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Abstract In this paper, the dynamical behaviors of a stochastic heroin epi-
demic model with Lévy noises is investigated. First, we prove that this system
has a unique global positive solution. Second, we derive the conditions of
persistence in the mean and asymptotic stability in mean square using the
Lyapunov and inequalities technique, and establish a criterion for positive re-
currence. The results show that asymptotic behaviors are closely related to
the Lévy measure. Finally, numerical simulations are used to illustrate the
theoretical results.
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rence, Lévy noises.

MSC(2010) 60H10, 60J75, 34E10.

1. Introduction

Heroin is an illegal, highly addictive drug derived from morphine, a naturally oc-
curring substance extracted from the seed pods of certain varieties of poppy plants
in [1]. Heroin is both the most abused and the most rapidly acting of the opiates,
and the abuse of heroin has already become an increasingly global social problem.
As of the end of 2019, approximately 270 million people worldide took drugs every
year, and nearly 600,000 people died from drug abuse in [2]. It is easy to see that
the prevalence of drug abuse is a problem cannot be neglected and needs to be
solved urgently.

Over the past several decades, many mathematical models have been built to
assist policy makers in preventing drug abuse availability and treatment resources.
For example, in [19], Macktintosh and Stewart presented an exponential model
illustrating how the use of heroin spread in an epidemic manner. Subsequently,
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White and Comiskey in [30] proposed an ODE model for heroin addiction as follows:

dS(t)

dt
= Λ− β1U1(t)S(t)

N(t)
− µS(t),

dU1(t)

dt
=
β1U1(t)S(t)

N(t)
+
β3U1(t)U2(t)

N(t)
− (p+ µ+ δ1)U1(t),

dU2(t)

dt
= pU1(t)− β3U1(t)U2(t)

N(t)
− (µ+ δ2)U2(t).

(1.1)

Muroya et al. in [24] extended their heroin model by introducing a linear term

σU2(t) to replace the nonlinear term β3U1(t)U2(t)
N(t) , indicating that the global dy-

namics of the extended heroin model depend on the basic reproduction number.
However, in reality, people who become drug addicts are not intricately tied by one
drug use, but by at least two or more repeated uses. Based on this fact, Ma et al.
in [18] further considered the nonlinear incidence rate βS(t)U2

1 (t) and obtained the
following model

dS(t)

dt
= b− βS(t)U2

1 (t)− dS(t) + δU2(t),

dU1(t)

dt
= βS(t)U2

1 (t)− αU1(t) + σU2(t)− dU1(t),

dU2(t)

dt
= αU1(t)− σU2(t)− (d+ δ)U2(t),

(1.2)

where S(t), U1(t), U2(t) represent the number of susceptible individuals, drug users
not undergoing treatment, and drug users undergoing treatment at time t, respec-
tively. b denotes the recruitment rate of individuals in the general population en-
tering the susceptible population, and d is the natural death rate of the population.
βU2

1 (t) denotes the infection force, α is the proportion of drug users who enter treat-
ment, σ is the probability of outflow of individuals from drug users in treatment, and
δ denotes the probability of drug users becoming the susceptible population again
through treatment. For this model, the authors performed a detailed mathematical
analysis and investigated a wide range of dynamical behaviors from saddle-node
bifurcation to Hopf bifurcation and Bogdanov-Takens bifurcation of codimension 2.
In addition, there is a non-exhaustive list of papers on the epidemic dynamics of
deterministic heroin models (see e.g. [7, 23,25,26] references therein).

To the best of our knowledge, drug abusers are inevitably affected by envi-
ronmental noise, because physical health, education, vocational opportunities, and
many other physical factors embedded in society are usually unpredictable. Hence,
stochastic heroin models may be more realistic because the varying environmental
effects cannot be neglected. Wei et al. in [29] proposed a stochastic heroin popu-
lation model under non-degenerate conditions, while Liu et al. in [16] also studied
the dynamics of a stochastic heroin population model. In [14], Liu and Wang estab-
lished a stochastic non-autonomous heroin model and obtained sufficient conditions
for extinction and permanence in mean. Subsequently, Jovanović and Vujović in [11]
provided stability for the stochastic heroin model with two disdtributed delays. Wei
et al. in [28] investigated a stochastic heroin population model with standard in-
cidence rates between distinct patches. In addition, many authors have studied
the effect of continuous environmental fluctuations on epidemic models (for exam-
ple [5,6,9,10,12,15,17,21,27,32,35] references therein). However, stochastic heroin
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models with Brownian motion alone can not describe massive diseases such as HIV
and SARS may break the continuity of solutions, such as [3,8,13,22,31,33,34,36] and
the references therein. To explain these phenomena, introducing a discontinuous
Lévy noise into the heroin models provides a feasible and realistic model.

Note that people who become drug addicts are intricately tied by at least two
or more repeated uses, and the infection force may suffer sudden environmental
perturbations, such as earthquakes, hurricanes, SARS, COVID-19, etc. Based on
this fact, we introduce random perturbations into system (1.2) by replacing the
coefficient β of the infection force with

βdt→ βdt+ γdB(t) +

∫
Z

H(z)Ñq(dt, dz),

where B(t) denotes Brownian motion, Ñq(dt, dz) denotes a compensated Poisson
random measure corresponding to a Poisson measure Nq(dt, dz) with characteristic
measure dt ν(dz) on the product space [0,∞) × Z and ν is a Lévy measure with
ν(Z) <∞. Meanwhile, by taking the change in the variables,

S =
b

d
S∗, U1 =

b

d
U∗1 , U2 =

b

d
U∗2 , β =

(
b

d

)2

β∗

and still denote (S∗, U∗1 , U
∗
2 ) = (S,U1, U2), β∗ = β. Therefore, the heroin epidemic

system (1.2) becomes the following stochastic differential equation driven by Lévy
noises:

dS(t) =(d− βS(t)U2
1 (t)− dS(t) + δU2(t))dt

− γS(t)U2
1 (t)dB(t)−

∫
Z

H(z)S(t−)U2
1 (t−)Ñq(dt, dz),

dU1(t) =(βS(t)U2
1 (t)− αU1(t) + σU2(t)− dU1(t))dt

+ γS(t)U2
1 (t)dB(t) +

∫
Z

H(z)S(t−)U2
1 (t−)Ñq(dt, dz),

dU2(t) =(αU1(t)− σU2(t)− (d+ δ)U2(t))dt,

(1.3)

where x(t−) = lim
s↑t

x(s), and further assume that B(t) and Nq(dt, dz) are indepen-

dent.
The remainder of this paper is organized as follows. In Sec. 2, some necessary

preliminaries are recalled, and the theorem concerning the existence-uniqueness
positive solution of the stochastic heroin epidemic model with Lévy noises is estab-
lished. In Sec. 3, the persistence in the mean and the asymptotic stability in mean
square of system (1.3) are further verified. In Sec. 4, the sufficient condition for
positive recurrence to system is established. In Sec. 5, the numerical simulations
are performed to illustrate the presented results.

2. Some preliminaries and existence-uniqueness of
the positive solution

This section recalls several basic concepts and notations that are required through-
out the paper.
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Let (Ω,F , P ) be a complete probability space with the filtration {Ft}t≥0, which
satisfies the usual conditions (it is right continuous, whereas F0 contains all P -null
sets). Consider the following 3-dimensional stochastic differential equations with
Lévy noises:

dX(t) = a(X(t))dt+ b(X(t))dB(t) +

∫
Z

c(X(t−), z)Ñq(dt, dz), (2.1)

where X(0) ∈ R3. Assuming h ∈ C2(R3), the infinitesimal generator of processes
X(t) to (2.1) is

Lf(X) =

3∑
i=1

ai(X)
∂

∂Xi
f(X) +

1

2

3∑
i,j=1

[bT (X)b(X)]ij
∂2

∂Xi∂Xj
h(X)

+

∫
Z

[
h(c̃(X, z))− h(X)−

3∑
i=1

ci(X, z)
∂

∂Xi
h(X)

]
ν(dz),

where c̃(X, z) = X + c(X, z), T denotes transiposition. Meanwhile, define the
subsets

R3
+ = {X ∈ R3 : Xi > 0, i = 1, 2, 3}, Λ = {X ∈ R3

+, X1 +X2 +X3 = 1},

and denote X(t) = (S(t), U1(t), U2(t)). In addition, 〈h(t)〉 denotes the mean value

of the function h(t) on [0,∞), that is, 〈h(t)〉 = 1
t

∫ t
0
h(s)ds.

Remark 2.1. Add all equations in system (1.3), we have

d(S(t) + U1(t) + U2(t)) = [d− d(S(t) + U1(t) + U2(t))]dt,

therefore, lim
t→∞

(S(t) + U1(t) + U2(t)) = 1. From [17], it is natural to assume that

the population is constant and study the dynamical behavior of this system on Λ.
Moreover, the solution of system (1.3) has the following properties

lim sup
t→∞

logS(t)

t
≤ 0, lim sup

t→∞

logU1(t)

t
≤ 0 and lim sup

t→∞

logU2(t)

t
≤ 0.

The following is about the existence-uniqueness of the global solution.

Theorem 2.1. Assume that (H1) : |H(z)| ≤ ω < 1, for all z ∈ Z. Then there
exists a unique positive solution (S(t), U1(t), U2(t)) of system (1.3) for any initial
value (S(0), U1(0), U2(0)) ∈ Λ, t ≥ 0 and the solution (S(t), U1(t), U2(t)) ∈ Λ almost
surely.

Proof. Note that the coefficients of system (1.3) is locally Lipschitz continuous,
and there exists a unique local solution (S(t), U1(t), U2(t)) for any initial value
(S(0), U1(0), U2(0)) ∈ Λ and t ∈ [0, τe], where τe is the explosion time (see [20]).
To complete the proof, it is necessary to prove τ∞ = ∞, a.s. Namely, by [21], we
only need to construct a nonnegative C2-function V which satisfies LV ≤ L1, where
L1 > 0 is a constant. Define a C2-function V : Λ→ R+ ∪ {∞} as follows:

V (S,U1, U2) = (S − 1− logS) + (U1 − 1− logU1) + (U2 − 1− logU2),
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and it is easy to know that V (S,U1, U2) ≥ 0 for any (S,U1, U2) ∈ Λ. Applying Itô’s
formula to (1.3), we obtain

dV =LV dt−
(

1− 1

S(t)

)
γS(t)U2

1 (t)dB(t) +

(
1− 1

U1(t)

)
γS(t)U2

1 (t)dB(t)

+

∫
Z

[
S(t−)−H(z)S(t−)U2

1 (t−)− 1− log(S(t−)−H(z)S(t−)U2
1 (t−))

−(S(t−)− 1− logS(t−))
]
Ñq(dt, dz) +

∫
Z

[
U1(t−) +H(z)S(t−)U2

1 (t−)− 1

− log(U1(t−) +H(z)S(t−)U2
1 (t−))− (U1(t−)− 1− logU1(t−))

]
Ñq(dt, dz)

=LV dt+ U1(t)(U1(t)− γS(t))dB(t)

−
∫
Z

[log(1−H(z)U2
1 (t−)) + log(1 +H(z)S(t−)U1(t−))]Ñq(dt, dz),

where LV : Λ→ R is defined by

LV

=

(
1− 1

S

)
(d− βSU2

1 − dS + δU2) +
1

2
γ2U4

1 +

∫
Z

[
S −H(z)SU2

1 − 1

− log(S −H(z)SU2
1 )− (S − 1− logS) +H(z)SU2

1

(
1− 1

S

)]
ν(dz)

+

(
1− 1

U1

)
(βSU2

1 + σU2 − (α+ d)U1) +
1

2
γ2S2U2

1 +

∫
Z

[
U1 +H(z)SU2

1

−1− ln(U1 +H(z)SU2
1 )− (U1 − 1− logU1)−H(z)SU2

1

(
1− 1

U1

)]
ν(dz)

:=I1 + I2 + I3,

in which

I1 =α+ σ + δ + 4d− d(S + U1 + U2)− d+ δU2

S

−σU2

U1
− αU1

U2
+
γ2

2
U2

1 (U2
1 + S2),

I2 =−
∫
Z

[H(z)U2
1 + log(1−H(z)U2

1 )]ν(dz),

I3 =−
∫
Z

[log(1 +H(z)SU1)−H(z)SU1]ν(dz).

Note that (S,U1, U2) ∈ Λ, thereby

I1 ≤α+ σ + δ + 4d− σU2

U1
− αU1

U2
+ β + γ2

≤α+ σ + δ + 4d+ β + γ2 − 2
√
σα. (2.2)

Then by (H1), we have

1−H(z)U2
1 > 0, and 1 +H(z)SU1 > 0, for all z ∈ Z.
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In addition, Taylor formula and (H1) imply that

I2 ≤−
∫
Z

[
H(z)U2

1 −H(z)U2
1 −

H2(z)U4
1

2(1− θH(z)U2
1 )2

]
ν(dz)

=

∫
Z

H2(z)U4
1

2(1− θH(z)U2
1 )2

ν(dz) (2.3)

≤ ω2

2(1− ω)2
ν(Z),

where θ ∈ (0, 1) is an arbitrary number.
Similarly, there exist an arbitrary number θ ∈ (0, 1) such that

I3 ≤−
∫
Z

[
H(z)SU1 −H(z)SU1 −

H2(z)S2U2
1

2(1 + θH(z)SU1)2

]
ν(dz)

=

∫
Z

H2(z)S2U2
1

2(1 + θH(z)SU1)2
ν(dz) (2.4)

≤ ω2

2(1− ω)2
ν(Z).

Therefore, according to (2.2)-(2.4), we get

LV ≤α+ σ + δ + 4d+ β + γ2 − 2
√
σα+

ω2

(1− ω)2
ν(Z) := L1.

Arguing similarly as in [21], we obtain the desired assertion.

Remark 2.2. Theorem 2.1 ensures that the solution will remain in Λ, that is,
the system has a unique positive solution and is biologically meaningful. This nice
property provides us with a great opportunity to discuss how the solutions vary in
Λ.

3. Persistence in the mean and asymptotic stability
in mean square

In this section, we describe the dynamical behavior of system (1.3). Suppose that

L2 =
∫
Z
H(z)ν(dz)− β − γ2

2 > 0, for simplicity, we define the following:

RS0 =
α+ d+ σ + δ

(d+ σ + δ)L2
[δ − log(1− ω)ν(Z)]

1
2 .

Theorem 3.1. Under condition (H1), let (S(t), U1(t), U2(t)) be the solution of sys-
tem (1.3) with initial value (S(0), U1(0), U2(0)) ∈ Λ. Suppose further that (H2):
RS0 > 1, then system (1.3) is persistent in the mean, that is,

lim inf
t→∞

1

t

∫ t

0

S(s)ds > 0, a.s.

Proof. Under conditions (H1) and (S(0), U1(0), U2(0)) ∈ Λ, Theorem 2.1 im-
plies (S(t), U1(t), U2(t)) ∈ Λ. Combining d(S(t)) and d(U1(t)) in system (1.3) and
U2(t) = 1− S(t)− U1(t) yields

d(S(t) + U1(t)) = [d+ σ + δ − (d+ σ + δ)S(t)− (α+ d+ σ + δ)U1(t)]dt. (3.1)
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Integrating (3.1) from 0 to t, it is easy to verify that

〈U1(t)〉 =
d+ σ + δ

α+ d+ σ + δ
− d+ σ + δ

α+ d+ σ + δ
〈S(t)〉+ ϕ(t), (3.2)

where

ϕ(t) = − 1

α+ d+ σ + δ

[
S(t)− S(0)

t
+
U1(t)− U1(0)

t

]
which satisfies

lim
t→∞

ϕ(t) = 0. (3.3)

Applying Itô’s formula to logS(t) and U2(t) = 1− S(t)− U1(t) gives

d(logS(t)) =
[ d

S(t)
+

δ

S(t)
(1− U1(t))− βU2

1 (t)− (d+ δ)− γ2

2
U4

1 (t)

+

∫
Z

(log(1−H(z)U2
1 (t)) +H(z)U2

1 (t))ν(dz)
]
dt− γU2

1 (t)dB(t)

+

∫
Z

log(1−H(z)U2
1 (t−))Ñq(dt, dz).

Then by (H1) and the comparison theorem, we have

d(logS(t)) ≥
[
− δU1(t)− βU2

1 (t)− γ2

2
U4

1 (t) +

∫
Z

H(z)ν(dz)U2
1 (t)

+ log(1− ω)ν(Z)
]
dt− γU2

1 (t)dB(t)

+

∫
Z

log(1−H(z)U2
1 (t−))Ñq(dt, dz). (3.4)

Integrating from 0 to t and dividing by t on both sides of (3.4) yields

logS(t)− logS(0)

t

≥−δ〈U1(t)〉 − β〈U2
1 (t)〉 − γ2

2
〈U1(t)4〉+ log(1− ω)ν(Z)

+

∫
Z

H(z)ν(dz)〈U2
1 (t)〉+

M1(t)

t
+
M2(t)

t

≥−δ + log(1− ω)ν(Z) + L2〈U1(t)〉2 +
M1(t)

t
+
M2(t)

t
, (3.5)

where

M1(t) =−
∫ t

0

γU2
1 (s)dB(s),M2(t) =

∫ t

0

∫
Z

log(1−H(z)U2
1 (s−))Ñq(ds, dz).

Substituting (3.3) into (3.5), we obtain

logS(t)− logS(0)

t
≥−δ + log(1− ω)ν(Z) +

M1(t)

t
+
M2(t)

t

+L2

[
d+ σ + δ

α+ d+ σ + δ
− d+ σ + δ

α+ d+ σ + δ
〈S(t)〉+ ϕ(t)

]2

. (3.6)
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According to Remark 2.1, (3.6) can be written as

〈S(t)〉 ≥α+ d+ σ + δ

(d+ σ + δ)L2

[ logS(t)− logS(0)

t
+ δ − log(1− ω)ν(Z)

−M1(t)

t
− M2(t)

t

] 1
2 − 1− α+ d+ σ + δ

d+ σ + δ
ϕ(t). (3.7)

Note that the quadratic variation of Mi(t), i = 1, 2 can be calculated by

〈M1,M1〉t =

∫ t

0

γ2U4
1 (s)ds ≤ γ2t,

〈M2,M2〉t =

∫ t

0

∫
Z

[
log(1−H(z)U2

1 (s−))
]2
ν(dz)ds

≤max{[log(1− ω)]2, log(1 + ω)]2}t.

According to the strong law of large numbers in [13], we get

lim
t→∞

Mi(t)

t
= 0, i = 1, 2, a.s. (3.8)

Taking the inferior limit on both sides of (3.7) and combining (3.4) and (3.8), (H2)
yields

lim inf
t→∞

〈S(t)〉 ≥α+ d+ σ + δ

(d+ σ + δ)L2
[δ − log(1− ω)ν(Z)]

1
2 − 1 > 0, a.s.,

implies system (1.3) is persistent in the mean. This completes this proof.

Remark 3.1. According to Theorem 3.1, if the coefficient of the infection force β

and the diffusion coefficient γ satisfy L2 =
∫
Z
H(z)ν(dz)− β − γ2

2 > 0, and further
the proportion of drug users who enter treatment α and the probability of drug
users becoming the susceptible population again through treatment δ make RS0 > 1
hold, we obtain the number of susceptible individuals S(t) will eventually persist in
the mean, which implies that the heroin drug is persistent in the mean affected by
the Lévy measure.

Moreover, the following theorem obtains asymptotic stability in mean square of
system (1.3).

Theorem 3.2. If the assumption (H1) is satisfied, and further assume that (H3):
β > max{ 1

2

(
γ2 +

∫
Z
H2(z)ν(dz)

)
, δ} and d + δ > 1

2 . Then there exist positive
constants L3 and L4 such that the solution X(t) of system (1.3) is asymptotically
stable in mean square, that is,

E|X(t)|2 ≤ L3 + L4|X(0)|2e−t.

Proof. Define a C2-function V : R3
+ → R+ ∪ {+∞} by

V (X) = V (S,U1, U2) = l0S
2 + (U1 + U2)2,

where l0 = β−δ
δ > 0. Obviously

(l0 + 1)|X|2 ≤ V (X) ≤ (l0 + 2)|X|2. (3.9)
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Applying Itô’s formula, we obtain

E(etV (X(t))) = V (X(0)) + E
∫ t

0

es[V (X(s)) + LV (X(s))]ds,

where

LV (X) =2l0S
[
d− βSU2

1 − dS + δU2

]
+ (l0 + 1)(γSU2

1 )2

+2(U1 + U2)
[
βSU2

1 − dU1 − (d+ δ)U2

]
+ (l0 + 1)

∫
Z

H2(z)S2U4
1 ν(dz).

Hence

LV (X) + V (X) =2l0S
[
d− βSU2

1 − dS + δ(1− S − U1)
]

+ (l0 + 1)(γSU2
1 )2

+2(1− S)
[
βSU2

1 − dU1 − (d+ δ)(1− S − U1)
]

+(l0 + 1)

∫
Z

H2(z)S2U4
1 ν(dz) + l0S

2 + (U1 + U2)2

=

(
γ2 +

∫
Z

H2(z)ν(dz)

)
(l0 + 1)S2U4

1 − 2β(l0 + 1)S2U2
1 + 2βSU2

1

−[2(d+ δ)− 1]S2 − 2δ(l0 + 1)SU1 + 2[(d+ δ)(l0 + 2)− 1]S

+2dU1 + 1− 2(d+ δ).

Moreover, we have by (S(0), U1(0), U2(0)) ∈ Λ

LV (X) + V (X) ≤−
(

2β − γ2 −
∫
Z

H2(z)ν(dz)

)
(l0 + 1)S2U2

1

−2[δ(l0 + 1)− β]SU1 + 2[(d+ δ)(l0 + 2)− 1]S

−[2(d+ δ)− 1]S2 + 2dU1 + 1− 2(d+ δ)

≤−
(

2β − γ2 −
∫
Z

H2(z)ν(dz)

)
β

δ
S2U2

1 − [2(d+ δ)− 1]S2

+2

[
(d+ δ)(β + δ)

δ
− 1

]
S + 2dU1 + 1− 2(d+ δ)

=: R(X).

Furthermore, (H3) implies R(X) ≤ L̂3, where L̂3 is a positive constant independent
of X. Hence

E(etV (X(t))) ≤ V (X(0)) + E
∫ t

0

L̂3e
sds = V (X(0)) + L̂3(et − 1). (3.10)

Combining (3.9) and (3.10), we have

E|X(t)|2 ≤ δ

β
EV (X(t)) ≤ δ

β
[e−tV (X(0)) + L̂3(1− e−t)] ≤ L4|X(0)|2e−t + L3,

where L3 = δ
β L̂3 and L4 = β+δ

β . This completes the proof.

Remark 3.2. When the natural death rate of the population d and the prob-
ability of drug users becoming the susceptible population again through treat-
ment δ satisfy d + δ > 1 and further the coefficient of the infection force β make
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β > max{ 1
2

(
γ2 +

∫
Z
H2(z)ν(dz)

)
, δ} hold, from Theorem 3.2 and Chebyshev’s in-

equality, it easily follows that the number of drug users of system (1.3) is stable
in probability in the large, i.e., for any X(0), ε > 0 and ζ > 0, there exists a
T = T (X(0), ε, ζ) such that P (|X(t, T,X(0))| > ε) < ζ for all t > T .

4. Positive recurrence

In this section, we establish a domain D ⊂ Λ, which is positive recurrent for pro-
cesses (S(t), U1(t), U2(t)).

Definition 4.1. Process X(t−, x) with X(0) = x is recurrent with respect to D,
if for any x /∈ D, P(τD <∞) = 1, where τD is the hitting time of D for the process
X(t−, x), that is,

τD = inf{t > 0, X(t−, x) ∈ D}.

Process X(t−, x) is said to be positive recurrent with respect to D if E(τD) < ∞
for any x /∈ D.

For the simplicity of discussion, define

RS1 =
α

(α+ d− log(1− ω)ν(Z))(σ + d+ δ)
.

Theorem 4.1. Under condition (H1), let (S(t), U1(t), U2(t)) be the solution of sys-
tem (1.3) with initial value (S(0), U1(0), U2(0)) ∈ Λ. Suppose further that (H4):
RS1 > 1 and

∫
Z
H(z)ν(dz) > β, then system (1.3) is positive recurrent with respect

to the domain

D = {(S,U1, U2) ∈ Λ, S ≥ ε, U1 ≥ ε, U2 ≥ ε},

where ε > 0 is a sufficiently small constant.

Proof. Define a nonnegative C2-function V : Λ→ R+ ∪ {∞} as follows

V (S,U1, U2) = L(−l1 logU1 − l2 logU2)− logS − logU2,

where l1 = 1
α+d−log(1−ω)ν(Z) , l2 = 1

σ+d+δ and L > 0 satisfies the following condition

Lλ− σ − 2d− δ − β − γ2

2
+

∫
Z

H(z)ν(dz) + log(1− ω)ν(Z) > 2 (4.1)

in which

λ = 2

[(
α

(α+ d− log(1− ω)ν(Z))(σ + d+ δ)

) 1
2

− 1

]
=
[
(RS1 )

1
2 − 1

]
> 0. (4.2)

Let V (S,U1, U2) = LV1(U1, U2)+V2(S,U2), where V1(U1, U2)=−l1 logU1−l2 logU2,
V2(S,U2) = − logS − logU2. Making use of Itô’s formula to − logS(t) gives

d(− logS(t))

=− 1

S(t)

[ (
d− βS(t)U2

1 (t)− dS(t) + δU2(t)
)
dt− γS(t)U2

1 (t)dB(t)
]
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+
1

2S2(t)
(γS(t)U2

1 (t))2dt+

∫
Z

[
− log(S(t−)−H(z)S(t−)U2

1 (t−))

+ logS(t−) +
1

S(t)
H(z)S(t−)U2

1 (t−)
]
ν(dz)dt

+

∫
Z

[
− log(S(t−)−H(z)S(t−)U2

1 (t−)) + logS(t−)
]
Ñq(dt, dz)

=L(− logS(t))dt+ γU2
1 (t)dB(t)−

∫
Z

[log(1−H(z)U2
1 (t−))]Ñq(dt, dz),

where

L(− logS) =− d
S
− δU2

S
+ βU2

1 + d+
γ2

2
U4

1

−
∫
Z

[
log(1−H(z)U2

1 ) +H(z)U2
1

]
ν(dz).

According to the proof of Theorem 3.1, we obtain by (S(0), U1(0), U2(0)) ∈ Λ and
(H1)

L(− logS) ≤− d
S
− δU2

S
+ βU2

1 + d+
γ2

2
U4

1

− log(1− ω)ν(Z)−
∫
Z

H(z)ν(dz)U2
1 . (4.3)

Similar to L(− logS), applying Itô’s formula to L(− logU1) gets

L(− logU1) ≤−βSU1 + α+ d− U2

U1
+
γ2

2
S2U2

1

− log(1− ω)ν(Z) +

∫
Z

H(z)ν(dz)SU1. (4.4)

Therefore, combining (4.3)-(4.4) obtains

L(V1(U1, U2)) ≤l1
(
− βSU1 + α+ d− U2

U1
+
γ2

2
S2U2

1 − log(1− ω)ν(Z)

+

∫
Z

H(z)ν(dz)SU1

)
+ l2

(
−αU1

U2
+ σ + d+ δ

)
=−

(
l1
U2

U1
+ l2

αU1

U2

)
+ l1(α+ d− log(1− ω)ν(Z))

+l2(σ + d+ δ) + l1

(
−βSU1 +

γ2

2
S2U2

1 +

∫
Z

H(z)ν(dz)SU1

)
≤−2

√
αl1l2 + l1(α+ d− log(1− ω)ν(Z))

+l2(σ + d+ δ) + l1

[(∫
Z

H(z)ν(dz)− β
)
SU1 +

γ2

2
S2U2

1

]
.

Moreover, (H3) implies

L(V1(U1, U2)) ≤−λ+ l1

[(∫
Z

H(z)ν(dz)− β
)
U1 +

γ2

2
U2

1

]
. (4.5)



A stochastic heroin epidemic model 1071

In addition, similar to the proof of Theorem 3.1, we have by (S(0), U1(0), U2(0)) ∈ Λ
and (H1)

L(V2(S,U2)) ≤− d
S
− αU1

U2
+ σ + 2d+ δ

+β +
γ2

2
−
∫
Z

H(z)ν(dz)− log(1− ω)ν(Z). (4.6)

Combining (4.5) and (4.6), we obtain

L(V (S,U1, U2))

≤Ll1
[(∫

Z

H(z)ν(dz)− β
)
U1 +

γ2

2
U2

1

]
− Lλ− d

S
− αU1

U2

+σ + 2d+ δ + β +
γ2

2
−
∫
Z

H(z)ν(dz)− log(1− ω)ν(Z). (4.7)

Next, define a compact subset

D̂ = {(S,U1, U2) ∈ Λ : S ≥ ε1, U1 ≥ ε2, U2 ≥ ε3},

where εi > 0, i = 1, 2, 3 is a sufficiently small constant such the following conditions
hold

− d

ε1
+ F ≤ −1, (4.8)

Ll1

[(∫
Z

H(z)ν(dz)− β
)
ε1 +

γ2

2
ε21

]
≤ 1, (4.9)

− σ
ε1

+ F ≤ −1, (4.10)

where

F = sup
(S,U1,U2)∈Λ

{
Ll1

[(∫
Z

H(z)ν(dz)− β
)
U1 +

γ2

2
U2

1

]
+ σ + 2d

+δ + β +
γ2

2
−
∫
Z

H(z)ν(dz)− log(1− ω)ν(Z)
}
. (4.11)

For convenience, one divides Λ\D̂ into three domains as following

D1 = {(S,U1, U2) ∈ Λ : 0 < S < ε1}, D2 = {(S,U1, U2) ∈ Λ : 0 < U1 < ε2, S ≥ ε1},
D3 = {(S,U1, U2) ∈ Λ : 0 < U2 < ε3, S ≥ ε1, U1 ≥ ε2}.

Case 1. If (S,U1, U2) ∈ D1, we have by (26) and (4.11)

L(V (S,U1, U2)) ≤Ll1
[(∫

Z

H(z)ν(dz)− β
)
U1 +

γ2

2
U2

1

]
− Lλ− d

S

+σ + 2d+ δ + β +
γ2

2
−
∫
Z

H(z)ν(dz)− log(1− ω)ν(Z)

≤− d

ε1
+ F ≤ −1, for any (S,U1, U2) ∈ D1. (4.12)
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Case 2. If (S,U1, U2) ∈ D2, it is easy to see that

L(V (S,U1, U2)) ≤Ll1
[(∫

Z

H(z)ν(dz)− β
)
U1 +

γ2

2
U2

1

]
− Lλ

+σ + 2d+ δ + β +
γ2

2
−
∫
Z

H(z)ν(dz)− log(1− ω)ν(Z).

Choosing ε2 = ε1, (4.1) and (26) imply

L(V (S,U1, U2)) ≤ −1, for any (S,U1, U2) ∈ D2. (4.13)

Case 3. If (S,U1, U2) ∈ D3, we get

L(V (S,U1, U2)) ≤Ll1
[(∫

Z

H(z)ν(dz)− β
)
U1 +

γ2

2
U2

1

]
− Lλ− αU1

U2

+σ + 2d+ δ + β +
γ2

2
−
∫
Z

H(z)ν(dz)− log(1− ω)ν(Z).

Choosing ε3 = ε22 = ε21, (27) and (4.11) imply

L(V (S,U1, U2)) ≤ − σ
ε1

+ F ≤ −1, for any (S,U1, U2) ∈ D3. (4.14)

Moreover, from (4.12)-(4.14), for a sufficiently small ε = ε1, it has D = D̂ and we
further obtain

L(V (S,U1, U2)) ≤ −1, for any (S,U1, U2) ∈ Λ\D. (4.15)

Now let (S(0), U1(0), U2(0)) ∈ Λ\D, then Itô’s formula and (4.15) imply

EV (S(τD), U1(τD), U2(τD))− V (S(0), U1(0), U2(0))

=E
∫ τD

0

LV (S(t), U1(t), U2(t))dt (4.16)

≤− E(τD).

Therefore, it is easy to get

E(τD) ≤ V (S(0), U1(0), U2(0)).

This completes the proof.

Remark 4.1. As positive recurrence can provide a better description and display
of the persistence of system (1.3), it allows us to have a deeper understanding of how
environmental noise affects the steady-state for persistence. According to Theorem
4.1, if the proportion of drug users who enter treatment α, the natural death rate of
the population d, the probability of drug users becoming the susceptible population
again through treatment δ and the probability of outflow of individuals from drug
users in treatment σ make RS1 > 1 hold, it obtains that the heroin drug users of
system (1.3).
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Table 1. Detailed list of parameter values

Parameters Units Values References

α: the proportion of drug users who enter treatment day−1 0.15 [4]

σ:
the probability of outflow of individuals from

drug users in treatmen
day−1 0.45 [4]

b:
the recruitment rate of individuals in the

general population entering the susceptible population
day−1 0.25 [4]

d: the natural death rate of the population day−1 0.25 [4]

δ:
the probability of drug users becoming

the susceptible population again through treatment
day−1 0.46 [4]

5. Examples and computer simulations

In this section, we introduce mainly some examples and numerical simulations to
support the main results.

Example 5.1. Let us illustrate the asymptotic stability in mean square of system
(1.3) in Theorem 3.2. Choosing the initial value (S(0), U1(0), U2(0)) = (0.45, 0.15,
0.4) and

α = 0.15, β = 0.6, σ = 0.45, d = 0.25, δ = 0.46,

γ = 0.7, H(z) = 0.55, ν(Z) = 0.65, (Table 1 for details).

It is easy to see that |H(z)| = 0.55 < 1, d + δ = 0.25 + 0.46 = 0.71 > 1
2 and

β = 0.6 > max{ 1
2

(
γ2 +

∫
Z
H2(z)ν(dz)

)
, δ} = max{0.3433, 0.46} = 0.46, which

implies (H1) and (H3) hold. It follows from Theorem 3.2 that system (1.3) becomes
asymptotic stability in mean square. The simulated of system (1.3) is shown Fig.
1 (a). Meanwhile, the numerical simulations of the different samples S(t) , U1(t)
and U2(t) are shown as in Figs. 1 (b). From Fig. 1 (a), it’s interesting to find the
number of drug users not in treatment U1(t) and drug users undergoing treatment
U2(t) tends to 0.

Example 5.2. Let us illustrate positive recurrent of system (1.3) in Theorem 4.1.
Choosing the initial value (S(0), U1(0), U2(0)) = (0.25, 0.45, 0.3) and

α = 0.065, β = 0.3, σ = 0.05, d = 0.01, δ = 0.02,

γ = 0.15, H(z) = 0.8, ν(Z) = 0.4.

It is easy to verify that
∫
Z
H(z)ν(dz) = 0.8 × 0.4 = 0.32 > β = 0.3, and RS1 =

0.65
(0.65+0.01−log(1−0.8)×0.4)(0.05+0.01+0.02) = 1.1305 > 1, implies that (H1) and (H4)

hold. It follows from Theorem 4.1 that system (1.3) is positive recurrent with respect
to the domain D = {(S,U1, U2) ∈ Λ, S ≥ ε, U1 ≥ ε, U2 ≥ ε}. The simulated of
system (1.3) is shown Fig. 2. Meanwhile, the numerical simulations of the different
samples S(t), U1(t) and U2(t) are shown as in Figs. 3 (a)-(c), respectively.

6. Conclusions

Note that drug abuses could be affected by the exogenous perturbations, for ex-
ample, sudden changes of the temperature and humidity. Based on this fact, we
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Figure 1. γ = 0.7, H(z) = 0.55, ν(Z) = 0.65,∆ = 0.01. (a) The simulation of system (1.3) with
T = 100. (b) The different samples S(t) , U1(t) and U2(t) with T = 10.

establish a heroin epidemic model with nonlinear incidence rate influenced by dis-
continuous stochastic perturbations in this paper. Precisely, We have not only
proved that the stochastic heroin epidemic model with Lévy noises has a unique
global positive solution, but also obtained the persistence in the mean to system
(1.3) as RS0 > 1. Meanwhile, we analyze and establish sufficient condition for the
asymptotic stability in mean square of system (1.3). Moreover, it is interesting to
perform the positive recurrent for system (1.3) as RS1 > 1.
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Figure 3. The simulation of system (1.3) with α = 0.065, β = 0.3, σ = 0.05, d = 0.01, δ = 0.02, γ =
0.15, H(z) = 0.8, ν(Z) = 0.4, T = 100 and ∆ = 0.001. (a), (b) and (c) denote the simulation of
S(t), U1(t), U2(t), respectively. (d), (e) and (f) denote the the density function of S(t), U1(t), U2(t),
respectively.
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471, 767–777.

[35] B. Zhou, X. Zhang and D. Jiang, Dynamics and density function analysis of a
stochastic SVI epidemic model with half saturated incidence rate, Chaos Soliton
Fract., 2020, 137, 109865.

[36] X. Zou and K. Wang, Numerical simulations and modeling for stochastic bi-
ological systems with jumps, Commun. Nonlinear Sci. Numer. Simulat., 2014,
19, 1557–1568.


	Introduction
	Some preliminaries and existence-uniqueness of the positive solution
	Persistence in the mean and asymptotic stability in mean square
	Positive recurrence
	Examples and computer simulations
	Conclusions

