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MODELING AND ANALYSIS OF SOCIAL
OBESITY EPIDEMIC

Chathuri T. Sandamali1,† and Wenjing Zhang2

Abstract Overweight and obesity have become a global epidemic due to in-
creasing unhealthy eating habits and sedentary lifestyles. An individual can
gain weight excessively through social influence, and understanding its under-
lying interpersonal dynamics is crucial for effective intervention and prevention
programs. By considering the social effects on weight gain, this paper presents
a compartment model to describe the social spread of overweight and obesity.
Bifurcation analysis suggests that a backward bifurcation exists when the rel-
ative hazard of weight regain is a larger value. Strategies for eliminating the
overweight and obesity epidemic are provided by analyzing the obesity-free
equilibrium globally by incorporating Lyapunov functions and the method of
fluctuations. Since the pervasiveness of overweight and obesity in the United
States seems to be stabilized, we analyze the local stability of the obesity-
endemic equilibrium to establish a condition for the plateau, by applying a
matrix theoretic method that utilizes compound matrices. The results suggest
that weight loss programs can help maintain the plateau; however, weight loss
maintenance programs should be promoted to eliminate the disease.

Keywords Obesity, saddle-node bifurcation, bi-stability, global stability.
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1. Introduction

Being overweight or obese is a major health concern in many countries, often leading
to various non-infectious diseases including cardiovascular diseases, diabetes, and
certain types of cancers. The root cause of overweight and obesity is the lack of bal-
ance between calorie intake and expenditure. Globally, inactivity and high-calorie
food consumption have increased due to the sedentary nature of life. Furthermore,
changes in eating habits and physical activity are mainly the consequences of so-
cial and environmental changes. Social contacts and peer pressure [6] attributed to
excess weight gain. As a result, the global overweight and obesity pandemic has
recently been identified as a social contagion disease. Another feature of the over-
weight and obesity epidemic is that its prevalence appears to stabilize at a plateau,
according to the National Center for Health Statistics (NCHS) [14]. To design a
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better control strategy, it is crucial to consider the social influence of relationships
and identify the causal mechanisms of excess weight gain.

An individual’s weight tends to gradually become closer to those of his social
circle [19]. More precisely, social contagion in excess weight gain conveys the idea
that the weight outcomes of individuals in a social network increase the probability
of weight changes in other individuals in the current social network due to changing
norms or mirroring [6]. According to Dater and Nicosia [6], studying the social
contagion nature of excess weight gain would greatly favor interventions targeting
social networks. Therefore, a comprehensive understanding of the overweight and
obesity epidemic and its control is likely to include social influence [17]. In addition,
due to the rapid growth of the obesity epidemic, public awareness is significantly
increased. Thanks to the efforts of public health officials and government organiza-
tions, the overall prevalence of excess weight gain in the United States has stabilized
in recent years [26]. However, further interventions in this plateau condition should
be needed to ensure that obesity prevalence does not reflect a plateau, but also
declines. Therefore, it is essential to understand the reasons behind the plateau
to take adequate measures to decrease the current trend of overweight and obesity
prevalence or maintain the currently observed leveling curve.

Mathematical models provide a powerful tool for describing disease spread and
can provide general insight into the biological and sociological mechanisms of a
disease. Numerous studies specifically examine the interconnection between peer
pressure and obesity [5,9,15,22]. The approach that considers interpersonal excess
weight transmission has resulted in wide-ranging studies on mathematical modeling
of the obesity epidemic. In this manner, the study [16] proposes a compartmental
model to analyze the social obesity epidemic in Valencia, Spain. The authors adopt
a bi-linear incidence rate and consider healthy-weight, overweight and obese sub-
populations. Using sensitivity analysis through numerical simulations, they suggest
strategies to control the increasing trend of obesity and conclude that preventive
health campaigns are more effective than treatment programs. The same effect is
considered in the study [11] to discuss the dynamics of infant obesity. The presented
model has six sub-populations: healthy weight, latent, overweight, obese, overweight
on a diet, and obese on a diet. The authors use numerical simulations to predict
the growing trend of childhood obesity in the future. Considering the same sub-
populations, the study [1] analyses a non-autonomous obesity model and reveals the
periodic behavior of the solutions. They obtain sufficient conditions to ensure the
existence of a periodic positive solution. Another mathematical model [21] provides
mechanistic insights into the leveling obesity prevalence and predicts overweight,
obesity, and extreme obesity prevalence trends. The authors establish numerical
conditions to make the obesity prevalence a plateau. Due to the complexity of the
models, most of the previous work explores the obesity prevalence trends numeri-
cally. The current literature still lacks analytical formulas for plateau and complete
overweight and obesity epidemic elimination, which can better perceive the relation
between critical parameters and the model dynamics [3]. In this project, we incor-
porate social influence to model the obesity dynamics and derive both the threshold
for overweight and obesity epidemic eradication under the appearance of backward
bifurcation and the sufficient parameter conditions for the stable obesity-endemic
equilibrium representing the overweight and obesity epidemic plateau. Moreover,
by performing symbolic computations, we overcome computational challenges in
analysis.
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We have organized the paper as follows. Section 2 presents the model formula-
tion, and later we reduce the system to a three-dimensional one. Sections 3 and 4
bring the basic properties of the solution and discuss the existence of equilibrium
points in the feasible region. Next, in Section 5, we calculate the basic reproduction
number R0 and conduct a sensitivity analysis for R0. Furthermore, by applying
the center manifold theorem, we establish a closed-form formula for the occurrence
of backward bifurcation in Section 6. Section 7 discusses two strategies to elimi-
nate the overweight and obesity epidemic by analyzing the global stability of the
obesity-free equilibrium. In Section 8, we carry out the local stability analysis of the
obesity-endemic equilibrium to provide parameter conditions behind the plateau.
We further compute the normal form of the saddle-node bifurcation for obesity-
endemic equilibrium. Section 9 provides a discussion of the results, and the final
section presents our conclusions for the study.

2. Model formation

Excess weight gain (overweight/ obesity) can be treated as a disease transmitted by
social influence through habits of an unhealthy lifestyle. By considering the social
contagion of obesity, our model is written as follows:

dS

dt
= µN − λ(W,B)S − µS,

dW

dt
= λ(W,B)S + σλ(W,B)R+ γ1B − (α+ γ2 + µ)W,

dB

dt
= αW − (γ1 + µ)B,

dR

dt
= γ2W − σλ(W,B)R− µR, where

λ(W,B) = m1W +m2B.

(2.1)

Model features are listed as follows.

1. Based on an established model [7], which considers healthy weight, obese and
ex-obese sub-populations, we further include the overweight sub-population
because overweight people have an easier experience of recovering the healthy
weight and have a different level of social influence than that of obese people.

2. According to the classification of body mass index (BMI), our model (2.1)
has four compartments, which are never overweight (S(t) with BMI below
25kg/ m2), overweight (W (t) with 25 < BMI < 30kg/m2), obese (B(t) with
30 < BMI < 40kg/m2), and recovered to healthy weight(R(t) with BMI
below 25kg/m2).

3. The birth and death rate is µ.

4. The transmission rates from healthy weight to overweight under the influence
of overweight and obese are m1 and m2, respectively.

5. According to a report by the World Health Organization (WHO), about 39%
of the global adult population was overweight and 13% were obese in 2016 [27],
we assume m1 > m2.
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6. The transmission rate from overweight to obesity is α.

7. The natural recovery rates from obesity to the overweight stage and from
overweight to the healthy weight stage are γ1 and γ2, respectively.

8. In the recovered stage, the risk of weight regain in recovered individuals is
much higher than the weight gain of a never-overweight individual to an over-
weight. The term of relapse is given by σλ = σ(m1W +m2B). The parameter
σ is the relative risk of weight regain among recovered individuals. Its value
exceeds one due to the high risk of returning to the overweight state.

9. The parameter N denotes the population size and, for simplicity and clarity,
we normalize it to unity. All other parameters are positive and are given in
Table 1.

The flow diagram of the model dynamics is shown in Fig. 1. Here, it is as-
sumed that the contagious risks from the overweight and obesity compartments
are independent of each other. Healthy weight individuals, who are socially influ-
enced by overweight and obese people and addicted to unhealthy lifestyles, begin
to progress toward being overweight. Overweight can progress to becoming obese if
they choose to continue their sedentary lifestyle or can be recovered with a healthy
weight if they choose to take actions to prevent gaining excess weight. Obese peo-
ple can also reduce their weight to the overweight stage if they choose a healthy
lifestyle.

Figure 1. Flow diagram of model (2.1) for overweight and obesity dynamics.

3. Forward invariance

Proposition 3.1. For model (2.1), the set

Γ =
{

(S,W,B,R) ∈ R4
+ : S +W +B +R = 1

}
, (3.1)

is forward invariant. Moreover, the solution of model (2.1) exists globally.

Proof. For a given set of initial conditions, (S(0),W (0), B(0), R(0)) ∈ R4
+, the

smooth functions in the right-hand side of model (2.1) guarantee the local existence
and uniqueness of the solutions.
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Table 1. Descriptions and values [7, 21] of parameters in model (2.1).

Param. Definition Value

µ Natural birth/death rate 0.0144

m1 Transmission rate from never overweight to overweight by
social influence of overweight

0.04

m2 Transmission rate from never overweight to overweight by
social influence of obese

0.02

α Spontaneous rate of weight gain from overweight to obesity 0.08

γ1 Rate of weight loss from obesity to overweight 0.03

γ2 Rate of weight loss from overweight to healthy weight 0.033

σ Rate of relative hazard of weight regain from normal to
overweight

5

Defining the total population as NT (t) = S(t) +W (t) +B(t) +R(t), we have

dNT (t)

dt
=

d

dt
[S(t) +W (t) +B(t) +R(t)] = µ[N −NT (t)], (3.2)

or
d

dt
[N −NT (t)] = −µ[N −NT (t)]. (3.3)

Furthermore, considering the initial condition NT (0) = S(0) +W (0) +B(0) +R(0),
it follows

N −NT (t) = (N −NT (0))e−µt, t ≥ 0. (3.4)

Equation (3.4) provides two cases for NT (t). Case 1: If NT (0) = N , then NT (t) = N
for all t ≥ 0. Case 2: If NT (0) 6= N , then limt→+∞NT (t) = N for all t ≥ 0.
Without loss of generality, normalize the total population to unity for all t ≥ 0,
where NT = S(t) + W (t) + B(t) + R(t) = 1. In summary, the total population
either remains a constant value of one or approaches one in the forward time.

Moreover, the solution of model (2.1) with (S(0),W (0), B(0), R(0)) ∈ R4
+ will

remain in the non-negative cone R4
+ for all t ≥ 0, because

dS

dt
|S=0 = µN > 0,

dW

dt
|W=0 = m2B(S + σR) + γ1B > 0,

dB

dt
|B=0 = αW > 0, and

dR

dt
|R=0 = γ2W > 0.

(3.5)

That is, the vector field of the model (2.1) on ∂R4
+ (the boundary of R4

+) is either
tangential to ∂R4

+ or pointing towards R4
+.

Therefore, all solutions of model (2.1) starting from R4
+ will eventually enter the

closed region (3.1) forward in time.
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4. Existence of equilibrium solutions

Noticing that the total population is conserved, that is, limt→+∞NT (t) = 1 for all
t ≥ 0, we have the identity S(t) = NT (t)−W (t)−B(t)−R(t) = 1−W (t)−B(t)−R(t),
thus we can ignore the first equation in model (2.1) and investigate its equivalent
system

dW

dt
= (m1W +m2B)(1−W −B −R+ σR) + γ1B − (µ+ α+ γ2)W,

dB

dt
= αW − (γ1 + µ)B,

dR

dt
= γ2W − σ(m1W +m2B)R− µR,

(4.1)

in the following restricted region:

Ω = {(W,B,R) : 0 ≤W,B,R ≤ 1, 0 ≤W +B +R ≤ 1} . (4.2)

Setting dW
dt = dB

dt = dR
dt = 0, we derive the equilibrium solutions E∗ = (W ∗, B∗, R∗),

where

B∗ =
αW ∗

(γ1 + µ)
,

R∗ =
(γ1 + µ)γ2W

∗

σ(m1 γ1 +m1µ+m2 α)W ∗ + γ1µ+ µ2
.

(4.3)

Here W ∗ is the root of the cubic equation

W (a2W
2 + a1W + a0) = 0, (4.4)

where

a2 = σ(α+ γ1 + µ)(m1γ1 +m1µ+m2α)2 > 0,

a1 = (σ + 1)µ2 − [(m1 − α− γ1)σ − α− γ1 − γ2]µ

−(m1γ1 +m2α)σ + γ1γ2,

a0 = αµ(γ1 +m2)(γ1 + µ)2
1−R2

0

R2
0

,

R2
0 =

α (m2 + γ1)

(γ1 + µ) (α+ γ2 + µ−m1)
.

(4.5)

We have the following result for the existence of the solutions.

Theorem 4.1. For equation (4.4), the trivial root W ∗ = 0 always exits and corre-
sponds to the boundary obesity-free equilibrium E0 = (W ∗, B∗, R∗) = (0, 0, 0). The
non-trivial root of equation (4.4) exists if and only if ∆ = a21−4 a2 a0 > 0. Further-
more, only one positive non-trivial root exists if a0 < 0, and two positive non-trivial
roots exist if a1 < 0 and a0 > 0. The non-trivial root derives obesity-endemic
equilibrium E∗ = (W ∗, B∗, R∗) for model (2.1).
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5. Basic reproduction number R0

The basic reproduction number (R0) is the number of individuals with unhealthy
weight generated by one overweight or obese individual in a population where all
individuals are susceptible to weight gain. The overweight and obesity epidemic
will spread out if R0 > 1, or die out if R0 < 1. Hence, the value R0 is a crucial
threshold when determining the elimination of the overweight and obesity epidemic.
We calculate the basic reproduction number by using the next-generation matrix
method [24]. Consider the state variables x = (x1, x2, x3)T = (W,B,R)T in the
model (4.1). For the unhealthy weight class (x1, x2)T , we have dxi

dt = Fi(x)−Vi(x)
for i = 1, 2, where F(x) denote the rates of new overweight and obesity appearances
and V(x) denote rates of transitions between compartments. By defining F and V
as

F =
[
∂Fi(x)
∂xj
|x=E0

]
i=1,2

=

 0 m2 + γ1

α 0

 and,

V =
[
∂Vi(x)
∂xj
|x=E0

]
]i=1,2 =

α+ γ2 + µ−m1 0

0 γ1 + µ

 ,
(5.1)

we have

R0 = ρ (FV −1) =

√
α (m2 + γ1)

(γ1 + µ) (α+ γ2 + µ−m1)
, (5.2)

where ρ(·) denotes the spectral radius and we assume

α+ γ2 + µ−m1 > 0. (5.3)

Moreover, the threshold value R0(m1) = 1 is equivalent to

m1 , m̂1 =
µ2 + (α+ γ1 + γ2)µ− αm2 + γ1 γ2

(γ1 + µ)
. (5.4)

5.1. Sensitivity analysis

To obtain the impact of the parameters on R0 and the unhealthy weight class (W (t)
and B(t)), we conduct a sensitivity analysis. First, we calculate the normalized
forward sensitivity index of R0 [4] to measure the relative variance of R0 to the
relative variation of the parameters, as follows:

γR0
p =

∂R0

∂p
× p

R0
. (5.5)

The higher γR0
p value means the more sensitivity the parameter toR0. Furthermore,

the positive (negative) sign denotes the positive (negative) relation between R0

and the parameter p. Taking into account all the model parameters, we have the
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following.

γR0
µ =

−1

2

(m1 − α− γ1 − γ2 − 2µ)µ

(m1 − α− γ2 − µ) (γ1 + µ)
, γR0

m1
=

−m1

2m1 − 2α− 2γ2 − 2µ
,

γR0
m2

=
m2

2m2 + 2γ1
, γR0

α =
m1 − γ2 − µ

2m1 − 2α− 2γ2 − 2µ
,

γR0
γ1 = −1

2

(m2 − µ) γ1
(m2 + γ1) (γ1 + µ)

, γR0
γ2 =

γ2
2m1 − 2α− 2γ2 − 2µ

,

γR0
σ = 0.

(5.6)

Taking the parameter values in Table 1, the calculated sensitivity indices are γR0
µ =

−0.24454, γR0
m1

= 0.22883, γR0
m2

= 0.2, γR0
α = 0.04233, γR0

γ1 = −0.0378, and γR0
γ2 =

−0.1888. The most sensitive parameter to R0 is the natural birth/death rate µ. A
higher birth / death rate produces a larger category of healthy weight. It implies an
inverse effect of increasing the basic reproduction number. i.e., an increase in the
birth / death rate by 10% will decrease R0 by 2.4454%. Similarly, an increase of
10% in the values of γ1, α,m2, and m1 will increase the basic reproduction number
by 0.3784%, 1.8602%, 2 %, and 2.2883 %, respectively. While an increase in γ2 of
10% will reduce the basic reproduction number by 1.8879%.

6. Backward bifurcation near E0 and R0 = 1

The local stability of the obesity-free equilibrium E0 = (0, 0, 0) is determined by
the eigenvalues of the Jacobian matrix

J |E0
=


−(α+ γ2 + µ−m1) m2 + γ1 0

α −(γ1 + µ) 0

γ2 0 −µ

 , (6.1)

which are λ1 = −µ and

λ2,3 =
−(M1 +M2)±

√
(M1 +M2)2 − 4M1M2(1−R2

0)

2
,

M1 = α+ γ2 + µ−m1 > 0,

M2 = γ1 + µ.

(6.2)

Here, λ2,3 are both negative if 0 < R0 < 1, have opposite signs if R0 > 1, and have
one zero value if R0 = 1.

Theorem 6.1. E0 is locally asymptotically stable if 0 < R0 < 1 and unstable if
R0 > 1.

To determine the dynamics of the model at R0 = 1, where J |E0
in (6.1) pos-

sesses one zero and two negative eigenvalues, we derive the corresponding center
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manifold [25, 29]. Defining x = (x1, x2, x3)T = (W,B,R )T and f = (f1, f2, f3)T =(
dW
dt ,

dB
dt ,

dR
dt

)T
, model (4.1) is transformed to

dx

dt
= f(x, φ), (6.3)

where φ = (φf , φb) ∈ R8
+ represents all the parameters for model (4.1). φf and φb

denote the fixed and bifurcation parameters, respectively. Being one of the most
sensitive parameters to R0 from the results in Subsection 5.1 and can be changed by
public health efforts, m1, the transmission rate from a healthy weight to overweight
is selected as the bifurcation parameter. Then, the Jacobian matrix for the obesity
model (4.1) at E0 and m1 = m̂1 at (5.4) (or R0 = 1)

J |E0,m̂1
=


−α (m2 + γ1)

γ1 + µ
m2 + γ1 0

α −(γ1 + µ) 0

γ2 0 −µ

 , (6.4)

has one zero eigenvalue and two negative eigenvalues −µ and −αm2N+γ1 α+(γ1+µ)
2

γ1+µ
.

Next, we choose the eigenvectors (right and left) for the zero eigenvalue as

w =

(
γ1 + µ

α
, 1,

γ2 (γ1 + µ)

αµ

)T
and v =

(
1

n
,
m2 + γ1
n(γ1 + µ)

, 0

)
, (6.5)

where n = γ1+µ
α + m2+γ1

γ1+µ
and < w, v >= 1.

Defining the perturbation as ν = m1− m̂1, the center manifold up to the second
order is

dc

dt
=

1

2
ac2 + bνc, (6.6)

where the coefficients a and b are

a =
∑3
i,j,k=1 viwjwk

∂2fi
∂xj∂xk

|(E0,m̂1)

= −
2(γ1 + µ)

(
µ2 + (α+ γ1 + γ2)µ+ γ1 γ2

)
am

α (γ12 + (α+ 2µ) γ1 +m2α+ µ2)µ
and,

b =
∑3
i,k=1 vkwi

∂2fk
∂xi∂ν

|(E0,m̂1) =
(γ1 + µ)

2

γ12 + (α+ 2µ) γ1 + αm2 + µ2
> 0.

(6.7)

Here, am = µ2+[(1− σ) γ2 + γ1 + α]µ−γ1 γ2 (σ − 1). Since the value of b is always
positive, the sign of a, which is decided by the sign of am, determines the direction
of this transcritical bifurcation.

Also, note that all other non-zero factors in (6.7) are ∂2f1
∂x2

1
|(E0,m̂1) = −2m̂1,

∂2f1
∂x1∂x2

|(E0,m̂1) = ∂2f1
∂x2∂x1

|(E0,m̂1) = −m̂1 −m2, ∂2f1
∂x2

2
|(E0,m̂1) = −2m2, ∂2f1

∂x2∂x3
|(E0,m̂1)

= ∂2f1
∂x3∂x2

|(E0,m̂1) = m2(σ − 1) ∂2f1
∂x1∂x3

|(E0,m̂1) = ∂2f1
∂x3∂x1

|(E0,m̂1) = m̂1(σ − 1), and
∂2f1

∂x1∂m1
|(E0,m̂1) = 1.
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Theorem 6.2. The obesity epidemic model (4.1) admits a forward (backward) bi-
furcation if am > 0 (am < 0) and R0 = 1. Furthermore, am > 0 is equivalent
to

σ < σ∗ =
µ2 + (α+ γ1)µ

γ2 (γ1 + µ)
+ 1. (6.8)

The parameter values in Table 1 derive a threshold value for σ as σ∗ = 11113
5000 ≈

2.22. If we take σ = 1.5 < 2.22, Theorem 6.2 predicts a forward bifurcation. If we
take σ = 5 > 2.22, Theorem 6.2 predicts a backward bifurcation. The bifurcation
diagrams in Fig. 2 verify the backward and forward bifurcation cases.

(a) σ = 5 (b) σ = 1.5

Figure 2. Backward and forward bifurcation cases are plotted in (a) and (b). The obesity-free equi-
librium E0 (in green) and the obesity-endemic equilibrium E∗ (in blue) intersect at the transcritical
bifurcation point and change their stability. Solid and dashed lines represent stable and unstable equi-
libria.

7. Two strategies for complete obesity elimination

7.1. Strategy I: Reduce R0 less than the obesity elimination
threshold

Due to the appearance of the backward bifurcation, beingR0 < 1 is not sufficient for
the complete elimination of the obesity and overweight epidemic. In this subsection,
we will derive a new threshold to eliminate the obesity epidemic, guaranteeing the
global stability of the obesity-free equilibrium, E0.

Proposition 3.1 states that, starting from non-negative, the solutions of system
(4.1) remain non-negative and bounded. By the Bolzano-Weierstrass theorem, in-
finite bounded sequences W (τn), B(τn), and R(τn) have convergent subsequences,
respectively. By the method of fluctuations [20, 30, 31], there exists a sequence
{τn} ∈ R satisfying limn→+∞ τn = +∞, such that

lim
n→+∞

W (τn) = W∞, lim
n→+∞

B(τn) = B∞, lim
n→+∞

R(τn) = R∞,

lim
n→+∞

Ẇ (τn) = 0, lim
n→+∞

Ḃ(τn) = 0, and lim
n→+∞

Ṙ(τn) = 0,

where the superscript ∞ and the subscript ∞ denote the upper and lower limits.
That is, x∞ = lim sup

t→+∞
x(t) and x∞ = lim inf

t→+∞
x(t) for a continuous and bounded
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function x : [0, +∞) → R. Moreover, Proposition 3.1 also guarantees that 0 ≤
W∞ < W∞, 0 ≤ B∞ < B∞, and 0 ≤ R∞ < R∞.

The second equation of (4.1) yields

Ḃ(τn) + (γ1 + µ)B(τn) = αW (τn). (7.1)

It follows
B∞ ≤ α

γ1 + µ
W∞, as n→ +∞. (7.2)

The third equations of (4.1) derives

Ṙ(τn) + σ (m1W (τn) +m2B(τn))R(τn) + µR(τn) = γ2W (τn). (7.3)

It follows

σ (m1W
∞ +m2B

∞)R∞ ≤ σ (m1W
∞ +m2B

∞)R∞ + µR∞ ≤ γ2W∞, (7.4)

as n→ +∞. Moreover, the first equation of (4.1) yields

(µ+ α+ γ2)W∞

≤ (µ+ α+ γ2)W∞ + (m2B
∞ +m1W

∞)(W∞ +B∞ +R∞)

≤ (m1W
∞ +m2B

∞) + σ (m1W
∞ +m2B

∞)R∞ + γ1B
∞.

(7.5)

Recalling B∞ ≤ α
γ1+µ

W∞ in (7.2) and σ (m1W
∞+m2B

∞)R∞ ≤ γ2W∞ in (7.4),

inequality (7.5) yields

(µ+ α+ γ2)W∞ ≤ m1W
∞ +m2

α

γ1 + µ
W∞ + γ2W

∞ +
αγ1
γ1 + µ

W∞. (7.6)

The preceding inequality is equivalent to

W∞ (µ+ α+ γ2 −m1)(1−R2
1) ≤ 0, (7.7)

where

R2
1 =

α(m2 + γ1)

(γ1 + µ)(µ+ α+ γ2 −m1)
+

γ2
µ+ α+ γ2 −m1

= R2
0 +

γ2
(µ+ α+ γ2 −m1)

.

(7.8)

Here R0 is defined in (5.2) under the assumption µ+α+γ2−m1 > 0 in (5.3). In the
caseR2

1 < 1, recalling 0 ≤W∞ ≤W∞, inequality (7.7) yields W∞ = W∞ = 0; since
R∞ ≤ γ2

µ W
∞ from (7.4) together with 0 ≤ R∞ ≤ R∞, we have R∞ = R∞ = 0;

the inequality B∞ ≤ α
γ1+µ

W∞ from (7.2) together with 0 ≤ B∞ ≤ B∞ yields

B∞ = B∞ = 0. We conclude that limt→+∞W (t) = 0, limt→+∞B(t) = 0, and
limt→+∞R(t) = 0 when R2

1 < 1. This obesity elimination result provides the
following theorem.

Theorem 7.1. The obesity-free equilibrium E0 of the obesity model (4.1) is globally
asymptotically stable if R0 < R1 < 1, where R1 > 0 in (7.8) is defined as the obesity
elimination threshold.
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7.2. Strategy II: Reduce the relative weight regain hazard σ
less than unity

According to the literature [8, 10], the ex-overweight population has a high risk
of weight regain. Fortunately, appropriate weight loss maintenance programs using
several approaches: use of sequential medications, sequential dieting, and individual
and group follow-up programs [8] can increase the efficacy of effective long-term
weight regain prevention, then reduce the relative hazard of weight regain. In model
(4.1), the relative rate of weight regain is denoted as σ. We derive the following
theorem as a complete obesity elimination strategy.

Theorem 7.2. The obesity epidemic can be completely eliminated if both the hazard
of weight regain and the basic reproduction number is less than one. That is the
obesity-free equilibrium E0 is globally asymptotically stable if σ ≤ 1 and R0 < 1.

Proof. Following Theorem 2.1 in the paper [18], we take the Lyapunov function
Q(W,B) = z V −1X for model (4.1) on Ω in (4.2). Here, X = (W,B)T denotes

the disease compartments, and z =
(
α+γ2+µ−m1

m2+γ1
R0, 1

)
is a left Perron eigenvector

associated with the largest eigenvalue R0 of the matrix

V −1F =

 0
m2 + γ1

µ+ α+ γ2 −m1

α

γ1 + µ
0

 .
Here, matrices V and F are given in equation (5.1).

The Lyapunov function Q(W,B) = R0

m2+γ1
W + 1

γ1+µ
B satisfies Q(0, 0) = 0 and

Q(W,B) > 0 for all positive values W and B, and

dQ

dt
=

R0

m2 + γ1

dW

dt
+

1

γ1 + µ

dB

dt

=
R0

m2 + γ1
{−(α+ γ2 + µ−m1)W + (m2 + γ1)B

−(m1W +m2B)(B +W + (1− σ)R)}+
1

γ1 + µ
[αW − (γ1 + µ)B]

≤ R0

m2 + γ1
[−(α+ γ2 + µ−m1)W + (m2 + γ1)B] +

1

γ1 + µ
[αW − (γ1 + µ)B]

= −α+ γ2 + µ−m1

m2 + γ1
R0W +

α

γ1 + µ
W

= −α+ γ2 + µ−m1

m2 + γ1
R0

[
1− α(m2 + γ1)

R0(α+ γ2 + µ−m1)(γ1 + µ)

]
W

= −α+ γ2 + µ−m1

m2 + γ1
R0 (1−R0)W

≤ 0, when R0 < 1 and σ < 1.

The preceding inequality suggests that E0 = (W,B,R) = (0, 0, 0) is the largest
invariant subset on Ω and is globally asymptotically stable, when R0 < 1 and
σ < 1.
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Moreover, the globally stable obesity-free equilibrium E0 indicates the complete
elimination of the obesity epidemic. This scenario occurs under conditions σ < 1
and R0 < 1, which satisfy Theorem 6.2 and demonstrate a forward bifurcation.

8. Conditions for the obesity plateau via local sta-
bility analysis for the obesity-endemic equilib-
rium

In this section, we will derive the conditions to reach the obesity plateau when the
overweight W (t) and obese B(t) populations are non-zero. First, we will derive the
property of uniform persistence in Proposition 8.1, which indicates that overweight
and obesity populations remain positive if starting from positive initial data under
the condition R0 > 1.

Proposition 8.1. If R0 > 1, the system (4.1) is uniformly persistent in Ω̇.

Proof. When R0 > 1, E0 has two negative and one positive eigenvalue, thus repels
nearby solutions. Since the system (4.1) is forward invariant, solutions starting with
positive initial values stay positive in the interior of Ω.

Let Ω̇ be the interior of Ω. A solution (W,B,R) of the system (4.1) with initial
values (W 0, B0, R0) ∈ Ω̊ satisfies

lim inf
t→∞

W (t) > ε0, lim inf
t→∞

B(t) > ε0, lim inf
t→∞

R(t) > ε0,

lim inf
t→∞

1−W (t)−B(t)−R(t) > ε0, for 0 < ε0 < 1.

8.1. Strategy: Increase the weight loss rate from overweight to
healthy weight and decrease the relative hazard of weight
regain so that the plateau condition is satisfied

Understanding the underlying mechanism of the currently observed plateau is es-
sential to prevent further increases in the prevalence of overweight and obesity. A
strategy to maintain the plateau can be obtained by analyzing the local stability of
the obesity-endemic equilibrium E∗ and is given in Theorem 8.1.

The usual procedure for proof of local stability is to verify the Ruth-Hurwitz
conditions. Since the Jacobian matrix for the system (4.1) is slightly more compli-
cated, to determine the signs of the eigenvalues of the 3× 3 matrix (6.1), we apply
a lemma from the study by McCluskey and van den Driessche [13] as follows:

Lemma 8.1. (Lemma 3 [13]) Let M be a 3 × 3 real matrix. If tr(M), det(M), and
det(M [2]) are all negative, then all the eigenvalues of M have the negative real part.

Then the following theorem is established for the local stability of the obesity-
endemic equilibrium by employing Lemma 8.1.
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Theorem 8.1. If R0 > 1, then the obesity model (4.1) has a unique obesity-
endemic equilibrium E∗ in Ω̇ and E∗ is asymptotically stable when (σ − 1)µ < γ2.

Proof. To prove the asymptotic stability of the obesity-endemic equilibrium E∗

we first calculate the Jacobian at E∗

J |E∗ =


b11 b12 b13

α −γ1 − µ 0

b31 −σm2R −σ(m1W +m2B)− µ

 , (8.1)

where

b11 = ((σ − 1)R−B −W ) m1 − (m1W + m2B)− (µ+ α+ γ2) +m1,

b12 = ((σ − 1)R−B −W ) m2 − (m1W + m2B) + (m2 + γ1),

b13 = (σ − 1)(m1W + m2B) > 0,

b31 = −σm1R+ γ2.

(8.2)

Now, we identify the signs of the elements of the matrix J |E∗ . By the equations
in (4.1), at the equilibrium E∗, we have

(1−W −B −R+ σR)m1 − µ− α− γ2

=− {(1−W −B −R)m2 + σm2R+ γ1}
B

W
, (8.3)

γ1 + µ = α
W

B
, (8.4)

− σm1R+ γ2 = (σm2B + µ)
R

W
. (8.5)

By substituting equations (8.3)-(8.5) and by rearranging b11

b11 = (1−W −B −R+ σR)m1 − (µ+ α+ γ2)− (m1W +m2B)

= − [(1−W −B −R)m2 + σm2R+ γ1] BW − (m1W +m2B) < 0,

(8.6)

and b31 > 0.

Next, we establish that the system (4.1) is a competitive system when b12 > 0,
an important property that is useful for studying global stability when the over-
weight and obesity epidemic persists. Consider a smooth vector field defined for
x such that x → f(x) in an open set D ∈ Rn. The system x′ = f(x), x ∈ D
is considered competitive if a diagonal matrix H = diag (ς1, ς2, ..., ςn, ), where
ςi is 1 or -1 and H(∂f/∂x)H contains non-positive off-diagonal elements for all
x ∈ D [23]. According to the Jacobian matrix for the model (4.1), we choose the
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matrix H = diag(1,−1,−1). Then the matrices H and J give;

H(J)H =


b11 −b12 −b13

−α −γ1 − µ 0

−b31 −σm2R −σ(m1W +m2B)− µ

 . (8.7)

The matrix in (8.7) shows that the proposed obesity system (4.1) is competitive in Ω̇
for b12 > 0 with respect to the partial ordering defined by the orthant {(W,B,R) ∈
R3 : W ≥ 0, B ≤ 0, R ≤ 0}. Hence, the three-dimensional competitive system has
the Poincaré-Bendixon property.

Now, we apply the Lemma 8.1 to identify the signs of the eigenvalues of the
matrix J |E∗ .

Step 1: Proof of tr(J) < 0. By the equation (8.6), we have

tr(J |E∗) = b11 − (γ1 + µ)− σ(m1W +m2B)− µ < 0.

Step 2: Proof of det(J [2]) < 0. Now, consider the second additive compound
matrix J [2] of the Jacobian, J = ∂f

∂x . Thus, if J = (bij)3×3, then

J [2] =


b11 + b22 b23 −b13

b32 b11 + b33 b12

−b31 b21 b22 + b33

 . (8.8)

Thus

J [2] =



b11 − (γ1 + µ) 0 −b13

−σm2R b11 − (σ(m1W +m2B) + µ) b12

−b31 α −(σ(m1W +m2B) + µ)

− (γ1 + µ)


.

(8.9)

Take P = diag(R,B,W ). Then the matrix J [2] is similar to the matrix T =
PJ [2]P−1. If T is stable (all eigenvalues are negative), then J [2] is stable. To
demonstrate that det(J [2]) < 0, we prove the stability of T . The calculations give

T =


t11 0 (σ − 1)(m1W +m2B) RW

−m2σB t22 t23

(m1σR− γ2)WR αWB −σ(m1W +m2B)− (γ1 + µ)− µ

 , (8.10)
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where

t11 = ((σ − 1)R−W −B)m1 +m1 − (m1W +m2B)− (α+ γ2 + µ)

−(γ1 + µ) < 0,

t22 = ((σ − 1)R−W −B)m1 +m1 − (σ + 1)(m1W +m2B)− (α+ γ2 + µ)

−(γ1 + µ)− µ < 0,

t23 = [((σ − 1)R−W −B)m2 +m2 − (m1W +m2B) + γ1] BW > 0.

(8.11)
Since the diagonal elements of the matrix T are negative, if we can prove that

the matrix is diagonally dominant, followed by the Gershgorin circle theorem [2], T
is stable. Take the following.

h1 = t11 + 0 +

∣∣∣∣−(σ − 1)(m1W +m2B)
R

W

∣∣∣∣ = t11 + (σ − 1)(m1W +m2B)
R

W
.

(8.12)

From the third equation of (4.1), we have

σ(m1W +m2B)
R

W
< γ2. (8.13)

It is reasonable to assume that when the overweight and obesity epidemic persists
γ2 < γ1 + µ and by the equation (8.13), we have h1 < 0. Consider

h2 = t22 + | −m2σB|+ |t23| = t22 +m2σB + t23 < 0. (8.14)

Now, we take

h3 = −σ(m1W +m2B)− (γ1 + µ)− µ+
∣∣(m1σR− γ2)WR

∣∣+
∣∣αWB ∣∣

= −σ(m1W +m2B)− (γ1 + µ)− µ+ (−m1σR+ γ2)WR + αWB .

(8.15)

By equations (8.4) and (8.5), we obtain that h3 < 0. Therefore, T is diagonally
dominant and, hence T is stable. Thus J [2] is stable, and then det(J [2]|E∗) < 0.

Step 3: Proof of det(J) < 0. Now we consider the determinant of J ,

det(J) = b13[b31(γ1 + µ)− σm2αR]− [σ(m1W +m2B) + µ][−b11(γ1 + µ)− αb12].
(8.16)

By the equations (8.3)-(8.5), we have

b31(γ1 + µ)− σm2αR = (γ1 + µ) (γ2W − σ(m1W +m2B)R)
1

W

= µ(γ1 + µ)
R

W
,

(8.17)

and

−b11(γ1 + µ)− αb12 = (γ1 + µ)

(
−b11 −

α

γ1 + µ
b12

)
= (γ1 + µ)(m1W +m2B)(1 + B

W ).

(8.18)
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Then

det(J |E∗) ≤ (γ1 + µ)(m1W +m2B) [(σ − 1)µ− γ2]
R

W
< 0, (8.19)

provided (σ − 1)µ < γ2.

As local stability of E∗ is ensured for the parameter condition (σ − 1)µ < γ2,
the weight loss rate from overweight to healthy weight (γ2) should be large enough
to achieve the plateau. Moreover, it takes a longer period of time to change natural
birth/death rates µ compared to other parameters. Then the realistic option is to
decrease the relative hazard of weight regain to a value small enough to satisfy the
parameter condition in Theorem 8.1.

8.2. Saddle-node bifurcation for E∗

As excess weight gain is highly affected by the transmission rate from a healthy
weight to overweight by the social influence of overweight individuals, we choose
m1 as the bifurcation parameter. The characteristic polynomial P3 of the Jacobian
matrix (8.1) is

P3(L;W ∗,m1) = L3 + c1L
2 + c2L+ c3,

where

c1 = σ(m1W
∗ +m2B

∗ − µ) + µ− b11 + γ1,

c2 = (γ1 + µ− b11)(m1W
∗ +m2B

∗ − µ)σ − αb12 − b11(γ1 + µ)− b13b31,

c3 = −σ(γ1 + µ)(m1W
∗ +m2B

∗ − µ)b11 − b13b31(γ1 + µ)

−ασ(−µb12 + (b12B
∗ − b13R∗)m2 +m1b12W

∗).

(8.20)

Here, b11, b12, b13, and b31 are given by the equation (8.6).

A static bifurcation occurs if c3 = 0 and the corresponding Hurwitz criteria
∆1 = c1 and ∆2 = c1c2 − c3 are positive [28].

A zero-eigenvalue bifurcation occurs when c3 = 0 or m1 = m1s, where

m1s =
2

σ

√
µ(σ − 1)(α+ γ1 + µ)γ2

(γ1 + µ)
+

[(σ − 1)µ− σm2]α

(γ1 + µ)σ
+

(γ2 − µ)

σ
+ µ. (8.21)

Assuming the equilibrium at m1 = m1s is E∗s = (W ∗s , B
∗
s , R

∗
s). Taking the transfor-

mation W = y1 +W ∗s , B = y2 +B∗s , R = y3 +R∗s and m1 = m̃1 +m1s, we transform
system (4.1) to

ẏ = Ay + F (y), (8.22)

where A = J |(E∗
s ,m1s) and F (y) = 1

2 B̃(y, y) +O(||y||3) and y = (y1, y2, y3)T [12].

The system (8.22) contains an equilibrium at y = 0 and m̃1 = 0 with simple
zero eigenvalue λ1 = 0. Let v0 be an eigenvector to the zero eigenvalues such that
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Av0 = 0 and w0 be the adjoint eigenvector such that ATw0 = 0. We have

v0 =


1

α

γ1 + µ

v03

 , w0 =



1

n

w02

n

(σ − 1)(m1sW
∗
s +m2B

∗
s )

n [σ(m1sW ∗s +m2B∗s ) + µ]


, (8.23)

where

v03 =
−R∗s [αm2 +m1s(γ1 + µ)]σ + γ2(γ1 + µ)

(γ1 + µ)(σ(m1sW ∗s +m2B∗s ) + µ)
,

w02 =
1

(γ1 + µ)(σ(m1sW ∗s +m2B∗s ) + µ)
× {−(2B∗s +W ∗s − 1)B∗sσm2

2

+[((1− 3B∗s −W ∗s )m1sW
∗
s +B∗sγ1 + µR∗s)σ − (2B∗s +R∗s +W ∗s − 1)µ]m2

−(m1sW
∗ − γ1)(m1sσW

∗ + µ)},

and

n =
1

(γ1 + µ)(σ(m1sW ∗s +m2B∗s ) + µ)
× {µ2 − [(m1sW

∗
s +m2B

∗
s )v03 − w03α]µ

−γ1µ+ [(v03 + 1)µ+ (v03 + 1)γ1 + w03α](m1sW
∗
s +m2B

∗
s )σ

−γ1v03(m1sW
∗
s +m2B

∗
s )}.

The one-dimensional center manifold near y = 0 and m̃1 = 0 is topologically equiv-
alent to the normal form

η̇ = b̃ η2 + ε, η ∈ R1, (8.24)

where ε is the unfolding parameter and

b̃ =
1

2
〈w0, B̃(v0, v0)〉

=
−(αm2 +m1s(γ1 + µ))

n(γ1 + µ)2(σ(m1sW ∗s +m2B∗s ) + µ)
× {((1− σ)v03 + 1)µ2

+((m1sW
∗
s +m2B

∗
s − γ1v03)σ + (v03 + 1)γ1 + α)µ

+σ(γ1 + α)(m1sW
∗
s +m2B

∗
s )}.

Setting parameters as in Table 1, but leaving m1 free, we calculate a zero-
eigenvalue bifurcation critical point at m1s = 32031

1000000 . The other two eigenvalues
are − 19

718 and − 38
273 . Choosing the normalized eigenvector and adjoint eigenvector

associated with zero eigenvalues as v0 = (1, 200111 ,
152
217 )T and w0 = ( 27

86 ,
30
89 ,

21
187 )T . we

derive the quadratic coefficient in (8.24) as b̃ = − 17
635 . Moreover, the transversality

condition is satisfied as
∑n
i,j=1 w0j

∂Fi(y,m̃1)
∂m1

∣∣∣∣
y=0,m̃1=0

= 16
1841 6= 0. Thus, the equi-

librium E∗s = ( 9
263 ,

23
373 ,

15
346 ) undergoes a saddle-node bifurcation at m1 = m1s =

32031
1000000 as shown in Fig. 2(a).
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9. Discussion and biological implications

This paper presents a compartment model to predict overweight and obesity preva-
lence by considering interactions and transitions between healthy weight, over-
weight, and obese populations described by BMI measures. Here, we have consid-
ered the effect of social contacts and peer pressure on excess weight gain. We showed
that for a higher value of relative hazard of weight regain σ, the suggested model
can show a backward bifurcation. In the backward bifurcation scenario, the upper
and lower endemic equilibrium branches showed asymptotic stability and instabil-
ity, respectively. Moreover, the horizontal branch for the obesity-free equilibrium
becomes stable to unstable when the parameter m1 varies. As shown by Fig. 2(a),
a bi-stable region is observed when the system exhibits different branches of equi-
librium curves with the varying parameter m1. In this case, the solutions converge
to the stable obesity-free equilibrium for the lower initial overweight population
located below the unstable branch of obesity-endemic equilibrium. Otherwise, the
solutions will be directed to a stable positive equilibrium. However, regardless of the
initial size of the overweight or obese population, for the values R0 on the left and
right of the saddle-node bifurcation, the solutions converged to stable obesity-free
equilibrium and stable obesity-endemic equilibrium, respectively (Fig. 3).

By mathematical analysis, we have shown that for the overweight and obesity
epidemic control, the parameter σ (relative hazard of weight regain) plays an im-
portant role. An ex-overweight person who is now in healthy weight may be aware
of the health risks of being overweight or obese; he or she is more resistant to
gaining weight. In this scenario, we can take σ < 1. Then, the model shows only
the forward bifurcation, i.e., bringing down the basic reproduction number below
unity results in complete overweight and obesity epidemic eradication. Although
many overweight and obese individuals have been involved in weight loss programs,
maintaining good shape is challenging in the long run once they lose weight to a
healthy weight. This leads to the chronic nature of overweight and obesity, making
it challenging to lower the overweight and obese population size. In this sense, pub-
lic health policymakers must consider enhancing awareness and promoting weight
loss maintenance programs targeting individuals who lose their weight to a healthy
weight to effectively control the overweight and obesity epidemic. To be more pre-
cise, this suggests that the individuals who lose weight can participate in weight
loss maintenance programs that contain several approaches such as sequential med-
ication, sequential dieting, and group and individual-based follow-up programs for
a while until they adapt to a healthy and active lifestyle that prevents them from
regaining weight.

Furthermore, it should be noted that overweight and obesity epidemic elimi-
nation is not an easy task and takes a very long time (Fig. 3(a)). According to
studies, the prevalence of overweight and obesity is increasing in a high number.
Therefore, public health policymakers aim to prevent further growth of the over-
weight and obese population. By the local stability analysis of the obesity-endemic
equilibrium, we suggest that the plateau in obesity is guaranteed if we have a higher
recovery rate from overweight to a healthy weight or a lower relative weight regain
hazard. Furthermore, as we observed in the bifurcation analysis, as shown in Fig.
2, the overweight population can be reduced by reducing R0. According to the
sensitivity analysis, by increasing the parameters natural birth/death rates µ and
the recovery rate from overweight γ2 and obese γ1, R0 can be decreased. However,
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changing the natural birth and death rates is a slower process and not a realistic
option for depleting the basic reproduction number. Increasing γ2 and γ1 is a faster
solution as overweight individuals lose weight and achieve a healthy weight. This
can be done by having a healthy diet and an active lifestyle. Public health policy-
makers should increase the opportunities for people to have a healthy and active
lifestyle by conducting intervention programs, such as healthy lifestyle campaigns
that can be applied to both overweight and obese groups. In addition, treatment
programs such as medications and surgeries must be introduced into the obese class,
as reducing weight is much more difficult in this phase. On the other hand, the basic
reproduction number increases when the social influence rates m1 and m2 increase.
These parameter value increments and decrements can be achieved by enhancing
awareness of having a healthy and balanced diet and an active lifestyle. To promote
a supportive environment and healthy behavior to prevent overweight and obesity,
local and state programs can make the resources available to the public on public
health recommendations and evidence-based practices. Also, the effort to reverse
obesity patterns can be established in several settings, such as early childhood care,
hospitals, schools, and food venues.

10. Conclusions

Our study aimed to discuss the reasons behind the plateau in the overweight and
obesity epidemic and, if possible, eliminate it. The practical feasibility of eradicat-
ing the obesity epidemic is subject to discussion; however, at least public health
policymakers can establish adequate prevention and intervention strategies to de-
crease excess weight gain prevalence. Throughout the study, we intended to provide
control strategies through stability analysis and bifurcation theory. The stability
analysis for obesity-free and obesity-endemic equilibrium provided parameters for
eradication and plateau of excess weight gain, respectively. We looked for suffi-
cient parameter conditions for the plateau in the overweight and obesity epidemic
by local stability analysis. The results suggested that promoting weight loss and
maintenance programs can help keep the plateau. The analysis indicated that much
attention should be paid to reducing the risk of weight regain as the backward bi-
furcation exists for higher values of relative risk of weight regain. Therefore, weight
loss maintenance programs should be promoted to eliminate the epidemic, while
weight loss programs help maintain the plateau.

We considered that social influence causes an excess weight gain in the pro-
posed model. However, non-social conditions such as genetics and lifestyle habits
also affect excess weight gain. Therefore, the proposed model can be further ex-
tended considering the risk of non-contagious factors. Other than that, there are
several factors that we can consider to expand the model, such as disease-related
deaths and social influence on weight loss. In addition, an optimal control pro-
cess can be introduced to the proposed model to better understand the effects of
control strategies. Three scenarios of intervention programs can be introduced; (1)
awareness programs to promote healthy diet and active lifestyle for the overweight
population, (2) treatment programs for the obese population, and (3) weight loss
maintenance programs such as follow-ups for the ex-overweight population. Despite
future work, the proposed model successfully simplified the dynamics of overweight
and obesity prevalence, which is crucial for effective intervention and prevention
control programs.
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Figure 3. Time series of unhealthy and healthy weight individuals when (a)m1 = 0.02, (b)m1 = 0.035,
solid lines with initial conditions (W (0), B(0), R(0)) = (0.04, 0.001, 0.001) and dashed lines with initial
conditions (W (0), B(0), R(0)) = (0.01, 0.001, 0.001) and (c) m1 = 0.04.
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