
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com

Volume 14, Number 1, February 2024, 84–105 DOI:10.11948/20230034

MULTIPLE SOLUTIONS FOR
NONHOMOGENEOUS KLEIN-GORDON
EQUATION WITH SIGN-CHANGING

POTENTIAL COUPLED WITH BORN-INFELD
THEORY

Lixia Wang1,∗, Chunlian Xiong2,† and Dong Zhang1

Abstract In this paper, we study the following nonhomogeneous Klein-Gor-
don equation with Born-Infeld theory{

−∆u+ λV (x)u−K(x)(2ω + φ)φu = f(x, u) + h(x), x ∈ R3,

∆φ+ β∆4φ = 4πK(x)(ω + φ)u2, x ∈ R3,

where ω > 0 is a constant, λ > 0 is a parameter and 44φ = div(|∇φ|2∇φ).
Under some suitable assumptions on V,K, f and h, the existence of multiple
solutions is proved by using the Linking theorem and the Ekeland’s variational
principle in critical point theory. Especially, the potential V is allowed to be
sign-changing.
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1. Introduction

In this paper, we study the following nonhomogeneous Klein-Gordon equation with
Born-Infeld theory

(KGBI)λ

{
−∆u+ λV (x)u−K(x)(2ω + φ)φu = f(x, u) + h(x), x ∈ R3,

∆φ+ β∆4φ = 4πK(x)(ω + φ)u2, x ∈ R3,

where ω > 0 is a constant, λ ≥ 1 is a parameter, V ∈ C(R3,R) and f ∈ C(R3×R,R)
and 44φ = div(|∇φ|2∇φ).

It is well known that Klein-Gordon equation can be used to develop the theory
of electrically charged fields (see [14]), and Born-Infeld theory is proposed by Born
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[5–7] to overcome the infinite energy problem associated with a point-charge source
in the original Maxwell theory. The presence of the nonlinear term f simulates the
interaction between many particles or external nonlinear perturbations. For more
details in the physical aspects, we refer the readers to [4, 9, 15,17,25].

In recent years, the Born-Infeld nonlinear electromagnetism has become more
important since its relevance in the theory of superstring and membranes. By
using variational methods, several existence results for problem (KGBI)λ have
been found with constant potential V (x) = m2 − ω2. We recall some of them.

The case of h ≡ 0, that is the homogeneous case, has been widely studied in
recent years. In 2002, the authors [12] considered for the following Klein-Gordon
equation with Born-Infeld theory on R3{

−∆u+ [m2 − (ω + φ)2]φu = f(x, u), x ∈ R3,

∆φ+ β∆4φ = 4π(ω + φ)u2, x ∈ R3,
(1.1)

for the pure power of nonlinearity, i.e., f(x, u) = |u|p−2u, where ω and m are
constants. By using the mountain pass theorem, they proved that (1.1) has infinitely
many radially symmetric solutions under |m| > ω and 4 < p < 6. Mugnai [17]

covered the case 2 < p ≤ 4 assuming
√

p−2
2 |m| > ω > 0. Later, the authors

[20] and [16] considered the existence of solutions and ground state solutions for
(1.1) with critical Sobolev exponent respectively. Zhang and Liu [29] consider the
existence and multiplicity of sign-changing solutions by the method of invariant sets
of descending flow.

Recently, for general potential V (x), Chen and Song [11] obtained the existence
of multiple nontrivial solutions for (1.1) with the nonlinearity with concave and con-
vex nonlinearities. Other related results about homogeneous Klein-Gordon equation
with Born-Infeld theory can be found in [1, 19,21,23,27].

Next, we consider the nonhomogeneous case, that is h 6≡ 0. In [10], Chen and Li
proved that (KGBI)λ had two nontrivial radially symmetric solutions with λ = 1
if f(x, u) = |u|p−2u and h(x) is radially symmetric. In [22], the authors obtain
the existence of two solutions by the Mountain Pass Theorem and the Ekeland’s
variational principle in critical point theory for general f(x, u).

Motivated by the above works, in the present paper we consider (KGBI)λ with
more general potential V (x) and f(x, u). Precisely, we make the following assump-
tions.

(V 0) There is b > 0 such that meas{x ∈ R3 : V (x) ≤ b} < +∞, where meas
denotes the Lebesgue measures;

(V 1) V ∈ C(R3,R) and V is bounded below;
(V 2) Ω = intV −1(0) is nonempty and has smooth boundary and Ω = V −1(0);
(f1) F (x, u) =

∫ u
0
f(x, s)ds ≥ 0 for all (x, u) and f(x, u) = o(u) uniformly in x

as u→ 0;
(f2) F (x, u)/u4 → +∞ as |u| → +∞ uniformly in x;
(f3) F(x, u) := 1

4f(x, u)u− F (x, u) ≥ 0 for all (x, u) ∈ R3 × R;
(f4) There exist a1, L1 > 0 and τ ∈ (3/2, 2) such that

|f(x, u)|τ ≤ a1F(x, u)|u|τ , for all x ∈ R3 and |u| ≥ L1;

(K) K(x) ∈ L3(R3) ∪ L∞(R3) and K(x) ≥ 0 is not identically zero for a.e.
x ∈ R3;

(h) h(x) ∈ L2(R3) and h(x) ≥ 0 for a.e. x ∈ R3.



86 L. X. Wang, C. L. Xiong & D. Zhang

Remark 1.1. It follows from (f3) and (f4) that |f(x, u)|τ ≤ a1
4 |f(x, u)||u|τ+1 for

large u. Thus, by (f1), for any ε > 0, there exists Cε > 0 such that

|f(x, u)| ≤ ε|u|+ Cε|u|q−1, ∀(x, u) ∈ R3 × R (1.2)

and

|F (x, u)| ≤ ε|u|2 + Cε|u|q, ∀(x, u) ∈ R3 × R, (1.3)

where q = 2τ/(τ − 1) ∈ (4, 2∗) and 2∗ = 6 is the critical exponent for the Sobolev
embedding in dimension 3.

Remark 1.2. It is not difficult to find out functions f satisfying (f1)–(f4), for
example,

f(x, t) = g(x)t3
(

2In(1 + t2) +
t2

1 + t2

)
,∀(x, t) ∈ R3 × R,

where g is a is a continuous bounded function with infx∈R3 g(x) > 0.

Before stating our main results, we give some notations.
H1(R3) is the usual Sobolev space endowed with the standard product and norm

(u, v)H1 =

∫
R3

(∇u∇v + uv)dx; ‖u‖H1 =

(∫
R3

(|∇u|2 + |u|2)dx

)1/2

.

For any 1 ≤ s ≤ +∞ and Ω ⊂ R3, Ls(Ω) denotes a Lebesgue space; the norm in
Ls(Ω) is denoted by |u|s,Ω, where Ω is a proper subset of R3, by | · |s when Ω = R3.
Let D1,2(R3) be the completion of C∞0 (R3) with respect to the norm

‖u‖D1,2(R3) =

(∫
R3

|∇u|2dx
)1/2

.

D(R3) is the completion of C∞0 (R3) with respect to the norm

‖u‖D := |∇u|2 + |∇u|4.

It is clear that D(R3) is continuously embedded in D1,2(R3). By the Sobolev in-
equality, we know that D1,2(R3) is continuously embedded in L6 = L6(R3) and
D(R3) is continuously embedded in L∞ = L∞(R3).

S̄ is the best Sobolev constant for the Sobolev embedding D1,2(R3) ↪→ L6(R3),
that is,

S̄ = inf
u∈D1,2(R3)\{0}

‖u‖D1,2

|u|6
.

For any r > 0 and z ∈ R3, Br(z) denotes the ball of radius r centered at z.
We denote “ ⇀ ” the weak convergence and by “→ ” strong convergence. Also

if we take a subsequence of a sequence {un}, we shall denote it again {un}. We use
o(1) to denote any quantity which tends to zero when n → ∞. The letters di, Ci
will be used to denote various positive constants which may vary from line to line
and are not essential to the problem.



Klein-Gordon system 87

Now we can state our main results.

Theorem 1.1. Assume that (V 0)–(V 1), (f1)–(f4), (K) and (h) are satisfied. If
V (x) < 0 for some x ∈ R3, then for each k ∈ N, there exist λk > k, bk > 0 and
ηk > 0 such that problem (KGBI)λ has at least two nontrivial solutions for every
λ = λk, |K|∞ < bk and |h|2 ≤ ηk.

Theorem 1.2. Assume that (V 0)–(V 2), (f1)–(f4), (K) and (h) are satisfied. If
V −1(0) has nonempty interior, then there exist Λ > 0, bλ > 0 and ηλ > 0 such that
problem (KGBI)λ has at least two nontrivial solutions for every λ > Λ,|h|2 ≤ ηλand
|K|∞ < bλ.

If V ≥ 0, we remove the restriction of the norm of K and we have the following
theorem.

Theorem 1.3. Assume that V ≥ 0, (V 0)–(V 2), (f1)–(f4), (K) and (h) are sat-
isfied. If V −1(0) has nonempty interior Ω and h 6= 0, then there exist Λ∗ > 0 and
η > 0 such that problem (KGBI)λ has at least two nontrivial solutions for every
λ > Λ∗ and |h|2 ≤ η.

To obtain main results, we have to overcome some difficulties in using variational
method. The main difficulty consists in the lack of compactness of the Sobolev
embedding H1(R3) into Lp(R3), p ∈ (2, 6). Since we assume that the potential is
not radially symmetric, we cannot use the usual way to recover compactness, for
example, restricting in the subspace H1

r (R3) of radially symmetric functions. To
recover the compactness, we borrow some ideas used in [3, 13] and establish the
parameter dependent compactness conditions.

To the best of our knowledge, it seems that our theorems are the first results
about the existence of multiple solutions for the nonhomogeneous Klein-Gordon
equation with Born-Infeld theory on R3 with general nonlinear term and sign-
changing potential. In the following, we can see that many technical difficulties
arise due to the presence of a non-local term φ, which is not homogeneous as it is
in the Schrödinger-Poisson systems. In other words, the adaptation of the ideas to
the procedure of our problem is not trivial at all, because of the presence of the
nonlocal term φu. Hence, a more careful analysis of the interaction between the
couple (u, φ) is required.

The paper is organized as follows. We introduce the variational setting and
the compactness conditions in Section 2. In Section 3, we give the proofs of main
results.

2. Variational setting and compactness condition

In this section, we firstly give the variational setting of (KGBI)λ and then establish
the compactness conditions.

Let V (x) = V +(x)− V −(x), where V ± = max{±V (x), 0}. Let

E =

{
u ∈ H1(R3) :

∫
R3

|∇u|2 + V +(x)u2dx <∞
}

be equipped with the inner product (u, v) =
∫
R3(∇u∇v+V +(x)uv)dx and the norm
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‖u‖ = (u, u)1/2. For λ > 0, we also need the following inner product and norm

(u, v)λ =

∫
R3

(∇u∇v + λV +(x)uv)dx, ‖u‖λ = (u, u)
1/2
λ .

It is clear ‖u‖ ≤ ‖u‖λ for λ ≥ 1. Set Eλ = (E, ‖·‖λ). It follows from (V 0)–(V 1) and
the Poincaré inequality, we know that the embedding Eλ ↪→ H1(R3) is continuous.
Therefore, for s ∈ [2, 6], there exists ds > 0 (independent of λ ≥ 1) such that

|u|s ≤ ds‖u‖λ, ∀u ∈ Eλ. (2.1)

Let

Fλ = {u ∈ Eλ : suppu ⊂ V −1([0,∞))},

and F⊥λ denote the orthogonal complement of Fλ in Eλ. Clearly, Fλ = Eλ if V ≥ 0,
otherwise F⊥λ 6= {0}. Define

Aλ := −∆ + λV,

then Aλ is formally self-adjoint in L2(R3) and the associated bilinear form

aλ(u, v) =

∫
R3

(∇u∇v + λV (x)uv)dx

is continuous in Eλ. As in [13], for fixed λ > 0, we consider the eigenvalue problem

−∆u+ λV +(x)u = µλV −(x)u, u ∈ F⊥λ . (2.2)

By (V 0)–(V 1), we know that the quadratic form u 7→
∫
R3 λV

−(x)u2dx is weakly
continuous. Hence following Theorem 4.45 and Theorem 4.46 in [24], we can deduce
the following proposition, which is the spectral theorem for compact self-adjoint
operators jointly with the Courant-Fischer minimax characterization of eigenvalues.

Proposition 2.1. Suppose that (V 0)–(V 1) hold, then for any fixed λ > 0, the
eigenvalue problem (2.2) has a sequence of positive eigenvalues {µj(λ)}, which may
be characterized by

µj(λ) = inf
dimM≥j,M⊂F⊥λ

sup

{
‖u‖2λ : u ∈M,

∫
R3

λV −(x)u2dx = 1

}
, j = 1, 2, 3, ....

Furthermore, µ1(λ) ≤ µ2(λ) ≤ · · · ≤ µj(λ)→ +∞ as j → +∞, and the correspond-
ing eigenfunctions {ej(λ)}, which may be be chosen so that (ei(λ), ej(λ))λ = δij,
are a basis of F⊥λ .

Next, we give some properties for the eigenvalues {µj(λ)} defined above.

Proposition 2.2. ( [13]) Assume that (V 0)–(V 1) hold and V − 6≡ {0}. Then, for
each fixed j ∈ N,

(i) µj(λ)→ 0 as λ→ +∞;
(ii) µj(λ) is a non-increasing continuous function of λ.

Remark 2.1. By Proposition 2.2, there exists Λ0 > 0 such that µ1(λ) ≤ 1 for all
λ > Λ0.
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Denote

E−λ := span{ej(λ) : µj(λ) ≤ 1} and E+
λ := span{ej(λ) : µj(λ) > 1}.

Then Eλ = E−λ
⊕
E+
λ

⊕
Fλ is an orthogonal decomposition. The quadratic form

aλ is negative semidefinite on E−λ , positive definite on E+
λ

⊕
Fλ and it is easy to

see that aλ(u, v) = 0 if u, v are in different subspaces of the above decomposition of
Eλ.

From Remark 2.1, we have that dimE−λ ≥ 1 when λ > Λ0. Moreover, since
µj(λ)→ +∞ as j → +∞, dimE−λ < +∞ for every fixed λ > 0.

System (KGBI)λ has a variational structure. In fact, we consider the functional
Jλ : Eλ ×D(R3)→ R defined by

Jλ(u, φ) =
1

2

∫
R3

(|∇u|2 + λV (x)u2)dx− 1

2

∫
R3

K(x)(2ω + φ)φu2dx

− 1

8π

∫
R3

|∇φ|2dx− β

16π

∫
R3

|∇φ|4dx−
∫
R3

F (x, u)dx−
∫
R3

h(x)udx.

The solutions (u, φ) ∈ Eλ × D(R3) of system (KGBI)λ are the critical points of
Jλ. By using the reduction method described in [4], we are led to the study of a
new functional Iλ(u) ((2.5)). We need the following technical result.

Proposition 2.3. Let K(x) satisfy the condition (K). Then for any u ∈ Eλ, there
exists a unique φ = φu ∈ D(R3) which satisfies

∆φ+ β∆4φ = 4πK(x)(φ+ ω)u2.

Moreover, the map Φ : u ∈ Eλ 7→ φu ∈ D(R3) is continuously differentiable, and

(i) φu ≤ 0, moreover,− ω ≤ φu on the set {x ∈ R3|u(x) 6= 0};

(ii)

∫
R3

(|∇φu|2 + β|∇φu|4)dx ≤ 4πω2d2
2|K|∞‖u‖2λ, if K ∈ L∞(R3).

(iii)

∫
R3

(|∇φu|2 + β|∇φu|4)dx ≤ 4πω2d2
3|K|3‖u‖2λ, if K ∈ L3(R3).

Proof. For every fixed u ∈ Eλ, the solutions of

∆φ+ β∆4φ = 4πK(x)(φ+ ω)u2 (2.3)

are critical points of the functional

J(φ) =

∫
R3

{
1

8π
|∇φ|2 +

β

16π
|∇φ|4 +K(x)ωφu2 +

1

2
K(x)φ2u2

}
dx (2.4)

defined on D. The functional J is coercive. Indeed, by the continuous embedding
of D ∈ L∞(R3)

J(φ) ≥ 1

8π
|∇φ|22 +

β

16π
|∇φ|44 − C|u2|1|K|∞(|∇φ|2 + |∇φ|4).

Furthermore J is weakly lower semicontinuous since each term in (2.4) is con-
tinuous and convex. Hence J admits a global minimum. The solution of is unique
because the operator

A = −∆− β∆4 + 4πK(x)u2
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is strictly monotone.
The result (i) can be proved similarly as Lemma 2.3 of [17].
(ii) After multiplying (2.3) by φu and integrating by parts, by (i) and (2.1), we

can get that∫
R3

(|∇φu|2 + β|∇φu|4)dx = −4π

∫
R3

K(x)(φu + ω)φuu
2dx

≤ −4πω

∫
R3

K(x)φuu
2dx

≤ 4πω2d2
2|K|∞‖u‖2λ.

(iii) Similarly to (ii), we can get (iii) hold. The proof is complete.

By above equality and the definition of Jλ, we obtain a C1 functional Iλ =
Jλ(u, φu) : Eλ → R given by

Iλ(u) =
1

2

∫
R3

[|∇u|2 + λV (x)u2 −K(x)(2ω + φu)φuu
2]dx− 1

8π

∫
R3

|∇φu|2dx

− β

16π

∫
R3

|∇φu|4dx−
∫
R3

F (x, u)dx−
∫
R3

h(x)udx

=
1

2

∫
R3

(|∇u|2 + λV (x)u2 − ωK(x)φuu
2)dx+

β

16π

∫
R3

|∇φu|4dx

−
∫
R3

F (x, u)dx−
∫
R3

h(x)udx (2.5)

and its Gateaux derivative is

〈I ′λ(u), v〉 =

∫
R3

(∇u · ∇v + λV (x)uv −K(x)(2ω + φu)φuuvdx

−
∫
R3

f(x, u)vdx−
∫
R3

h(x)vdx

for all v ∈ Eλ. Set

M(u) =

∫
R3

K(x)φuu
2dx.

Now we give some properties about the functional M and its derivative M ′ possess
BL-splitting property, which is similar to Brezis-Lieb Lemma [8].

Proposition 2.4. Let K ∈ L∞(R3) ∪ L3(R3). If un ⇀ u in H1(R3) and un(x)→
u(x) a.e. x ∈ R3, then

(i) φun ⇀ φu in D(R3);
(ii) M(un − u) = M(un)−M(u) + o(1);
(iii) M ′(un − u) = M ′(un)−M ′(u) + o(1) in H−1(R3).

Proof. (i) A similar proof of Lemma 3.2 in [20]. The proof of (ii) and (iii) can be
similar as Lemma 2.1 in [26]. We omit it here.

Next, we investigate the compactness conditions for the functional Iλ. Recall
that a C1 functional J satisfies (PS) condition at level c if any sequence {un} ⊂ E
such that J(un) → c and J ′(un) → 0 has a convergent subsequence; and such
sequence is called a (PS)c sequence.
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We only consider the case K ∈ L∞(R3), the other case K ∈ L3(R3) is similar.

Lemma 2.1. Suppose that (V 0)–(V 1), (f1)–(f4), (K) and (h) are satisfied. Then
every (PS)c sequence of Iλ is bounded in Eλ for each c ∈ R.

Proof. Let {un} ⊂ Eλ be a (PS)c sequence of Iλ. Suppose by contradiction that

Iλ(un)→ c, I ′λ(un)→ 0, ‖un‖λ →∞ (2.6)

as n → ∞ after passing to a subsequence. Take wn := un/‖un‖λ. Then ‖wn‖λ =
1, wn ⇀ w in Eλ and wn(x)→ w(x) a.e. x ∈ R3.

We first consider the case w = 0. By (2.6), (f3), Proposition 2.3 and the fact
wn → 0 in L2({x ∈ R3 : V (x) < 0}), we obtain

Iλ(un)− 1

4
〈I ′λ(un), un〉

=
1

4

∫
R3

(|∇un|2 + λV (x)u2
n)dx+

1

4

∫
R3

K(x)φ2
unu

2
ndx+

β

16π

∫
R3

|∇φun |4dx

+

∫
R3

F(x, un)dx− 3

4

∫
R3

h(x)undx.

Divided by ‖un‖2λ above inequality, by ω = 0, we can obtain that

o(1) =
1

‖un‖2λ

(
Iλ(un)− 1

4
〈I ′λ(un), un〉

)

=
1

4
‖wn‖2λ −

λ

4

∫
R3

V −(x)w2
ndx+

1

4‖un‖2λ

∫
R3

K(x)φ2
unu

2
ndx

+
1

‖un‖2λ
β

16π

∫
R3

|∇φun |4dx+
1

‖un‖2λ

∫
R3

F(x, un)dx

− 3

4‖un‖2λ

∫
R3

h(x)undx

≥ 1

4
− λ

4
|V −|∞

∫
suppV −

w2
ndx−

3

4
|h|2d2

1

‖un‖λ

=
1

4
+ o(1),

which is a contradiction.
If w 6= 0, then Ω1 := {x ∈ R3 : w(x) 6= 0} has positive Lebesgue measure. For

x ∈ Ω1, one has |un(x)| → ∞ as n→∞, and then, by (f2),

F (x, un(x))

u4
n(x)

w4
n(x)→ +∞ as n→∞,

which, jointly with Fatou’s lemma, shows that∫
Ω1

F (x, un)

u4
n

w4
ndx→ +∞ as n→∞. (2.7)
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By (2.5) and Proposition 2.3, we have that

Iλ(un)

‖un‖4λ

≤ 1 + ω2d2
2|K|∞

2‖un‖2λ
+

β

16π‖un‖4λ

∫
R3

|∇φun |4dx−
∫
R3

F (x, un)

‖un‖4λ
dx

−
∫
R3

h(x)
un
‖un‖4λ

dx

≤ 2 + 3ω2d2
2|K|∞

4‖un‖2λ
−
(∫

v=0

+

∫
v 6=0

)
F (x, un)

u4
n

v4
ndx+

|h|2d2

‖un‖3λ

≤ 2 + 3ω2d2
2|K|∞

4‖un‖2λ
−
∫
v 6=0

F (x, un)

u4
n

v4
ndx+

|h|2d2

‖un‖3λ
→ −∞.

Combining this with (f1), the first limit of (2.6), (K) and (h), we obtain that

0 ≥ lim sup
n→∞

∫
R3

F (x, un)

‖un‖4λ
dx ≥ lim sup

n→∞

∫
Ω1

F (x, un)

u4
n

w4
ndx = +∞.

This is impossible.
Hence {un} is bounded in Eλ.
For the case K ∈ L3(R3), we can use the Cauchy-Schwarz inequality and the

boundedness of φun to get the result.

Lemma 2.2. Suppose that (V 0)–(V 1), (K), (h) and (1.2) hold. If un ⇀ u in Eλ,
un(x)→ u(x) a.e. in R3, and we denote wn := un − u, then

Iλ(un) = Iλ(wn) + Iλ(u) + o(1) (2.8)

and

〈I ′λ(un), ϕ〉 = 〈I ′λ(wn), ϕ〉+ 〈I ′λ(u), ϕ〉+ o(1), uniformly for all ϕ ∈ Eλ (2.9)

as n→∞. In particular, if Iλ(un)→ c(∈ R) and I ′λ(un)→ 0 in E∗λ (the dual space
of Eλ), then I ′λ(u) = 0 and

Iλ(wn)→ c− Iλ(u), (2.10)

〈I ′λ(wn), ϕ〉 → 0, uniformly for all ϕ ∈ Eλ

after passing to a subsequence.

Proof. Since un ⇀ u in Eλ, we have (un − u, u)λ → 0 as n → ∞, which implies
that

‖un‖2λ = (wn + u,wn + u)λ = ‖wn‖2λ + ‖u‖2λ + o(1). (2.11)

By (V 0), the Hölder inequality and wn ⇀ 0, we have∣∣∣∣∫
R3

V −(x)wnudx

∣∣∣∣ =

∣∣∣∣∫
suppV −

V −wnudx

∣∣∣∣ ≤ |V −|∞(∫
suppV −

w2
ndx

)1/2

|u|2 → 0



Klein-Gordon system 93

as n→∞. Thus∫
R3

V −(x)u2
ndx =

∫
R3

V −(x)w2
ndx+

∫
R3

V −(x)u2dx+ o(1).

By Proposition 2.4 (ii), we have

M(un) = M(wn) +M(u) + o(1).

Since h ∈ L2(R3), ∫
R3

h(x)undx =

∫
R3

h(x)wndx+

∫
R3

h(x)udx,

therefore, to prove (2.8) and (2.9), it suffices to check that∫
R3

(F (x, un)− F (x,wn)− F (x, u))dx = o(1) (2.12)

and

sup
‖φ‖λ=1

∫
R3

(f(x, un)− f(x,wn)− f(x, u))φdx = o(1). (2.13)

We prove (2.12) firstly. Inspired by [2], we observe that

F (x, un)− F (x, un − u) = −
∫ 1

0

(
d

dt
F (x, un − tu)

)
dt =

∫ 1

0

f(x, un − tu)udt,

and hence, by (1.2), we obtain that

|F (x, un)− F (x, un − u)| ≤ ε1|un||u|+ ε1|u|2 + Cε1 |un|p−1|u|+ Cε1 |u|p,

where ε1, Cε1 > 0 and p ∈ (4, 6). Therefore, for each ε > 0, and the Young
inequality, we get

|F (x, un)− F (x,wn)− F (x, u)| ≤ C[ε|un|2 + Cε|u|2 + ε|un|p + Cε|u|p].

Next, we consider the function fn given by

fn(x) := max
{
|F (x, un)− F (x,wn)− F (x, u)| − Cε(|un|2 + |un|p), 0

}
.

Then 0 ≤ fn(x) ≤ CCε(|u|2+|u|p) ∈ L1(R3). Moreover, by the Lebesgue dominated
convergence theorem, ∫

R3

fn(x)dx→ 0 as n→∞, (2.14)

since un → u a.e. in R3. By the definition of fn, it follows that

|F (x, un)− F (x,wn)− F (x, u)| ≤ fn(x) + Cε(|un|2 + |un|p).

Combining this with (2.14) and (1.3), shows that∫
R3

|F (x, un)− F (x,wn)− F (x, u)| dx ≤ Cε
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for n sufficiently large. It implies that∫
R3

[F (x, un)− F (x,wn)− F (x, u)]dx = o(1).

The prove of (2.13) is similar to Lemma 4.7 in [28], we omit here.
Now, we check that I ′λ(u) = 0. In fact, for each ψ ∈ C∞0 (R3), we have

(un − u, ψ)λ → 0 as n→∞. (2.15)

and∣∣∣∣∫
R3

V −(x)(un − u)ψdx

∣∣∣∣ ≤ |V −|∞(∫
suppψ

(un − u)2dx

)1/2

|ψ|2 → 0 as n→∞,

(2.16)

since un → u in L2
loc(R3). By Proposition 2.4 (i), un ⇀ u in Eλ yields φun ⇀ φu in

D(R3). So

φun ⇀ φu in L6(R3).

For every ψ ∈ C∞0 (R3), by the Hölder inequality we obtain∫
R3

|K(x)uψ|6/5dx ≤ |K|6/5∞ |ψ|
6/5
12/5|u|

6/5
12/5,

that is K(x)uψ ∈ L6/5(R3), and hence∫
R3

K(x)(φun − φu)uψdx→ 0.

By un → u in L3
loc(R3) and the Hölder inequality, we have

|
∫
R3

K(x)φun(un − u)ψdx|

≤ |ψ|2|K|∞|φun |6|un − u|3,Ωψ
≤ C|un − u|3,Ωψ → 0 as n→∞,

here Ωψ is the support set of ψ. Consequently,

|
∫
R3

[K(x)φununψ −K(x)φuuψ]dx|

≤
∫
R3

|K(x)φun(un − u)ψ|dx+

∫
R3

|K(x)(φun − φu)uψ|dx (2.17)

= o(1).

For every ψ ∈ C∞0 (R3) and Proposition 2.4 (ii), we obtain∫
R3

2ωK(x)φununψdx =

∫
R3

2ωK(x)φwnwnψdx+

∫
R3

2ωK(x)φuuψdx+ o(1).

Now we need to prove∫
R3

K(x)φ2
ununψdx =

∫
R3

K(x)φ2
wnwnψdx+

∫
R3

K(x)φ2
uuψdx+ o(1).
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By un → u in Lsloc(R3), 1 ≤ s < 6; φun → φu in Lsloc(R3), 1 ≤ s < 6, the bounded-
ness of (φun) and the Hölder inequality, we have∫

R3

K(x)(φ2
unun − φ

2
uu)ψdx

=

∫
R3

K(x)φ2
un(un − u)ψdx+

∫
R3

K(x)(φ2
un − φ

2
u)uψdx (2.18)

≤ C|K|∞‖∇φun‖2
(∫

Ωψ

|un − u|3/2dx

)2/3

+ |K|∞
∫

Ωψ

(φ2
un − φ

2
u)uψdx

→ 0,

as n→∞, here Ωψ is the support set of ψ.
Furthermore, by the dominated convergence theorem and (1.2), we have∫

R3

[f(x, un)− f(x, u)]ψdx =

∫
Ωψ

[f(x, un)− f(x, u)]ψdx = o(1).

Since un ⇀ u in L2(R3) and h ∈ L2(R3), we obtain
∫
R3 h(un − u)dx = o(1). This

jointly with (2.15), (2.16), (2.18) and the dominated convergence theorem, shows
that

〈I ′λ(u), ψ〉 = lim
n→∞

〈I ′λ(un), ψ〉 = 0, ∀ψ ∈ C∞0 (R3).

Hence I ′λ(u) = 0. Combining with (2.8)-(2.9) and Proposition 2.4 (iii), we obtain
(2.10). The proof is complete.

Lemma 2.3. Assume that V ≥ 0, (V 0)–(V 1), (f1)–(f4), (K) and (h) hold. Then,
for any M > 0, there is Λ = Λ(M) > 0 such that Iλ satisfies (PS)c condition for
all c < M and λ > Λ.

Proof. Let {un} ⊂ Eλ be a (PS)c sequence with c < M . By Lemma 2.1, we
know that {un} is bounded in Eλ, and there exists C > 0 such that ‖un‖λ ≤ C.
Therefore, up to a subsequence, we can assume that

un ⇀ u in Eλ;

un → u in Lsloc(R3)(1 ≤ s < 2∗); (2.19)

un(x)→ u(x) a.e. x ∈ R3.

Now we can show that un → u in Eλ for λ > 0 large. Denote wn := un − u, then
wn ⇀ 0 in Eλ. According to Lemma 2.2 and the fact (2.10) holds uniformly for all
ϕ ∈ Eλ, we have I ′λ(u) = 0, and

Iλ(wn)→ c− Iλ(u), I ′λ(wn)→ 0 as n→∞. (2.20)

According to V ≥ 0 and (f3), we obtain

Iλ(u) = Iλ(u)− 1

4
〈I ′λ(u), u〉

=
1

4
‖u‖2λ +

1

4

∫
R3

K(x)φ2
uu

2dx+
β

16π

∫
R3

|∇φu|4dx+

∫
R3

F(x, u)dx
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− 3

4

∫
R3

hudx

= Φλ(u)− 3

4

∫
R3

hudx,

here Φλ(u) = 1
4‖u‖

2
λ + 1

4

∫
R3 K(x)φ2

uu
2dx+ β

16π

∫
R3 |∇φu|4dx+

∫
R3 F(x, u)dx ≥ 0.

Again by (2.19), (2.20) and Proposition 2.3 (i), we have

1

4
‖wn‖2λ +

∫
R3

F(x,wn)dx

≤ 1

4

∫
R3

K(x)φ2
wnw

2
ndx+

β

16π

∫
R3

|∇φwn |4dx+

∫
R3

F(x,wn)dx

= Iλ(wn)− 1

4
〈I ′λ(wn), wn〉+

3

4

∫
R3

hwndx+ o(1)

≤ c− Iλ(u) + o(1)

= c−
[
Φλ(u)− 3

4

∫
R3

hudx

]
+

3

4

∫
R3

hwndx+ o(1)

≤M + M̃ + o(1). (2.21)

Here we use the fact c < M and

3

4
|h|2|u|2 ≤

3

4
|h|2d2‖u‖λ ≤

3

4
|h|2d2 lim inf

n→∞
‖un‖λ ≤ |h|2d2C ≤ M̃,

where M̃ is a positive constant independent of λ. Hence∫
R3

F(x,wn)dx ≤M + M̃ + o(1). (2.22)

Because V (x) < b on a set of finite measure and wn ⇀ 0, we obtain

|wn|22 ≤
1

λb

∫
V≥b

λV +(x)w2
ndx+

∫
V <b

w2
ndx ≤

1

λb
‖wn‖2λ + o(1). (2.23)

For 2 < s < 2∗, by the Hölder and Sobolev inequality and (2.23), we have

|wn|ss =

∫
R3

|wn|sdx

≤
(∫

R3

|wn|2dx
) 6−s

s
(∫

R3

|wn|6dx
) 9s−18

s

≤
[

1

λb

∫
R3

(
|∇wn|2 + λV +w2

n

)
dx

] 6−s
s

(
S̄−6

[∫
R3

|∇wn|2dx
]3
) 9s−18

s

+ o(1)

≤
(

1

λb

) 6−s
4

S̄−
3(s−2)

2 ‖wn‖sλ + o(1). (2.24)

According to (f1), for any ε > 0, there exists δ = δ(ε) > 0 such that |f(x, t)| ≤ ε|t|
for all x ∈ R3 and |t| ≤ δ, and (f4) is satisfied for |t| ≥ δ (with the same τ but
possibly larger than a1). Hence we have that∫

|wn|≤δ
f(x,wn)wndx ≤ ε

∫
|wn|≤δ

w2
ndx ≤

ε

λb
‖wn‖2λ + o(1), (2.25)
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and∫
|wn|≥δ

f(x,wn)wndx ≤

(∫
|wn|≥δ

|f(x,wn)

wn
|τdx

)1/τ

|wn|2s

≤

(∫
|wn|≥δ

a1F(x,wn)dx

)1/τ

|wn|2s

≤ [a1(M + M̃)]1/τ S̄−
3(2s−4)

2s

(
1

λb

)θ
‖wn‖2λ + o(1) (2.26)

by (f4), (2.22), (2.24) with s = 2τ/(τ − 1) and the Hölder inequality, where θ =
6−s
2s > 0.

Since un ⇀ u in L2(R3) and h ∈ L2(R3), we obtain that∫
R3

h(un − u)dx→ 0 as n→∞. (2.27)

By −ω ≤ φu ≤ 0, we have that 2ω + φu ≥ 0. Therefore, by (2.25), (2.26), (2.27)
and Proposition 2.3 (i), we obtain that

o(1) = 〈I ′λ(wn), wn〉

≥ ‖wn‖2λ −
∫
R3

K(x)(2ω + φwn)φwnw
2
ndx−

∫
R3

f(x,wn)wndx−
∫
R3

hwndx

≥

[
1− ε

λb
− [a1(M + M̃)]1/τ S̄−

3(2s−4)
2s

(
1

λb

)θ]
‖wn‖2λ + o(1). (2.28)

So, there exists Λ = Λ(M) > 0 such that wn → 0 in Eλ when λ > Λ. Since
wn = un − u, it follows that un → u in Eλ. This completes the proof.

Lemma 2.4. Assume (V 0)–(V 1), (f1)–(f4), (K) and (h) hold. Let {un} be a
(PS)c sequence of Iλ with level c > 0. Then for any M > 0, there is Λ = Λ(M) > 0
such that, up to a subsequence, un ⇀ u in Eλ with u being a nontrivial critical point
of Iλ and satisfying Iλ(u) ≤ c for all c < M and λ > Λ.

Proof. We modify the proof of Lemma 2.3. By Lemma 2.2, we obtain

I ′λ(u) = 0, Iλ(wn)→ c− Iλ(u), I ′λ(un)→ 0 as n→∞. (2.29)

However, since V is allowed to be sign-changing and the appearance of nonlinear
term h, from

Iλ(u) = Iλ(u)− 1

4
〈I ′λ(u), u〉

=
1

4
‖u‖2λ −

λ

4

∫
R3

V −(x)u2dx+
1

4

∫
R3

K(x)φ2
uu

2dx+
β

16π

∫
R3

|∇φu|4dx

+

∫
R3

F(x, u)dx− 3

4

∫
R3

hudx

we cannot deduce that Iλ(u) ≥ 0. We consider two possibilities:
(i) Iλ(u) < 0;
(ii) Iλ(u) ≥ 0.
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If Iλ(u) < 0, then u 6= 0 is nontrivial and the proof is done. If Iλ(u) ≥ 0, following
the argument in the proof of Lemma 2.3 step by step, we can get un → u in Eλ.
Indeed, by (V 0) and wn → 0 in L2({x ∈ R3 : V (x) < b}), we obtain∣∣∣∣∫

R3

V −(x)w2
n(x)dx

∣∣∣∣ ≤ |V −|∞ ∫
suppV −

w2
ndx = o(1),

which jointly this with (2.29) and Proposition 2.3(i), we have∫
R3

F(x,wn)dx

= Iλ(wn)− 1

4
〈I ′λ(wn), wn〉 −

1

4
‖wn‖2λ +

1

4

∫
R3

λV −(x)w2
ndx

− 1

4

∫
R3

K(x)φ2
wnw

2
ndx−

β

16π

∫
R3

|∇φwn |4dx+
3

4

∫
R3

hwndx

≤ c− Iλ(u) + o(1) ≤M + o(1).

It follows that (2.26), (2.27) and (2.28) remain valid. Therefore un → u in Eλ and
Iλ(u) = c(> 0). The proof is complete.

3. Proofs of main results

If V is sign-changing, we first verify that the functional Iλ have the linking geometry
to apply the following linking theorem [18].

Proposition 3.1. Let E = E1

⊕
E2 be a Banach space with dimE2 < ∞,Φ ∈

C1(E,R3). If there exist R > ρ > 0, α > 0 and e0 ∈ E1 such that

α := inf Φ(E1 ∩ Sρ) > sup Φ(∂Q)

where Sρ = {u ∈ E : ‖u‖ = ρ}, Q = {u = v + te0 : v ∈ E2, t ≥ 0, ‖u‖ ≤ R}. Then Φ
has a (PS)c sequence with c ∈ [α, sup Φ(Q)].

In our paper, we use Proposition 3.1 with E1 = E+
λ

⊕
Fλ and E2 = E−λ . By

Proposition 2.2, µj(λ) → 0 as λ → ∞ for every fixed j. By Remark 2.1, there is
Λ1 > 0 such that E−λ 6= ∅ and E−λ is finite dimensional for λ > Λ1. Now we can
investigate the linking structure of the functional Iλ.

Lemma 3.1. Assume that (V 0)–(V 1), (K), (h) and (1.2) with p ∈ (4, 2∗) are
satisfied. Then, for each λ > Λ1(is the constant given in Remark 2.1), there exist
αλ, ρλ and ηλ > 0 such that

Iλ(u) ≥ αλ for all u ∈ E+
λ

⊕
Fλ with ‖u‖λ = ρλ and |h|2 < ηλ. (3.1)

Furthermore, if V ≥ 0, we can choose α, ρ, η > 0 independent of λ.

Proof. For any u ∈ E+
λ

⊕
Fλ, writing u = u1 + u2 with u1 ∈ E+

λ and u2 ∈ Fλ.
Clearly, (u1, u2)λ = 0, and∫

R3

(|∇u|2 + λV (x)u2)dx =

∫
R3

(|∇u1|2 + λV (x)u2
1)dx+ ‖u2‖2λ. (3.2)
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By Proposition 2.1, we obtain that µj(λ)→ +∞ as j → +∞ for each fixed λ > Λ1.
So there is a positive integer nλ such that µj(λ) ≤ 1 for j ≤ nλ and µj(λ) > 1 for
j > nλ + 1. For u1 ∈ E+

λ , we set u1 = Σ∞j=nλ+1µj(λ)ej(λ). Thus∫
R3

(|∇u1|2 + λV (x)u2
1)dx = ‖u1‖2λ −

∫
R3

λV −(x)u2
1dx ≥

(
1− 1

µnλ+1(λ)

)
‖u1‖2λ.

(3.3)

By using (1.3), (2.1), (3.2), (3.3) and −ω ≤ φu ≤ 0 on the set {x ∈ R3|u(x) 6= 0},
we have

Iλ(u) ≥ 1

2

(
1− 1

µnλ+1(λ)

)
‖u‖2λ − ε|u|22 − Cε|u|qq − |h|2|u|2

≥ 1

2

(
1− 1

µnλ+1(λ)

)
‖u‖2λ − εd2

2‖u‖2λ − Cεdqq‖u‖
q
λ − d2|h|2‖u‖λ

≥ ‖u‖λ
{[

1

2

(
1− 1

µnλ+1(λ)

)
− εd2

2

]
‖u‖λ − Cεdqq‖u‖

q−1
λ − d2|h|2

}
.

Let g(t) =
[

1
2 (1− 1

µnλ+1(λ) − εd
2
2

]
t − Cεdqqtq−1, for t > 0, q ∈ (4, 6) there exists

ρ(λ) =

[ 1
2 (1− 1

µnλ+1(λ)
)−εd22

Cεd
q
q(q−1)

] 1
q−2

such that maxt≥0 g(t) = g(ρ(λ)) > 0. It follows

from above inequality, Iλ(u) |‖u‖λ=ρ(λ)> 0 for all |h|2 < ηλ := g(ρ(λ))
2d2

. Of course,
ρ(λ) can be chosen small enough, we can obtain the same result: there exists αλ > 0,
such that Iλ(u) ≥ αλ, here ‖u‖λ = ρλ.

If V ≥ 0, since Eλ = Fλ, and∫
R3

(|∇u|2 + λV (x)u2)dx = ‖u‖2λ,

we can choose α, ρ, η > 0 (independent of λ) such that (3.1) holds.

Lemma 3.2. Suppose that (V 0), (V 1), (f1)–(f2), (K) and (h) are satisfied. Then,
for any finite dimensional subspace Ẽλ ⊂ Eλ, there holds

Iλ(u)→ −∞ as ‖u‖λ →∞, u ∈ Ẽλ.

Proof. Arguing indirectly, we can assume that there is a sequence (un) ⊂ Ẽλ with
‖un‖λ →∞ such that

−∞ < inf
n
Iλ(un). (3.4)

Take vn := un/‖un‖λ. Since dim Ẽλ < +∞, there exists v ∈ Ẽλ \ {0} such that

vn → v in Ẽλ, vn(x)→ v(x) a.e. x ∈ R3

after passing to a subsequence. If v(x) 6= 0, then |un(x)| → +∞ as n → ∞, and
hence by (f2), we obtain that

F (x, un(x))

u4
n(x)

v4
n(x)→ +∞ as n→∞,
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which jointly this with (f1), (2.5), Proposition 2.3 (ii) and Fatou’s lemma, we obtain

Iλ(un)

‖un‖4λ
≤ 1

2‖un‖2λ
+

ω2d2
2

2‖un‖2λ
|K|∞ −

∫
R3

F (x, un)

‖un‖4λ
dx−

∫
R3

h(x)
un
‖un‖4λ

dx

≤ 1

2‖un‖2λ
+

ω2d2
2

2‖un‖2λ
|K|∞ −

(∫
v=0

+

∫
v 6=0

)
F (x, un)

u4
n

v4
ndx+

|h|2d2

‖un‖3λ

≤ 1

2‖un‖2λ
+

ω2d2
2

2‖un‖2λ
|K|∞ −

∫
v 6=0

F (x, un)

u4
n

v4
ndx+

|h|2d2

‖un‖3λ

→ −∞.

This contradicts (3.4).
If K ∈ L3(R3), we can similarly get the result.

Lemma 3.3. Suppose that (V 0), (V 1), (h), (K) and (f1)–(f2) are satisfied. If
V (x) < 0 for some x, then, for each k ∈ N, there exist λk > k, bk > 0, wk ∈
E+
λk

⊕
Fλk , Rλk > ρλk(ρλk is the constant given in Lemma 3.1) and ηk > 0 such

that, for |h|2 < ηk, |K|∞ < bk(or|K|3 < bk),
(a) sup Iλk(∂Qk) ≤ 0;
(b) sup Iλk(Qk) is bounded above by a constant independent of λk,
where Qk := {u = v + twk : v ∈ E−λk , t ≥ 0, ‖u‖λk ≤ Rλk}.
Proof. We adapt an argument in Ding and Szulkin [13]. For each k ∈ N, since
µj(k) → +∞ as j → ∞, there exists jk ∈ N such that µjk(k) > 1. By Proposition
2.2, there exists λk > k such that

1 < µjk(λk) < 1 +
1

λk
.

Taking wk := ejk(λk) be an eigenfunction of µjk(λk), then wk ∈ E+
λk

as µjk(λk) > 1.

Because dimE−λk
⊕

Rwk < +∞, it follows directly from Lemma 3.2 that (a) holds
with Rλk > 0 large enough.

According to (f2), for each η̃ > |V −|∞, there is rη̃ > 0 such that F (x, t) ≥ 1
2 η̃t

2

if |t| ≥ rη̃. For u = v + w ∈ E−λk
⊕

Rwk, we have∫
R3

V −(x)u2dx =

∫
R3

V −(x)v2dx+

∫
R3

V −(x)w2dx

by the orthogonality of E−λk and Rwk. Therefore, by Proposition 2.3 (ii), we obtain

Iλk(u) ≤ 1

2

∫
R3

(
|∇w|2 + λkV (x)w2

)
dx− 1

2

∫
R3

K(x)ωφuu
2dx+

β

16π

∫
R3

|∇φu|4dx

−
∫
suppV −

F (x, u)dx−
∫
R3

hudx

≤ 1

2
[µjk(λk)− 1]λk

∫
R3

V −(x)w2dx− 1

2

∫
suppV −

η̃u2dx+
3ω2d2

2

4
|K|∞‖u‖2λk

+ d2|h|2‖u‖λk −
∫
suppV −,|u|≤rη̃

(
F (x, u)− 1

2
η̃u2

)
dx
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≤ 1

2

∫
R3

V −(x)w2dx− η̃

2|V −|∞

∫
R3

V −(x)w2dx+ Cη̃ +
3ω2d2

2

4
|K|∞R2

λk

+ d2|h|2Rλk

≤ Cη̃ + 1

for u = v + w ∈ E−λk
⊕

Rwk with ‖u‖λk ≤ Rλk , |K|∞ < bk := 2
3 (ωd2Rλk)−2 and

|h|2 < ηk := 1
2d2Rλk

, where Cη̃ depends on η̃ but not λk.

If K ∈ L3(R3), by the Hölder inequality, we obtain that |K|3 < bk
:= 2

3 (ωd3Rλk)−2.

Lemma 3.4. Suppose that (V 0), (V 1), (h), (K) and (f1)–(f2) are satisfied. If
Ω := intV −1(0) is nonempty, then, for each λ > Λ1( is the constant given in
Remark 2.1), there exist w ∈ E+

λ

⊕
Fλ, Rλ > 0, bλ > 0 and ηλ > 0 such that for

|h|2 < ηλ, |K|∞ < bλor(|K|3 < bλ),
(a) sup Iλ(∂Q) ≤ 0;
(b) sup Iλ(Q) is bounded above by a constant independent of λ,
where Q := {u = v + tw : v ∈ E−λ , t ≥ 0, ‖u‖λ ≤ Rλ}.
Proof. Choose e0 ∈ C∞0 (Ω) \ {0}, then e0 ∈ Fλ. By Lemma 3.2, there is Rλ > 0
large such that Iλ(u) ≤ 0 where u ∈ E−λ

⊕
Re0 and ‖u‖λ ≥ Rλ.

For u = v + w ∈ E−λ
⊕

Re0, we have

Iλ(u) ≤1

2

∫
R3

|∇u|2dx− 1

2

∫
R3

K(x)ωφuu
2dx−

∫
Ω

F (x, u)dx

+
β

16π

∫
R3

|∇φu|4dx−
∫
R3

hudx

≤1

2

∫
R3

|∇w|2dx− η̃

2

∫
Ω

u2dx−
∫

Ω,|u|≤rη̃

(
F (x, u)− η̃

2
u2

)
dx

+
3ω2d2

2

4
|K|∞‖u‖2λ + |h|2d2‖u‖λ

≤1

2

∫
R3

|∇w|2dx− η̃

2

∫
Ω

u2dx+ Cη̃ +
3ω2d2

2

2
|K|∞‖u‖2λ + |h|2d2‖u‖λ. (3.5)

Observing w ∈ C∞0 (Ω), we have∫
R3

|∇w|2dx =

∫
Ω

(−∆w)udx ≤ |∆w|2|u|2,Ω ≤ c0|∇w|2|u|2,Ω ≤
c20
2η̃
|∇w|22 +

η̃

2
|u|22,Ω,

(3.6)

where c0 is a constant depending on e0. Choosing η̃ > c20, we have |∇w|22 ≤ η̃|u|22,Ω,
and it follows from (3.5) that

Iλ(u) ≤ Cη̃ +
3ω2d2

2

4
|K|∞R2

λ + |h|2d2Rλ ≤ Cη̃ + 1

for all u ∈ E−λ
⊕

Re0 with ‖u‖λ ≤ Rλ, |h|2 < ηλ := 1
2d2Rλ

and |K|∞ < bλ :=
2
3 (ωd2Rλ)−2, where Cη̃ depends on η̃ but not λ.

If K ∈ L3(R3), by the Hölder inequality, we get that for |K|3 < bλ
:= 2

3 (ωd3Rλ)−2.
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Now we are in a position to prove our main results.

Proof of Theorem 1.1. The proof of Theorem 1.1 is divided in two steps.

Step 1. There exists a function uλ ∈ Eλ such that I ′λ(uλ) = 0 and Iλ(uλ) < 0.

Since h ∈ L2(R3) and h ≥ 0(6≡ 0), we can choose a function ψ ∈ Eλ such that∫
R3

h(x)ψ(x)dx > 0.

Hence, by −ω ≤ φu ≤ 0 we obtain that

Iλ(tψ) =
t2

2
‖ψ‖2λ −

λt2

2

∫
R3

V −(x)ψ2dx− t2

2

∫
R3

K(x)(2ω + φtψ)φtψψ
2dx

− 1

8π

∫
R3

|∇φtψ|2dx−
β

16π

∫
R3

|∇φtψ|4dx−
∫
R3

F (x, tψ)dx

− t
∫
R3

h(x)ψdx

≤ t2

2
‖ψ‖2λ +

t2

2

∫
R3

K(x)ω2ψ2dx+
t4

4
C1‖ψ‖4λ + Ct2‖ψ‖4λ − t

∫
R3

h(x)ψdx

< 0 for t > 0 small enough.

Thus, there exists uλ small enough such that Iλ(uλ) < 0. By Lemma 3.2, we have

c0,λ = inf{Iλ(u) : u ∈ Bρλ} < 0,

where ρλ > 0 is given by Lemma 3.1, Bρλ = {u ∈ Eλ : ‖u‖λ < ρλ}. By the Ekeland’s
variational principle, there exists a minimizing sequence {un,λ} ⊂ Bρλ such that

c0,λ ≤ Iλ(un,λ) < c0,λ +
1

nλ
,

and

Iλ(wλ) ≥ Iλ(un,λ)− 1

nλ
‖wλ − un,λ‖λ

for all wλ ∈ Bρλ . Therefore, {un,λ} is a bounded Palais-Smale sequence of Iλ.
Then, by a standard procedure, Lemma 2.3 and Lemma 2.2 imply that there is a
function uλ ∈ Eλ such that I ′λ(uλ) = 0 and Iλ(uλ) = c0,λ < 0.

If V ≥ 0, we can get ρλ, c0,λ, u0,λ are independent of λ.

Step 2. There exists a function ũλ ∈ Eλ such that I ′λ(ũλ) = 0 and Iλ(ũλ) > 0.
It follows from Lemmas 3.1, 3.3 and Proposition 3.1 that, for each k ∈ N, λ = λk

and |h|2 < ηk, Iλk has a (PS)c sequence with c ∈ [αλk , sup Iλk(Qk)]. Setting
M := sup Iλk(Qk), then Iλk has a nontrivial critical point according to Lemmas
2.1, 2.4 and Proposition 3.1. Hence there exists a function ũλ ∈ Eλ such that
I ′λ(ũλ) = 0 and Iλ(ũλ) = c ≥ αλk > 0. The proof is complete.

Proof of Theorem 1.2. The first solution is similar to the first solution of Theorem
1.1. The second solution follows from Lemmas 2.1, 2.4, 3.1, 3.4 and Proposition
3.1. The proof is complete.

Proof of Theorem 1.3. The proof of Theorem 1.3 is divided in two steps.

Step 1. There exists a function u0 ∈ Eλ such that I ′λ(u0) = 0 and Iλ(u0) < 0.
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In the proof of Theorem 1.1, we can choose c0 = c0,λ, Bρ = Bρ,λ, then by the
Ekeland’s variational principle, there exists a sequence {un} ⊂ Bρ such that

c0 ≤ Iλ(un) < c0 +
1

n
,

and

Iλ(w) ≥ Iλ(un)− 1

n
‖w − un‖λ

for all w ∈ Bρ. Then by a standard procedure, we can show that {un} is a bounded
Palais-Smale sequence of Iλ. Therefore Lemma 2.2 and Lemma 2.3 imply that there
exists a function u0 ∈ Eλ such that I ′λ(u0) = 0 and Iλ(u0) = c0 < 0.

Step 2. There exists a function ũλ ∈ Eλ such that I ′λ(ũλ) = 0 and Iλ(ũλ) > 0.
Since we suppose V ≥ 0, the functional Iλ has mountain pass geometry and

the existence of nontrivial solutions can be obtained by mountain pass theorem
[18, 24, 30]. Indeed, by Lemma 3.1, there exist constants α, ρ, η > 0 ( independent
of λ) such that, for each λ > Λ0,

Iλ(u) ≥ α for u ∈ Eλ with ‖u‖λ = ρ and |h|2 < η.

Take e ∈ C∞0 (Ω) \ {0}, by (f1), (f2) and Fatou’s lemma, we get

Iλ(te)

t4
≤ 1

2t2

∫
Ω

|∇e|2dx− 1

2t2

∫
Ω

K(x)ω2e2dx−
∫
{x∈Ω:e(x) 6=0}

F (x, te)

(te)4
e4dx

+
β

16π

∫
R3

|∇φte|4dx− t−3

∫
Ω

hedx→ −∞

as t → +∞, which yields that Iλ(te) < 0 for t > 0 large. Clearly, there is C > 0
(independent of λ) such that

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) ≤ sup
t≥0

Iλ(te0) ≤ C

where Γ = {γ ∈ C([0, 1], Eλ) : γ(0) = 0, ‖γ(1)‖λ ≥ ρ, Iλ(γ(1)) < 0}. By Mountain
pass theorem and Lemma 2.3, we obtain a nontrivial critical point ũλ of Iλ with
Iλ(ũλ) ∈ [α,C] for λ large. The proof is complete.
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