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EXACT SOLUTIONS AND DYNAMICS OF
KUNDU-MUKHERJEE-NASKAR MODEL∗

Ai Ke1 and Jibin Li1,2,†

Abstract For the Kundu-Mukherjee-Naskar model, to find its exact explicit
solutions, it is necessary to analyze the dynamical behaviors of the corre-
sponding differential system of the amplitude component, which is a planar
dynamical system with a singular straight line. In this paper, by using the
techniques from dynamical systems to analyze the parameter conditions of
system and find the corresponding phase portraits, the dynamical behaviors
of the amplitude component can be derived. Under different parameter con-
ditions, exact explicit homoclinic solutions, periodic solution families as well
as kink and anti-kink wave solutions can be found.
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1. Introduction

In a recently published work [15], the authors studied the envelope solitons propa-
gating in an optical waveguiding media governed by the Kundu-Mukherjee-Naskar
(KMN) equation. They made the special ansatz F (ξ) = λ − ρsech2[µ(ξ − ξ0)],
to derive the formation of a gray soliton on a continuous wave background in the
system.

The KMN equation reads as:

iqt + αqxy + iγq(qq∗x − q∗qx) = 0, (1.1)

where q(x, y, t) indicates the soliton profile, x and y refer to the spatial variables,
t is the temporal variable, while α and γ account for the dispersion and nonlinear
parameters, respectively.

The seven authors of [15] considered the solutions of equation (1.1) with the
form:

q(x, y, t) = φ(ξ) exp (i[−κ1x− κ2y + ωt+ θ(ξ)]) , ξ = px+ qy − vt, (1.2)
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where κj , j = 1, 2 and ω are real-valued constants. ξ is the wave variable. φ(ξ) is
the amplitude component. Substituting (1.2) into (1.1), they obtained the ordinary
differential equation:

(v+α(κ1q+κ2p)φ+2pγφ3)θ′−pqαφ(θ′)2+pqαφ′′−2κ1γφ
3−(ω+ακ1κ2)φ = 0 (1.3)

and
pqα(φθ′′ + 2φ′θ′)− [v + α(κ1q + κ2p)]φ

′ = 0. (1.4)

Multiplying (1.4) by φ and integrating, yields

θ′ =
A

2pqαφ2
+
v + α(κ1q + κ2p)

2pqα
, (1.5)

where A is an integration constant. Hence, the phase modification θ(ξ) in (1.2)
reads

θ(ξ) =
A

2pqα

∫
dξ

φ2(ξ)
+
v + α(qκ1 + pκ2)

2pqα
ξ. (1.6)

Directly substituting the expression (1.5) into (1.3), we obtain

φ′′ + a1φ+ a3φ
3 − g

φ3
= 0, (1.7)

where a1 = [v+α(qκ1+pκ2)]2+4pAγ−4pqα(ακ1κ2+ω)
4α2p2q2 , a3 = γ[v+α(pκ2−qκ1)]

α2pq2 , g = A2

4α2p2q2

≥ 0.
Equation (1.7) is equivalent to the planar dynamical system for g > 0:

dφ

dξ
= y,

dy

dξ
= −

(
a1φ+ a3φ

3 − g

φ3

)
= −F (φ) (1.8)

with the first integral

H(φ, y) = y2 +
1

2
a3φ

4 + a1φ
2 +

g

φ2
= h. (1.9)

For g = 0, i.e., A = 0, equation (1.7) is equivalent to the planar dynamical
system:

dφ

dξ
= y,

dy

dξ
= −

(
a1φ+ a3φ

3
)

(1.10)

with the first integral

H0(φ, y) = y2 +
1

2
a3φ

4 + a1φ
2 = h. (1.11)

Unfortunately, the authors of [15] did not consider the dynamics of solutions of
the corresponding systems (1.8) and (1.10) of equation (1.1). Therefore, their study
results about exact solutions are not complete.

In this paper, we apply the method of dynamical systems to discuss the dynam-
ical behaviors of solutions φ(ξ) and under different parameter conditions to find
exact solutions of equation (1.8).

System (1.8) is a three-parameter system depending on parameter group
(a1, a3, g). It has interesting dynamical behaviors. In addition, system (1.8) is
a singular traveling wave system of the first kind defined by [8] and [7] with the
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singular straight lines φ = 0. In the past three decades, nonlinear wave equations
with non-smooth solitary wave solution (called peakon) and solution family having
compact support (called compactons) (see [12]) attracted a lot of attention. Peakon
was first coined by Cammasa and Holm [2,3], and thereafter other peakon equations
were developed (see [4–11,13,14] and references therein).

The article is organized as follows. In section 2, we discuss the bifurcations of
phase portraits for the systems (1.8) and (1.10). In section 3, we derive all possible
exact explicit parametric representations for all bounded solutions (homoclinic or-
bits, periodic orbits and heteroclinic orbits) of system (1.10). In section 4, we study
the exact solutions of system (1.8). All possible exact explicit parametric repre-
sentations of the periodic orbits, homoclinic orbits as well as heteroclinic orbits of
systems (1.8) and (1.10) can be given. Theorems 3.1 and 4.1 give rise to the main
results of this paper.

2. The bifurcations of phase portraits of systems
(1.8) and (1.10)

We first discuss the bifurcations of phase portraits of system (1.10). Clearly, when
a1a3 > 0, the cubic Hamiltonian system (1.10) only has a singular point O(0, 0).
When a1a3 < 0, it has three singular points E1(−φ1, 0), O(0, 0) and E2(φ1, 0), where

φ1 =
√
−a1a3 . The bifurcations of phase portraits of system (1.10) are shown in Fig.

1.

(a) a1 > 0, a3 > 0 (b) a1 < 0, a3 > 0

(c) a1 < 0, a3 < 0 (d) a1 > 0, a3 < 0

Figure 1. The bifurcations of phase portraits of system (1.10).
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We next discuss the bifurcations of phase portraits of system (1.8). Write F (φ)
in (1.8) as f(Φ) = a3Φ3 + a1Φ2 − g, where Φ = φ2. Clearly, f ′(Φ) = 3a3Φ2 + 2a1Φ

has two zeros at Φ = 0 and Φ = − 2a1
3a3

. And we have f
(
− 2a1

3a3

)
=

4a31
27a23
− g.

Obviously, when a1a3 < 0, f ′(Φ) has a positive zero. For g > 0, a3 < 0, when

f
(
− 2a1

3a3

)
> 0, i.e., 0 < g <

4a31
27a23

, f(Φ) has two positive zeros. It follows that system

(1.8) has four equilibrium points. When a1a3 > 0, f(Φ) has at most one positive
zero. The bifurcations of phase portraits of system (1.8) are shown in Fig. 2.

(a) a1 < 0, a3 > 0, g > 0 (b) a1 > 0, a3 > 0, g > 0

(c) a1 > 0, a3 < 0, 0 < g <
4a3

1
27a2

3

Figure 2. The bifurcations of phase portraits of system (1.8).

3. The exact explicit solutions of system (1.10)

We see from (1.11) that h1 = H0(∓φ1, 0) = − a21
2a3

and y2 = h − a1φ
2 − 1

2a3φ
4. By

using the first equation of (1.10), we have

ξ =

∫ φ

φ0

dφ√
h− a1φ2 − 1

2a3φ4
. (3.1)

3.1. The case a1 > 0, a3 > 0 (see Fig. 1(a)).

Corresponding to the periodic orbit family defined by H0(φ, y) = h, h ∈ (0,∞),

enclosing the origin O(0, 0), (3.1) can be written as
√

1
2a3ξ =

∫ φb

φ
dφ√

(φ2
b−φ2)(φ2

a+φ2)
,
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where φ2
a = a1

a3
+
√

∆1, φ
2
b = −a1a3 +

√
∆1,∆1 =

a21+2ha3
a23

. Thus, we obtain the

parametric representation of this periodic orbit family as follows:

φ(ξ) = φbcn(Ω1ξ, k), (3.2)

where k2 =
φ2
b

φ2
a+φ2

b
,Ω1 =

√
1
2a3(φ2

a + φ2
b), cn(·, k) is the Jacobin elliptic function.

3.2. The case a1 < 0, a3 > 0 (see Fig. 1(b)).

(i) Corresponding to the two periodic orbit families defined by H0(φ, y) = h, h ∈
(h1, 0), enclosing the singular points E1 and E2, respectively, (3.1) can be written

as
√

1
2a3ξ =

∫ φa

φ
dφ√

(φ2
a−φ2)(φ2−φ2

b)
where φ2

b = − |a1|a3 +
√

∆1, φ
2
a = |a1|

a3
+
√

∆1,∆1 =

a21+2ha3
a23

. It gives rise to the parametric representations of two periodic orbit families

as follows:
φ(ξ) = ∓φadn(Ω2ξ, k), (3.3)

where k2 =
φ2
a−φ

2
b

φ2
a

,Ω2 =
√

1
2a3φ2

a,dn(·, k) is the Jacobin elliptic function.

(ii) Corresponding to the two homoclinic orbits to the origin O(0, 0) defined
by H0(φ, y) = 0, enclosing the singular points E1 and E2, respectively, (3.1) can

be written as
√

1
2a3ξ =

∫ φM

φ
dφ

φ
√

(φ2
M−φ2)

, where φ2
M = 2|a1|

a3
. Hence, we obtain the

parametric representations of the two homoclinic orbits as follows:

φ(ξ) = ∓φM sech(ω0ξ), (3.4)

where ω0 =
√

1
2a3φ2

M .

(iii) Corresponding to the global periodic orbit family defined by H0(φ, y) =
h, h ∈ (0,∞), enclosing the three singular points O(0, 0), E1 and E2, it has the
same parametric representation as (3.2).

3.3. The case a1 > 0, a3 < 0 (see Fig. 1(d)).

(i) Corresponding to the periodic orbit family defined by H0(φ, y) = h, h ∈ (0, h1),

enclosing the origin O(0, 0), (3.1) can be written as
√

1
2 |a3|ξ =

∫ φ
0

dφ√
(φ2

a−φ2)(φ2
b−φ2)

where φ2
a = a1

|a3| +
√

∆1, φ
2
b = a1

|a3| −
√

∆1,∆1 =
a21−2h|a3|

a23
. Thus, we obtain the

parametric representation of this periodic orbit family as follows:

φ(ξ) = φbsn(Ω3ξ, k), (3.5)

where k2 =
φ2
b

φ2
a
,Ω3 =

√
1
2 |a3|φ2

a.

(ii) Corresponding to the two heteroclinic orbits defined by H0(φ, y) = h1, en-

closing the origin O(0, 0), (3.1) can be written as
√

1
2 |a3|ξ =

∫ φ
0

dφ
φ2
1−φ2 . Thus, we

have the following parametric representations:

φ(ξ) = ∓φ1 tanh(ω1ξ), (3.6)

where ω1 =
√

1
2 |a3|φ2

1.

In summary, the following theorem is established.
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Theorem 3.1. Assume that g = 0 in system (1.8). Then, equation (1.1) has exact
explicit solutions:

q(x, y, t) = φ(ξ) exp (i[−κ1x− κ2y + ωt+ θ(ξ)]) (3.7)

where θ(ξ) = v+α(qκ1+pκ2)
2pqα ξ, φ(ξ) is given by (3.2), (3.3), (3.4), (3.5) and (3.6),

respectively.

4. The exact explicit solutions of system (1.8)

We know from (1.9) that y2 =
hφ2−g−a1φ4− 1

2a3φ
6

φ2 . By using the first equation of

(1.8), we have

ξ =

∫ φ

φ0

φdφ√
hφ2 − g − a1φ4 − 1

2a3φ6
=

∫ ψ

ψ0

dψ

2
√

(hψ − g − a1ψ2 − 1
2a3ψ3)

, (4.1)

where ψ = φ2.

4.1. The case a1 6= 0, a3 > 0, g > 0 (see Fig. 2(a), (b))

Corresponding to the two periodic orbit families defined by H(φ, y) = h, h ∈
(h1,∞), enclosing two singular points, now, (4.1) can be written as

√
2a3ξ =∫ ψa

ψ
dψ√

(ψa−ψ)(ψ−ψb)(ψ+ψd)
. Thus, we have the following two periodic solution fami-

lies:

φ(ξ) = ∓
(
ψa − (ψa − ψb)sn2(Ω4ξ, k)

) 1
2 , (4.2)

where k2 = ψa−ψb

ψa+ψd
,Ω4 =

√
1
2a3(ψa + ψd).

Notice that ∫
dξ

φ2(ξ)
=

1

ψa

∫
dξ

1− ψa−ψb

ψa
sn2(Ω4ξ, k)

= 1
ψaΩ4

Π
(
arcsin (sn(Ω4ξ, k)) , α̂2

1, k
)
,

where Π(·, ·, k) is the elliptic integral of the third kind (see [1]) with α̂2
1 = ψa−ψb

ψa
.

Hence, we see from (1.6) that for the φ(ξ) given by (4.2), we have

θ(ξ) = θ1(ξ) =
v + α(qκ1 + pκ2)

2pqα
ξ +

A

2pqαψaΩ4
Π
(
arcsin (sn(Ω4ξ, k)) , α̂2

1, k
)
.

(4.3)

4.2. The case a1 > 0, a3 < 0, 0 < g <
4a31
27a23

(see Fig. 2(c))

(i) Corresponding to the two periodic orbit families defined by H(φ, y) = h, h ∈
(h1, h2), enclosing two singular points, now, (4.1) can be written as

√
2|a3|ξ =∫ ψb

ψ
dψ√

(ψa−ψ)(ψb−ψ)(ψ−ψc)
. Thus, we have the following two periodic solution fami-

lies:

φ(ξ) = ∓
(
ψa +

ψb − ψa
1− k2sn2(Ω5ξ, k)

) 1
2

, (4.4)
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where k2 = ψb−ψc

ψa−ψc
,Ω5 =

√
1
2 |a3|(ψa − ψc).

Then we obtain for the φ(ξ) given by (4.4)∫
dξ

φ2(ξ)
=

∫
dξ

ψb − ψak2sn2(Ω5ξ, k)
−
∫

k2sn2(Ω5ξ, k)

ψb − ψak2sn2(Ω5ξ, k)
dξ

=
ξ

ψa
+
k2

Ω5
Π(arcsin(sn(Ω5ξ, k)), α̂2

2, k),

where α̂2
2 = (ψb−ψc)ψa

(ψa−ψc)ψb
.

(a) Pseudo-peakon (b) Anti-pseudo-peakon

(c) Anti-pseudo-periodic-peakon (d) Pseudo-periodic-peakon

Figure 3. The pseudo-peakon and pseudo-periodic peakon of system (1.8).

Hence, we have from (1.6)

θ(ξ) = θ2(ξ) =

(
A

2pqαψa
+
v + α(qκ1 + pκ2)

2pqα

)
ξ

+
A(ψa − ψb)
2pqαψaψbΩ5

Π
(
arcsin (sn(Ω5ξ, k)) , α̂2

2, k
)
. (4.5)

(ii) Corresponding to the two homoclinic orbits defined by H(φ, y) = h2, enclos-

ing two singular points, now, (4.1) can be written as
√

2|a3|ξ =
∫ ψ
ψm

dψ
(ψ2−ψ)

√
ψ−ψm

.



Exact solutions and dynamics of KMN model 1021

Thus, we have the following two solitary wave solutions:

φ(ξ) = ∓
(
ψm + (ψ2 − ψm) tanh2

(
1

2
ω2ξ

)) 1
2

, (4.6)

where ω2 =
√

2|a3|(ψ2 − ψm).
We see that for the φ(ξ) given by (4.6), we have that∫

dξ

φ2(ξ)
=

∫
dξ

ψm + (ψ2 − ψm) tanh2
(

1
2ω2ξ

)
=

2

ω2ψ2
α̂3 arctan

(
α̂3 tanh

(
1

2
ω2ξ

))
+

ξ

ψ2
,

where α̂2
3 = ψ2−ψm

ψm
.

Therefore, we obtain

θ(ξ) = θ3(ξ) =

(
A

2pqαψ2
+
v + α(qκ1 + pκ2)

2pqα

)
ξ

+
A

pqαω2ψ2
α̂3 arctan

(
α̂3 tanh

(
1

2
ω2ξ

))
. (4.7)

We see from Fig. 2(c) that if 0 < φm � 1 with φm =
√
ψm, then there exist two

segments of two homoclinic orbits which are very close to the singular straight line
φ = 0. This means that the two homoclinic orbits give rise to two pseudo-peakon
solutions (see Fig. 3(a),(b)). When |h − h2| � 1, the two periodic orbit families
defined by H(φ, y) = h give rise to two families of pseudo-periodic peakon solutions
(see Fig. 3(c),(d)).

To sum up, the following theorem is established.

Theorem 4.1. Assume that g > 0 in system (1.8). Then, the following conclusions
hold.

(i) When a1 6= 0, a3 > 0, g > 0, equation (1.1) has exact explicit solutions (3.7),
where φ(ξ) is given by (4.2), θ(ξ) = θ1(ξ) is given by (4.3);

(ii) When a1 > 0, a3 < 0, 0 < g <
4a31
27a23

, equation (1.1) has exact explicit solutions

(3.7), where φ(ξ) is given by (4.4) and (4.6), θ(ξ) = θj(ξ), j = 2, 3 are given
by (4.5) and (4.7).
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