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MULTIPLE SOLUTIONS FOR
NONHOMOGENEOUS KLEIN-GORDON
EQUATION WITH SIGN-CHANGING
POTENTIAL COUPLED WITH BORN-INFELD
THEORY

Lixia Wang!*, Chunlian Xiong?! and Dong Zhang!

Abstract In this paper, we study the following nonhomogeneous Klein-Gor-
don equation with Born-Infeld theory

—Au+ AV (z)u — K(z)(2w + ¢)pu = f(z,u) + h(z), z € R,
Aé+ B = 4rK (2)(w + $)u?, zERY,

where w > 0 is a constant, A > 0 is a parameter and As¢ = div(|Ve|>*V¢).
Under some suitable assumptions on V, K, f and h, the existence of multiple
solutions is proved by using the Linking theorem and the Ekeland’s variational
principle in critical point theory. Especially, the potential V' is allowed to be
sign-changing.

Keywords Klein-Gordon equation, nonhomogeneous, Born-Infeld theory,
Ekeland’s variational principle, sign-changing potential.
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1. Introduction

In this paper, we study the following nonhomogeneous Klein-Gordon equation with
Born-Infeld theory

—Au+ NV (z)u — K(z)(2w + ¢)pu = f(z,u) + h(z), z€R3,
(KGBI) : ,
AP+ BAsp = 4n K () (w + ¢)u?, x € R”,
where w > 0 is a constant, A > 1 is a parameter, V € C(R3 R) and f € C(R3>xR,R)
and Ag¢ = div(|[Vo|*V).
It is well known that Klein-Gordon equation can be used to develop the theory
of electrically charged fields (see [14]), and Born-Infeld theory is proposed by Born
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[5—7] to overcome the infinite energy problem associated with a point-charge source
in the original Maxwell theory. The presence of the nonlinear term f simulates the
interaction between many particles or external nonlinear perturbations. For more
details in the physical aspects, we refer the readers to [4,9,15,17,25].

In recent years, the Born-Infeld nonlinear electromagnetism has become more
important since its relevance in the theory of superstring and membranes. By
using variational methods, several existence results for problem (KGBI), have
been found with constant potential V (x) = m? — w?. We recall some of them.

The case of h = 0, that is the homogeneous case, has been widely studied in
recent years. In 2002, the authors [12] considered for the following Klein-Gordon
equation with Born-Infeld theory on R3

{—Au+[m2—(w+¢)2]¢>u—f(m,u), z € R3, (1)

A¢ + BALd = 4m(w + d)u?, x € R3,

for the pure power of nonlinearity, i.e., f(z,u) = |u[P~2u, where w and m are
constants. By using the mountain pass theorem, they proved that (1.1) has infinitely
many radially symmetric solutions under |m| > w and 4 < p < 6. Mugnai [17]

covered the case 2 < p < 4 assuming \/%|m| > w > 0. Later, the authors

[20] and [16] considered the existence of solutions and ground state solutions for
(1.1) with critical Sobolev exponent respectively. Zhang and Liu [29] consider the
existence and multiplicity of sign-changing solutions by the method of invariant sets
of descending flow.

Recently, for general potential V(z), Chen and Song [11] obtained the existence
of multiple nontrivial solutions for (1.1) with the nonlinearity with concave and con-
vex nonlinearities. Other related results about homogeneous Klein-Gordon equation
with Born-Infeld theory can be found in [1,19,21,23,27].

Next, we consider the nonhomogeneous case, that is h Z 0. In [10], Chen and Li
proved that (KGBI)y had two nontrivial radially symmetric solutions with A = 1
if f(z,u) = |u[P7%u and h(z) is radially symmetric. In [22], the authors obtain
the existence of two solutions by the Mountain Pass Theorem and the Ekeland’s
variational principle in critical point theory for general f(z,u).

Motivated by the above works, in the present paper we consider (KGBI)) with
more general potential V(x) and f(z,u). Precisely, we make the following assump-
tions.

(V0) There is b > 0 such that meas{z € R3 : V(x) < b} < +o00, where meas
denotes the Lebesgue measures;

(V1) V € C(R3 R) and V is bounded below;

(V2) Q = intV~=1(0) is nonempty and has smooth boundary and Q = V~1(0);

(f1) F(z,u) = fou f(z,s)ds > 0 for all (z,u) and f(x,u) = o(u) uniformly in z
as u — 0;

(f2) F(x,u)/u* — 400 as |u| — +oo uniformly in x;

(f3) Flz,u) ==L f(z,u)u — F(z,u) > 0 for all (z,u) € R® x R;

(f4) There exist a1, L1 > 0 and 7 € (3/2,2) such that

|f(z,u)|” < ay F(x,u)|u|™, for all z € R® and |u| > Ly;
(K) K(z) € L3(R?) U L*°(R?) and K(z) > 0 is not identically zero for a.e.

z € R3;
(h) h(z) € L?(R3) and h(z) > 0 for a.e. x € R3.
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Remark 1.1. It follows from (f3) and (f4) that |f(z,u)|” < 2| f(z, u)||u["* for
large w. Thus, by (f1), for any € > 0, there exists Cc > 0 such that

|f(x,u)| < elu| + Celu|i™!, V(z,u) € R® xR (1.2)
and

|F(z,u)] < elul® + Cclul?, Y(z,u) € R® xR, (1.3)
where ¢ = 27/(7 — 1) € (4,2%) and 2* = 6 is the critical exponent for the Sobolev

embedding in dimension 3.

Remark 1.2. It is not difficult to find out functions f satisfying (f1)—(f4), for
example,

2

fz,t) = g(x)t? (2[71(1 +t2) + 1—t|—152> V(z,t) € R® x R,

where g is a is a continuous bounded function with inf,cgs g(z) > 0.

Before stating our main results, we give some notations.
H'(IR?) is the usual Sobolev space endowed with the standard product and norm

1/2
(M)Hl:/ (VuVo + uv)da; ||uH1:(/ (|Vu|2+u|2)dx) .
R3 R3

For any 1 < s < 400 and 2 C R3, L#(Q) denotes a Lebesgue space; the norm in
L#(9) is denoted by |u|s o, where { is a proper subset of R3, by |- | when Q = R3.
Let DY2(R?) be the completion of C§°(R?) with respect to the norm

1/2
u||D1,2(R3):(/ Vu|2dm> .
R3

D(R3) is the completion of C§°(R3) with respect to the norm
[ullp == [Vulz + [Vula.

It is clear that D(R®) is continuously embedded in D'?(R3). By the Sobolev in-
equality, we know that D?(R?) is continuously embedded in LS = LS(R?) and
D(R3) is continuously embedded in L> = L (R3).

S is the best Sobolev constant for the Sobolev embedding D'2(R3) — LS(R?),
that is,

[ullpr2

5 =
ueDL2(R3\{0} |ulg

For any 7 > 0 and 2 € R?, B,.(z) denotes the ball of radius r centered at 2.

We denote “ — 7 the weak convergence and by “ — 7 strong convergence. Also
if we take a subsequence of a sequence {uy}, we shall denote it again {u,}. We use
o(1) to denote any quantity which tends to zero when n — oo. The letters d;, C;
will be used to denote various positive constants which may vary from line to line
and are not essential to the problem.
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Now we can state our main results.

Theorem 1.1. Assume that (V0)~(V1), (f1)-(f4), (K) and (h) are satisfied. If
V(x) < 0 for some x € R3, then for each k € N, there exist \p > k, b, > 0 and
Nk > 0 such that problem (KGBI)y has at least two nontrivial solutions for every
A= Mg, ‘K|oo < by and |h‘2 < k-

Theorem 1.2. Assume that (V0)—<(V2), (f1)-(f4), (K) and (h) are satisfied. If
V=1(0) has nonempty interior, then there exist A > 0,byx > 0 and ny > 0 such that
problem (KGBI) ) has at least two nontrivial solutions for every A > A,|hla < nyand
|K|oo < by.

If V> 0, we remove the restriction of the norm of K and we have the following
theorem.

Theorem 1.3. Assume that V > 0, (V0)—(V2), (f1)-(f4), (K) and (h) are sat-
isfied. If V=1(0) has nonempty interior 0 and h # 0, then there exist A, > 0 and
n > 0 such that problem (KGBI)y has at least two nontrivial solutions for every
A > A, and |hl2 <.

To obtain main results, we have to overcome some difficulties in using variational
method. The main difficulty consists in the lack of compactness of the Sobolev
embedding H!(R?) into LP(R3), p € (2,6). Since we assume that the potential is
not radially symmetric, we cannot use the usual way to recover compactness, for
example, restricting in the subspace H!(R3) of radially symmetric functions. To
recover the compactness, we borrow some ideas used in [3,13] and establish the
parameter dependent compactness conditions.

To the best of our knowledge, it seems that our theorems are the first results
about the existence of multiple solutions for the nonhomogeneous Klein-Gordon
equation with Born-Infeld theory on R® with general nonlinear term and sign-
changing potential. In the following, we can see that many technical difficulties
arise due to the presence of a non-local term ¢, which is not homogeneous as it is
in the Schrodinger-Poisson systems. In other words, the adaptation of the ideas to
the procedure of our problem is not trivial at all, because of the presence of the
nonlocal term ¢,. Hence, a more careful analysis of the interaction between the
couple (u, ¢) is required.

The paper is organized as follows. We introduce the variational setting and
the compactness conditions in Section 2. In Section 3, we give the proofs of main
results.

2. Variational setting and compactness condition

In this section, we firstly give the variational setting of (KGBI), and then establish
the compactness conditions.

Let V(z) = VT (z) — V™ (), where V* = max{£V (z),0}. Let
E= {u € H'(R?) : / |Vul? + VT (z)u?dx < oo}
R3

be equipped with the inner product (u,v) = [s(VuVv+V*(2)uv)dz and the norm
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1/2

llul| = (u,w)'/2. For A > 0, we also need the following inner product and norm

(u,v)y = / (VuVo + AV (z)uww)dz, ||lu|x = (u,u)i/Q.
R3

It is clear ||ul| < ||ul|x for A > 1. Set E\ = (E, ||-||x). It follows from (V0)—(V'1) and
the Poincaré inequality, we know that the embedding E\ < H'(R?) is continuous.
Therefore, for s € [2,6], there exists d; > 0 (independent of A > 1) such that

luls < dgllullx, Yu € Ej. (2.1)
Let
Fy = {u € By : suppu € V=1([0,00))},

and Fj‘ denote the orthogonal complement of F in Ey. Clearly, F\ = E, if V > 0,
otherwise Fi- # {0}. Define

Ay = —-A+ )V,

then A, is formally self-adjoint in L?(R?) and the associated bilinear form
ax(u,v) = / (VuVo + AV (z)uv)dx
R3

is continuous in Ey. As in [13], for fixed A > 0, we consider the eigenvalue problem
—~Au+ AV (2)u = pA\V ™ (2)u, u € Fi-. (2.2)

By (V0)-(V1), we know that the quadratic form u — [ps AV~ (2)u?dx is weakly
continuous. Hence following Theorem 4.45 and Theorem 4.46 in [24], we can deduce
the following proposition, which is the spectral theorem for compact self-adjoint
operators jointly with the Courant-Fischer minimax characterization of eigenvalues.

Proposition 2.1. Suppose that (V0)—(V1) hold, then for any fized X > 0, the

eigenvalue problem (2.2) has a sequence of positive eigenvalues {p;(\)}, which may
be characterized by

wi(A) = inf sup{u”i :uEM,/3 AV (2)ude = 1}, i=1,23 ..
R

dimM>j,MCFi-
Furthermore, pi(X) < pa(A) < -+ < pj(A) = +00 as j = +0oo, and the correspond-
ing eigenfunctions {e;(\)}, which may be be chosen so that (e;(\),ej(A))x = dij,
are a basis of F-.

Next, we give some properties for the eigenvalues {1;(\)} defined above.
Proposition 2.2. ( [13]) Assume that (V0)—(V'1) hold and V~ # {0}. Then, for
each fived j € N,

(7) j(A) = 0 as A = +o0;

(43) w;(N) s a non-increasing continuous function of .

Remark 2.1. By Proposition 2.2, there exists Ag > 0 such that pq(\) <1 for all
A > Ap.
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Denote
Ey = span{e;j(A) : p;(N\) <1} and  EY = span{e;(\) : p;(\) > 1}.

Then E\ = E, @ E) @ F) is an orthogonal decomposition. The quadratic form
ay is negative semidefinite on E , positive definite on E;\' @ F) and it is easy to
see that ay(u,v) = 0 if u, v are in different subspaces of the above decomposition of
E.

From Remark 2.1, we have that dim F, > 1 when A > Ag. Moreover, since
i (A) = +o0 as j — 400, dim Ey < 400 for every fixed A > 0.

System (KGBI)) has a variational structure. In fact, we consider the functional
I Ex x D(R3) — R defined by

I (u, @) :% /]R3(|Vu|2 + AV (2)u?)dx — %/RS K(x)(2w + ¢)pudx

o ol [ et | J
S _ 7 | F - .
. /}R3 |Vo|“dx 167 e V| dx . (z,u)dz . h(z)udx

The solutions (u,¢) € Ex x D(R?) of system (KGBI), are the critical points of
Jx. By using the reduction method described in [4], we are led to the study of a
new functional Iy (u) ((2.5)). We need the following technical result.

Proposition 2.3. Let K(x) satisfy the condition (K). Then for any u € E\, there
exists a unique ¢ = ¢, € D(R3) which satisfies

A¢+ BALY = 4K (z)(p + w)u®.
Moreover, the map ® : u € Ex — ¢, € D(R®) is continuously differentiable, and
(1) ¢y <0, moreover, —w < ¢, on the set {x € R3|u(z) # 0};

(1) /RS(W%F + BIVou|dr < dnw?d3| K| |ull3, if K € L°(R?).

(i) /Rg<|v¢u|2 + BIVéul)de < Am? 2K s|ul?, if K € L3(®?),

Proof. For every fixed u € F), the solutions of
A¢+ BALp = AT K () (¢ + w)u? (2.3)

are critical points of the functional
_ 1 2 B 4 2, 1 2,2
J(¢) = /]12{3 {87T|V¢| + 167r|v¢‘ + K (z)wou” + 2K(x)<b u® pdx (2.4)

defined on D. The functional J is coercive. Indeed, by the continuous embedding
of D € L=(R3)

1
7(8) 2 V63 + < |V6l — Ch K| (V6l: + [V610)

Furthermore J is weakly lower semicontinuous since each term in (2.4) is con-
tinuous and convex. Hence J admits a global minimum. The solution of is unique
because the operator

A=—A—BA;+ 47K (2)u?
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is strictly monotone.

The result (i) can be proved similarly as Lemma 2.3 of [17].

(ii) After multiplying (2.3) by ¢, and integrating by parts, by (i) and (2.1), we
can get that

/ (|qu)u|2 + B|V¢u|4)d9: = —47T/ K(z)(¢y + w)¢uu2dx
R3 R3

< —drw | K(z)p,ude
R3

< dmw?d3| Koo [[ull3.-

(iii) Similarly to (ii), we can get (iii) hold. The proof is complete. O

By above equality and the definition of [Jy, we obtain a C' functional I, =
Ia(u, ¢y) : Ex — R given by

Iy (u) :%/ [Vl + AV (2)u? — K (2)(20 + du)but ]dx—8i/ Vul2dz

167r/ |V¢u|4dm—/ F(%U)daﬁ—/ h(z)udz

1/ (|Vul? + \V (2)u? — wK (x)p,u’ dx+—/ |V | da

2

- F(z,u)dx — h(z)udx (2.5)
R3 R3

and its Gateaux derivative is
(I} (u), ) :/ (Vu - Vo + AV (2)uww — K(z)(2w + ¢y pyuvdz
R3

— f(z,uw)vde — h(z)vdx
R3 R3

for all v € Ey. Set

M(u) = K ()¢ u’dx
R3
Now we give some properties about the functional M and its derivative M’ possess
BL-splitting property, which is similar to Brezis-Lieb Lemma [8].

Proposition 2.4. Let K € L>®(R3) U L3(R3). If u, — u in HY(R?) and u,(z) —
u(z) a.e. © € R3, then

(1) pu, — ¢u in D(R3);

(43) M(up —u) = M(uy) — M(u) + o(1);

(i1d) M'(up —u) = M'(u,) — M'(u) 4+ o(1) in H=*(R3).
Proof. (i) A similar proof of Lemma 3.2 in [20]. The proof of (ii) and (iii) can be
similar as Lemma 2.1 in [26]. We omit it here. O

Next, we investigate the compactness conditions for the functional Iy. Recall
that a C! functional J satisfies (PS) condition at level ¢ if any sequence {u,} C F
such that J(u,) — ¢ and J'(u,) — 0 has a convergent subsequence; and such
sequence is called a (PS),. sequence.
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We only consider the case K € L>(R?), the other case K € L*(R?) is similar.

Lemma 2.1. Suppose that (V0)—(V1), (f1)-(f4), (K) and (h) are satisfied. Then
every (PS). sequence of Iy is bounded in Ey for each ¢ € R.

Proof. Let {u,} C E) be a (PS). sequence of I. Suppose by contradiction that
Iv(un) = ¢, Iy(up) =0, |Jug|x — o0 (2.6)

as n — oo after passing to a subsequence. Take w,, := u,/||un|[x. Then |Jw,|x =
L,w, — win Ey and w,(z) = w(z) a.e. x € R3.
We first consider the case w = 0. By (2.6), (f3), Proposition 2.3 and the fact
wy, — 0in L2({z € R3 : V(x) < 0}), we obtain
1 !/
I (um) = T4 ), )
1

1 g
i 'n2 2 - K 2 2d / y 4d
1 Ll @i+ [ K@t idde+ o [ V6., [

+ [ F(z,up)dr — 3 h(x)upde.
R3 R3

Divided by |u,||3 above inequality, by w = 0, we can obtain that

1 1
=—7 1 n) — I/ n n
o01) = Trgz (1) = 03 ) o))
:}MWF—é/‘ﬁ@WMW%—L—/lﬁ@&umx
4T f " Af|unll3 Jrs o
1 B 4
+ —_— |V, |*dx + F(z,uy)dx
unll} 167 Jgs lunll3 Jra
i
- h(z)u,dx
A unlly Jrs
1 A 3 1
>1_ Ay 202 — 3| hlpdy——
e LA L (L e
1
:Z‘FO(].),

which is a contradiction.
If w # 0, then O := {x € R® : w(x) # 0} has positive Lebesgue measure. For
x € Q1, one has |u,(z)| = 0o as n — oo, and then, by (f2),

F 7
C%@@Mﬂ@%+m as n — oo,

which, jointly with Fatou’s lemma, shows that

F n
/ %widm — 400 asn — 0o. (2.7)
Ql n
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By (2.5) and Proposition 2.3, we have that

I)\(un)
lun I3
1 2d3|K | oo F n
< Lt sl B 4/)W@M%x /AJE%JM
2unl[3 167 [un |} ro [lunlly

- / h(a:)u7"4d:c
R Jlunlly

2 72
S2—1—3wcl|2K|oo_</ / ) (x,un) vhda +|h|2d§
Afun|| v=0  Juzo)  up [[nl[X

2 + 3w?d2| K| oo F " h|ad
o 2+ 3K _/ (@ 4n) 1 4, [l
4|unll3 40 Up llwn I

— —OQ.
Combining this with (f1), the first limit of (2.6), (K) and (h), we obtain that
F(x,uy)

4
Un,

F
0 > lim sup/ de > lim sup/ whdr = +oo0.
R3 Q

4
n— oo Unp n—00

This is impossible.

Hence {u,} is bounded in E}.

For the case K € L3(R3), we can use the Cauchy-Schwarz inequality and the
boundedness of ¢, to get the result. O

Lemma 2.2. Suppose that (V0)—(V1),(K), (h) and (1.2) hold. If u, — u in Ej,
un(x) = u(x) a.e. in R3, and we denote wy, := u, — u, then

I)\(un) :IA(wn)+I)\(u)+0(1) (28)
and
(I3 (un), ) = (I (wn), ) + (I3 (u), ) + o(1), uniformly for all o € Ex  (2.9)

as n — oo. In particular, if I(u,) — c¢(€ R) and I (u,) — 0 in ES (the dual space
of Ex), then I} (u) =0 and

In(wy) — ¢ — In(u), (2.10)
(I (wy), @) — 0, uniformly for all ¢ € E)

after passing to a subsequence.

Proof. Since u,, — w in E), we have (u, —u,u)x — 0 as n — oo, which implies
that

[unll = (wn +w,wn +u)x = walX + ullX + o(1). (2.11)

By (V0), the Holder inequality and w,, — 0, we have

1/2
/ V7 wpudz| < |V s (/ widw) |ulg = 0
suppV — suppV ~

V= (z)wpudz
R3
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as n — oo. Thus

V™ (2)uidr = V™ (z)wide + | V™ (z)u*dx + o(1).
RS RS RS

By Proposition 2.4 (ii), we have
M (un) = M(wy) + M(u) + o(1).

Since h € L*(R3),

/h(x)undac:/ h(z)wpdz + [ h(z)udz,
RS RS RS

therefore, to prove (2.8) and (2.9), it suffices to check that

/RS (P2, 1) — Fz,wy) — Flz, u))dz = o(1) (2.12)
and

sup / (f (@, un) = f(2, wn) = f(,u))pdz = o(1). (2.13)
llpllx=1/R3

We prove (2.12) firstly. Inspired by [2], we observe that

1 1
F(x,u,) — Fx,u, —u) = —/0 <jtF(9:,un - tu)> dt = /0 f(z,up — tu)udt,

and hence, by (1.2), we obtain that
|F (@, un) = F(2,un — u)| < elunllul + erful* + Ce, lun [P~ ul + Cc, Jul?,

where €1,C.;, > 0 and p € (4,6). Therefore, for each ¢ > 0, and the Young
inequality, we get

|F(2,un) = F(z,wy) — F(z,u)| < Clefun|* + Celul® + lun[? + Ce |uf?].
Next, we consider the function f,, given by
fn(x) = max{|F(a:,un) — F(z,wy,) — F(z,u)| — Ce(|un|* + \un|p)70} .

Then 0 < f,,(x) < CC-(|ul]?*+ulP) € L*(R?). Moreover, by the Lebesgue dominated
convergence theorem,

fa(z)dz =0 asn— oo, (2.14)
R3
since u,, — u a.e. in R3. By the definition of f,, it follows that

|F (2, un) = F(z,wn) = F(z, )] < fa(@) + Ce(lun|* + [un|?).

Combining this with (2.14) and (1.3), shows that

|F(x,up) — F(x,w,) — F(z,u)|dx < Ce
RS
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for n sufficiently large. It implies that
/ [F(z,un) — F(z,w,) — F(z,u)ldz = o(1).
R3

The prove of (2.13) is similar to Lemma 4.7 in [28], we omit here.
Now, we check that I} (u) = 0. In fact, for each 1) € C5°(R?), we have

(up, —u, )y — 0 as n — 0. (2.15)
and

1/2
<V e (/ w(unu)zdz> [t)]2 — 0 as n — oo,
supp
(2.16)

/IR V(@) — wpde

since u, — u in L} (R3). By Proposition 2.4 (i), u,, — u in Ey yields ¢,, — ¢, in
D(R3?). So

bu, — ¢y in LO(R3).

For every ¢ € C§°(R?), by the Holder inequality we obtain
6/5 | (6/5
[ 1 @l ds < KISl
that is K (x)uyy € L%°(R?), and hence

K()(pu, — du)updz — 0.
R3

By u, — u in L} (R3) and the Holder inequality, we have

loc
|| K@), — upis

< [l2] Kool du, l6]un — u
< Clup —ulz0, -0 asn— oo,

3,2y

here Q) is the support set of ¥. Consequently,
| 5@ 00— K@)l
R3
< [ K@~ wilde + [ 1K@)6, — d)uvlds (217
R3 R3

=o(1).
For every ¢ € C§°(R?) and Proposition 2.4 (ii), we obtain
/ 2WK () oy, uptpdx = / 2WK () oy, wphdx + / 2wK (x)pyupdx + o(1).
R? R3 R3

Now we need to prove

K(m)gbznunwdac z/ K(m)@%}nwnd)dm—k/ K(x)(biuwdx + o(1).
R3 R3 R3
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s R3),1 < s <65 ¢, — ¢y in L5, (R3),1 < s < 6, the bounded-
ness of (¢, ) and the Holder inequality, we have

By u, — win L]

K(2)(¢2 up — ¢ou)bda

g
= [ K@, — o+ [ K@), - 0tunda (2.18)
: 2/3
< O1K|oe [V, | (/ |unu3/2dx> IRl [ (6, - GDuvds
Q, Q
— 0,

as n — o0, here {1y is the support set of .
Furthermore, by the dominated convergence theorem and (1.2), we have

/ (@ um) — f )] = / [ @ um) — (s w)bde = ofL).
R3

Qq/,

Since u, — u in L*(R?) and h € L*(R?), we obtain [ps h(u, — u)dz = o(1). This
jointly with (2.15), (2.16), (2.18) and the dominated convergence theorem, shows
that

(I (w), ) = lim (I3 (un), %) =0, Vo € C3°(R?).
Hence I} (u) = 0. Combining with (2.8)-(2.9) and Proposition 2.4 (iii), we obtain

(2.10). The proof is complete. O

Lemma 2.3. Assume that V > 0,(V0)-(V1), (f1)-(f4), (K) and (h) hold. Then,
for any M > 0, there is A = A(M) > 0 such that I, satisfies (PS). condition for
allc <M and A > A.

Proof. Let {u,} C E\ be a (PS). sequence with ¢ < M. By Lemma 2.1, we
know that {u,} is bounded in FE,, and there exists C' > 0 such that ||u,||x < C.
Therefore, up to a subsequence, we can assume that

Up, — u in Fy;
up — uin L (R3)(1 < s < 2%); (2.19)

up(z) = u(z) a.e. z € R3.

Now we can show that u,, — u in E) for A > 0 large. Denote w,, := u,, — u, then
wy, — 0 in Ey. According to Lemma 2.2 and the fact (2.10) holds uniformly for all
¢ € Ey, we have I} (u) =0, and

IL\(wyp) = ¢ — In(u), Ii(w,) =0 asn— occ. (2.20)
According to V' > 0 and (f3), we obtain
Ii(u) = Ix(u) — <I>\() u)
fHuH,\—&— / K(x ¢>2u2dm+—/ |Vul dx—l—/ F(z,u)d
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7%/ hudx
4 Jrs

=®,(u) — Z/RS hudzx,

here ®y(u) = 1|Jull} + § Jps K (@)¢2u’dx + 167T Jgs [Vou|tda + [os F(x,u)dz > 0.
Again by (2.19), (2.20) and Proposition 2.3 (i), we have

1
otz + [ Flow)ds
4 ks
1
< 1 K(x)qbwnw dm—!——/ |V, | dx—i—/ F(x,wp)d
RS
1
- — (I 2
Alwn) 4< Mwn), wn) + 4 Jgs
<ec—1Ix(u)+o(1)
3 3
=c— {@A(u) - f/ hudx} +— | hwpdz+o(1)
4 R3 4 RB

<M+ M +o(1). (2.21)

hw,dz + o(1)

Here we use the fact ¢ < M and
3 3 3 . ~
“Hhlaful> < J1Rladallulls < 5 lhlada limin Jun | < |hlad>C < M,
where M is a positive constant independent of \. Hence
F(x,wp)dx < M + M + o(1). (2.22)

R3

Because V(z) < b on a set of finite measure and w,, — 0, we obtain

1
|wn\2 < )\b/ AV"’(m)widw—i—/ w;, 2dx < —||wn||)\ + o(1). (2.23)
V>b V<b

For 2 < s < 2%, by the Holder and Sobolev inequality and (2.23), we have

|wn‘§:/ ‘wn|sd$
]RB
<(fere) ([ ere)
R3 R3
1 =2 B 3\ 5
< / (IVw, > + AV1w?) do 56 / |Vw,|?dz +0(1)
b R3

1 S g—3=2)
§<> S22 w15 + o(1). (2.24)

9s—18

Ab

According to (f1), for any £ > 0, there exists § = §(¢) > 0 such that |f(z,t)| < ¢t
for all z € R? and |t| < §, and (f4) is satisfied for || > & (with the same 7 but
possibly larger than aq). Hence we have that

/ flz,wy)wpdx < 5/ w;, 2dx < EHU}”HA +o(1), (2.25)
Jwy, |<8 Jwy, | <8
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and

1/7
[ e ([ I8 )
‘wn‘zé |wn|26 Wnp,

1/7
< (/ alf(x,wn)dx> |wn\§
|wn|25

0
- _ a2e- 1
<l + SOP75 5 () ualg 4 o1) (220
by (f4), (2.22), (2.24) with s = 27/(7 — 1) and the Hoélder inequality, where 6 =
6—s
> 0.
2s
Since u,, — u in L*(R3) and h € L*(R3), we obtain that

h(uy, —u)de — 0 asn — oo. (2.27)
R3

By —w < ¢, <0, we have that 2w + ¢, > 0. Therefore, by (2.25), (2.26), (2.27)
and Proposition 2.3 (i), we obtain that

0(1) = (I3 (wn), wn)

> ||wn||§ — /}R3 K(z)(2w +¢wn)¢wnwidx - /]1%3 f(z,wp)wpdx —/ hw,dz

R3

1- = a s s (LY 2 4+ o(1 2.2
w1 + 1) (55) [Iunlg +om. 229

So, there exists A = A(M) > 0 such that w, — 0 in F\ when A > A. Since
Wy, = Uy, — U, it follows that u,, — u in Fy. This completes the proof. O

Lemma 2.4. Assume (V0)—(V1), (f1)—(f4), (K) and (h) hold. Let {u,} be a
(PS). sequence of Iy with level ¢ > 0. Then for any M > 0, there is A = A(M) >0
such that, up to a subsequence, u, — u in E\ with u being a nontrivial critical point
of I and satisfying Ix(u) < c for allc < M and A > A.

Proof. We modify the proof of Lemma 2.3. By Lemma 2.2, we obtain
L(u) =0, In(w,)—c—1Iz\(u), Ij(up)—0 asn— oco. (2.29)

However, since V' is allowed to be sign-changing and the appearance of nonlinear
term h, from

1
In(u) = In(u) = 7 (3 (u), u)
=l =3 [ Voo ;[ K@otdes - [ ot
3
+ | Flx,u)dr — - hudx
R3 4 Jps
we cannot deduce that I(u) > 0. We consider two possibilities:

(i) Iy (u) < 0;
(ii) Ix(u) > 0.
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If In(u) < 0, then u # 0 is nontrivial and the proof is done. If I(u) > 0, following
the argument in the proof of Lemma 2.3 step by step, we can get w, — w in E).
Indeed, by (V0) and w,, — 0 in L?({z € R3 : V(z) < b}), we obtain

/R VT (@)w} (@)da

<Vl [ o= o)
suppV —

which jointly this with (2.29) and Proposition 2.3(i), we have

F(z, wy)dx
R3
1, 1, ., 1 U
= wn) L) wa) — el [ WV @ulde
R3
1

B
-~ | K(z)¢:, widr— 6r /]RS Vo,

3
4

de+° [ hw,d
1 e v s

<ec—1Iy(u)+o(l) <M+o(1).

It follows that (2.26), (2.27) and (2.28) remain valid. Therefore u,, — u in E) and
Iy (u) = ¢(> 0). The proof is complete. O

3. Proofs of main results

If V is sign-changing, we first verify that the functional Iy have the linking geometry
to apply the following linking theorem [18].

Proposition 3.1. Let E = E1 @ E> be a Banach space with dim Ey < 0o, ® €
CL(E,R®). If there exist R > p > 0,a > 0 and eg € E; such that

a:=inf ®(E, NS,) > sup ®(0Q)
where S, ={u € E: |ul| =p},Q={u=v+teg:v € Es,t >0,|ul| <R} Then ®

has a (PS). sequence with ¢ € [a,sup ®(Q)].

In our paper, we use Proposition 3.1 with F; = E;\r @ F)\ and E; = E, . By
Proposition 2.2, pj(A) — 0 as A — oo for every fixed j. By Remark 2.1, there is
Ay > 0 such that E, # ¢ and E, is finite dimensional for A > A;. Now we can
investigate the linking structure of the functional T.

Lemma 3.1. Assume that (V0)-(V1), (K), (h) and (1.2) with p € (4,2*%) are
satisfied. Then, for each X > Aq(is the constant given in Remark 2.1), there exist
ax, pa and ny > 0 such that

I(u) > ay for allu € E;\"@F,\ with ||ullx = px and |hlz < . (3.1)

Furthermore, if V> 0, we can choose a, p,n > 0 independent of .

Proof. For any u € E;\' @ F, writing u = u1 + ug with uy € E:' and ugy € F).
Clearly, (u1,us)x =0, and

/ (IVul? + AV (2)u?)da :/ (Va2 + AV(@)ud)dz + sl (3.2)
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By Proposition 2.1, we obtain that z;(A) — +00 as j — +o0o for each fixed A > A;.
So there is a positive integer ny such that p;(A) <1 for j < ny and p;(A) > 1 for
j>nx+1 Foru € EY, weset uy =332, 1 p;(N)e;j(A). Thus

1
[ (v av@nids =l - [ v @ndde = (1- L)l
R3 R3 finy+1(A)

(3.3)

By using (1.3), (2.1), (3.2), (3.3) and —w < ¢,, < 0 on the set {z € R3|u(z) # 0},

we have

1 1
1) 5 (1= s )l = el = Cululy  [talde

1 1
> (11— ——— ) |ul? — ed?||u]|? — C.d?||ul|? — da|h|s||u
5 (1= ) 1l = el = Ceaglult = daltelal

1 1

> u —(1-—F sdz] U quuqldh}.
> s { |5 (1= 5y ) = o8] Hulh = Ceagladt ™ = i

Let g(t) = [%(1 o™ i1(>\) —sdg] t — C.dit?™!, for t > 0, ¢ € (4,6) there exists
A
1

31— ) —ed3 | 72
p(N) = T such that max;>o g(t) = g(p(\)) > 0. It follows
from above inequality, Ix(u) [|ju\=pn)> 0 for all |hlo < 9y := g(gT(:‘». Of course,

p(A) can be chosen small enough, we can obtain the same result: there exists ay > 0,
such that I (u) > ay, here |ul|x = pa.
If V >0, since E\ = F), and

[ (9P V@)t )do = ful,
R3

we can choose «, p,n7 > 0 (independent of \) such that (3.1) holds. O

Lemma 3.2. Suppose that (V0),(V1), (f1)-(f2), (K) and (h) are satisfied. Then,
for any finite dimensional subspace E\ C E\, there holds

In(u) - —co as |ullx — oo, u € Ej.

Proof. Arguing indirectly, we can assume that there is a sequence (u,) C E)\ with
||tn|lx — oo such that

—oo < inf Iy (uy). (3.4)

Take vy, := ty/||tn||x. Since dim Ey < +ooc, there exists v € Ey \ {0} such that
vy, v in Ej, vn(z) = v(z) ae. v € R

after passing to a subsequence. If v(z) # 0, then |u,(x)] — +00 as n — oo, and
hence by (f2), we obtain that

Mv“x 00 as m — 00
) n(x) = + — 00,
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which jointly this with (f1), (2.5), Proposition 2.3 (ii) and Fatou’s lemma, we obtain

I (up) 1 w2d3 F(x,uy) Up
< + |K|oo—/ 7d:r—/ h(z)—2" gz
lunlly = 2lunllX  2lunlX R? A R?

llunllX [Jun I}
1 w2d3 F(x,u hlad
it ([ ) e 2
20unlly  2[unll v=0  Juzo)  Un l[wnllX
1 w?d3 F(z,u h|2d
= 7+ | Koo — %vﬁdw+| |2?2,
2 unlly  2lunlls w0 Up l[unllx
— —00.

This contradicts (3.4).
If K € L3(R?), we can similarly get the result. O

Lemma 3.3. Suppose that (V0),(V1),(h),(K) and (f1)-(f2) are satisfied. If
V(xz) < 0 for some x, then, for each k € N, there exist \y, > k,bp > 0,w €
E:\"k @D Fr,,Rxr, > pa.(px, is the constant given in Lemma 3.1) and ny > 0 such
that, for |hla < ng, | Koo < bi(or|K|s < by),
(a)sup Iy, (0Qk) < 0;
(b)sup I, (Qk) is bounded above by a constant independent of Ay,
where Qp, :={u =v +twy : v € By ,t >0, [lullx, < Ry}
Proof. We adapt an argument in Ding and Szulkin [13]. For each k € N, since
wi(k) = 400 as j — oo, there exists ji € N such that pu;, (k) > 1. By Proposition
2.2, there exists A\ > k such that
1
1< /ij(Ak) <14 —.
Ak
Taking wy, := €;, (Ax) be an eigenfunction of 11, (Ag), then wy, € Ej\'k as i, (Ax) > 1.
Because dim Ey P Ruwy, < 400, it follows directly from Lemma 3.2 that (a) holds
with Ry, > 0 large enough.
According to (f2), for each 7j > |V~ |u, there is 7 > 0 such that F(z,t) > £ijt?
if [t| > rj. For u=v+w € By P Ruwy, we have

/ Vo (z)ude = V™ (z)vide + [ V7 (2)widx
R3 R3 R3
by the orthogonality of Ey, and Rwy. Therefore, by Proposition 2.3 (ii), we obtain

I, (u) < %/}R (1Yol + AV (2)w?) da —% K (2)wblds + —/ Vu|tdz

R3
—/ F(au)dm—/ hudz
suppV — R3

1 1 -
< Sl =0 [ Vi@utde =g [ lde
R3 suppV —

1.
+ dalhlaluls, ~ [ (o) - i) ae
suppV ~,|u|<rj

3w2d2

K] oo|ull3,
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1 Ul 3w?d?
<-[| v~ 2de — V- 2dr 4+ Cj + —2|K|oR2
<3/, (x)w”dx T fue (x)w dz + Cj + 1 | K |00 RS,
+ d2|h‘2R>\k
< Cf] +1

for u=v+w € By @Rwy with [Julx, < Ry, [Kle < by = 2(wdaRy,) ™% and
|hlz < mi := ﬁ, where Cj depends on 7j but not Ay.

If K € L3(R3), by the Holder inequality, we obtain that |K|3 < by
= 2(wdsRy,) 2. O
Lemma 3.4. Suppose that (V0),(V1),(h),(K) and (f1)-(f2) are satisfied. If
Q = intV=1(0) is nonempty, then, for each X > Ai( is the constant given in
Remark 2.1), there exist w € E;‘@FA,RA > 0,by > 0 and 1y > 0 such that for
|h|2 < M, |K‘oo < b,\O'f‘(|K|3 < b,\),
(a) sup I, (0Q) < 0;
(b) sup I (Q) is bounded above by a constant independent of A,
where Q :={u=v+tw:ve E ,t>0,|ulx <Ry}
Proof. Choose eg € C§°(2) \ {0}, then ey € Fy. By Lemma 3.2, there is Ry > 0
large such that I(u) < 0 where u € E\, @ Reg and |lul|x > R,.

For u=v+w € E; @Rey, we have

1 1
I\ (u) Sf/ |Vu|2dx—f/ K(x)w¢uu2dx—/F(x,u)dx
2 R3 2 R3 [9)
+£/ |V¢u\4dx—/ hudz
167 Jps R3

1 _ _
S*/ |Vw|?dz — Q/ u?dx —/ (F(x,u) - nu2> dx
2 R3 2 Q Q,|u|<rj 2

3w?d3

+ 2 K Ll + Ihlada

1 i 2d2
<= |Vw|?dz — Q/ u’dr + Cj + 3w dy
2 R3 2 Q 2

K oollull3 + [Al2dz[ullx.  (3.5)

Observing w € C§°(£2), we have

2 ~
C
[ vubds = [ (~wjuds < |Avlafulza < ol Vublulo < 52Vl + Dl o
RS Q 2n 2
(3.6)

where ¢ is a constant depending on eg. Choosing 7 > ¢f, we have |Vw[3 < 7jjul3 g,
and it follows from (3.5) that

3w?d3 5
In(u) < Cj + T|K|ooR,\ + |hl2d2 Ry < C + 1
for all u € Ey @Reg with |ullx < R, |hl2 < ny =
2 (wdyRy) ™%, where Cj; depends on 7 but not A.

If K € L3(R?®), by the Holder inequality, we get that for |K|3 < by
= Z(wdsRy) 2. O

ﬁ and |K|oo < b)\ =
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Now we are in a position to prove our main results.
Proof of Theorem 1.1. The proof of Theorem 1.1 is divided in two steps.
Step 1. There exists a function uy € Ey such that I{(uy) = 0 and I\ (uy) < 0.
Since h € L?(R3) and h > 0(% 0), we can choose a function 1) € E) such that

/ h(z)y(z)dz > 0.
R?)

Hence, by —w < ¢, < 0 we obtain that

2 )\ 2 2
B = SR -4 [ v@we- 5 [ K@eo et
R3 R3
1 2 ﬂ 4
_8?/]1@ Vel dx_ﬁ/www dx—/RB Fla, ) dz
—t | h(z)ypde

R3
£ o 2,12 tt 4 201,14
< SIWIN+ 5 | K@w ™ de + —Ci|[y|5 + CE[Y[5 =t | h(z)yde
2 2 R3 4 R3
<0 fort > 0 small enough.
Thus, there exists u) small enough such that Iy(uy) < 0. By Lemma 3.2, we have
con = inf{I\(u) : u € B,, } <0,

where py > 0 is given by Lemma 3.1, B,, = {u € Ex : [Ju||x < px}. By the Ekeland’s
variational principle, there exists a minimizing sequence {u, »} C B,, such that

1
coxn < In(unn) < con+ —
A

and
1
In(wy) = In(un) — nijA — U 2| A

for all wy € pr Therefore, {u, x} is a bounded Palais-Smale sequence of Iy.
Then, by a standard procedure, Lemma 2.3 and Lemma 2.2 imply that there is a
function uy € E)y such that I} (uy) = 0 and I(uy) = cp,n < 0.

If V>0, we can get pa, co,x, uo,x are independent of \.

Step 2. There exists a function @y € E) such that I} (uy) = 0 and Iy(uy) > 0.

It follows from Lemmas 3.1, 3.3 and Proposition 3.1 that, for each k € N, A = A\x
and |hla < mg, I, has a (PS). sequence with ¢ € [ay,,suply, (Qk)]. Setting
M = supl,,(Q), then I, has a nontrivial critical point according to Lemmas
2.1, 2.4 and Proposition 3.1. Hence there exists a function u) € FE) such that
I\ (uy) = 0 and I(uy) = ¢ > ay, > 0. The proof is complete. O

Proof of Theorem 1.2. The first solution is similar to the first solution of Theorem
1.1. The second solution follows from Lemmas 2.1, 2.4, 3.1, 3.4 and Proposition
3.1. The proof is complete. O

Proof of Theorem 1.3. The proof of Theorem 1.3 is divided in two steps.
Step 1. There exists a function uy € Ey such that I} (up) = 0 and I (ug) < 0.
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In the proof of Theorem 1.1, we can choose ¢y = co,x, B, = B x, then by the
Ekeland’s variational principle, there exists a sequence {u,} C B, such that

1
co < In(up) < co+ —,
n
and
1
In(w) > In(un) — ﬁ||w — Un/||x

for all w € B,,. Then by a standard procedure, we can show that {u,} is a bounded
Palais-Smale sequence of I. Therefore Lemma 2.2 and Lemma 2.3 imply that there
exists a function ug € E such that I} (ug) = 0 and I(ug) = ¢ < 0.

Step 2. There exists a function @y € E such that I} (uy) = 0 and I (uy) > 0.

Since we suppose V' > 0, the functional I, has mountain pass geometry and
the existence of nontrivial solutions can be obtained by mountain pass theorem
[18,24,30]. Indeed, by Lemma 3.1, there exist constants a, p,n > 0 ( independent
of A\) such that, for each A > A,

In(u) > a for ue€ Ey with |ul]x=p and ||z <n.
Take e € C§°(Q) \ {0}, by (f1), (f2) and Fatou’s lemma, we get

In(t 1 1
’\(46) g—z/ \Ve|2dx——2/K(x)w262dx—/ —etdn
t 2t% Jq 2t% Jqo {zeQ:e(x)#0} (t@)

+ i/ |V¢te|4dx — t_?’/ hedxr — —o0
167T R3 Q

as t — 400, which yields that I(te) < 0 for ¢ > 0 large. Clearly, there is C' > 0
(independent of \) such that

= inf I t)) < I (t <C
ex = Inf max A(v( )ng A(teg) <

where I' = {y € C([0,1], E») : v(0) = 0, [|[7(1)||x > p, Irn((1)) < 0}. By Mountain
pass theorem and Lemma 2.3, we obtain a nontrivial critical point @) of Iy with
I (uy) € o, C] for A large. The proof is complete. O
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