

We shall develop an efficient numerical method to solve (3.3)-(3.4). Let us first
construct a set of basis functions for the approximation space XN (m). Let

φi(t) = Li(t)− Li+2(t), i = 0, · · · , N − 2, (5.1)

where Li(t) represents the Legendre polynomial with degree of i. It is obvious that

XN (0) = span{φ0(t), · · · , φN−2(t)} ⊕ span{φN−1(t)},
XN (m) = span{φ0(t), · · · , φN−2(t)}, (m 6= 0),

where φN−1(t) = 1
2 (1− t). Setting

aij =

∫
I

(t+ 1)φ′iφ
′
jdt, bij =

∫
I

1

1 + t
φiφjdt,

cij =

∫
I

(t+ 1)φiφjdt, f
m
i =

∫
I

(t+ 1)fmφidt.

When m = 0, we shall seek

w0N =

N−1∑
i=0

w0
i φi(t), u0N =

N−1∑
i=0

u0
iφi(t). (5.2)

Plugging (5.2) into (3.3)-(3.4) and taking v0N , h0N through all the basis functions
in XN (0), we derive that A0 0

−R
2

4 C0 A0

W 0

U0

 =

 R2

4 F
0

0

 ,
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where

A0 = (aij), C0 = (cij), F
0 = (f0

0 , · · · , f0
N−1)T ,

W 0 = (w0
0, · · · , w0

N−1)T , U0 = (u0
0, · · · , u0

N−1)T .

When m 6= 0, we shall seek

wmN =

N−2∑
i=0

wmi φi(t), umN =

N−2∑
i=0

umi φi(t). (5.3)

Similarly, plugging (5.3) into (3.3)-(3.4) and taking vmN , hmN through all the basis
functions in XN (m), we derive thatAm +m2Bm 0

−R
2

4 Cm Am +m2Bm

Wm

Um

 =

 R2

4 F
m

0

 ,
where

Am = (aij), Bm = (bij), Cm = (cij), F
m = (fm0 , · · · , fmN−2)T ,

Wm = (wm0 , · · · , wmN−2)T , Um = (um0 , · · · , umN−2)T .

6. Extension to eigenvalue problems

In this section, we shall extend our algorithm to the associated eigenvalue problems:

∆2û(x, y)− α∆û(x, y) + βû(x, y) = λû(x, y), in Ω, (6.1)

û(x, y) = 0, on ∂Ω, (6.2)

∆û(x, y) = 0, on ∂Ω, (6.3)

where α and β are nonnegative constants. Similar to the deduction of (2.16)-(2.19),
(6.1)-(6.3) can be reduced to one-dimensional coupled second order eigenvalue prob-
lems:

− Lmwm + α
R2

4
wm + β

R2

4
um =

R2

4
λmum, t ∈ (−1, 1), (6.4)

− Lmum −
R2

4
wm = 0, t ∈ (−1, 1), (6.5)

um(1) = wm(1) = 0, (m = 0); (6.6)

um(±1) = wm(±1) = 0, (m 6= 0), (6.7)

where

Lm =
1

t+ 1
∂t((t+ 1)∂t)−

m2

(t+ 1)2
.

Obviously the weak form of (6.4)-(6.7) is: Find λm ∈ R, non-trivial (wm, um) ∈
H1

0,ω,m(I)×H1
0,ω,m(I) such that

am(wm, vm) + αbm(wm, vm) + βbm(um, vm) = λmbm(um, vm), ∀vm ∈ H1
0,ω,m(I),

(6.8)
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am(um, hm)− bm(wm, hm) = 0, ∀hm ∈ H1
0,ω,m(I). (6.9)

Then the spectral-Galerkin approximation to (6.8)-(6.9) is: Find λmN ∈ R, non-
trivial (wmN , umN ) ∈ XN (m) × XN (m) such that for ∀(vmN , hmN ) ∈ XN (m) ×
XN (m),

am(wmN , vmN ) + αbm(wmN , vmN ) + βbm(umN , vmN ) = λmNbm(umN , vmN ),
(6.10)

am(umN , hmN )− bm(wmN , hmN ) = 0. (6.11)

When m = 0, we shall seek

w0N =

N−1∑
i=0

w0
i φi(t), u0N =

N−1∑
i=0

u0
iφi(t). (6.12)

Plugging (6.12) into (6.10)-(6.11) and taking v0N , h0N through all the basis func-
tions in XN (0), we derive thatA0 + R2

4 αC0
R2

4 βC0

−R
2

4 C0 A0

W 0

U0

 = λ0N

0 R2

4 C0

0 0

W 0

U0

 .
When m 6= 0, we shall seek

wmN =

N−2∑
i=0

wmi φi(t), umN =

N−2∑
i=0

umi φi(t). (6.13)

Similarly, plugging (6.13) into (6.10)-(6.11) and taking vmN , hmN through all the
basis functions in XN (m), we derive thatAm +m2Bm + R2

4 αCm
R2

4 βCm

−R
2

4 Cm Am +m2Bm

Wm

Um

 = λmN

0 R2

4 Cm

0 0

Wm

Um

 .
Remark 6.1. For the analysis of convergence of the approximating eigenvalues and
eigenfunctions in the discrete scheme (6.10)-(6.11), by employing Babus̆ka-Osborn
theory, we can establish the abstract spectral approximation results, which combine
the approximation properties of projection operators in Section 4 to further obtain
the error estimates for approximating eigenvalues and eigenfunctions. For the sake
of brevity, we omitted the details.

7. Numerical experiments

We shall present in this section a sequence of numerical experiments to illustrate
the effectiveness and high accuracy of our algorithm. We operate our programs in
MATLAB 2019b.

Denote by (ŵMN , ûMN ) the approximation solutions of the exact solutions
(ŵ(x, y), û(x, y)), respectively. According to the pole coordinate transformation
and variable substitution we have

(ŵ(x, y), û(x, y)) = (w(t, θ), u(t, θ)) =

∞∑
|m|=0

(wm(t), um(t))eimθ,
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Table 1. The error e(ŵ(x, y), ŵMN (x, y)) between approximate solutions and exact solutions for dif-
ferent M and different N .

N M = 4 M = 8 M = 12 M = 16

20 0.0071 3.6115e-07 3.0101e-06 0.0212

25 0.0072 3.5027e-07 7.1085e-12 1.6536e-07

30 0.0073 3.6103e-07 3.7357e-12 1.4921e-13

35 0.0073 3.5619e-07 2.3093e-14 2.0359e-16

(ŵMN (x, y), ûMN (x, y)) = (wMN (t, θ), uMN (t, θ)) =

M∑
|m|=0

(wmN (t), umN (t))eimθ.

Define the errors between the weak solutions (ŵ(x, y), û(x, y)) and the numerical
solutions (ŵMN , ûMN ) as follows:

e(ŵ(x, y), ŵMN (x, y)) = ‖ŵ(x, y)− ŵMN (x, y)‖L∞(Ω)

= ‖w(t, θ)− wMN (t, θ)‖L∞(D),

and

e(û(x, y), ûMN (x, y)) = ‖û(x, y)− ûMN (x, y)‖L∞(Ω)

= ‖u(t, θ)− uMN (t, θ)‖L∞(D).

Example 7.1. We take R = 1, û = (x2 + y2 − 1)3ex+y. By plugging û(x, y) into

equations (2.1)-(2.3), we can obtain f̂(x, y), ϕ̂(x, y) and ψ̂(x, y). For different N
and M , the errors between approximate solutions and exact solutions are listed in
Tables 1-2. To further demonstrate the efficiency and accuracy of our algorithm,
we draw the images of the exact solutions and the approximate solutions in Figures
1 and 3 and the error images between them in Figures 2 and 4.

Figure 1. Comparison figures of exact solutions (left) and approximation solutions (right) with N = 30
and M = 15.

As shown in Tables 1-2, the errors decline quickly with the increase of N and
M . When N ≥ 30,M ≥ 12, the approximate solutions achieve at about 10−12

accuracy. We further observe from Figures 1-4 that our algorithm is convergent
and highly accurate. In addition, to test the spectral accuracy of our algorithm,
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Figure 2. The error figures of exact solutions ŵ(x, y) and approximation solutions ŵMN (x, y) with
N = 30 and M = 14 (left) and N = 45 and M = 25 (right).

Table 2. The error e(û(x, y), ûMN (x, y)) between approximate solutions and exact solutions for different
M and different N .

N M = 4 M = 8 M = 12 M = 16

20 7.3633e-05 1.6825e-09 1.5424e-08 9.4362e-05

25 7.3689e-05 1.6797e-09 1.9860e-14 6.3512e-10

30 7.4222e-05 1.6790e-09 1.0061e-14 1.1102e-15

35 7.4567e-05 1.6892e-09 1.0013e-14 1.5543e-15

we also present the corresponding error curves between the numerical solutions and
exact solutions on log-log scale in Figure 5. It can be observed from Figure 5 that
the error converges to zero exponentially.

Example 7.2. We take R = 1, û = (x2 +y2−1)3sin((x+y)π). By plugging û(x, y)

into equations (2.1)-(2.3), we can obtain f̂(x, y), ϕ̂(x, y) and ψ̂(x, y). For different
N and M , the errors between approximate solutions and exact solutions are listed
in Tables 3-4. To further demonstrate the efficiency and accuracy of our algorithm,
we draw the images of the exact solutions and the approximate solutions in Figures
5 and 7 and the error images between them in Figures 6 and 8.

We see from Tables 3-4 that the approximate solutions also achieve at about
10−12 accuracy with N ≥ 30,M ≥ 12. We further observe from Figures 6-9 that

Figure 3. Comparison figures of exact solutions (left) and approximation solutions (right) with N = 35
and M = 15.
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Figure 4. The error figures of exact solutions û(x, y) and approximation solutions ûMN (x, y) with
N = 30 and M = 15 (left) andN = 45 and M = 25 (right).
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Figure 5. Error curves between the numerical solutions ŵMN (x, y) (left) and ûMN (x, y)(right) and
their exact solutions on log-log scale with different N and M = 12.

Table 3. The error e(ŵ(x, y), ŵMN (x, y)) between approximate solutions and exact solutions for dif-
ferent M and different N .

N M = 4 M = 8 M = 12 M = 16

20 0.0061 3.1825e-07 2.4694e-07 0.0023

25 0.0060 3.1166e-07 6.9387e-12 1.5468e-07

30 0.0061 3.1801e-07 3.4162e-12 1.2434e-14

35 0.0061 3.1590e-07 3.4337e-12 1.2434e-14

Table 4. The error e(û(x, y), ûMN (x, y)) between approximate solutions and exact solutions for different
M and different N .

N M = 4 M = 8 M = 12 M = 16

20 6.3773e-05 1.4955e-09 1.1306e-09 1.1503e-05

25 6.3807e-05 1.5017e-09 1.9439e-14 6.0945e-10

30 6.3829e-05 1.4920e-09 9.3085e-15 2.7756e-16

35 6.3845e-05 1.5073e-09 9.1524e-15 2.7756e-16

our algorithm is also convergent and highly accurate.

Example 7.3. We consider the eigenvalue problem (6.1)-(6.3). Here, settingR = 2,
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Figure 6. Comparison figures of exact solutions (left) and approximation solutions (right) with N = 35
and M = 15.

Figure 7. The error figures of exact solutions ŵ(x, y) and approximation solutions ŵMN (x, y) with
N = 30 and M = 14 (left) andN = 35 and M = 15 (right).

α = 0 and β = 1. The numerical results of the first four approximate eigenvalues
for different m and N are listed in Tables 5 and 6, respectively.

We observe from Tables 5 and 6 that the first four numerical eigenvalues achieve
about 13-digit accuracy when N ≥ 20. In order to show the spectral accuracy of
our algorithm intuitively, we take numerical solutions of N = 60 as the reference
solutions λref and plot the error tendency curves in Figure 10. Here the error is
defined as |λimN − λref | (i = 1, 2, 3, 4, m = 0, 1). In addition, we also present the
corresponding error curves on log-log scale in Figure 11. It can be observed from
Figures 10-11 that all the first four numerical eigenvalues converge exponentially.

Figure 8. Comparison figures of exact solutions (left) and approximation solutions (right) with N = 35
and M = 15.
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Figure 9. The error figures of exact solutions û(x, y) and approximation solutions ûMN (x, y) with
N = 30 and M = 14 (left) and N = 40 and M = 25 (right).

Table 5. Numerical results of the first four eigenvalues for different N when m = 0.

N λ1
0N λ2

0N λ3
0N λ4

0N

10 3.090327492626542 59.031114309908325 351.5037169220989 1209.444613357836

15 3.090327492626550 59.031114301017460 351.5039866293564 1209.262543205556

20 3.090327492626549 59.031114301017470 351.5039866293499 1209.262543336919

25 3.090327492626535 59.031114301017150 351.5039866293507 1209.262543336922

30 3.090327492626531 59.031114301017354 351.5039866293507 1209.262543336927

Table 6. Numerical results of the first four eigenvalues for different N when m = 1.

N λ1
1N λ2

1N λ3
1N λ4

1N

10 14.472516371010260 152.4035296249379 670.5003418074672 1972.379885614160

15 14.472516371011748 152.4035276681599 670.5085597879880 1970.601410053427

20 14.472516371011745 152.4035276681601 670.5085597869706 1970.601415635077

25 14.472516371011760 152.4035276681600 670.5085597869690 1970.601415635074

30 14.472516371011720 152.4035276681597 670.5085597869692 1970.601415635074

Example 7.4. We still consider the eigenvalue problem (6.1)-(6.3). Here, setting
R = 3, α = 1 and β = 3. The numerical results of the first four approximate
eigenvalues for different m and N are listed in Tables 7 and 8, respectively.

Table 7. Numerical results of the first four eigenvalues for different N when m = 0.

N λ1
0N λ2

0N λ3
0N λ4

0N

10 4.055480414179577 17.848631976203723 80.556077439014260 257.1551932387490

15 4.055480414179569 17.848631974188100 80.556133915876060 257.1180648278905

20 4.055480414179572 17.848631974188190 80.556133915875050 257.1180648546771

25 4.055480414179571 17.848631974188110 80.556133915875110 257.1180648546774

30 4.055480414179525 17.848631974187555 80.556133915875210 257.1180648546775

We observe from Tables 7 and 8 that the first four approximate eigenvalues
achieve about 14-digit accuracy when N ≥ 20. Similarly, in order to show the
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Figure 10. The error tendency curves between numerical solutions and reference solutions with m = 0
(left) and m = 1 (right).
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Figure 11. Errors between the numerical solutions and the reference solutions on log-log scale with
m = 0 (left) and m = 1 (right).

Table 8. Table 8 Numerical results of the first four eigenvalues for different N when m = 1.

N λ1
1N λ2

1N λ3
1N λ4

1N

10 7.292567873028044 38.375587453787304 146.7468498404038 412.1418053276755

15 7.292567873028434 38.375587031923580 146.7485437242564 411.7815982705580

20 7.292567873028433 38.375587031923594 146.7485437240460 411.7815994010555

25 7.292567873028427 38.375587031923560 146.7485437240464 411.7815994010549

30 7.292567873028430 38.375587031923660 146.7485437240463 411.7815994010551

spectral accuracy of our algorithm intuitively, we take numerical solutions of N = 60
as the reference solutions λref and plot the error tendency curves in Figure 12. Here
the error is still defined as |λimN −λref | (i = 1, 2, 3, 4, m = 0, 1). Obviously, Figure
12 indicates that all the first four numerical eigenvalues are converge exponentially.

8. Conclusion

We have presented in this paper a highly accurate numerical method for the fourth-
order problems with simply supported plate boundary conditions. The novelty
of this paper has three main points: (1) We reduce the fourth-order problem to
a coupled second-order problem, which overcomes the complexity of constructing
basis functions. (2) We use dimension reduction technique to decompose the cou-
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Figure 12. The error tendency curves between numerical solutions and reference solutions with m = 0
(left) and m = 1 (right).

pled second-order problem into the one-dimensional coupled second-order problem,
which not only overcomes the complexity of the curved domain, but also greatly
reduces the degree of freedom of calculation. (3) We give a rigorous error analysis
for the proposed algorithm. In addition, some numerical examples are given, and
the numerical results verify the effectiveness of the algorithm and the correctness
of the theoretical results. Note that the approaches developed in this paper can
be extended to more complex domains(such as L-shaped domain, spherical domain,
and so on) by using spectral element methods or finite element methods.
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