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THE NUMBER OF LIMIT CYCLES NEAR A
DOUBLE HOMOCLINIC LOOP FOR A
NEAR-HAMILTONIAN SYSTEM*

Xiaoyu Xu!, Junmin Yang'' and Tong Han?

Abstract In this paper, for a general near-Hamiltonian system we study the
number and distributions of limit cycles near a double homoclinic loop. For a
cubic Hamiltonian system with general polynomial perturbations, we obtain a
lower bound of the maximum number of limit cycles near a double homoclinic
loop.
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1. Introduction and main results

It is well known that the second part of the Hilbert’s 16th problem proposed by

Hilbert [14] is to study the maximum number and related locations of limit cycles for

a planar polynomial system with degree n. There have been many works on studying

the number of limit cycles near a center, a homoclinic loop, a heteroclinic loop or

periodic orbits for a planar differential system with perturbations, see [5,13,17-19].
In this paper, we consider a near-Hamiltonian system of the form

& =Hy+ef(x,y,9), y=—H,+eg(x,y,9), (1.1)

where H, f and g are analytic functions in (z,y), € > 0 is a small parameter and
6 € D ¢ R™ with D compact. When € =0, (1.1) becomes

t=H,, y=-H,, (1.2)
which is a Hamiltonian system.

Arnold [1] proposed the weak Hilbert’s 16th problem, which is to ask for the
maximum number of isolated zeros of the Melnikov function,

M(h,5) = f gde — fdy,
H(z,y):h
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where the equation H(x,y) = h defines a family of periodic orbits of system (1.2).
To find the number of zeros of the Melnikov function, an important tool is to
study the expansions of the Melnikov function near a center, a homoclinic loop or
a heteroclinic loop with hyperbolic saddles or nilpotent singular points, see [9,12,
15,21] for example.

For the case that the equation H(z,y) = 0 defines a homoclinic loop Ly with a
hyperbolic saddle, Roussarie [21] proved that for 0 < |h| < 1 the Melnikov function
has an expansion of the form:

M(h,8) =Y (c2i(8) + cais1(6)hIn |[h])R', (1.3)

i>0

where ¢y = fLO gdx — fdy, and the formulas of c¢1, co and c3 were respectively given
by [10] and [8]. For cg;41(i > 1), Han and Yu [11] gave a method of computing
them. Later, Tian and Han [22] developed a method of computing cg;11 and ca;
for ¢ > 2 under some assumptions. Geng and Tian [3] generalized this method to
calculate the coefficients appearing in the expansion of the Melnikov function near
a heteroclinic loop with hyperbolic saddles. Some authors used the expansion given
in (1.3) and the first few coefficients to study the number of limit cycles near a
heteroclinic loop or a compound loop with hyperbolic saddles, see [20,26]. In recent
decades, the expansion of the Melnikov function was used to study the number of
limit cycles near a generalized homoclinic loop or a generalized heteroclinic loop for
a piecewise near-Hamiltonian system, see [23,24].

In this paper, suppose that the equation H(z,y) = 0 defines a double homoclinic
loop Lo(= Lig U Lgg) with a hyperbolic saddle at the origin, and the equation
H(x,y) = h defines a family of periodic orbits L(h) for 0 < h < 1 and two families
of periodic orbits L;(h) and La(h) for 0 < —h < 1. See Figure 1.

L(h)

L Ly

Figure 1. The double homoclinic loop Lg.

Correspondingly, there are three Melnikov functions below

M;(h,0) :}{ gder — fdy, —ho<h<0, j=1,2,
Lith) (1.4)

M(h,(;):]{ gdx — fdy, 0 < h < hg,
L(h)
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where hg is a small positive constant. For the expansions of M;(h,d)(j =1,2) and
M (h,8) near Ly we have ( [25])

M;(h,6) = (e20,5(6) + caipa (ORI [A)) P, j=1,2, 0< ~h <1,
i>0

M(h,6) = (c2i(8) + 2c2i41(8)h Inh) B', 0 < h <1,

i>0

(1.5)

where the first four coefficients were obtained in [25].
Recently, Han et al. [7] found the relation between cg; 1, ¢2;2 and cg; for ¢ > 0
as given below
Co; = C24,1 + C242- (1.6)

If system (1.1) is centrally symmetric, Han et al. [7] gave a way of obtaining limit
cycles near Ly as shown in the following lemma.

Lemma 1.1. Suppose that system (1.1) is centrally symmetric, i.e., H, f, g satisfy
H(Jf, y) = H(_aj7 _y)a f(xa y75) = _f(_xa —-Y, 6)7 g(ﬂf, y75) = _g(_xa _y76)7 and
the equation H(x,y) = 0 defines a double homoclinic loop Lg. If there exist o € D
and k > 1 such that

Ck(éo)#o, Cj((SO)ZOa jZO,"',k—l

and

ranka(c()acl,"' ack—l) :k,

8(51,62a"' 7671) 5§=68¢

then for any given meighborhood V' of Lo there exists § near dg such that for 0 <
e < 1 system (1.1) has at least [3k] limit cycles in V.

In this paper, suppose that system (1.1) is not centrally symmetric. We study
the number of limit cycles near Ly and obtain the following theorem.

Theorem 1.1. Consider system (1.1) and let (1.4)-(1.6) hold. If there exists g
such that
ck71(50)ck,2(50) >0
and
01(50) = 0, Z: 1,3,"' ,k— ].,

Cl;j(60)207l:0a27"'7k_2a j:172a (17)
0(co,1,€0,2,€1,C2,1,€2,2," " ,Ck—1) 3k
o))

rank

5=50

for an even k, or

Clﬁj((;o):(), l20727"'ak713 j=12,
ci(6) =0, i=1,3,-+-,k—2, cx(dp) #0,

8(00,17 €p,2,C1,C21,C22," " ,Ck—1,1, Ck71,2)

04

_ 3k+1
)

rank

6=0do

for an odd k, then for any given meighborhood V of Lq there exists § near dy such
that for 0 < e < 1 system (1.1) has at least [%} limit cycles in V' with three
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distributions (k,k) + [£], (k,k — 1) + ([£] + 1) and (k — 1, k) + ([E] + 1), where
(l1,12) + I3 means that Iy limit cycles are near and inside Ly, lo limit cycles are
near and inside Log, and ls limit cycles are near and outside L.

It should be noted that Han and Chen [6] proved the above theorem for k = 2.
They further proved that 5 is the maximal number of limit cycles near Ly. Iliev et
al. [16] studied system (1.1) with

1 1 1
H =—y? — —x? 4 ot 1.
(r,9) = 397 — 507 + 72" (19)
and f, g being arbitrary cubic polynomials in (x,y). By the higher-order Melnikov
functions they obtained the number of limit cycles bifurcated from L;(h) for 0 <
—h < § under some conditions.
Now, suppose that in (1.1) H is given by (1.8) and f, g are given by

Lﬂ y, Z al,jw y 5 .’E y, Z bl Jm y , N Z 27 (19)
i+j=1 i+j=1
or
Q? y7 Z az]x y ’ 1: y) Z b" J‘r y L = 3. (].].0)
i+j=1 i+j=1
i+j odd i+j odd

In this case, the phase portrait of system (1.2) is shown in Figure 1, where C;(—1,0),
C5(1,0) are elementary centers, the double homoclinic loop Lg is defined by the
equation H(z,y) = 0 and

Li(h) = {(z,y)|H (z,y) = h,—§ < h <0,(=1)"z > 0},
L(h) = {(z,y)|H(z,y) = h,0 < h < ho}.

To obtain the number of limit cycles near Ly by Theorem 1.1, a key step is to obtain
the coefficients appearing in the expansions of M7, Ms and M. The method given
in Tian and Han [22] is effective under some conditions. Motivated by [2], in this
paper we obtain all the desired coefficients under some conditions. Then, by using
these coefficients we obtain the number and distributions of limit cycles near the
double homoclinic loop Lg as shown in the following two theorems.

Theorem 1.2. For system (1.1), let H satisfy (1.8) and f,g satisfy (1.9). There
exists 0o such that for some (g,9) near (0,00) system (1.1) has at least [5(%_1)} —

(14 (=1)™), denoted by iy, limit cycles near Lo.

(1) If n is even and n > 4, the three distributions of the k, limit cycles are
(n=2,n=2)4+%, (n—=1,n=3)+5 and(n—1,n—-2)+5 -1 (or (n—2,n—-2)+73,
(n=3,n—-1)+% and (n —2,n— 1)+ 5 —1). If n = 2, the distribution of the
kn(=1) limit cycle is (1,0) +0 (or (0,1) 4+ 0).

(2) If n is odd, the three distributions of the K, limit cycles are (n—1,n—1)+251,
(n—1,n-2)+ 2L and (n—2,n — 1) + 241

Theorem 1.3. For system (1.1) with H being given by (1.8) and f,g given by

(1.10), there exists dg such that for some (g,9) near (0,0d0) system (1.1) has at least
5(n 1)

) limit cycles near Lo with the distribution (n — 1,n — 1) + zl,
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2. The number of limit cycles near L

Proof of Theorem 1.1. We first suppose that k is even with k& = 2m,m € Z,..
By (1.7) and the inverse function theorem, the equations

c2i41(0) = C2it1, CQi,j((s) =coiy, t=0,1,--- ,m—-1 j=12,
have a unique solution § = do+ O(|co.1,¢0,2, €1,¢2,1,€2,2, -+ , Cam—1]), Wwhich means
that co1,c0,2,¢1,¢2,1,C2,2 - ,Cam—1 can be taken as free parameters. Then, the

expansions of M;(h,6) (j = 1,2) and M (h, ) in (1.5) can be written as the following
form:

m—1

M;(h,8) = (caij + coiprhIn [B])B' + com ;™ + O(K™ ' In |h]) (2.1)
=0

for 0 < —h < 1, and

m—1
M(h,8) = (cai + 2cai 1 hIn h)h' + caph™ + O(K™ 0 h)
i=0
for 0 < h < 1, where
Com,j = Com,j(00) + O(|co,1, 0,2, €1,¢2,1,C2,2, + , Cam—1])

and cam = Com,1 + Com 2.
For 0 = dg, ie., cpqg = cp2 = ¢ = 21 = C22 = -+ = Copm—1 = 0 and
Com,j = Cam,j(00), we have
M;(h,0) = com ;B™ +O(K™ In|h]), 0<-h<1, j=1,2,
M(h,d) = coph™ +O(R™  Inh), 0<h< 1.
Note that cgpm; # 0. There exist hj; and hg such that M;(hf ;,d0) # 0 and
M (R, d) # 0.
Next, we will take suitable values of parameter § to find simple zeros of M;(h, )

and M (h,0).
Firstly, let co1 = cp2 =c1 =cC21 = cC22 =+ = Cam—2,1 = Com—22 = 0 and

0< |(32m—1| < 1, Com—1C2m,j > 0, j= 1,2.
In this case we have

M;(h,8) = h™(com—1 10|k + c2p ;) + O(W" ' In|h]), 0<-h<1, j=1,2,
M(h,8) = h™(2com_1Inh + cap) + O™ Inh), 0<h< 1.
It is easy to see that M(h,d) has a simple zero h} € (0,h), and M;(h,d) has a

simple zero hj ; € (hg ;,0) for each j.
SGCOHdly7 let Cp,1 = Cp,2 =C1 =C21 =C22 ="' =Cam-3 = 0 and

lcom—2,1] < [cam—1l, |cam—22] < |cam—1].
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Then, for 0 < |h| < 1, M;(h, ) and M(h,d) can be written as given below:

]\4j(h7 (5) = hm71(02m727j + com—1h1n |h|) + O(hm),
]\4(]7‘7 (S) = hm_l(Cgm,Q + 2¢om—1hln h) + O(hm)

To find the maximal number of simple zeros of M;(h,d) and M (h,d) obtained by
this step, we consider the following cases according to the sign of cam—21, Com—2,2
and Copp_1:

(1i) cam—21c2m—22 < 0, cam—21C2m—1 > 0, (C2m-21 + C2m—2,2)C2m-1 > 0
(resp., < 0);

(Lil) cam—2,1C2m-22 < 0, cam—21Cam—1 < 0, (cam—2,1 + Com—22)Com—1 >
0 (resp., < 0);

(1.iii) Com—2,1C2m—2,2 > 0 and Com—2,1C2m—1 > 0;

(L.iv) cam—2,1C2m—2,2 > 0 and cam—2,1C2m—1 < 0.

We denote the number of simple zeros of Mj(h,d), Ma(h,d) and M(h,d) ob-
tained in the second step by ,u[12], ,u[22] and ,u:[f], respectively. And let pl? = p[lz] +
,u[22] + u?l. Similar to the first step, we obtain the following table, which shows the

(2] [2]  [2] 2]

values of uy", g, ps- and p'* in each one of the above cases.

The sign of The sign of | The sign of 2] 2] 2]
poopy oy | HP
Com—2,1C2m—2,2 Com—2,1C2m—1 Com—2C2m—1
+ 0 1 1 2
+
— 0 1 0 1
+ 1 0 1 2
— 1 0 0 1
+ + 0 0 1 1
+
— — 1 1 0 2
Thirdly, take Cp,1 = C2=C =C1 =C22 =" ""=0Cm-4,1 = C2m—-4,2 = 0 and

lcam—3| < [cam—2,1], [cam—3] < |cam—2.2].

For the sign of ¢a;m—3, Cam—2,1 and cam—2.2, the following cases need to be considered:

(2.) cam—2,1c2m—2,2 < 0, cam—2,1C2m—3 > 0, (C2m—2,1+C2m—2,2)C2m—3 > 0 (resp.,
<0);

(2ii) com—2,1C2m—2,2 < 0, Cam—21C2m-3 < 0, (Com—21 + C2m—2,2)Com—3 >
0 (resp., < 0);

(2.ii) cam—2,1C2m—2,2 > 0, Cam—2,1C2m—3 > 0;

(2.1v) com—2,1C2m—2,2 > 0, cam—2,1C2m—3 < 0.

We denote the number of simple zeros of M;(h,d), Ma(h,0) and M(h,d) ob-

tained in the third step by ,u[13], M[23] and uggl, respectively. And let pl3l = u[13] +

,u[23] + ug?’]. In the following table we give the values of u[l?’] , u[;] , u[gg] and p83! in each
one of the above cases.

From the two steps described above, it can be seen that the maximum number
of simple zeros of M7, My and M obtained by the above two steps is 5, of which

My, My and M have 2, 2 and 1 simple zeros, respectively, denoted by (2,2) + 1.
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The sign of The sign of | The sign of (3] 3] (3] (3]
BT M3 | M
Com—2,1C2m—2,2 Com—2,1C2m—3 Com—2C2m—3
+ 1 0 1 2
+
1 0 0 1
+ 0 1 1 2
- 0 1 0 1
+ + 1 1 1 3
+
— — 0 0 0 0
Furthen let Cp,1 = Cp2 =C =C21 =C2 ="'"=1C2-21=C2;-22= 0 and

leaim1| < |021‘,1 < legitl, lezic1| < lezie| < |e2ital,

c2i1€2:2 > 0, co51C2i41 <0, c25102i—1 >0

for i = m —2,m — 3,---,1 one by one. For each i, we can obtain two more
simple zeros of M;(h,0)(j = 1,2) and one more simple zero of M(h,d). Now, we
have found 5(m — 1) + 3 simple zeros of M,;(j = 1,2) and M with distribution
(2m—1,2m —1) + m.

Finally, for fixed ¢1,c2,1,¢2,2,- -, Cam—1, let co,1 and cg 2 satisfy

lco1| < el, feo2| < leal.

By changing the sign of cp,1 and cg 2, we can obtain the number of simple zeros of

My, Ms and M, denoted by u[12m]7 u[;m] and u[;m] respectively. By the following
table, it is easy to see that if co 1cp,2 < 0,¢9,1¢1 > 0,c9c1 > 0o0r cg1c92 < 0,c0101 <
0,coc1 > 0 or cp1c0,2 > 0,¢0,1¢1 < 0,c0c1 < 0, the total number of simple zeros of
M, My and M obtained by this step is 2 with distributions (0,1) + 1, (1,0) + 1
and (1,1)+0.

The sign of | The sign of | The sign of | |5, [2m] [2m] (2m]
o 5 K
€0,1€0,2 C0,1C1 CoC1
+ 0 1 1 2
+

B - 0 1 0 1
+ 1 0 1 2
- 1 0 0 1
0 0 1 1

n + +
— — 1 1 0 2

Summarizing the above, there exists d near g such that the total number of
simple zeros of M;, My and M is 5m with distributions (2m,2m) + m, (2m —
1,2m) 4+ (m + 1) and (2m,2m — 1) + (m + 1). Then, for some (e, d) near (0,d),
system (1.1) has at least 5m limit cycles near the double homoclinic loop Ly with
distributions (2m, 2m) +m, (2m — 1,2m) + (m + 1) and (2m,2m — 1) + (m + 1).
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For k = 2m — 1, the proof is similar to the above. This ends the proof.
By the proof of Theorem 1.1, we can obtain the following corollary.

Corollary 2.1. Suppose (1.4)-(1.6) hold. If there exists oy such that for an even k
(1.7) holds and

¢k,1(00)ck,2(0) <0,
(k1 + cr2)cr,)s=s, <O (resp., [(ck1 + cr2)ck,1]5=5, > 0),

then, for any given neighborhood V' of Lo there exists 6 near dy such that for 0 <
e < 1 system (1.1) has at least % — 1 limit cycles in V with three distributions

(k—l,k)—kg, (k—l,k—l)—k%—kl and(k—2,k)+§+1(resp,, (k,k—1)+§,
(k—1,k—1)+%5+1 and (k,k—2)+ 5 +1).

Similar to Theorem 1.1, we can prove the following theorem.

Theorem 2.1. Consider system (1.1) and let (1.4)-(1.6) hold. If there exists dg
such that for an even k (k > 2),
Ci(éo) :0, i = 1,3,"' ,k‘—l,
¢;(00)=0,1=0,2,--- k-2, j=1,2, (2.2)
ck,1(00) = 0 (resp., cx,2(dp) =0),

and
rank 5(00,1,00,2,01,02,1,02,2,'" 7Ck—170k,j)
. % 5=0 (2.3)
=5 +1, forj=1 (resp., forj=2),
Cr+1(00)cr,2(00) < 0 (resp., cxi1(o)ck1(do) < 0), (2.4)

then for any given neighborhood V' of Lo there exists § near §g such that for 0 <
e < 1 system (1.1) has at least 3% + 1 limit cycles in V. Further, the 5% + 1 limit

cycles have three distributions (k+1,k)+ %, (k+1,k—1)+%+1 and (k. k)+ 5 +1
(resp., (k,k+ 1)+ 5 (k—1,k+1)+ % +1 and (k,k) + £ +1).

Proof. We first suppose

Ck71(50) =0, Ck+1(50)ck,2(50) <0

and
0(€0,1,€0,2,€1,C2.1,€2,2,*** ,Ck—1,Ck 1) 3k
rank 5 = — +1.
0 =50 2
By the inverse function theorem, the equations
co,1(6) = co,1, c0,2(0) = co2, c1(0) =c1, -+ ,cp—1(6) = cr—1, ck1(0) = i
have a unique solution 6 = &y + O(|co.1,¢0,2,¢1,¢2,1,C2,2, , Ck—1,Ck,1|), Which
means that ¢y 1,c0.2,¢1,¢2,1,¢2,2, - ,Ck—1,Ck,1 Can be taken as free parameters.
Firstly, let Cp,1 = Cp2=C = " =Ck-21=Ck—22=C—-1= 0 and
lex1| < ers1(00)], ek 1ck41(00) <O.
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Note that
My (h,8) = cr1h? + [ces1(80) + O(cr1)]h3 T In |h| + O(R3 ).

By this step, we obtain a simple zero of M (h,¢), denoted by ia[ll] with 0 < —iz[ll] <
1.
Secondly, let co1 =cp2 =c1 =+ =cp_2,1 = cr_22 =0 and

lek—1] < e, |er—1] < |cr,2(00)], ck—1¢r1 > 0.

Under this condition, we have

M;y(h,8)= cx_1h% In|h| + cx1h? + Oz In b)),
My(h,8)= cr_1h? In|h| + [cr.2(60) + O(ck—1, cr1])]h% + O(h2 1 In |hl),
M(h,8)=2¢x_1h® nh+ [cx1 + (cr2(60) + O(lcr—1, ck1]))]h% +O(h= 1 Inh).

Note that cx41(d0)ck,2(do) < 0 and cp11(d0)ck,1 < 0, which leads to cx 1¢x,2(d0) > 0.
Then, for each of M7, Ms and M we can obtain a simple zero by this step, denoted
by fAL[f],iAL[Ql], Al respectively with iL[ll] < iL[12] < 0.

Note that £ — 1 is odd. Directly by Theorem 1.1 we can obtain [5(k2_1)
simple zeros of My, M and M by taking suitable cg 1, co2, ¢1, c2,1, €2,2, ***, Ch—2.1,
Ch—2,2, with distributions (k — 1,k — 1) + [E32], (k — 1,k — 2) + ([52] + 1) and
(k—2,k—1)+ ([552] + 1). Meanwhile, iL[ll], 5[12], fl[zl], A1 still exist.

Thus, for 0 < ¢ < 1 and § near &, system (1.1) has at least 2F + 1 limit
cycles near Lo. And the 28 + 1 limit cycles have distributions (k + 1,k) + %,
(k+1,k—1)+%+1and (k&) + % +1.

The other case can be proved similarly. The proof is completed. O

Similarly, if cx+1(00)ck,2(d0) > 0 or ck+1(do)ck,1(do) > 0 in (2.4), we obtain the
following theorem.

:| more

Theorem 2.2. Consider system (1.1) and let (1.4)-(1.6) hold. If there exists g
such that (2.2) and (2.3) hold, and

Ck+1 (50)0&2(50) >0 (Tesp.,ck+1((50>ck,1(50) > 0),

then for any given neighborhood V' of Lo there exists 6 near &g such that for 0 < e <
1 system (1.1) has at least 3E limit cycles in 'V with three distributions (k, k) + &,
(kyk—1)+ 5 41 and (k — 1,k) + & + 1.

3. Proof of Theorem 1.2

Note that f and g are given by (1.9), which means that

n n
. i—1,j . i i1
foetgy= E ia; ;' Yy + E Jbijx'y’ .
i+=1, =1,
i>1 i>1
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For convenience, we introduce IZ[S]](h)7 I; j(h) and o; ; for ¢,j > 0 with

() —j{ a'y'dx, I 5(h) =j§ dylde, s=1,2,i+j>1,
L. (h) L(h)

oij = (i +1ais1,; + (G + Dbij1-

n—1 o

Then, it is obvious that f; + g, = > 0y ,;2'y’. By using Green’s formula twice,
i+j=0

the function M; in (1.4) can be written as

n—1

1
Amm®=/<h+%mmW=§jf—mﬂﬂH, (3.1)
U i) T 1

where U = {(z,y)|H(z,y) < h,—% < h < 0,z < 0}. Similarly, M5 and M in (1.4)
can be written as

n—1 n—1
1 ) 1
Ma(h,8) =Y jiHaZ-JI}JJH, M(ho)= > jTlai,inyjH. (3.2)
i+5=0 i+5=0

Noticing that the coefficients in the expressions of M;(s = 1,2) and M have been
changed from a; ;,b; ; to o; ;, so we replace My(h,d) and M (h,d) by My(h,o) and

: n(n+1)
M (h, o), respectively, where o = (00,0,01,0,00,15"** ;00,n—1) € 7.

On the properties of I[é](h) (s =1,2) and I, j(h), we give the following lemma.

Lemma 3.1. (i) I; j(h) =0, I[S]( h)=0(s=1,2) ifi >0 and j is even.
(ii) Li,j(h) = Liza,j(h) + 455 11— j+2(h) fori > 3;

T jya(h) = 2520 (hI; (B) + 1142 5(R)) fori,j > 0.
moﬁw 1%, i(h) + 5318, (k) fori > 3;
I 5 (h) = AL (W1l (h) + L1F), (R)) fori,j >0,

Proof. (i) Note that y? = 2h + 2% — 12* along L(h) or Ly(h),s = 1,2. For even
j, we easily get I; ;(h) = 0 and IZ[‘;] (h) =0 (s=1,2).
(ii) Noticing (1.8), for ¢ > 3 we have

o . . 1
zhyldr =2 3y7d <4x4>

) . 1
=z'73y7d (H—i— Qm 2y2)

=2 3yIdH 4 272y de — 23y Ty

) ) ) ) 1. . i— )
_ i3 JdH i—2 Jdr — d 1—3, J+2 i—4 _7+2d )
'y + ' %ydx jiJr 21‘ Y + jiJr 2 Y x

And thus,
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which gives
1—3

I, i(h) =1;_9.(h —
J() 273()+j+2

Ii_47j+2(h), ) > 3.

For 7 > 0, we further have

o 1 1 1 A
h% xiy]dx :f < y2 _ 7x2 + $4> xlyjda:
L(h) L(h) \2 2 4

(3.3)
1 1 1
=5 lij+2(h) = 5livzi(h) + T Liva s (h),
where I; 44 ;(h) satisfies
1+ 1
Livaj(h) = Liv2,3(h) + mfi,jﬁ(h)- (3.4)

Substituting (3.4) into (3.3) gives that

4G +2) 1
Li jya(h) = i+2j 45 (hli,j + 4Ii+2,j> .

This finishes the proof of (ii). And (iii) can be proved similarly.

0
For 1)), I1'}, I’} with s = 1,2, we further have
-V 1=v1+4h
16 4
Iyi(h)= V=2z* + 422 + 8hdz = ——(1(h) + G (h),
—V/1+v1t4h 3
1-V1+4h
2
I (h)= v/ 2 + 47 4 8hde = —Y2(1 1 am)r, (3.5)
’ —/1+VI+ah 4
— 1_\/7
16 16h 16
1 ()= “m e 00+ (12 )
m 5 15
and
g 1+V1+4h .
1§ (h) = —204 + 42?4 8hdx = I} (n),
’ V1-Vi+ah %,
9 ++v1+4h .
2 (h) = ov/ =221 + 4a? + 8hdx = — 1"} (h),
’ V1—ViFah ’
9 1++/14+4h )
2 (h) = 22/—22% + 422 + 8hdz = I} (h),
7 V1—v1+ah :
where
" EllipticK ( ﬁv\}%) " (1 — /17 4h) - EllipticE ( %)
Cl h) = y CQ h) =

14-4h
2+2v1+4h 2+2\/1+4h(1— \/\/W>
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By (3.1), (3.2) and Lemma 3.1, for each s = 1,2, M;(h,0) can be written as a

combination of I([f]l(h), IH (h) and I;]l (h) with

n—2 n—3

(2] (%5 [%5°]
My(h,o) = 3" aouh* IS () + 3 anwh" 1N (h) + D asih* IS (h), (3.6)
k=0 k=0 k=0
where
apo(0) = 00,0,

ag k(o) = )\([)]T]Qk(fogk + Z Z )\Elfj].aiyj, n = min{2n — 4k, i},

2k+2<A<n—1 0<i<n

i+j=n
1,] even
L) Kl 5 — mind{n. 27 — 4k — 1
al,k(a) - 77172]60'1,219 + ni’jaz,ja n= mln{n> n }a
2k+3<n<n—-1 1<i<n
i+j=n

iodd,j even

[k] [k]
Q2,k(0) = T3 91,02,2k + T( 25 4.200,2k+2

+ Y S Mo, 7 =min{n,2n — 4k - 2}

2k+4<n<n—1 0<i<h

itj=n
1,] even
(3.7)
with some constants )\Ek]], 771[{3], Ti[i] and 77% =1, 72?(]) = 1. It is easy to see that
9 (0,0, 1,0, 2,0
( : : ’ ) ZnggEBo, (38)

a (00,07 01,0, 02,0)

and

k k
Nz 0 Ay

0 (0, a1k, 2 ) k] [n 3]
K Ok, @2, 0 0 By, 1<k< ;o (89
0(00,2k5 01,2k, 02,2k) .2k ’ 2 o
0 0 7,
where
k . k .
w1 42i+1) @ 1 420 +1)
)‘072k—2k+1£[ 4i+3 771=2’€_2k+1£[1 4i+4 7
k )
7272k*2k+1H 4i+5

1=

Next, we will use the first few coefficients appearing in the expansions of I([f}l(h),

I ﬂ(h) and Iﬂ(h) to obtain the first few coefficients appearing in the expansions of
M (h,o) and M (h, o). By [12] we know that I(gf]l (h), Il[sll(h) and Iﬂ(h) are analytic
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functions, and for 0 < —h < 1 one may suppose

I([)%]l(h) = Z (7’0,21' + r072i+1hln |h,|) hi7

i>0

11[1]1(h) = Z (r1,2i + r12i41hIn |R]) R’ (3.10)
i>0

Iél]l(h) = Z (ro,2i + r22i41hIn |Rh[) b,
i>0

By (3.5), we easily get
ﬁ .
1,0 = - T, 111=0, ro=-V27m, 7Ti2i41 =r12.42=0, i>1. (3.11)

Directly by Maple or Theorem 2.2 in [12], we have

16

ﬁ, 21 = 0. (312)

4
0.0 =3 To1 = =1, ro0=

To prove Theorem 1.2, in the following we first suppose n = 2m with m > 1,
and then suppose n = 2m — 1 with m > 2.

3.1. Case 1: n=2m

In this subsection we first suppose m > 2. By (3.6), M;(h,0) can be rewritten as
the following form:

2

Ms(h,o) = Z (ajyo(a) +haji(o) +---+ hm_Qaj,m,g(a)) I][SJ (h)
i=0 (3.13)

#1771 (00, (I} () + a1 a(IEL () . > 2.

)

Then, by (2.1), (3.10) and (3.13), we can obtain the coefficients appearing in the
expansion of M (h,o) as follows:

2 7
c2i1(0) = Z Z ;1 (0)7j,2i-21,
§=0 1=0
c2ip(0) = (—1)3'043',1(0)7“]',21'721, (3.14)
j=0 1=0

oo
o

~.

M

a;1(0)r] 2i-2141
=0

c2iy1(0) =

o
~

<.
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for 0 <i<m — 2, and

2 m—2
c2(m71),1(0):Z a;j1(0)Tj.2(m—1)—21F@0,m—1(0)T0,0+01,m—1(0)7r1,0,
j=01=0
2 m—2
02(m71),2(0): (_1)Jaj,l(0')7ﬁj,2(mfl)72l +00,m—1 (0)7“0,0 — 01, m—1 (U)T1,07
j=01=0

2 m-—
C2m71(0):Z Z a;1(0)rj2m—21-1 + @0,m—1(0)r01 + 1, m—1(0)r1,1.
§=0 1=0
(3.15)
By (3.14), it can be seen that

T0,2(i—5)  T1,2(i—j)  72,2(i—7)
9(c2i1, 2,2, C2i41) — A (3.16)
- =A;_; :

= | Toz20i—5) TTL20i-j) T2,2(i—j
Ao, 15,2 ) (i=3) (i—9) (i—9)

T0,2(i—7)+1 T1,2(i—5)+1 72,2(i—j5)+1

with 0 <i<m —2, 0<j <i. Especially, by (3.11), (3.12) and (3.16) we have

4 V316
3 4 15 8\/§
-1 0 O

By (3.16) and the formula of cy(,,—1),1(0) in (3.15), we further obtain

det 0 (00,1, €0,2,C1, "+, C2(m—2),1> C2(m—2),2, C2m—3, 02(m71),1)
0(00,0, 01,0, 2,05 ** 5 Q0 m—2, AX1,m—2, 02,m—2, 0, m—1)
Ao
A, A (3.17)
= det : o #0,

A, o A1 ... A
Py Py -+ Pi7og (3m—2) x (3m—2)

where Py = (19,21, 71,21, 72,21), 1 <1 <m—1.
On the other hand, by (3.7), (3.8) and (3.9) we have

det 8(O[U,()7O[1,()7O[2,()7 e 7a0,m727a1,m727042,m727aO,mfl)
0 (00,0101,0: 02,0, ** »00,2(m—2)> T1,2(m—2) 02,2(m—2)> 00,2(m—1))
ByCi1-- Cim—a Q
B, - Com s Q@ (3.18)
= det SO 0,
Bm72 Qm72
)\[m—l]

0,2(m=1) 1 (3,1, 2)x (3m—2)
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where Q;(0 <1 <m—2)isa3x1matrix,and C;;(i =1,2,--- ,m—2,i <1 < m—2)
is a 3 x 3 matrix. Then, it follows from (3.17) and (3.18) that
d (¢ y€0,2,C1, ", C — , € — y C2m—3; C2(m—
dot (co1,c02:¢1 2(m—2),1> C2(m—2),25 C2m—3: C2(m—1,1) £0, (3.19)
9 (00,0,01,0,02,05*** 1 00,2(m—2)s T1,2(m—2)> 02,2(m—2) 00,2(m—1))

which means that the equations cz; 1 = c2;2 = c2i41 = 0(0 < i <m—2), co(m-1)1 =
0 of o have a unique solution of the form

(00,07 01,0,02,05" " ,00,2(m—2),01,2(m—2),92,2(m—2)» 00,2(m—1)) (3 20)
= @(00,1700,37'“ »00,2m—1,""" 70-2m71,0)~
Let 0|(3.20) holds = 0. From the above we know that

Ca(m-1),1(00) = 0, ¢241(00) = c2i,2(00) = c2i41(00) =0, 0 <i <m —2. (3.21)

Next, we will give co(m—1),2(00) and ca,—1(00).
By (3.14), it is easy to obtain that

2 2
Co, 1 E ap.071,0, C02 E al,orl,07 01(0) = E apoTl,1-
=0

=0

Note that (3.16) holds for ¢ = 0,5 = 0 and det Ay # 0, which means that

CO,I(U) = 0072(0') = 01(0') =0 a070(a) = 041,0(0') = 04270(0') =0. (322)

If ap (o) = a1,0(0) = az0(0) =0, by (3.14) we further obtain

2

2
621 E ap171,0, 022 E al,ﬂ’l,m CS(U):E ap1’,a-
=0

1=0
Note that (3.16) holds for ¢ = 1,7 = 1 and det Ag # 0, which yields that
c21(0) =c22(0) =c3(0) =0<= ap1(0) = a1,1(0) = az1(0) =0. (3.23)

Similarly, one can prove that if ag (o) = a1,(0) = @z (o) =0for 0 <1 <i—1
and i = 2,--- ,m — 2, then

CQi,l(O—) = CQLQ(O‘) = 021'+1(0') = 0 < 01077;(0) = 04171'(0') = QQ’»L'(O-) = 0 (324)

If ai(0) = a1,i(0) = az (o) =0 for 0 <i <m—2, by (3.15), (3.11) and (3.12)
we obtain
V2

4

CQ(m—l),l( o) = 3040m 1(o )_T’fral,mfl(g%
4
3

2 &0,m— 1( )+ @Tral,m—l(o'), (325)

02(m—1),2( ) 4

Com-1(0) = —0407m—1(<7)-

Solving the equation cy(m,—1),1(0) = 0 for ag,m—1(c) we obtain

3
Qm_1(0) = E\/i T m_1(0), (3.26)
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by (3.7) which further gives

[m—1]
3 M .2m
00,2(m—1) = E\/iﬂ- : ?73 1]2 01,2m—2- (327)
/\O,Qm—Q
Now, by (3.25), (3.26) and (3.7), we easily obtain
\/>7T [m—1]
Cz(m—1),2(00) B) — T,2m—201,2m—2,
(3.28)
3\[7( [m 1]
sz—l(Uo) 16 M ,2m=— 201 2m—2-

By (3.13) and (3.26), we further have

Ms(h,ao):hm1a17m1< V2rIE(n) + Iﬂ(h))

B () e 0w

=0

x (i\fzﬂéﬂ(m + I{ﬂ(h)) L s=1,2

y [4], for 0 < h+ %+ < 1, My(h, J),I([f]l(h) and I{‘S]l(h) can be expanded as the
forms below

My (h, ) = b5 (o) (h + i) +O((h + %)2), (3.30)

s s 1 1 .
1) =5+ )+ O((h + 7)), G=0.1, (3:31)

where

VEn = VEn = En o= vEn
Then, by (3. 29) d (3.31) we obtain

m—1
1 3 m—
b (0g) = v/2m (_4> (16\/% - 1) o) 501 2m—2,

m—1
1 3 m—
bO (Uo) \[’N ( ) (16\/57-( + 1) n£)2m1l201,2m72-

(3.32)

It follows from (1.5) and (3.21) that

M, (h O'()) = Com— 1(00)hm In |h| + O(hﬂl)7 0< —-hk 1,
Ms(h,00) = cam—1),2(00)h™ " + O(R™ In|h|), 0<—h< 1.

Hence, let 01 21m—2, the element of oy, satisfy o1 2m—2 # 0. By (3.28), (3.30) and
(3.32), we obtain

1 1
M1(6,0'0)M1(—i + 6,0'0) > 0, MQ(S,UO)MQ(—Z +8,0’0) >0

for 0 < € < 1, which means that we can not find simple zeros of M (h,00)(s = 1,2)
for h € (—%,0).
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Note that cy(m—1),2(00)c2m-1(00) < 0. Then, by Theorem 2.1 system (1.1)
has at least 5m — 4 limit cycles near Lo for some (e,0) near (0,00) with three
distributions: (2m—2,2m—2)+m, (2m—1,2m—3)+m and (2m—1,2m—2)+m—1.

Next, we will prove that for m > 2 there exists another parameter 6y such
that system (1.1) has at least 5m — 4 limit cycles near Lo for some (g,0) near
(0,80) with three distributions: (2m — 2,2m —2) +m, (2m — 3,2m — 1) +m and
2m—-2,2m—1)+m— 1.

Similar to (3.19), we have

0 (60,1, €0,2;C15 " 5 C2(m—2),15 C2(m—2),2, C2m—3, 62(m71),2)

det ) # 0.

0 (00,0, 01,0,02,05" " ,00,2(m—2),01,2(m—2),92,2(m—2)500,2(m—1)
Therefore, the equations cz;1 = 252 = c2i41 = 0(0 <7 < m — 2), Co(—1),2 = 0 of

o have a unique solution of the form

(00,07 01,0,02,05" " " »,00,2(m—2),01,2(m—2), 92,2(m—2)5 UO,Q(m—l))

(3.33)
=1(00,1,00,3," "+ ,00,2m—1,""" s 02m—1,0)-

Let o|(3.33)nolas = 00. By (3.22)-(3.24) and (3.7) we obtain that cy;1(60) =
Cgi,g(&o) = 02i+1(&0) =0for0 S 7 S m — 2, Cg(mfl)’g(a'o) =0 and

\/5 [m—1]

C2(m—1),1(5—0) = —77”71,27;17201,277%2»
3.34
~ 3\/i [m—1] ( )
cam—1(00) = T67”71,2m—20'1,2m—27

o[£ ()6 (T,
x <f’6\/§ w15 (n) + 1 (h)) .

Then, by (3.30), (3.31) and (3.35) we obtain

m—1
3vV2 1 m—
bgl] (6’0) = —\/iﬂ— <]_ + f 7'[') (—) /'75727’?’1,1120—1727”72’

16 4 ( )
3.36
i 32 NN e
bg)Q] (UO) = \/57(- (1 — W 7T> <_4> n£’2m1120'1’2m72.

Suppose 01 2m—2 # 0. In this case, we can not find simple zeros of M (h, &¢)(s =
1,2) for h € (—i,O). On the other hand, note that cy(m,—1),1(60)c2m—1(d0) < 0.
Then, the conclusion follows from Theorem 2.1.

Next, suppose m = 1. In this case, note that a1,9 = 01,0 and a0 = 09,0. Then,
by (3.25) we can obtain the coefficients ¢g 1, ¢o2 and ¢; appearing in (1.5) with

4 V2 4 V2
co,1(0) = 500»0 — T’]TO'LO, co2(0) = 500,0 + Twal’m c1(o) = —ag,0. (3.37)

Solving the equation ¢g 1 (o) = 0 for og o gives oo, = %wol,o. Let og = (%71’0’1’0,

01,0, 00,1)- Then, (3.28) and (3.32) hold for m = 1.
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It is obvious that ¢y 2(00)ci(o0) < 0 if 01,9 # 0. Then, we can easily prove that
for some (e, o) near (0, 09) with 01,9 # 0 system (1.1) has at least 1 limit cycle near
Ly with distribution (1,0) + 0.

If we solve the equation cgo(c) = 0 in (3.37) for 0g o, then oo = —%ﬂ'am,
and (3.34) and (3.36) hold for m = 1, where 5o = (— %2701 9,01,0,00,1). Similarly,
we can prove that for some (g, o) near (0, 0¢) with o1 ¢ 7 0 system (1.1) has at least
1 limit cycle near Lo with distribution (0,1) 4 0.

3.2. Case 2: n=2m —1
In this case, by (3.6), Ms(h,o) can be written as the following form:

2
My(h,o) =" (0j,0(0) + haj1 (o) + - + W™ 20 (o)) 11 ()
j=0

(3.38)
+ W g 1 (o) I3 (h).
Similar to the case of n = 2m, (3.14) still holds for 0 < ¢ < m — 2, and
2 m—2
Ca(m—1),1(0 ZZO’«]I o)} 2(m-1)—21 + 70,000,m-1(0),
=0 1=0
2 m—-2
Co(m—1),2( Z ]ajl o) 2(m—1)—21 + 70,000,m-1(0), (3.39)
J=0 I= o
2 m-—2
com—1(0) = Z @ 1(0)r5,2m—20-1 + 70,100,m—1(0).
§=0 1=0

By (3.19), it is easy to obtain that

9 (C0,1,€0,2,C15 5 Ca(m—2),1> C2(m—2),25 C2m—3)

det ) # 0.

0 (00,0:01,0: 02,0, * * ,00,2(m—2)> 01,2(m—2) 02,2(m—2)
Then, the equations cg;1 = ¢2i2 = c2i41 = 0(0 < i < m — 2) of o have a unique

solution of the form

(00,0, 01,0,02,0," " ,00,2(m—2),01,2(m—2)>» 0'272(77172)) (3_40)

= ¢(00,1700,3,"' »00,2(m—1)y """ 702(m—1),0)~
Note that (3.22)-(3.24) still hold in this case. Let ¢|(3.40)nolas = 0. By (3.7),
(3.38)-(3.40) and (3.22)-(3.24), we obtain

€2i1(60) = 2i,2(60) = c2i41(60) =0, 0<i<m—2,
. . 4 m
C2(m-1),1(00) = Ca(m—-1),2(00) = 3 /\([) zml] 200,2m—2,

and

3 (Y +3 A IO o]
Z 71 >\O 2m—2-00,2m— 210’1(h), s = 1,2
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Hence, by (3.30) and (3.31) we obtain

. A N e
60) =00 = VEn (<1) " Aaonans.

Let 0¢,2m—2 7 0. In this case, we can not find simple zeros of M,(h,&¢)(s = 1,2)
for h € (— 4,O). Note that cy(m—1),1(F0)c2(m—1),2(60) > 0. By Theorem 1.1, system
(1.1) has at least 5m — 5 limit cycles near Ly for some (g,0) near (0,59) with
distributions (2m—2,2m—2)+m—1, (2m—2,2m—3)+m and (2m—3,2m—2)+m.

4. Proof of Theorem 1.3

In this section, for system (1.1) we suppose that H satisfies (1.8) and f, g satisfy
(1.10) and n = 2m — 1, m > 2. In this case, My = M>.
Similar to (3.1) and (3.6), the function M; in (3.1) can be written as

2m—2

1 1
Ml(h, (5) = Z maiﬁli[,JJJrl

where o (o) and a9 (o) satisfy (3.7). By (4.1) and (3.10), we can obtain the
coefficients appearing in (1.5) with

%
C2i1(0) =Y (0,1(0)r0,2i—21 + 2,1(0)72,2i 1),
=0
4

Cai41(0) =D (a0u(0)r02i-2141 + 02,1(0)r22i2141)

1=0
for 0 <i<m —2, and
m—2
Ca(m—1),1( Z @0,1(0)70,2(m—-1)—21 + @2,1(T)T2 2(m—1)—21) + Q0,m—-1(0)70,0.
1=0

(4.2)
Similar to (3.16), (3.17) and (3.18), we have

O(cai1,c2i41) | To2(i—5)  T2.2(i—j) 3

Ao j,a0)
(0,3, 02,5) 70,2(i—j)+1 72,2(i—j)+1
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where det ;10 =16 and further

15°
0 (00,1, €1, 5 C2(m—2),1» sz—3)
det
0 (0,0, 2,0, ,00,m—2, ¥2.m—2)
A
AO 4 (4.3)
= det R £0.
Am—z Am-1 .- Ao (2m—2) x (2m—2)
Noting that
0 (0,0, 20) ~
————= = Is4x9 = By,
9 (000,000) 2T
) ) )\[i] oo .
a@((ao,z,az,z)) _ 0,2i . =B, 1<i<m-2
00,2, 02,2i i
0,26, 02,2 0 T3
and detéi #0 for 0 <i<m —2, we have
det 0 (%,07 @20, " 5, XO,m—2, aQ,m—Q)
0 (00,07 02,0, ,00,2(m—2)» 02,2(m—2))
ByCi1- Ciome
OELI...&L 2 (4.4)
— det 1 . 2,m—2

. 70,

B,,—2 4 2m-2)x(2m-2)

where éi’l(i =1,2,---,m—2,1 <]l <m-—2)is a2 x 2 matrix. Further, by (4.3)
and (4.4), we obtain

det —2Leo1sen s Campaseamg) (4.5)
0 (Uo,o, 02,0, " ,00,2(m—2)» 0'2,2(77172))
Similar to Section 3, we can prove that
c01(0) =c1(0) =0 <= apo(o) = azp(o) =0, (4.6)
and
€2i1(0) = c2i41(0) =0 <= (o) = a2 (0) =0, i=1,--- ,m—2 (4.7)

if ag(0) =ag(oc) =0for 0 <1 <4i—1.
By (4.5), the equations cg;1 = c2i+1 = 0(0 < i < m — 2) of ¢ have a unique
solution of the form

(00,0,02,07 T a00,2(m72)a0’2,2(m72)) (4.8)

=9(01,1,01,3," " ,01,2m—3, " »02m—2,0)-
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Let 0|(4.8)nolas = 00. Then, by (4.2) we obtain

. 4 -
Cam—2,1(60) = 3 >\£)72m1l20'072m—2~

And by (4.1), (4.6), (4.7), (3.30) and (3.31), we obtain

P N )
bO (0’0) = \[27'(' —1 )\072m_200,2m—2-

Similar to the analysis in Section 3, we can not find simple zeros of M (h,d)
in (—%,O). If 09.2m—2 # 0, by Lemma 1.1, system (1.1) has at least 5m — 5 limit
cycles near Lg for some (g, o) near (0, 69), of which m — 1 limit cycles surround Ly.
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