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INVERSE VARIATIONAL PRINCIPLES FOR
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Abstract In this paper, we generalize the various types of topological pres-
sures and measure-theoretical pressures for non-additive continuous potential
with tempered distortion. We show inverse variational principles of measures
for this non-additive topological pressures. Furthermore, we apply the inverse
variational principles for topological pressures on measures to give the estimate
of Hausdorff dimension of measures supported on average conformal repellers.
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1. Introduction

Throughout this paper, a topological dynamical system (TDS for short) is a pair
(X,T ), where X is a compact metric space with a metric d and T : X → X is a
continuous map. Let M(X), M(X,T ) and E(X,T ) denote respectively the set of
Borel probability measures, T -invariant Borel probability measures and T -invariant
ergodic Borel probability measures on X. By a Borel measure theoretical dynamical
system(X,B(X), µ, T ) we mean (X,B(X), µ) is a Borel measure space and T is a
Borel measure preserving transformation.

Kolmogorov [10] introduced measure-theoretical entropy hµ(T ) for any
(X,B(X), µ, T ). Later, Adler etc [1] introduced topological entropy htop(T ) for
any TDS (X,T ). Dinaburg [7] and Bowen [3] independently gave equivalent defini-
tions for topological entropy by using separating and spanning sets. The variational
principle (see [15, Thm 8.6]) reveals the basic relation between topological entropy
and measure-theoretical entropy: if (X,T ) is a TDS then

htop(T ) = sup{hµ(T ) : µ ∈M(X,T )}.

Bowen [4] presented a type of topological entropy hBtop(Z, T ) for any set Z in a
TDS (X,T ) in a way resembling Hausdorff dimension, which is the so-called Bowen
topological entropy. Particularly, he showed that hBtop(X,T ) = htop(T ) for any TDS
(X,T ).
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Topological pressure, as a non-trivial extension of topological entropy, was first
introduced by Ruelle [13] and extended to compact spaces with continuous trans-
formations by Walters [15]. There is also a variational principle of topological
pressure [15, Thm 9.10]: if (X,T ) is a TDS then P (T, f) = sup{hµ(T )+

∫
f dµ|µ ∈

M(X,T )}, where f is a continuous functions of X and P (T, f) is the pressure of T
with respect to f . Pesin etc [11] further extended Bowen’s results [4] to topological
pressure and introduced a type of topological pressure PB(Z, T, f) for any set Z in
a TDS (X,T ), which we call Pesin-Pitskel topological pressure. They in [11] showed
that, among other things, if (X,T ) is a TDS then P (T, f) = PB(X,T, f).

Inspired by the variational relation between topological entropy and measure-
theoretical entropy, Feng etc [8] introduced measure-theoretical lower and upper
entropies and packing topological entropy, and they obtained two variational prin-
ciples for Bowen entropy and packing entropy: if Z ⊂ X is nonempty and compact
then

hBtop(Z, T ) = sup{hµ(T ) : µ ∈M(X), µ(Z) = 1},
hPtop(Z, T ) = sup{hµ(T ) : µ ∈M(X), µ(Z) = 1},

where hPtop(Z, T ), hµ(T ) and hµ(T ) denote respectively the packing topological en-
tropy of Z, measure-theoretical lower and upper entropies of µ. Tang etc [14] gen-
eralized Feng-Huang’s variational principle of Bowen topological entropy to Pesin-
Pitskel topological pressure: if Z ⊂ X is nonempty and compact then

PB(Z, T, f) = sup{Pµ(T, f) : µ ∈M(X), µ(Z) = 1},

where PB(Z, T, f) denotes the Pesin-Pitskel pressure of Z (see Definition 2.1) and
Pµ(T, f) denotes the measure-theoretical lower pressure of µ (see Definition 3.1).
Recently, Wang in [17] obtained two new variational principles for Bowen and pack-
ing topological entropies by introducing Bowen entropy and packing entropy of
measures in the sense of Katok. He showed that if Z ⊂ X is nonempty and com-
pact then

hBtop(Z, T ) = sup{PKBµ (T, 0) : µ ∈M(X), µ(Z) = 1},
hPtop(Z, T ) = sup{PKPµ (T, 0) : µ ∈M(X), µ(Z) = 1},

where PKBµ (T, 0) and PKPµ (T, 0) denote respectively the Bowen and packing topo-
logical entropies of µ in the sense of Katok (see Definition 3.3).

Let C(X,R) denote the set of all continuous functions of X, and let PBµ (T, f)

and PKBµ (T, f) denote the Pesin-Pitskel pressure of µ (see Definition 3.2) and the
Pesin-Pitskel pressure of µ in the sense of Katok (see Definition 3.3) respectively.
Zhong etc in [18] proved the following theorem.

Theorem 1.1. Let (X,T ) be a TDS, f ∈ C(X,R) and Z ⊂ X be a nonempty
compact set. Then

PB(Z, T, f) = sup{PBµ (T, f) : µ ∈M(X), µ(Z) = 1}
= sup{PKBµ (T, f) : µ ∈M(X), µ(Z) = 1}.

Let PP (Z, T, f), Pµ(T, f), PPµ (T, f) and PKPµ (T, f) denote respectively the
packing topological pressure of Z (see Definition 2.1), measure-theoretical upper
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pressure of µ (see Definition 3.1), packing pressure of µ (see Definition 3.2) and
packing pressure of µ in the sense of Katok (see Definition 3.3).

Zhong etc in [18] also proved the following theorems.

Theorem 1.2. Let (X,T ) be a TDS, f ∈ C(X,R) and Z ⊂ X be a nonempty
compact set. If PP (Z, T, f) > ‖f‖∞, where ‖f‖∞ := supx∈X f(x), then

PP (Z, T, f) = sup{Pµ(T, f) : µ ∈M(X), µ(Z) = 1}
= sup{PPµ (T, f) : µ ∈M(X), µ(Z) = 1}
= sup{PKPµ (T, f) : µ ∈M(X), µ(Z) = 1}.

From Theorem 1.1 in [18], we have the following result.

Theorem 1.3. Let (X,T ) be a TDS and f ∈ C(X,R), µ ∈M(X), then

PBµ (T, f) = PKBµ (T, f) ≤ inf{PB(Z, T, f) : µ(Z) = 1},
PPµ (T, f) = PKPµ (T, f) ≤ inf{PP (Z, T, f) : µ(Z) = 1}.

Wang in [17] proved that for f = 0, PKBµ (T, 0) ≤ inf{PB(Z, T, 0) : µ(Z) = 1}
and PKPµ (T, 0) ≤ inf{PP (Z, T, 0) : µ(Z) = 1}. The results as above generalized the
results in [17] to topological pressure.

The questions are whether inequality as above can be equality? In this paper,
we prove the following inverse variational principles.

Theorem 1.4. Let (X,T ) be a TDS and f ∈ C(X,R) and µ ∈M(X), then

PBµ (T, f) = PKBµ (T, f) = inf{PB(Z, T, f) : µ(Z) = 1},
PPµ (T, f) = PKPµ (T, f) = inf{PP (Z, T, f) : µ(Z) = 1}.

Furthermore, in [2], the notion of average conformal repeller is introduced. In [6],
Hausdorff dimension for every subset of average conformal repeller Λ is given as
root of Bowen equation. We apply the results of Theorem1.4 as above to give the
estimate of Hausdorff dimension for every µ ∈M(Λ).

Theorem 1.5. Let M be a C∞ Riemannian manifold and T : M → M be a C1

map. Suppose Λ ⊂M is an average conformal repeller. Then for every µ ∈M(Λ),
dimHµ = t∗, where t∗ is the unique solution of equation PBµ (T,−tf(x)) = 0 in [0, d]

and f(x) = log(|det(DT (x))|) 1
d .

Next, we introduce a class of non-additive continuous potential. Let (X,T ) be
a TDS, F = {fn : X → R} be a sequence of continuous potentials. We say that
{fn}n∈N satisfy tempered distortion, if

lim
ε→0

lim sup
n→∞

fn(ε)

n
= 0, (1.1)

where fn(ε) = sup{|fn(x)− fn(y)| : x ∈ X, y ∈ Bn(x, ε)}.

Remark 1.1. If f ∈ C(X,R), then F = {fn =
∑n−1
i=0 f(T i(x))} is a sequence of

continuous potentials with tempered distortion.

In this paper, we will define various types of topological pressures and measure-
theoretical pressures for non-additive continuous potential with tempered distortion,



Inverse variational principles 1049

and investigate the relations between various types of topological pressures and
different versions of measure-theoretical pressures.

We arrange the rest of this paper as follows. In Section 2, we recall the notions of
topological pressures and discuss their relations. Section 3 presents various kinds of
measure-theoretical pressures, and section 4 presents the proof of main theorem. In
section 5, we apply the main theorem to give the estimate of Hausdorff dimension
for every µ ∈M(Λ).

2. Topological pressures

In this section, we follow the forms in [18] to give four types of topological pres-
sures: Pesin-Pitskel topological pressure, lower capacity topological pressure, upper
capacity topological pressure and packing topological pressure, and present some
basic properties for these pressures.

For any n ∈ N and x, y ∈ X, let

dn(x, y) = max{d(T i(x), T i(y)) : 0 ≤ i < n}.

For any n ∈ N, ε > 0, x ∈ X, let Bn(x, ε) = {y ∈ X : dn(x, y) < ε} and
Bn(x, ε) = {y ∈ X : dn(x, y) ≤ ε}.

Given a non-additive continuous potential with tempered distortion F = {fn},
let

fn(x, ε) = sup
y∈Bn(x,ε)

fn(y), and fn(x, ε) = sup
y∈Bn(x,ε)

fn(y).

Let Z ⊂ X be a nonempty set. Given n ∈ N, α ∈ R, ε > 0 and F , define

M(n, α, ε, Z, T,F) = inf{
∑
i

e−αni+fni
(xi) : Z ⊂ ∪iBni

(xi, ε)}, (2.1)

where the infimum is taken over all finite or countable collections of {Bni(xi, ε)}i
such that xi ∈ X, ni ≥ n and

⋃
iBni(xi, ε) ⊃ Z. Likewise, we define

R(n, α, ε, Z, T,F) = inf{
∑
i

e−αn+fn(xi) : Z ⊂ ∪iBn(xi, ε)}, (2.2)

where the infimum is taken over all finite or countable collections of {Bn(xi, ε)}i
such that xi ∈ X and

⋃
iBn(xi, ε) ⊃ Z.

Define
MP (n, α, ε, Z, T,F) = sup{

∑
i

e−αni+fni
(xi)}, (2.3)

where the supremum is taken over all finite or countable pairwise disjoint families
{Bni

(xi, ε)} such that xi ∈ Z, ni ≥ n for all i, where Bni
(xi, ε) = {y ∈ X :

dni
(x, y) ≤ ε}.
Let

M(α, ε, Z, T,F) = lim
n→∞

M(n, α, ε, Z, T,F),

R(α, ε, Z, T,F) = lim inf
n→∞

R(n, α, ε, Z, T,F),

R(α, ε, Z, T,F) = lim sup
n→∞

R(n, α, ε, Z, T, f),
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MP (α, ε, Z, T,F) = lim
n→∞

MP (n, α, ε, Z, T,F).

Define

MP(α, ε, Z, T,F) = inf{
∞∑
i=1

MP (α, ε, Zi, T,F) : Z ⊂ ∪∞i=1Zi}.

It is routine to check that when α goes from −∞ to +∞, the quantities

M(α, ε, Z, T,F), R(α, ε, Z, T,F), R(α, ε, Z, T,F), MP(α, ε, Z, T,F)

jump from +∞ to 0 at unique critical values respectively. Hence we can define the
numbers

PB(ε, Z, T,F) = sup{α : M(α, ε, Z, T,F) = +∞}
= inf{α : M(α, ε, Z, T,F) = 0},

CP (ε, Z, T,F) = sup{α : R(α, ε, Z, T,F) = +∞}
= inf{α : R(α, ε, Z, T,F) = 0},

CP (ε, Z, T,F) = sup{α : R(α, ε, Z, T,F) = +∞}
= inf{α : R(α, ε, Z, T,F) = 0},

PP (ε, Z, T,F) = sup{α : MP(α, ε, Z, T,F) = +∞}
= inf{α : MP(α, ε, Z, T,F) = 0}.

Definition 2.1. We call the following quantities

PB(Z, T,F) = lim
ε→0

PB(ε, Z, T,F),

CP (Z, T,F) = lim
ε→0

CP (ε, Z, T,F),

CP (Z, T,F) = lim
ε→0

CP (ε, Z, T,F),

PP (Z, T,F) = lim
ε→0

PP (ε, Z, T,F).

Pesin-Pitskel, lower capacity, upper capacity and packing topological pressures of T
on the set Z with respect to F .

Remark 2.1. The definitions of Pesin-Pitskel, lower capacity and upper capacity
topological pressures follow the generalized Carathéodory construction described
in [12]. For more details, see [12, p74]. Wang etc in [16] introduced packing topo-
logical pressure.

Replacing fni(xi) in Eqs. (2.1), (2.3) by fni(xi, ε) and fni
(xi, ε) respectively

and fn(xi) in Eq. (2.2) by fn(xi, ε), we can define new functions M, R, MP . For
any set Z ⊂ X and ε > 0, we denote the respective critical values by

PB
′
(ε, Z, T,F), CP ′(ε, Z, T,F), CP

′
(ε, Z, T,F), PP

′
(ε, Z, T,F).

Proposition 2.1. Let (X,T ) be a TDS, F satisfy tempered distortion and Z ⊂ X.
Then

PB(Z, T,F) = lim
ε→0

PB
′
(ε, Z, T,F),
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CP (Z, T,F) = lim
ε→0

CP ′(ε, Z, T,F),

CP (Z, T,F) = lim
ε→0

CP
′
(ε, Z, T,F),

PP (Z, T,F) = lim
ε→0

PP
′
(ε, Z, T,F).

Proof. Fix ε > 0. It is clear that PB(ε, Z, T,F) ≤ PB
′
(ε, Z, T,F). Since F

satisfies tempered distortion, then for every λ > 0, there exists ε0 > 0, for any
0 < ε < ε0, there exists N(ε), if n ≥ N(ε), then fn(ε) < λn. Hence we have

fn(x, ε) ≤ fn(x) + fn(ε) ≤ fn(x) + λn, ∀n ≥ N(ε).

It then follows that for n ≥ N(ε),

M(n, α, ε, Z, T,F) = inf{
∑
i

e−αni+fni
(xi) : Z ⊂ ∪iBni(xi, ε)}

≥ inf{
∑
i

e−αni+fni
(xi,ε)−niλ : Z ⊂ ∪iBni

(xi, ε)}

= inf{
∑
i

e−(α+λ)ni+fni
(xi,ε) : Z ⊂ ∪iBni

(xi, ε)}

=M(n, α+ λ, ε, Z, T,F).

Letting n→∞ yields

M(α, ε, Z, T,F) ≥M(α+ λ, ε, Z, T,F).

This implies that

PB(ε, Z, T,F) ≥ PB ′(ε, Z, T,F)− λ.
It then follows that

PB(ε, Z, T,F) ≤ PB ′(ε, Z, T,F) ≤ PB(ε, Z, T,F) + λ.

Let ε → 0, the arbitrariness of λ implies the desired equality. The other equalities
can be proven similarly.

The following are some basic properties of these pressures.

Proposition 2.2. Let (X,T ) be a TDS and F satisfy tempered distortion. Then
the following assertions hold:

1. For any Z ⊂ X, PB(Z, T,F) ≤ CP (Z, T,F) ≤ CP (Z, T,F).

2. If Z1 ⊂ Z2, then P(Z1, T,F) ≤P(Z2, T,F), where P ∈ {PB , CP ,CP , PP }.
3. If Z = ∪i∈IZi is a union of sets Zi ⊂ X, with I at most countable, then

3-a. M(α, ε, Z, T,F) ≤
∑
iM(α, ε, Zi, T,F);

3-b. MP(α, ε, Z, T,F) ≤
∑
iM
P(α, ε, Zi, T,F);

3-c. PB(Z, T,F) = supi∈I P
B(Zi, T,F);

3-d. PP (Z, T,F) = supi∈I P
P (Zi, T,F);

3-e. CP (Z, T,F) ≥ supi∈I CP (Zi, T,F);

3-f. CP (Z, T,F) ≥ supi∈I CP (Zi, T,F).

4. For any Z ⊂ X, PB(Z, T,F) ≤ PP (Z, T,F) ≤ CP (Z, T,F).

5. If Z is T -invariant and compact, then

PB(Z, T,F) = PP (Z, T,F) = CP (Z, T,F) = CP (Z, T,F).

The proof of Proposition 2.2 can follow the proof in [18] for additive potentials.
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3. Measure-theoretic pressures

In this section, we discuss the relations among various types of measure-theoretic
topological pressure.

Let (X,T ) be a TDS, f ∈ C(X,R) and µ ∈M(X). The measure-theoretic lower
and upper local pressures of x ∈ X with respect to µ and f are defined by

Pµ(x, T, f) := lim
ε→0

lim inf
n→∞

− logµ(Bn(x, ε)) + fn(x)

n
,

Pµ(x, T, f) := lim
ε→0

lim sup
n→∞

− logµ(Bn(x, ε)) + fn(x)

n
.

Definition 3.1. The measure-theoretic lower and upper local pressures of µ with
respect to f are defined as

Pµ(T, f) :=

∫
Pµ(x, T, f) dµ(x),

Pµ(T, f) :=

∫
Pµ(x, T, f) dµ(x).

Definition 3.2. We call the following quantities

PBµ (T,F) := lim
ε→0

lim
δ→0

inf{PB(ε, Z, T,F) : µ(Z) ≥ 1− δ}

= lim
ε→0

lim
δ→0

inf{PB ′(ε, Z, T,F) : µ(Z) ≥ 1− δ},

CPµ(T,F) := lim
ε→0

lim
δ→0

inf{CP (ε, Z, T,F) : µ(Z) ≥ 1− δ}

= lim
ε→0

lim
δ→0

inf{CP ′(ε, Z, T,F) : µ(Z) ≥ 1− δ},

CPµ(T,F) := lim
ε→0

lim
δ→0

inf{CP (ε, Z, T,F) : µ(Z) ≥ 1− δ}

= lim
ε→0

lim
δ→0

inf{CP ′(ε, Z, T,F) : µ(Z) ≥ 1− δ},

PPµ (T,F) := lim
ε→0

lim
δ→0

inf{PP (ε, Z, T,F) : µ(Z) ≥ 1− δ}

= lim
ε→0

lim
δ→0

inf{PP ′(ε, Z, T,F) : µ(Z) ≥ 1− δ}.

Pesin-Pitskel, lower capacity, upper capacity and packing pressures of µ with respect
to non-additive potential F with tempered distortion.

Katok in [9] introduced a type of measure-theoretic entropy. Recently, Wang
in [17] studied the dimension types of this entropy. Following along the line of topo-
logical pressures in Section 2, we shall introduce four dimension types of measure-
theoretic pressure in the sense of Katok.

Let Z ⊂ X be a nonempty set. Given µ ∈ M(X), n ∈ N, α ∈ R, ε > 0,
0 < δ < 1 and F satisfy tempered distortion, define

Mµ(n, α, ε, δ, T,F) = inf{
∑
i

e−αni+fni
(xi) : µ

(
∪i Bni(xi, ε)

)
≥ 1− δ}, (3.1)

where the infimum is taken over all finite or countable collections of {Bni
(xi, ε)}i

such that xi ∈ X, ni ≥ n and µ
(
∪i Bni

(xi, ε)
)
≥ 1− δ. Likewise, we define

Rµ(n, α, ε, δ, T,F) = inf{
∑
i

e−αn+fn(xi) : µ
(
∪i Bn(xi, ε)

)
≥ 1− δ}, (3.2)
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where the infimum is taken over all finite or countable collections of {Bn(xi, ε)}i
such that xi ∈ X and µ

(
∪i Bn(xi, ε)

)
≥ 1− δ.

Let

Mµ(α, ε, δ, T,F) = lim
n→∞

Mµ(n, α, ε, δ, T,F),

Mµ(α, ε, δ, T,F) = lim inf
n→∞

Rµ(n, α, ε, δ, T,F),

Mµ(α, ε, δ, T,F) = lim sup
n→∞

Rµ(n, α, ε, δ, T,F).

Define

MPµ (α, ε, δ, T,F) = inf{
∞∑
i=1

MP (α, ε, Zi, T,F) : µ
(
∪∞i=1 Zi

)
≥ 1− δ}.

Thus, when α goes from −∞ to +∞, the quantities

Mµ(α, ε, δ, T,F), Mµ(α, ε, δ, T,F),Mµ(α, ε, δ, T,F), and MPµ (α, ε, δ, T,F)

jump from +∞ to 0 at unique critical values respectively. Hence we can define the
numbers

PKBµ (ε, δ, T,F) = sup{α : Mµ(α, ε, δ, T,F) = +∞}
= inf{α : Mµ(α, ε, δ, T,F) = 0},

CPKµ (ε, δ, T, f) = sup{α : Mµ(α, ε, δ, T,F) = +∞}
= inf{α : Mµ(α, ε, δ, T,F) = 0},

CP
K

µ (ε, δ, T,F) = sup{α : Mµ(α, ε, δ, T,F) = +∞}
= inf{α : Mµ(α, ε, δ, T,F) = 0},

PKPµ (ε, δ, T,F) = sup{α : MPµ (α, ε, δ, T,F) = +∞}
= inf{α : MPµ (α, ε, δ, T,F) = 0}.

Definition 3.3. We call the following quantities

PKBµ (T,F) = lim
ε→0

lim
δ→0

PKBµ (ε, δ, T, f),

CPKµ (T,F) = lim
ε→0

lim
δ→0

CPKµ (ε, δ, T,F),

CP
K

µ (T,F) = lim
ε→0

lim
δ→0

CP
K

µ (ε, δ, T,F),

PKPµ (T,F) = lim
ε→0

lim
δ→0

PKPµ (ε, δ, T,F).

Pesin-Pitskel, lower capacity, upper capacity and packing pressures of µ in the
sense of Katok with respect to non-additive potential F with tempered distortion,
respectively.

Remark 3.1. If we replace fni(xi) in Eqs. (3.1), (2.3) by fni(xi, ε) and fni
(xi, ε)

respectively and fn(xi, ε) by fn(xi) in Eq. (3.2), we can define new functions Mµ,
Rµ, MPµ . For any ε > 0 and 0 < δ < 1, we denote the respective critical values by

PKBµ

′
(ε, δ, T,F), CPKµ

′
(ε, δ, T,F), CP

K

µ

′
(ε, δ, T,F), PKPµ

′
(ε, δ, T,F).
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Proposition 3.1. Let (X,T ) be a TDS, µ ∈M(X) and F satisfy tempered distor-
tion. Then

PKBµ (T,F) = lim
ε→0

lim
δ→0

PKBµ

′
(ε, δ, T,F),

CPKµ (T,F) = lim
ε→0

lim
δ→0

CPKµ
′
(ε, δ, T,F),

CP
K

µ (T,F) = lim
ε→0

lim
δ→0

CP
K

µ

′
(ε, δ, T,F),

PKPµ (T,F) = lim
ε→0

lim
δ→0

PKPµ

′
(ε, δ, T,F).

Proof. The proof is analogous to that of Proposition 2.1, so we omit it.

Proposition 3.2. Let (X,T ) be a TDS, µ ∈M(X) and F satisfy tempered distor-
tion. Then

PKBµ (T,F) = PBµ (T,F), CPKµ (T,F) = CPµ(T,F),

CP
K

µ (T,F) ≤ CPµ(T,F), PKPµ (T,F) = PPµ (T,F).

The proof is analogous to the proof in [18] for additive potentials, so we omit it.

4. Proofs of Theorem 1.4

First, we prove the following proposition. Then Theorem 1.4 can be the corollary
of this proposition.

Proposition 4.1. Let (X,T ) be a TDS, F satisfy tempered distortion and µ ∈
M(X), then

PBµ (T,F) = PKBµ (T,F)

= lim
ε→0

inf{PB(ε, Z, T,F) : µ(Z) = 1}

= inf{PB(Z, T,F) : µ(Z) = 1},

PPµ (T,F) = PKPµ (T,F)

= lim
ε→0

inf{PP (ε, Z, T,F) : µ(Z) = 1}

= inf{PP (Z, T,F) : µ(Z) = 1}.

Proof. First, we prove that

PBµ (T,F) = lim
ε→0

inf{PB(ε, Z, T,F) : µ(Z) = 1}.

Denote lim
ε→0

lim
δ→0

inf{PB(ε, Z, T,F) : µ(Z) > 1− δ} by C. From the definition

PBµ (T,F) = C,

we know that for any α > 0, there exists ε0 > 0 such that for any 0 < ε < ε0, it has

lim
δ→0

inf{PB(ε, Z, T,F) : µ(Z) > 1− δ} < C +
α

3
.
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Hence, for any 0 < ε < ε0, there exists δ(ε) > 0, such that for any 0 < δ < δ(ε), we
have

inf{PB(ε, Z, T,F) : µ(Z) > 1− δ} < C +
2α

3
.

Therefore for every k large enough, there exists Zk with µ(Zk) > 1− 1
k , such that

PB(ε, Zk, T,F) < C + α.

Take Z = ∪Zk. Then we have µ(Z) = 1 and by Proposition 2.2,

PB(ε, Z, T,F) = sup
k
PB(ε, Zk, T,F) ≤ C + α.

Hence we have
inf{PB(ε, Z, T,F) : µ(Z) = 1} ≤ C + α.

This implies that

lim
ε→0

inf{PB(ε, Z, T,F) : µ(Z) = 1} ≤ C = PBµ (T,F).

Furthermore, for any δ > 0,

inf{PB(ε, Z, T,F) : µ(Z) = 1} ≥ inf{PB(ε, Z, T,F) : µ(Z) > 1− δ}.

Then

inf{PB(ε, Z, T,F) : µ(Z) = 1} ≥ lim
δ→0

inf{PB(ε, Z, T,F) : µ(Z) > 1− δ}.

Hence

lim
ε→0

inf{PB(ε, Z, T,F) : µ(Z) = 1}

≥ lim
ε→0

lim
δ→0

inf{PB(ε, Z, T,F) : µ(Z) > 1− δ}

=C.

Therefore
PBµ (T,F) = lim

ε→0
inf{PB(ε, Z, T,F) : µ(Z) = 1} = C.

Next, we prove that

PBµ (T,F) = inf{PB(Z, T,F) : µ(Z) = 1}.

For any α > 0, there exists ε0 > 0 such that for any 0 < ε < ε0,

inf{PB(ε, Z, T,F) : µ(Z) = 1} < C +
α

2
.

Hence, ∃Zε ⊂ X with µ(Zε) = 1 satisfies

PB(ε, Zε, T,F) < C + α.

Take ε = 1
k for k sufficiently large. Then ∃Zk ⊂ X with µ(Zk) = 1 such that

PB(
1

k
, Zk, T,F) < C + α.
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Let Z = ∩kZk. Then we have µ(Z) = 1 and

PB(
1

k
, Z, T,F) ≤ PB(

1

k
, Zk, T,F) < C + α.

Therefore

inf{PB(Z, T,F) : µ(Z) = 1} ≤ PB(
1

k
, Z, T,F) ≤ C + α.

The arbitrariness of α implies that

inf{PB(Z, T,F) : µ(Z) = 1} ≤ PB(
1

k
, Z, T,F) ≤ C.

On the other hand, for every Z ⊂ X with µ(Z) = 1, we have

PBµ (T,F) = PKBµ (T,F) ≤ PB(Z, T,F).

It implies

PBµ (T,F) = PKBµ (T,F) = inf{PB(Z, T,F) : µ(Z) = 1}.

Analogously, we can prove the following result.

PPµ (T,F) = PKPµ (T,F)

= lim
ε→0

inf{PP (ε, Z, T,F) : µ(Z) = 1}

= inf{PP (Z, T,F) : µ(Z) = 1}.

These complete the proof of Proposition 4.1.

5. Application to dimension estimate of measures
supported on average conformal repellers.

In this section, we first introduce the definition of average conformal repellers. Let
M be an d-dimensional C∞ Riemannian manifold with Riemannian measure ν, T
be a C1 map from M to itself. Let Λ ⊂M be an T -invariant compact subset, where
T invariance means TΛ = Λ. Assume that T is expanding on Λ, i.e., there exist
C > 0, κ > 1, such that for any x ∈ Λ, n ≥ 1,

‖DTn(x)u‖ ≥ Cκn‖u‖, ∀u ∈ TxM.

Without loss generality we can take C = 1.
Let E(Λ, T ) denote the all ergodic invariant measures supported on Λ. By the

Oseledec multiplicative ergodic theorem, for any µ ∈ E(Λ, T ), we can define Lya-
punov exponents λ1(µ) ≤ λ2(µ) ≤ · · · ≤ λd(µ) . Let now µ be an T -invariant
measure on Λ. By work of Brin etc in [5], for µ-almost every x ∈ Λ there exists the
limit

hµ(x) = lim
ε→0

lim
n→∞

− 1

n
logµ(Bn(x, ε)).

The number hµ(x) is called the local entropy of µ at the point x.
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Definition 5.1. An invariant repeller is called average conformal if for any µ ∈
E(Λ, T ), λ1(µ) = λ2(µ) = · · · = λd(µ) > 0.

It is obvious that a conformal repeller is an average conformal repeller, but
reverse is not true.

Proposition 5.1. If Λ is an average conformal repeller, then

lim
n→∞

1

n
(log |DTn(x)| − logm(DTn(x))) = 0

uniformly on Λ.

Proof. The proof can be found in [2].
In fact, we always have

m(DTn(x)) ≤ (|det(DTn(x))|) 1
d ≤ |DTn(x)|.

Let f(x) = log(|det(DT (x))|) 1
d and F = {fn(x) = log |DTn(x)|}. If Λ is an aver-

age conformal repeller, then by proposition 5.1, we know that F is a sequence of
subadditive continuous potentials with tempered distortion and

PB(Z, T,−tf(x)) = PB(Z, T,−tF).

In [6], the author gave the dimension estimate for every set of an average conformal
repeller.

Proposition 5.2. Let M be a C∞ Riemannian manifold and T : M →M be a C1

map. Suppose Λ ⊂M is an average conformal repeller. Then for every set Z ⊂ Λ,
dimHZ = t∗, where t∗ is the unique solution of equation PB(Z, T,−tf(x)) = 0 in
[0, d].

Next, we give the proof of Theorem 1.5.

The proof of Theorem 1.5. From the definition, we have dimHµ = inf{dimHZ :
µ(Z) = 1}. Theorem 1.4 tells us that

PBµ (T,−tf(x)) = inf{PB(Z, T,−tf(x)) : µ(Z) = 1}.

Suppose that t∗ is the unique solution of equation PBµ (T,−tf(x)) = 0 in [0, d]. Then
for every set Z with µ(Z) = 1, it has

PB(Z, T,−t∗f(x)) ≥ 0.

Thus dimHZ ≥ t∗, and hence

t∗ ≤ inf{dimHZ : µ(Z) = 1}.

This implies that dimHµ ≥ t∗.
On the other hand, for every t > t∗, we have PBµ (T,−tf(x)) < 0. Then there

exists subset Z with µ(Z) = 1 such that

PB(Z, T,−tf(x)) < 0.

It means dimHZ ≤ t, and hence

inf{dimHZ : µ(Z) = 1} ≤ t.
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Therefore inf{dimHZ : µ(Z) = 1} ≤ t∗. Thus

t∗ ≥ dimHµ.

So we obtain

dimHµ = t∗.

This completes the proof of Theorem 1.5.

Acknowledgements

The authors would like to thank Prof. Yongluo Cao for his suggestions.

References

[1] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans-
actions of the American Mathematical Society, 1965, 114(2), 309–319.

[2] J. Ban, Y. Cao and H. Hu, The dimension of a non-conformal repeller and an
average conformal repeller, Trans. Amer. Math. Soc., 2010, 362(2), 727–751.

[3] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans-
actions of the American Mathematical Society, 1971, 153, 401–414.

[4] R. Bowen, Topological entropy for noncompact sets, Transactions of the Amer-
ican Mathematical Society, 1973, 184, 125–136.

[5] M. Brin and A. Katok, On Local Entropy, in Geometric Dynamics (Rio De
Janeiro, 1981), J. Palis ed., Lect. Notes in Math. 1007, Springer, Berlin, 1983.

[6] Y. Cao, Dimension spectrum of asymptotically additive potentials for C1 aver-
age conformal repellers, Nonlinearity, 2013, 26, 2441–2468.

[7] E. I. Dinaburg, A correlation between topological entropy and metric entropy,
Dokl. Akad. Nauk SSSR, 1970, 190, 19–22.

[8] D. J. Feng and W. Huang, Variational principles for topological entropies of
subsets, Journal of Functional Analysis, 2012, 263(8), 2228–2254.

[9] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomor-
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