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AVERAGING PRINCIPLE FOR NONLINEAR
DIFFERENTIAL SYSTEMS WITH JORDAN

BLOCKS

Shuyuan Xiao1 and Zhicheng Tong2,†

Abstract This paper studies a perturbed differential system

∂v

∂t
= Av + εH(v), v(0) = v0, ε ∈ (0, 1],

where A is a linear operator having purely imaginary eigenvalues with Jordan
blocks, and H is an analytic perturbation satisfying H(v) = O(|v|2) as |v| → 0.
Such a case cannot be dealt with straightforwardly by the averaging principle
due to the difficulties presenting by A. To this end, by employing the Poincaré
normal form with nilpotent term for nonlinear quasiperiodic system to sim-
plify the above differential system, we extend the classical Krylov-Bogoliubov
averaging method to nonlinear systems admitting Jordan blocks.

Keywords Krylov-Bogoliubov averaging method, Jordan blocks, Poincaré
normal form, nilpotent term.
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1. Introduction

Averaging theory is powerful in the study of dynamical systems. The concept of
average appeared in the perturbation theory due to Clairaut, Laplace and Lagrange
in the 18th century. At the end of the 19th century, it was mainly used in the field
of celestial mechanics. Around 1920, van der Pol extended the use of averaging
method to equations that appeared in electronic circuit theory. In 1928, Fatou first
formalized the averaging theory of smooth differential systems in [1]. Krylov and
Bogoliubov proposed a strict averaging method for nonlinear oscillations in [11],
known as the Krylov-Bogoliubov averaging method. In 1958, Sanders and Verhulst
gave a review of the averaging theorem in [13]. In 1961, Stratonovich [14] proposed
the random averaging method based on physical considerations, which was later
mathematically proved by Khasminskii [9] in 1964. Since then, there has been
widespread research interest in random averaging in the fields of both mathematics
and mechanical engineering. Inspired by the classical averaging principle, ones
also established some random versions of the Bogoliubov averaging principle, see
Vrkoč [15], Kolomiets et al [10], N’Goran and N’zi [12], Xu et al [18], Gao [2, 3]
and the references therein for instance. Recently, Gao and Li studied the averaging
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principle of the cubic nonlinear Schrödinger equation with fast oscillation potential
and fast oscillation force on finite but large time interval and the entire time axis
in [4]; Xing, Yang and Li gave the averaging method of higher order perturbed
systems in [17]. In [8], Jian et al established the Krylov-Bogoliubov averaging
theorem concerning with Lipschitz perturbations of linear systems. However, it
is difficult to touch averaging theory when considering the unperturbed part with
Jordan blocks due to nilpotent terms, and it seems that there does not exist any
result on this aspect. Thereby, this paper is devoted to present a Krylov-Bogoliubov
type theorem under this setting.

To be more precise, let us consider a perturbed differential system

∂v

∂t
= Av + εH(v), v(0) = v0, ε ∈ (0, 1], (1.1)

on R2n with n ∈ N+, where A is a linear operator admitting purely imaginary
eigenvalues with Jordan blocks, and H is analytic with H(v) = O(|v|2) as |v| →
0. One can assume that A has 2n purely imaginary eigenvalues without loss of
generality. Then these eigenvalues are in pairs ±iλj , where 0 6= λj ∈ R, and λi
may equal to λj for some i 6= j. We aim to touch the asymptotic behaviors for
solutions of (1.1). In view of the difficulties brought by Jordan blocks, we shall
develop a new approach to deal with (1.1) via the averaging method in this paper,
namely applying the Poincaré normal form that contains the nilpotent term for the
perturbed system.

It should be mentioned that there are few results on the nilpotent type normal
forms of differential systems with multiple eigenvalues for linear operators, let along
involving purely imaginary eigenvalues. For instance, Zung [19] studied the Birkhoff
normal form of Hamiltonian systems admitting nilpotent terms in 2005. Very re-
cently, Xiao and Li investigated the nilpotent Poincaré normal forms for general
nonlinear quasiperiodic systems in [16]. In what follows, we shall employ the latter
to simplify the original perturbed differential system (1.1).

For the sake of statements, let us denote by 〈·, ·〉 the real scalar product in the
complex notation:

〈z, z′〉 := Re
∑
j

zjz′j := Re(z · z′) for z, z′ ∈ Cn,

and define the set

N2n
+ := {α = (α1, . . . , α2n) : αj ∈ N+, j = 1, . . . , 2n}

as usual, where |α| := |α1| + · · · + |α2n| for α ∈ N2n
+ . We also define uβ :=

n∏
j=1

u
βj
j

and ūβ :=
n∏
j=1

ū
βj
j for u ∈ Cn and β ∈ Nn+. The previous work [16] illustrates that if

|〈α, Λ̃〉 ± λj | 6= 0, 1 ≤ j ≤ n, (1.2)

where α ∈ N2n
+ , Λ̃ = (λ1,−λ1, . . . , λn,−λn) and 2 ≤ |α| ≤ l, then system (1.1) we

are aiming at can be changed into

∂u

∂t
= (B + ηB̃)u+ εC−1P (Cu) + ε2g(u, ε), u(0) = C−1v0 = u0 (1.3)
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through an analytic transformation, where 0 < η = ε$ ≤ 1 is a constant, 1 +

(ηt)2 + · · ·+ (ηt)2(imax−1)

((imax−1)!)2 ≤ 2 (here the range of t will be specified later), ε ∈ (0, 1],

$ > 0, P and g are analytic, C−1 is the inverse of C,P = (P 1, . . . , P 2n), g =
(g1, . . . , g2n), P j = o(|Cu|l), g = o(|u|l), 1 ≤ j ≤ 2n, l ≥ 2, and the operators read

B =



B1

−B1

. . .

Bs

−Bs


, Bc =



iλc
. . .

. . .

iλc


ic×ic

,

B̃ =



B̃1

B̃1

. . .

B̃s

B̃s


, B̃c =



0 1

. . .
. . .

. . . 1

0


ic×ic

,

C =



C1

C1

. . .

Cs

Cs


, Cc =



1

η

. . .

ηic−1


ic×ic

,

and

C−1P (Cu) = (ηςαlP 1u, . . . , ηςαl−i1+1P i1u, ηςαlP i1+1u, . . . , ηςαl−i1+1P 2i1u,

. . . , ηςαlP 2(i1+···+is−1)+1u, . . . , ηςαl−is+1P 2(i1+···+is−1)+isu,

ηςαlP 2(i1+···+is−1)+is+1u, . . . , ηςαl−is+1P 2(i1+···+is)u)T

:= P̃ (u) + ε ˜̃P (u, ε),

with

ς = (0, . . . , i1 − 1, 0, . . . , i1 − 1, . . . , 0, . . . , is − 1, 0, . . . , is − 1),

l ≥ 2, imax = max{i1, . . . , is}, ςαl − imax + 1 ≥ 0.

The degrees of Bc, B̃c and Cc(c = 1, . . . , s) are ic, and i1 + · · · + is = n. As a
consequence, we arrive at the following perturbed differential system in the Poincaré
normal form:

∂u

∂t
= (B + ηB̃)u+ εP̃ (u) + ε2g̃(u, ε), u(0) = u0, (1.4)
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where P̃ and g̃ are analytic, P̃ = o(|u|l), g̃ = o(|u|l) and α ∈ N2n
+ . We shall

emphasize that the Poincaré normal form of the original system (1.1) is somewhat
difficult to deal with, because the operator B̃ in (1.4) is a nilpotent term, and
therefore the classical averaging theory seems unable to work.

We wish to study the asymptotic behaviors of solutions of (1.4) on a time interval
of length ε−1 with 0 < ε� 1. Let us define the interaction representation variable

φ(t) = e−t(B+ηB̃)u(t). Using system (1.4), we obtain for φ = (φ1, . . . , φ2n) the
system of equation

∂φ

∂t
= εe−t(B+ηB̃)P̃ (et(B+ηB̃)φ) + ε2e−t(B+ηB̃)g̃(et(B+ηB̃)φ, ε), φ(0) = u0. (1.5)

We can prove that the limit

Qo(φ) = lim
T→±∞

1

T

∫ T

0

e−υ(B+ηB̃)P̃ (eυ(B+ηB̃)φ)dυ (1.6)

exists for any φ ∈ R2n and is locally Lipschitz continuous with respect to φ, where
the vector field P̃ is locally Lipschitz continuous. We will present the detailed proof
in Section 3. Our Krylov-Bogolyubov type averaging theorem under the above
setting is given below.

Theorem 1.1. There exists some b = b(|u0|, $) > 0 such that for all |t| ≤ ε−1b,
0 < ε � 1, a solution φε(t) of system (1.5) is o(1)−close to the solution of the
system

∂φ0

∂t
= εQo(φ0), φ0(0) = u0.

Let us define the variable φ̃(t) = Cφ(t) with the operator C given before. Then
by system (1.5), we have the following system of equation

∂φ̃

∂t
=εCe−t(B+ηB̃)P̃ (et(B+ηB̃)C−1φ̃) (1.7)

+ ε2Ce−t(B+ηB̃)g̃(et(B+ηB̃)C−1φ̃, ε), φ̃(0) = v0.

Theorem 1.2. There exists some b = b(|v0|, $) > 0 such that for all |t| ≤ ε−1b,
0 < ε � 1, a solution φ̃ε(t) of system (1.7) is o(1)−close to the solution of the
system

∂φ̃0

∂t
= εCQo(C−1φ̃0), φ̃0(0) = v0.

The idea of the normal form theory is to find a transformation which changes the
original system into the simplest one. In this paper, by using the Poincaré normal
form for nonlinear quasiperiodic system and basing on the works of Huang et al
in [6,7] and Jian et al in [8], we establish the Krylov-Bogolyubov averaging theorem
of the nonlinear system with Jordan blocks. Significantly, A is the operator with
purely imaginary eigenvalues and the nonlinear system satisfies the nonresonant
conditions (1.2). In Section 2, we provide the corresponding matrix forms of linear
operators under different bases, some basic concepts and complex variable systems.
Averaging of vector fields is shown in Section 3. Finally, Section 4 presents the
proofs of Theorems 1.1 and 1.2.
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2. Preliminaries

In this section, let us recall some notations.
For λ1, . . . , λn ∈ R and real vectors w = (w1, . . . , wn), w̃ = (w̃1, . . . , w̃n) ∈ Rn,

set

diag{iλj} : Cn → Cn,
(z1, . . . , zn) 7→ (iλ1z1, . . . , iλnzn),

sub-diag{η} : Cn → Cn,
(z1, . . . , zn) 7→ (ηz2, . . . , ηzi1 , 0, . . . , ηzi1+···+is−1+2, . . . , ηzi1+···+is , 0),

and

Φwz = diag{eiw1 , . . . , eiwn}z = (eiw1z1, . . . , e
iwnzn) for z ∈ Cn,

Ψw̃ =


Ψ1

. . .

Ψs

 , Ψc =



1 w̃ · · · w̃ic−1

(ic−1)!

. . .
. . .

...

. . . w̃

1


ic×ic

, (2.1)

(Φ ◦Ψ)w,w̃ := Φw ◦Ψw̃.

Obviously, diag{iλj}, sub-diag{η},Φw,Ψw̃ and (Φ ◦ Ψ)w,w̃ are all linear operators.

According to [5, 8], the linear operators B and B̃ satisfy the following conditions:

(i) KerB = {0};
(ii) in R2n there is a basis {e+

1 , e
−
1 , . . . , e

+
n , e
−
n } such that in the corresponding

coordinates {x1, y1, . . . , xn, yn}, the matrix of the linear operator B has the
form 

0 −λ1

λ1 0

. . .

0 −λn

λn 0


, (2.2)

and B̃ has the form



B̃′1

B̃′2
. . .

B̃′s


, B̃′c =



0 0 1

. . .
. . .

. . .

. . .
. . . 1

. . . 0

0


2ic×2ic

, (2.3)

where λi1+···+ic−1+1 = · · · = λi1+···+ic = λc, 1 ≤ c ≤ s, i1 + · · ·+ is = n, i0 = 0.
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Thus, by the perturbed system (1.4), the unperturbed linear system reads

ẋ1 = −λ1y1 + ηx2,

ẏ1 = λ1x1 + ηy2,

...

ẋi1−1 = −λi1−1yi1−1 + ηxi1 ,

ẏi1−1 = λi1−1xi1−1 + ηyi1 ,

ẋi1 = −λi1yi1 ,

ẏi1 = λi1xi1 ,

...

ẋi1+···+is−1+1 = −λi1+···+is−1+1yi1+···+is−1+1 + ηxi1+···+is−1+2,

ẏi1+···+is−1+1 = λi1+···+is−1+1xi1+···+is−1+1 + ηyi1+···+is−1+2,

...

ẋi1+···+is−1 = −λi1+···+is−1yi1+···+is−1 + ηxi1+···+is ,

ẏi1+···+is−1 = λi1+···+is−1xi1+···+is−1 + ηyi1+···+is ,

ẋi1+···+is = −λi1+···+isyi1+···+is ,

ẏi1+···+is = λi1+···+isxi1+···+is .

(2.4)

Definition 2.1. Let Z : R+ → R+ be a non-decreasing continuous function and let
f : Cn → Cn be a continuous vector field. We say that f ∈ LipZ(Cn,Cn) if for any
r ≥ 0,

|f |Br ≤ Z(r) and Lip(f |Br ) ≤ Z(r),

where Lip g denotes the Lipschitz constant of the mapping g.

2.1. The complex variable system

Let a vector (x1, y1, . . . , xn, yn) ∈ R2n be given. We introduce a complex struc-
ture in R2n by the notation

z1 = x1 + iy1, . . . , zn = xn + iyn. (2.5)

In the complex coordinates, the operator B with the matrix (2.2) is the operator
diag{iλj} and the operator ηB̃ with the matrix (2.3) is the operator sub-diag{η}.
Therefore, the system of linear equation (1.4)|ε=0 = (2.4) can be reduced to a
complex system as

u̇j = iλjuj + ηjuj+1, 1 ≤ j ≤ n,

where ηj =

 η, j 6= i1 + · · ·+ ic,

0, j = i1 + · · ·+ ic,
with 1 ≤ c ≤ s.



Averaging principle for nonlinear differential systems 1103

In the complex notation, the perturbed system (1.4) turns to

u̇j = iλjuj + ηjuj+1 + εP̃j(u) + ε2g̃j(u, ε), u(0) = u0, |u0| ≤ r,
u = (u1, . . . , un) ∈ Cn, 1 ≤ j ≤ n, (2.6)

ηj =

 η, j 6= i1 + · · ·+ ic,

0, j = i1 + · · ·+ ic,
1 ≤ c ≤ s.

Remark 2.1. In the complex notation, the perturbed system (1.1) turns to

v̇j = iλjvj + vj+1 + εH̃j(u), v(0) = v0, (2.7)

where v = (v1, . . . , vn) ∈ Cn, 1 ≤ j ≤ n.

Since the vector fields P̃ and g̃ are analytic, they are automatically locally
Lipschitz, that is, their restrictions to bounded ball B2r with any r > 0, are Lipschitz
continuous. Therefore, we can let

P̃ ∈ LipX(Cn,Cn), g̃ ∈ LipY(Cn,Cn), (2.8)

where X : R+ → R+ and Y : R+ → R+ are non-decreasing continuous functions.

Lemma 2.1. Let u0 ∈ B̄r, and b = r
X(2r)+Y(2r)+2r$ , where X : R+ → R+ and

Y : R+ → R+ are non-decreasing continuous functions. Then a solution u(t) of
system (2.6) exists for |t| ≤ ε−1b and stays in the ball B̄2r.

Proof. By the Lipschitz properties of P̃ and g̃, a solution u(t) of (2.6) exists
up to the blow-up time. Taking the scalar product of system (2.6) with u(t) and
comparing the real part, we get

1

2

d

dt
|u(t)|2 = i〈diag{λj}u, u〉+ 〈sub-diag{η}u, u〉+ ε〈P̃ (u), u〉+ ε2〈g̃(u, ε), u〉

= 〈sub-diag{η}u, u〉+ ε〈P̃ (u), u〉+ ε2〈g̃(u, ε), u〉.

Let T = inf{t ∈ [0, ε−1b] : |u(t)| ≥ 2r}, where T equals to ε−1b if the set under the
inf-sign is empty. Then for 0 < t ≤ T we have

1

2

d

dt
|u(t)|2 ≤ η|u|2 + ε|u||P̃ (u)|+ ε2|u||g̃(u, ε)|

≤ η|u(t)|2 + εX(2r)|u(t)|+ ε2Y(2r)|u(t)|,

which implies d|u(t)|
dt ≤ η|u(t)| + εX(2r) + ε2Y(2r). Thus, |u(t)| ≤

∫ t
0
ε$|u(s)|ds +

r + εX(2r)t+ εY(2r)t < 2r due to η = ε$, |u(0)| ≤ r and 0 < ε ≤ 1, i.e., 2rε$t+
εX(2r)t+εY(2r)t < r for all 0 < t < ε−1b with b given before. Therefore, T = ε−1b
and the result follows.

Let τ = εt. Then ∂u
∂t = ε∂u∂τ , and system (2.6) can be reduced to

∂uj
∂τ

= iε−1λjuj + ε−1ηjuj+1 + P̃j + εg̃j , 1 ≤ j ≤ n. (2.9)

Let us define

φj = e−iε
−1λjτ

i1+···+ic−j∑
k=0

i1+···+ic−1<j≤i1+···+ic

(−ε−1ητ)k

k!
uj+k(τ), 1 ≤ j ≤ n,
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and

φ̃j = ηj−(i1+···+ic−1+1)φj

= e−iε
−1λjτ

i1+···+ic−j∑
k=0

i1+···+ic−1<j≤i1+···+ic

ηj−(i1+···+ic−1+1) (−ε−1ητ)k

k!
uj+k(τ)

= e−iε
−1λjτ

i1+···+ic−j∑
k=0

i1+···+ic−1<j≤i1+···+ic

ηj−(i1+···+ic−1+1) (−ε$2τ)k

k!
uj+k(τ), 1 ≤ j ≤ n.

Denote Λ = (λ1, . . . , λn). Then using (2.1) and (2.9), we obtain

∂φj
∂τ

= e−iε
−1λjτ

i1+···+ic−j∑
k=0

i1+···+ic−1<j≤i1+···+ic

(−ε−1ητ)k

k!
(P̃j+k((Φ ◦Ψ)τε−1Λ,τε−1ηφ(τ))

+ εe−iλjτε
−1

g̃j+k((Φ ◦Ψ)τε−1Λ,τε−1ηφ(τ), ε)) (2.10)

for φ(τ) = (φ1(τ), . . . , φn(τ)) ∈ Cn in the time scale |τ | ≤ b due to Lemma 2.1.
Thus, system (2.10) takes the form

∂φ

∂τ
=(Φ ◦Ψ)−τε−1Λ,−τε−1η ◦ (P̃ ((Φ ◦Ψ)τε−1Λ,τε−1ηφ(τ))

+ εg̃((Φ ◦Ψ)τε−1Λ,τε−1ηφ(τ), ε)) (2.11)

with the initial condition
φ(0) = u0, |u0| := r. (2.12)

3. Averaging of vector fields

We recall that a diffeomorphism G : R2n → R2n transforms a vector field W
on R2n into the vector field (G∗W )(u) := dG(ũ)(W (ũ)), ũ = G−1(u). Accordingly,
the linear isomorphism (Φ ◦ Ψ)tΛ,tη with t ∈ R transforms the vector field P̃ into

(((Φ◦Ψ)−tΛ,−tη)∗P̃ )(u) = (Φ◦Ψ)−tΛ,−tη ◦ P̃ ((Φ◦Ψ)tΛ,tηu). Our goal in this section
is to study the averaging of this field with respect to t.

For a continuous vector field P̃ on Cn and a vector Λ ∈ (R \ {0})n, we set

QoT (φ) =
1

T

∫ T

0

(Φ ◦Ψ)−tΛ,−tη ◦ P̃ ((Φ ◦Ψ)tΛ,tηφ)dt, (3.1)

and if the limit exists as t→ ±∞(for T < 0 we understand
∫ T

0
. . . dt as the integral∫ 0

T
. . . dt). We denote ψt(φ) = (Φ ◦ Ψ)−tΛ,−tη ◦ P̃ ((Φ ◦ Ψ)tΛ,tηφ). For T 6= 0, we

have QoT (φ) = 1
T

∫ T
0
ψt(φ)dt. We denote

Qo(φ) = lim
T→±∞

QoT (φ),

and QoT (φ) is called the local average of Q. The matrices of operator B and operator
B̃ take the forms (2.2) and (2.3) in the special basis, respectively. By introducing
the complex structure (2.5) in R2n, the matrices become diag{iλj} and sub-diag{η}.
Since (Φ ◦Ψ)tΛ,tη = ediag{iλj}t+sub-diag{η}t, the definition of Qo agrees with (1.6).
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Lemma 3.1. QoT ∈ Lip4X(Cn,Cn) for any T 6= 0.

Proof. If φ ∈ B̄r, then (Φ◦Ψ)tΛ,tηφ ∈ B̄2r. By (2.8), we have |P̃ ((Φ◦Ψ)tΛ,tηφ)| ≤
X(2r) for each t, and therefore

|ψt(φ)| ≤ 2|P̃ ((Φ ◦Ψ)tΛ,tηφ)| ≤ 2X, ∀t ∈ R. (3.2)

Similarly, for any φ1, φ2 ∈ B̄r we have

|ψt(φ1)− ψt(φ2)| ≤ 2|P̃ ((Φ ◦Ψ)tΛ,tηφ
1)− P̃ ((Φ ◦Ψ)tΛ,tηφ

2)|
≤ 2X|(Φ ◦Ψ)tΛ,tηφ

1 − (Φ ◦Ψ)tΛ,tηφ
2|

≤ 4X|φ1 − φ2|, ∀t ∈ R. (3.3)

From (3.2) and (3.3), one arrives at |QoT (φ)| ≤ sup
|t|≤|T |

|ψt(φ)| ≤ 2X ≤ 4X and

|QoT (φ1) − QoT (φ2)| ≤ sup
|t|≤|T |

|ψt(φ1) − ψt(φ2)| ≤ 4X|φ1 − φ2|. As a consequence,

QoT ∈ Lip4X(Cn,Cn) for T 6= 0.

Definition 3.1. If λj−Λ ·γ+Λ ·β = 0, where γ = (γ1, . . . , γn), β = (β1, . . . , βn) ∈
Zn+, Λ = (λ1, . . . , λn), we say a pair (γ, β) is (Λ, j)−resonant.

Lemma 3.2. (Main averaging lemma) For Λ ∈ (R \ {0})n, analytic P̃ satisfying
P̃ = o(|u|l) with l ≥ 2 and P̃ ∈ LipX(Cn,Cn), the limit (namely Qo) for (3.1) exists
for any φ ∈ Cn, and Qo ∈ Lip4X(Cn,Cn), where X : R+ → R+ is a non-decreasing
continuous function. If φ ∈ B̄r, then the rate of convergence in (3.1) only depends
on r,Λ and P̃ .

Proof. Recall the analyticity of P̃ . Then using the Taylor expansion for P̃j (com-

ponent of P̃ ), we have

P̃j(u) =
∑

|γ1|+|γ2|=1

Cγ
1γ2

j uγ
1

ūγ
2

+
∑

|β1|+|β2|>l

Cβ
1β2

j uβ
1

ūβ
2

, 1 ≤ j ≤ n (3.4)

due to the normal form, where γ1 = (γ1
1 , . . . , γ

1
n), γ2 = (γ2

1 , . . . , γ
2
n), β1 =

(β1
1 , . . . , β

1
n) and β2 = (β2

1 , . . . , β
2
n). Then

ψtj(u)

=

i1+···+ic−j∑
k=0

i1+···+ic−1<j≤i1+···+ic

(−tη)k

k!

 ∑
|γ1|+|γ2|=1

Cγ
1γ2

j eit(−λj+Λ·γ1−Λ·γ2)fγ1
j′γ

2
j′

(t, u, ū)

+
∑

|β1|+|β2|>l

Cβ
1β2

j eit(−λj+Λ·β1−Λ·β2)fβ1
j′β

2
j′

(t, u, ū)


for 1 ≤ j ≤ n, provided with

fγ1
j′γ

2
j′

(t, u, ū) =
∏

1≤j′≤n

(

i1+···+ic−j′∑
k′=0

i1+···+ic−1<j
′≤i1+···+ic

(tη)k
′

k′!
uj′+k′)

γ1
j′

(

i1+···+ic−j′∑
k′=0

i1+···+ic−1<j
′≤i1+···+ic

(tη)k
′

k′!
ūj′+k′)

γ2
j′ ,
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fβ1
j′β

2
j′

(t, u, ū) =
∏

1≤j′≤n

(

i1+···+ic−j′∑
k′=0

i1+···+ic−1<j
′≤i1+···+ic

(tη)k
′

k′!
uj′+k′)

β1
j′

(

i1+···+ic−j′∑
k′=0

i1+···+ic−1<j
′≤i1+···+ic

(tη)k
′

k′!
ūj′+k′)

β2
j′ .

It follows that

QoT,j(u) =

i1+···+ic−j∑
k=0

i1+···+ic−1<j≤i1+···+ic

∑
|γ1|+|γ2|=1

Cγ
1γ2

j

(
1

T

∫ T

0

(−tη)k

k!
eit(−λj+Λ·γ1−Λ·γ2)fγ1

j′γ
2
j′

(t, u, ū)dt

)

+

i1+···+ic−j∑
k=0

i1+···+ic−1<j≤i1+···+ic

∑
|β1|+|β2|>l

Cβ
1β2

j

(
1

T

∫ T

0

(−tη)k

k!
eit(−λj+Λ·β1−Λ·β2)fβ1

j′β
2
j′

(t, u, ū)dt

)
.

We set

Qrj(u) =
∑

|γ|+|β|>l

i1+···+ic−j∑
k=0

i1+···+ic−1<j≤i1+···+ic

c̃∑
k̃=0

Cγβj (−1)k̃+k ($b)k̃+k

(k̃ + k + 1)!

Dk̃
t fγj′βj′ |t= b$

η

ηk̃

=
∑

|γ̃|+|β̃|>l

C γ̃β̃j uγ̃ ūβ̃

for 1 ≤ j ≤ n, where (γ, β) is a (Λ, j)−resonant pair, c̃ =
s∑
c=1

ic−1∑
k′=0

(ic − k′)(βk′+1 +

γk′+1), Dm
t fγj′βj′ =

∂mfγ
j′βj′

∂tm and η = ε$. If 1 ≤ |γ|+|β| ≤ l, then λj−Λ·γ+Λ·β 6=
0 for 1 ≤ j ≤ n by (1.2) (i.e., are nonresonant).

One can observe that

lim
T→±∞

QoT,j(u) =

 Qrj(u), if (γ, β) is (Λ, j)−resonant,

0, otherwise.
(3.5)

Thus, we have

QoT,j(u)→ Qrj(u) as T → ±∞. (3.6)

By Lemma 3.1, we have its Lipschitz continuity. This completes the proof.

Proposition 3.1. Let Q1 and Q2 be locally Lipschitz vector fields on Cn. Then
the mapping u 7→ Qo(u) commutes with all the operators (Φ ◦Ψ)bΛ,bη for b ∈ R.

Proof. This proof is similar to the proof in [8].
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4. Proof of the averaging theorems

This section is devoted to the proofs of Theorems 1.1 and 1.2.
Recalling (2.8) and (2.9), we have Qo ∈ Lip4X(Cn,Cn). Let |u0| = r. Then by

Lemma 2.1, u(τ) ∈ B̄2r for |τ | ≤ b = r
X(2r)+Y(2r)+2r$ , where $ > 0. For |τ | ≤ b

the curve φε(τ) = (Φ ◦ Ψ)−ε−1τΛ,−ε−1τηu(τ) satisfies (2.11) and (2.12). Hence, for
|τ | ≤ b, we have

|φε(τ)| ≤ 4r,

∣∣∣∣∂φε∂τ
∣∣∣∣ ≤ 2

∣∣∣P̃ ((Φ ◦Ψ)ε−1τΛ,ε−1τηφ(τ)) + g̃((Φ ◦Ψ)ε−1τΛ,ε−1τηφ(τ))
∣∣∣

≤ 2X(4r) + Y(4r). (4.1)

By (4.1), it holds

|φε(τ1)− φε(τ2)| ≤ (2X(4r) + Y(4r))|τ1 − τ2|. (4.2)

For all |τ | ≤ b, a solution φε(τ) of (2.11) satisfies the relation

φε(τ) =u0 +

∫ τ

0

(Φ ◦Ψ)−ε−1υΛ,−ε−1υη ◦ P̃ ((Φ ◦Ψ)ε−1υΛ,ε−1υηφ
ε(υ))dυ

+

∫ τ

0

ε(Φ ◦Ψ)−ε−1υΛ,−ε−1υη ◦ g̃((Φ ◦Ψ)ε−1υΛ,ε−1υηφ
ε(υ), ε)dυ (4.3)

and the estimates in (4.1).

Lemma 4.1. Let φε(τ) be a solution of (4.3), where ε ∈ (0, 1], |τ | ≤ b. Then

φε → φ0 in C([−b, b],Cn) as ε→ 0+. (4.4)

Proof. By (4.1) and (4.2), the family {φε, 0 < ε ≤ 1} satisfies the Arzelà-Ascoli
theorem. Then {φε, 0 < ε ≤ 1} is precompact in C([−b, b],Cn). Therefore, there
exists a sequence εj → 0+ such that φεj → φ0 in C([−b, b],Cn) as εj → 0+.
Since the solution of (4.3) is unique, the limit φ0 does not depend on the sequence
εj → 0+, then the convergence in (4.4) holds as ε→ 0+.

In view of this convergence, we obtain
∣∣φ0(τ1)− φ0(τ2)

∣∣ ≤ (2X(4r)+Y(4r))|τ1−
τ2| for all τ1, τ2 ∈ [−b, b], as long as ε→ 0+.

Lemma 4.2. For any |τ | ≤ b, there exists a function ι(ε) satisfying ι(ε) → 0 as
ε→ 0+, such that ∣∣Y (φε(τ), τε−1)

∣∣ ≤ ι(ε), (4.5)

where Y (φε(τ), τε−1) =
∫ τ

0
(ψυε

−1

(φε(υ))−Qo(φε(υ)))dυ.

Proof. It is sufficient to prove the conclusion for τ > 0. We divide the time
interval [0, b] into subintervals [bj−1, bj ], j = 1, . . . , N ′+ 1 of length L = ε

1
2 , br̃ = r̃L

for r̃ = 0, . . . , N ′, bN ′ = b and 0 ≤ bN ′+1 − bN ′ < L, where N ′ = [ bL ] ([b′] is the
largest integer less or equal to b′).

In view of (3.2), (3.3) and Lemma 3.2, we get∣∣∣∣∣
∫ bN′+1

bN′

(ψυε
−1

(φε(υ))−Qo(φε(υ)))dυ

∣∣∣∣∣ ≤ 6LX. (4.6)
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Similarly, if τ ∈ [bk̃, bk̃+1) for some 0 ≤ k̃ ≤ N ′ + 1, then
∫ τ
bk̃

(ψυε
−1

(φε(υ)) −
Qo(φε(υ)))dυ is also bounded by the R.H.S. of (4.6).

Now we estimate the integral of Y over any segment [bj , bj+1], where 1 ≤ j ≤
N ′ − 1. Firstly, we have∣∣∣∣∣

∫ bj+1

bj

(ψυε
−1

(φε(υ))−Qo(φε(υ)))dυ

∣∣∣∣∣
≤

∣∣∣∣∣
∫ bj+1

bj

(ψυε
−1

(φε(bj))−Qo(φε(bj)))dυ

∣∣∣∣∣
+

∣∣∣∣∣
∫ bj+1

bj

(ψυε
−1

(φε(υ))− ψυε
−1

(φε(bj)))dυ

∣∣∣∣∣
+

∣∣∣∣∣
∫ bj+1

bj

(Qo(φε(bj))−Qo(φε(υ)))dυ

∣∣∣∣∣ .
By virtue of Lemma 3.2 and (4.2), the second and third terms in the R.H.S. are
bounded by 4L2X(2X + Y). Since∣∣∣∣∣

∫ bj+1

bj

(ψυε
−1

(φε(bj))−Qo(φε(bj)))dυ

∣∣∣∣∣
=
∣∣L(Φ ◦Ψ)−ε−1bjΛ,−ε−1bjηQ

o
L−1(z)− LQo(φε(bj))

∣∣ ,
where z = (Φ ◦ Ψ)ε−1bjΛ,ε−1bjηφ

ε(bj) ∈ B̄2r, using Lemma 3.2 and Proposition 3.1
we see that

QoL−1(z) = Qo(z) + o(1)

= (Φ ◦Ψ)ε−1bjΛ,ε−1bjηQ
o(φε(bj)) + o(1) as L−1 → +∞ (i.e., ε→ 0+).

Now we have arrived at the estimate∣∣∣∣∣
∫ bj+1

bj

(ψυε
−1

(φε(υ))−Qo(φε(υ)))dυ

∣∣∣∣∣ ≤ L · o(1) + 8L2X(2X+Y) = L · o(1). (4.7)

By (4.6) and (4.7), the L.H.S. of (4.5) is bounded by b · o(1) + 6ε
1
2 (X + X̃) := ι(ε).

This completes the proof of Lemma 4.1.
Consider the following effective system:

φ0(τ) = u0 +

∫ τ

0

Qo(φ0(υ))dυ, φ0(0) = u0, (4.8)

that is, ∂φ
0(τ)
∂τ = Qo(φ0(τ)) with φ0(0) = u0. By Lemma 3.2, Qo is locally Lipschitz,

a solution of (4.8) exists and is unique, at least for small τ .

Theorem 4.1. Let φε(τ) with |τ | ≤ b be a solution of (4.3). Then φε(τ)→ φ0(τ)
uniformly for |τ | ≤ b, where φ0(τ) is the unique solution of (4.8).

Proof. By Lemma 4.1, we can get φε → φ0 in C([−b, b],Cn) as ε→ 0+. Then in
view of (2.8), (4.3), (4.4), Lemma 4.2, and the fact that Qo is locally Lipschitz, we
have

φ0(τ)− φε(τ)→ 0,
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φε(τ)− u0 −
∫ τ

0

ψυε
−1

(φε(υ))dυ

− ε
∫ τ

0

(Φ ◦Ψ)−ε−1υΛ,−ε−1υη ◦ g̃((Φ ◦Ψ)ε−1υΛ,ε−1υηφ
ε(υ), ε)dυ

→0,

ε

∫ τ

0

(Φ ◦Ψ)−ε−1υΛ,−ε−1υη ◦ g̃((Φ ◦Ψ)ε−1υΛ,ε−1υηφ
ε(υ), ε)dυ

+

∫ τ

0

ψυε
−1

(φε(υ))−Qo(φε(υ)))dυ

→0,∫ τ

0

(Qo(φε(υ))−Qo(φ0(υ)))dυ → 0,

whenever ε→ 0+. Therefore, combining the above estimates we prove that φ0 is a
solution of (4.8) for |τ | ≤ b.

Remark 4.1. Since Qo is continuous in Cn and Qo ∈ Lip4X(Cn,Cn), the existence
interval of the solution of (4.8) φ0 is (−∞,+∞).

By Theorem 4.1, we have

‖φ̃ε(τ)− φ̃0(τ)‖ = ‖Cφε(τ)− Cφ0(τ)‖ ≤ ‖φε(τ)− φ0(τ)‖ → 0 as ε→ 0. (4.9)

Hence, by (4.9) and the proof of Theorem 4.1, we can derive Theorem 1.2 directly.

Corollary 4.1. The solution vε(t) of equation (2.7) satisfies

sup
|t|≤ε−1b

|vεj (t)− φ̃0
j (t)| → 0 as ε→ 0+, 1 ≤ j ≤ n.
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