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Abstract In this paper, for a general near-Hamiltonian system we study the
number and distributions of limit cycles near a double homoclinic loop. For a
cubic Hamiltonian system with general polynomial perturbations, we obtain a
lower bound of the maximum number of limit cycles near a double homoclinic
loop.
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1. Introduction and main results

It is well known that the second part of the Hilbert’s 16th problem proposed by
Hilbert [14] is to study the maximum number and related locations of limit cycles for
a planar polynomial system with degree n. There have been many works on studying
the number of limit cycles near a center, a homoclinic loop, a heteroclinic loop or
periodic orbits for a planar differential system with perturbations, see [5,13,17–19].

In this paper, we consider a near-Hamiltonian system of the form

ẋ = Hy + εf(x, y, δ), ẏ = −Hx + εg(x, y, δ), (1.1)

where H, f and g are analytic functions in (x, y), ε > 0 is a small parameter and
δ ∈ D ⊂ Rn with D compact. When ε = 0, (1.1) becomes

ẋ = Hy, ẏ = −Hx, (1.2)

which is a Hamiltonian system.
Arnold [1] proposed the weak Hilbert’s 16th problem, which is to ask for the

maximum number of isolated zeros of the Melnikov function,

M(h, δ) =

∮
H(x,y)=h

gdx− fdy,
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where the equation H(x, y) = h defines a family of periodic orbits of system (1.2).
To find the number of zeros of the Melnikov function, an important tool is to
study the expansions of the Melnikov function near a center, a homoclinic loop or
a heteroclinic loop with hyperbolic saddles or nilpotent singular points, see [9, 12,
15,21] for example.

For the case that the equation H(x, y) = 0 defines a homoclinic loop L0 with a
hyperbolic saddle, Roussarie [21] proved that for 0 < |h| � 1 the Melnikov function
has an expansion of the form:

M(h, δ) =
∑
i≥0

(c2i(δ) + c2i+1(δ)h ln |h|)hi, (1.3)

where c0 =
∮
L0
gdx− fdy, and the formulas of c1, c2 and c3 were respectively given

by [10] and [8]. For c2i+1(i ≥ 1), Han and Yu [11] gave a method of computing
them. Later, Tian and Han [22] developed a method of computing c2i+1 and c2i
for i ≥ 2 under some assumptions. Geng and Tian [3] generalized this method to
calculate the coefficients appearing in the expansion of the Melnikov function near
a heteroclinic loop with hyperbolic saddles. Some authors used the expansion given
in (1.3) and the first few coefficients to study the number of limit cycles near a
heteroclinic loop or a compound loop with hyperbolic saddles, see [20,26]. In recent
decades, the expansion of the Melnikov function was used to study the number of
limit cycles near a generalized homoclinic loop or a generalized heteroclinic loop for
a piecewise near-Hamiltonian system, see [23,24].

In this paper, suppose that the equation H(x, y) = 0 defines a double homoclinic
loop L0(= L10 ∪ L20) with a hyperbolic saddle at the origin, and the equation
H(x, y) = h defines a family of periodic orbits L(h) for 0 < h� 1 and two families
of periodic orbits L1(h) and L2(h) for 0 < −h� 1. See Figure 1.
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Figure 1. The double homoclinic loop L0.

Correspondingly, there are three Melnikov functions below

Mj(h, δ) =

∮
Lj(h)

gdx− fdy, −h0 < h < 0, j = 1, 2,

M(h, δ) =

∮
L(h)

gdx− fdy, 0 < h < h0,

(1.4)
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where h0 is a small positive constant. For the expansions of Mj(h, δ)(j = 1, 2) and
M(h, δ) near L0 we have ( [25])

Mj(h, δ) =
∑
i≥0

(c2i,j(δ) + c2i+1(δ)h ln |h|)hi, j = 1, 2, 0 < −h� 1,

M(h, δ) =
∑
i≥0

(c2i(δ) + 2c2i+1(δ)h lnh)hi, 0 < h� 1,
(1.5)

where the first four coefficients were obtained in [25].
Recently, Han et al. [7] found the relation between c2i,1, c2i,2 and c2i for i ≥ 0

as given below
c2i = c2i,1 + c2i,2. (1.6)

If system (1.1) is centrally symmetric, Han et al. [7] gave a way of obtaining limit
cycles near L0 as shown in the following lemma.

Lemma 1.1. Suppose that system (1.1) is centrally symmetric, i.e., H, f, g satisfy
H(x, y) = H(−x,−y), f(x, y, δ) = −f(−x,−y, δ), g(x, y, δ) = −g(−x,−y, δ), and
the equation H(x, y) = 0 defines a double homoclinic loop L0. If there exist δ0 ∈ D
and k ≥ 1 such that

ck (δ0) 6= 0, cj (δ0) = 0, j = 0, · · · , k − 1

and

rank
∂ (c0, c1, · · · , ck−1)

∂ (δ1, δ2, · · · , δn)

∣∣∣∣
δ=δ0

= k,

then for any given neighborhood V of L0 there exists δ near δ0 such that for 0 <
ε� 1 system (1.1) has at least

[
5
2k
]

limit cycles in V .

In this paper, suppose that system (1.1) is not centrally symmetric. We study
the number of limit cycles near L0 and obtain the following theorem.

Theorem 1.1. Consider system (1.1) and let (1.4)-(1.6) hold. If there exists δ0
such that

ck,1(δ0)ck,2(δ0) > 0

and

ci(δ0) = 0, i = 1, 3, · · · , k − 1,

cl,j(δ0) = 0, l = 0, 2, · · · , k − 2, j = 1, 2,

rank
∂(c0,1, c0,2, c1, c2,1, c2,2, · · · , ck−1)

∂δ

∣∣∣∣
δ=δ0

=
3k

2

(1.7)

for an even k, or

cl,j(δ0) = 0, l = 0, 2, · · · , k − 1, j = 1, 2,

ci(δ0) = 0, i = 1, 3, · · · , k − 2, ck(δ0) 6= 0,

rank
∂(c0,1, c0,2, c1, c2,1, c2,2, · · · , ck−1,1, ck−1,2)

∂δ

∣∣∣∣
δ=δ0

=
3k + 1

2

for an odd k, then for any given neighborhood V of L0 there exists δ near δ0 such
that for 0 < ε � 1 system (1.1) has at least

[
5k
2

]
limit cycles in V with three
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distributions (k, k) +
[
k
2

]
, (k, k − 1) + (

[
k
2

]
+ 1) and (k − 1, k) + (

[
k
2

]
+ 1), where

(l1, l2) + l3 means that l1 limit cycles are near and inside L10, l2 limit cycles are
near and inside L20, and l3 limit cycles are near and outside L0.

It should be noted that Han and Chen [6] proved the above theorem for k = 2.
They further proved that 5 is the maximal number of limit cycles near L0. Iliev et
al. [16] studied system (1.1) with

H(x, y) =
1

2
y2 − 1

2
x2 +

1

4
x4, (1.8)

and f, g being arbitrary cubic polynomials in (x, y). By the higher-order Melnikov
functions they obtained the number of limit cycles bifurcated from Lj(h) for 0 <
−h < 1

4 under some conditions.
Now, suppose that in (1.1) H is given by (1.8) and f, g are given by

f(x, y, δ) =

n∑
i+j=1

ai,jx
iyj , g(x, y, δ) =

n∑
i+j=1

bi,jx
iyj , n ≥ 2, (1.9)

or

f(x, y, δ) =

n∑
i+j=1
i+j odd

ai,jx
iyj , g(x, y, δ) =

n∑
i+j=1
i+j odd

bi,jx
iyj , n ≥ 3. (1.10)

In this case, the phase portrait of system (1.2) is shown in Figure 1, where C1(−1, 0),
C2(1, 0) are elementary centers, the double homoclinic loop L0 is defined by the
equation H(x, y) = 0 and

Li(h) = {(x, y)|H(x, y) = h,− 1
4 < h < 0, (−1)ix > 0},

L(h) = {(x, y)|H(x, y) = h, 0 < h < h0}.

To obtain the number of limit cycles near L0 by Theorem 1.1, a key step is to obtain
the coefficients appearing in the expansions of M1,M2 and M . The method given
in Tian and Han [22] is effective under some conditions. Motivated by [2], in this
paper we obtain all the desired coefficients under some conditions. Then, by using
these coefficients we obtain the number and distributions of limit cycles near the
double homoclinic loop L0 as shown in the following two theorems.

Theorem 1.2. For system (1.1), let H satisfy (1.8) and f, g satisfy (1.9). There

exists δ0 such that for some (ε, δ) near (0, δ0) system (1.1) has at least
[

5(n−1)
2

]
−

1
2 (1 + (−1)n), denoted by κn, limit cycles near L0.

(1) If n is even and n ≥ 4, the three distributions of the κn limit cycles are
(n−2, n−2)+ n

2 , (n−1, n−3)+ n
2 and (n−1, n−2)+ n

2 −1 ( or (n−2, n−2)+ n
2 ,

(n − 3, n − 1) + n
2 and (n − 2, n − 1) + n

2 − 1). If n = 2, the distribution of the
κn(= 1) limit cycle is (1, 0) + 0 (or (0, 1) + 0).

(2) If n is odd, the three distributions of the κn limit cycles are (n−1, n−1)+n−1
2 ,

(n− 1, n− 2) + n+1
2 and (n− 2, n− 1) + n+1

2 .

Theorem 1.3. For system (1.1) with H being given by (1.8) and f, g given by
(1.10), there exists δ0 such that for some (ε, δ) near (0, δ0) system (1.1) has at least
5(n−1)

2 limit cycles near L0 with the distribution (n− 1, n− 1) + n−1
2 .
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2. The number of limit cycles near L0

Proof of Theorem 1.1. We first suppose that k is even with k = 2m,m ∈ Z+.
By (1.7) and the inverse function theorem, the equations

c2i+1(δ) = c2i+1, c2i,j(δ) = c2i,j , i = 0, 1, · · · ,m− 1, j = 1, 2,

have a unique solution δ = δ0+ O(|c0,1,c0,2, c1, c2,1, c2,2, · · · , c2m−1|), which means
that c0,1, c0,2, c1, c2,1, c2,2 · · · , c2m−1 can be taken as free parameters. Then, the
expansions of Mj(h, δ) (j = 1, 2) and M(h, δ) in (1.5) can be written as the following
form:

Mj(h, δ) =

m−1∑
i=0

(c2i,j + c2i+1hln |h|)hi + c2m,jh
m +O(hm+1ln |h|) (2.1)

for 0 < −h� 1, and

M(h, δ) =

m−1∑
i=0

(c2i + 2c2i+1hlnh)hi + c2mh
m +O(hm+1lnh)

for 0 < h� 1, where

c2m,j = c2m,j(δ0) +O(|c0,1, c0,2, c1, c2,1, c2,2, · · · , c2m−1|)

and c2m = c2m,1 + c2m,2.
For δ = δ0, i.e., c0,1 = c0,2 = c1 = c2,1 = c2,2 = · · · = c2m−1 = 0 and

c2m,j = c2m,j(δ0), we have

Mj(h, δ) = c2m,jh
m +O(hm+1 ln |h|), 0 < −h� 1, j = 1, 2,

M(h, δ) = c2mh
m +O(hm+1 lnh), 0 < h� 1.

Note that c2m,j 6= 0. There exist h∗0,j and h̄∗0 such that Mj(h
∗
0,j , δ0) 6= 0 and

M(h̄∗0, δ0) 6= 0.
Next, we will take suitable values of parameter δ to find simple zeros of Mj(h, δ)

and M(h, δ).
Firstly, let c0,1 = c0,2 = c1 = c2,1 = c2,2 = · · · = c2m−2,1 = c2m−2,2 = 0 and

0 < |c2m−1| � 1, c2m−1c2m,j > 0, j = 1, 2.

In this case we have

Mj(h, δ) = hm(c2m−1 ln |h|+ c2m,j) +O(hm+1 ln |h|), 0 < −h� 1, j = 1, 2,

M(h, δ) = hm(2c2m−1 lnh+ c2m) +O(hm+1 lnh), 0 < h� 1.

It is easy to see that M(h, δ) has a simple zero h̄∗1 ∈ (0, h̄∗0), and Mj(h, δ) has a
simple zero h∗1,j ∈ (h∗0,j , 0) for each j.

Secondly, let c0,1 = c0,2 = c1 = c2,1 = c2,2 = · · · = c2m−3 = 0 and

|c2m−2,1| � |c2m−1|, |c2m−2,2| � |c2m−1|.
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Then, for 0 < |h| � 1, Mj(h, δ) and M(h, δ) can be written as given below:

Mj(h, δ) = hm−1(c2m−2,j + c2m−1h ln |h|) +O(hm),

M(h, δ) = hm−1(c2m−2 + 2c2m−1h lnh) +O(hm).

To find the maximal number of simple zeros of Mj(h, δ) and M(h, δ) obtained by
this step, we consider the following cases according to the sign of c2m−2,1, c2m−2,2

and c2m−1:
(1.i) c2m−2,1c2m−2,2 < 0, c2m−2,1c2m−1 > 0, (c2m−2,1 + c2m−2,2)c2m−1 > 0

(resp., < 0);
(1.ii) c2m−2,1c2m−2,2 < 0, c2m−2,1c2m−1 < 0, (c2m−2,1 + c2m−2,2)c2m−1 >

0 (resp., < 0);
(1.iii) c2m−2,1c2m−2,2 > 0 and c2m−2,1c2m−1 > 0;
(1.iv) c2m−2,1c2m−2,2 > 0 and c2m−2,1c2m−1 < 0.
We denote the number of simple zeros of M1(h, δ), M2(h, δ) and M(h, δ) ob-

tained in the second step by µ
[2]
1 , µ

[2]
2 and µ

[2]
3 , respectively. And let µ[2] = µ

[2]
1 +

µ
[2]
2 + µ

[2]
3 . Similar to the first step, we obtain the following table, which shows the

values of µ
[2]
1 , µ

[2]
2 , µ

[2]
3 and µ[2] in each one of the above cases.

The sign of The sign of The sign of
µ

[2]
1 µ

[2]
2 µ

[2]
3 µ[2]

c2m−2,1c2m−2,2 c2m−2,1c2m−1 c2m−2c2m−1

−
+

+ 0 1 1 2

− 0 1 0 1

− + 1 0 1 2

− 1 0 0 1

+
+ + 0 0 1 1

− − 1 1 0 2

Thirdly, take c0,1 = c0,2 = c1 = c2,1 = c2,2 = · · · = c2m−4,1 = c2m−4,2 = 0 and

|c2m−3| � |c2m−2,1|, |c2m−3| � |c2m−2,2|.

For the sign of c2m−3, c2m−2,1 and c2m−2,2, the following cases need to be considered:
(2.i) c2m−2,1c2m−2,2 < 0, c2m−2,1c2m−3 > 0, (c2m−2,1+c2m−2,2)c2m−3 > 0 (resp.,

< 0);
(2.ii) c2m−2,1c2m−2,2 < 0, c2m−2,1c2m−3 < 0, (c2m−2,1 + c2m−2,2)c2m−3 >

0 (resp., < 0);
(2.iii) c2m−2,1c2m−2,2 > 0, c2m−2,1c2m−3 > 0;
(2.iv) c2m−2,1c2m−2,2 > 0, c2m−2,1c2m−3 < 0.
We denote the number of simple zeros of M1(h, δ), M2(h, δ) and M(h, δ) ob-

tained in the third step by µ
[3]
1 , µ

[3]
2 and µ

[3]
3 , respectively. And let µ[3] = µ

[3]
1 +

µ
[3]
2 +µ

[3]
3 . In the following table we give the values of µ

[3]
1 , µ

[3]
2 , µ

[3]
3 and µ[3] in each

one of the above cases.
From the two steps described above, it can be seen that the maximum number

of simple zeros of M1, M2 and M obtained by the above two steps is 5, of which
M1, M2 and M have 2, 2 and 1 simple zeros, respectively, denoted by (2, 2) + 1.
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The sign of The sign of The sign of
µ

[3]
1 µ

[3]
2 µ

[3]
3 µ[3]

c2m−2,1c2m−2,2 c2m−2,1c2m−3 c2m−2c2m−3

−
+

+ 1 0 1 2

− 1 0 0 1

− + 0 1 1 2

− 0 1 0 1

+
+ + 1 1 1 3

− − 0 0 0 0

Further, let c0,1 = c0,2 = c1 = c2,1 = c2,2 = · · · = c2i−2,1 = c2i−2,2 = 0 and

|c2i−1| � |c2i,1| � |c2i+1|, |c2i−1| � |c2i,2| � |c2i+1|,

c2i,1c2i,2 > 0, c2i,1c2i+1 < 0, c2i,1c2i−1 > 0

for i = m − 2,m − 3, · · · , 1 one by one. For each i, we can obtain two more
simple zeros of Mj(h, δ)(j = 1, 2) and one more simple zero of M(h, δ). Now, we
have found 5(m − 1) + 3 simple zeros of Mj(j = 1, 2) and M with distribution
(2m− 1, 2m− 1) +m.

Finally, for fixed c1, c2,1, c2,2, · · · , c2m−1, let c0,1 and c0,2 satisfy

|c0,1| � |c1|, |c0,2| � |c1|.

By changing the sign of c0,1 and c0,2, we can obtain the number of simple zeros of

M1,M2 and M , denoted by µ
[2m]
1 , µ

[2m]
2 and µ

[2m]
3 respectively. By the following

table, it is easy to see that if c0,1c0,2 < 0, c0,1c1 > 0, c0c1 > 0 or c0,1c0,2 < 0, c0,1c1 <
0, c0c1 > 0 or c0,1c0,2 > 0, c0,1c1 < 0, c0c1 < 0, the total number of simple zeros of
M1, M2 and M obtained by this step is 2 with distributions (0, 1) + 1, (1, 0) + 1
and (1, 1) + 0.

The sign of The sign of The sign of
µ

[2m]
1 µ

[2m]
2 µ

[2m]
3 µ[2m]

c0,1c0,2 c0,1c1 c0c1

−
+

+ 0 1 1 2

− 0 1 0 1

− + 1 0 1 2

− 1 0 0 1

+
+ + 0 0 1 1

− − 1 1 0 2

Summarizing the above, there exists δ near δ0 such that the total number of
simple zeros of M1, M2 and M is 5m with distributions (2m, 2m) + m, (2m −
1, 2m) + (m + 1) and (2m, 2m − 1) + (m + 1). Then, for some (ε, δ) near (0, δ0),
system (1.1) has at least 5m limit cycles near the double homoclinic loop L0 with
distributions (2m, 2m) +m, (2m− 1, 2m) + (m+ 1) and (2m, 2m− 1) + (m+ 1).
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For k = 2m− 1, the proof is similar to the above. This ends the proof.
By the proof of Theorem 1.1, we can obtain the following corollary.

Corollary 2.1. Suppose (1.4)-(1.6) hold. If there exists δ0 such that for an even k
(1.7) holds and

ck,1(δ0)ck,2(δ0) < 0,

[(ck,1 + ck,2)ck,1 ]δ=δ0 < 0 (resp., [(ck,1 + ck,2)ck,1]δ=δ0 > 0),

then, for any given neighborhood V of L0 there exists δ near δ0 such that for 0 <
ε � 1 system (1.1) has at least 5k

2 − 1 limit cycles in V with three distributions

(k − 1, k) + k
2 , (k − 1, k − 1) + k

2 + 1 and (k − 2, k) + k
2 + 1 (resp., (k, k − 1) + k

2 ,

(k − 1, k − 1) + k
2 + 1 and (k, k − 2) + k

2 + 1).

Similar to Theorem 1.1, we can prove the following theorem.

Theorem 2.1. Consider system (1.1) and let (1.4)-(1.6) hold. If there exists δ0
such that for an even k (k ≥ 2),

ci(δ0) = 0, i = 1, 3, · · · , k − 1,

cl,j(δ0) = 0, l = 0, 2, · · · , k − 2, j = 1, 2,

ck,1(δ0) = 0 (resp., ck,2(δ0) = 0),

(2.2)

and

rank
∂(c0,1, c0,2, c1, c2,1, c2,2, · · · , ck−1, ck,j)

∂δ

∣∣∣∣
δ=δ0

=
3k

2
+ 1, for j = 1 (resp., for j = 2),

(2.3)

ck+1(δ0)ck,2(δ0) < 0 (resp., ck+1(δ0)ck,1(δ0) < 0), (2.4)

then for any given neighborhood V of L0 there exists δ near δ0 such that for 0 <
ε� 1 system (1.1) has at least 5k

2 + 1 limit cycles in V . Further, the 5k
2 + 1 limit

cycles have three distributions (k+ 1, k) + k
2 , (k+ 1, k−1) + k

2 + 1 and (k, k) + k
2 + 1

(resp., (k, k + 1) + k
2 , (k − 1, k + 1) + k

2 + 1 and (k, k) + k
2 + 1).

Proof. We first suppose

ck,1(δ0) = 0, ck+1(δ0)ck,2(δ0) < 0

and

rank
∂(c0,1, c0,2, c1, c2,1, c2,2, · · · , ck−1, ck,1)

∂δ

∣∣∣∣
δ=δ0

=
3k

2
+ 1.

By the inverse function theorem, the equations

c0,1(δ) = c0,1, c0,2(δ) = c0,2, c1(δ) = c1, · · · , ck−1(δ) = ck−1, ck,1(δ) = ck,1

have a unique solution δ = δ0 + O(|c0,1, c0,2, c1, c2,1, c2,2, · · · , ck−1, ck,1|), which
means that c0,1, c0,2, c1, c2,1, c2,2, · · · , ck−1, ck,1 can be taken as free parameters.

Firstly, let c0,1 = c0,2 = c1 = · · · = ck−2,1 = ck−2,2 = ck−1 = 0 and

|ck,1| � |ck+1(δ0)|, ck,1ck+1(δ0) < 0.
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Note that

M1(h, δ) = ck,1h
k
2 + [ck+1(δ0) +O(ck,1)]h

k
2 +1 ln |h|+O(h

k
2 +1).

By this step, we obtain a simple zero of M1(h, δ), denoted by ĥ
[1]
1 with 0 < −ĥ[1]

1 �
1.

Secondly, let c0,1 = c0,2 = c1 = · · · = ck−2,1 = ck−2,2 = 0 and

|ck−1| � |ck,1|, |ck−1| � |ck,2(δ0)|, ck−1ck,1 > 0.

Under this condition, we have

M1(h, δ)= ck−1h
k
2 ln |h|+ ck,1h

k
2 +O(h

k
2 +1 ln |h|),

M2(h, δ)= ck−1h
k
2 ln |h|+ [ck,2(δ0) +O(|ck−1, ck,1|)]h

k
2 +O(h

k
2 +1 ln |h|),

M(h, δ)= 2ck−1h
k
2 lnh+ [ck,1 + (ck,2(δ0) +O(|ck−1, ck,1|))]h

k
2 +O(h

k
2 +1 lnh).

Note that ck+1(δ0)ck,2(δ0) < 0 and ck+1(δ0)ck,1 < 0, which leads to ck,1ck,2(δ0) > 0.
Then, for each of M1, M2 and M we can obtain a simple zero by this step, denoted

by ĥ
[2]
1 , ĥ

[1]
2 , ĥ[1] respectively with ĥ

[1]
1 < ĥ

[2]
1 < 0.

Note that k − 1 is odd. Directly by Theorem 1.1 we can obtain
[

5(k−1)
2

]
more

simple zeros of M1,M2 and M by taking suitable c0,1, c0,2, c1, c2,1, c2,2, · · · , ck−2,1,
ck−2,2, with distributions (k − 1, k − 1) +

[
k−1

2

]
, (k − 1, k − 2) + (

[
k−1

2

]
+ 1) and

(k − 2, k − 1) + (
[
k−1

2

]
+ 1). Meanwhile, ĥ

[1]
1 , ĥ

[2]
1 , ĥ

[1]
2 , ĥ[1] still exist.

Thus, for 0 < ε � 1 and δ near δ0, system (1.1) has at least 5k
2 + 1 limit

cycles near L0. And the 5k
2 + 1 limit cycles have distributions (k + 1, k) + k

2 ,

(k + 1, k − 1) + k
2 + 1 and (k, k) + k

2 + 1.

The other case can be proved similarly. The proof is completed.

Similarly, if ck+1(δ0)ck,2(δ0) > 0 or ck+1(δ0)ck,1(δ0) > 0 in (2.4), we obtain the
following theorem.

Theorem 2.2. Consider system (1.1) and let (1.4)-(1.6) hold. If there exists δ0
such that (2.2) and (2.3) hold, and

ck+1(δ0)ck,2(δ0) > 0 (resp., ck+1(δ0)ck,1(δ0) > 0),

then for any given neighborhood V of L0 there exists δ near δ0 such that for 0 < ε�
1 system (1.1) has at least 5k

2 limit cycles in V with three distributions (k, k) + k
2 ,

(k, k − 1) + k
2 + 1 and (k − 1, k) + k

2 + 1.

3. Proof of Theorem 1.2

Note that f and g are given by (1.9), which means that

fx + gy =

n∑
i+j=1,
i≥1

iai,jx
i−1yj +

n∑
i+j=1,
j≥1

jbi,jx
iyj−1.
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For convenience, we introduce I
[s]
i,j(h), Ii,j(h) and σi,j for i, j ≥ 0 with

I
[s]
i,j(h) =

∮
Ls(h)

xiyjdx, Ii,j(h) =

∮
L(h)

xiyjdx, s = 1, 2, i+ j ≥ 1,

σi,j = (i+ 1)ai+1,j + (j + 1)bi,j+1.

Then, it is obvious that fx + gy ≡
n−1∑
i+j=0

σi,jx
iyj . By using Green’s formula twice,

the function M1 in (1.4) can be written as

M1(h, δ) =

∫∫
U

(fx + gy)dxdy =

n−1∑
i+j=0

1

j + 1
σi,jI

[1]
i,j+1, (3.1)

where U = {(x, y)|H(x, y) ≤ h,− 1
4 < h < 0, x < 0}. Similarly, M2 and M in (1.4)

can be written as

M2(h, δ) =

n−1∑
i+j=0

1

j + 1
σi,jI

[2]
i,j+1, M(h, δ) =

n−1∑
i+j=0

1

j + 1
σi,jIi,j+1. (3.2)

Noticing that the coefficients in the expressions of Ms(s = 1, 2) and M have been
changed from ai,j , bi,j to σi,j , so we replace Ms(h, δ) and M(h, δ) by Ms(h, σ) and

M(h, σ), respectively, where σ = (σ0,0, σ1,0, σ0,1, · · · , σ0,n−1) ∈ R
n(n+1)

2 .

On the properties of I
[s]
i,j(h)(s = 1, 2) and Ii,j(h), we give the following lemma.

Lemma 3.1. (i) Ii,j(h) = 0, I
[s]
i,j(h) = 0 (s = 1, 2) if i ≥ 0 and j is even.

(ii) Ii,j(h) = Ii−2,j(h) + i−3
j+2Ii−4,j+2(h) for i ≥ 3;

Ii,j+2(h) = 4(j+2)
i+2j+5 (hIi,j(h) + 1

4Ii+2,j(h)) for i, j ≥ 0.

(iii) I
[s]
i,j(h) = I

[s]
i−2,j(h) + i−3

j+2I
[s]
i−4,j+2(h) for i ≥ 3;

I
[s]
i,j+2(h) = 4(j+2)

i+2j+5 (hI
[s]
i,j(h) + 1

4I
[s]
i+2,j(h)) for i, j ≥ 0.

Proof. (i) Note that y2 = 2h + x2 − 1
2x

4 along L(h) or Ls(h), s = 1, 2. For even

j, we easily get Ii,j(h) = 0 and I
[s]
i,j(h) = 0 (s = 1, 2).

(ii) Noticing (1.8), for i ≥ 3 we have

xiyjdx =xi−3yjd

(
1

4
x4

)
=xi−3yjd

(
H +

1

2
x2 − 1

2
y2

)
=xi−3yjdH + xi−2yjdx− xi−3yj+1dy

=xi−3yjdH + xi−2yjdx− d

(
1

j + 2
xi−3yj+2

)
+
i− 3

j + 2
xi−4yj+2dx.

And thus, ∮
L(h)

xiyjdx =

∮
L(h)

xi−2yjdx+
i− 3

j + 2

∮
L(h)

xi−4yj+2dx,
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which gives

Ii,j(h) = Ii−2,j(h) +
i− 3

j + 2
Ii−4,j+2(h), i ≥ 3.

For i ≥ 0, we further have

h

∮
L(h)

xiyjdx =

∮
L(h)

(
1

2
y2 − 1

2
x2 +

1

4
x4

)
xiyjdx

=
1

2
Ii,j+2(h)− 1

2
Ii+2,j(h) +

1

4
Ii+4,j(h),

(3.3)

where Ii+4,j(h) satisfies

Ii+4,j(h) = Ii+2,j(h) +
i+ 1

j + 2
Ii,j+2(h). (3.4)

Substituting (3.4) into (3.3) gives that

Ii,j+2(h) =
4(j + 2)

i+ 2j + 5

(
hIi,j +

1

4
Ii+2,j

)
.

This finishes the proof of (ii). And (iii) can be proved similarly.

For I
[s]
0,1, I

[s]
1,1, I

[s]
2,1 with s = 1, 2, we further have

I
[1]
0,1(h)=

∫ −√1−
√

1+4h

−
√

1+
√

1+4h

√
−2x4 + 4x2 + 8hdx =

16h

3
ζ1(h) +

4

3
ζ2(h),

I
[1]
1,1(h)=

∫ −√1−
√

1+4h

−
√

1+
√

1+4h

x
√
−2x4 + 4x2 + 8hdx = −

√
2

4
(1 + 4h)π,

I
[1]
2,1(h)=

∫ −√1−
√

1+4h

−
√

1+
√

1+4h

x2
√
−2x4+4x2+8hdx=

16h

15
ζ1(h)+

(
16h

5
+

16

15

)
ζ2(h)

(3.5)

and

I
[2]
0,1(h) =

∫ √1+
√

1+4h

√
1−
√

1+4h

√
−2x4 + 4x2 + 8hdx = I

[1]
0,1(h),

I
[2]
1,1(h) =

∫ √1+
√

1+4h

√
1−
√

1+4h

x
√
−2x4 + 4x2 + 8hdx = −I [1]

1,1(h),

I
[2]
2,1(h) =

∫ √1+
√

1+4h

√
1−
√

1+4h

x2
√
−2x4 + 4x2 + 8hdx = I

[1]
2,1(h),

where

ζ1(h) =
EllipticK

(√
2
√

1+4h
1+
√

1+4h

)
√

2 + 2
√

1 + 4h
, ζ2(h) =

(1−
√

1 + 4h) · EllipticE
(√

2
√

1+4h
1+
√

1+4h

)
√

2 + 2
√

1 + 4h
(

1− 2
√

1+4h
1+
√

1+4h

) .
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By (3.1), (3.2) and Lemma 3.1, for each s = 1, 2, Ms(h, σ) can be written as a

combination of I
[s]
0,1(h), I

[s]
1,1(h) and I

[s]
2,1(h) with

Ms(h, σ) =

[n−1
2 ]∑

k=0

α0,kh
kI

[s]
0,1(h) +

[n−2
2 ]∑

k=0

α1,kh
kI

[s]
1,1(h) +

[n−3
2 ]∑

k=0

α2,kh
kI

[s]
2,1(h), (3.6)

where

α0,0(σ) = σ0,0,

α0,k(σ) = λ
[k]
0,2kσ0,2k +

∑
2k+2≤n̄≤n−1

∑
0≤i≤ñ
i+j=n̄
i,j even

λ
[k]
i,jσi,j , ñ = min{2n̄− 4k, n̄},

α1,k(σ) = η
[k]
1,2kσ1,2k +

∑
2k+3≤n̄≤n−1

∑
1≤i≤ñ
i+j=n̄

i odd,j even

η
[k]
i,jσi,j , ñ = min{n̄, 2n̄− 4k − 1},

α2,k(σ) = τ
[k]
2,2kσ2,2k + τ

[k]
0,2k+2σ0,2k+2

+
∑

2k+4≤n̄≤n−1

∑
0≤i≤ñ
i+j=n̄
i,j even

τ
[k]
i,j σi,j , ñ = min{n̄, 2n̄− 4k − 2}

(3.7)

with some constants λ
[k]
i,j , η

[k]
i,j , τ

[k]
i,j and η

[0]
1,0 = 1, τ

[0]
2,0 = 1. It is easy to see that

∂ (α0,0, α1,0, α2,0)

∂ (σ0,0, σ1,0, σ2,0)
= I3×3 ≡ B0, (3.8)

and

∂ (α0,k, α1,k, α2,k)

∂ (σ0,2k, σ1,2k, σ2,2k)
=


λ

[k]
0,2k 0 λ

[k]
2,2k

0 η
[k]
1,2k 0

0 0 τ
[k]
2,2k

 ≡ Bk, 1 ≤ k ≤
[
n− 3

2

]
, (3.9)

where

λ
[k]
0,2k =

1

2k + 1

k∏
i=1

4(2i+ 1)

4i+ 3
, η

[k]
1,2k =

1

2k + 1

k∏
i=1

4(2i+ 1)

4i+ 4
,

τ
[k]
2,2k =

1

2k + 1

k∏
i=1

4(2i+ 1)

4i+ 5
.

Next, we will use the first few coefficients appearing in the expansions of I
[s]
0,1(h),

I
[s]
1,1(h) and I

[s]
2,1(h) to obtain the first few coefficients appearing in the expansions of

Ms(h, σ) and M(h, σ). By [12] we know that I
[s]
0,1(h), I

[s]
1,1(h) and I

[s]
2,1(h) are analytic
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functions, and for 0 < −h� 1 one may suppose

I
[1]
0,1(h) =

∑
i≥0

(r0,2i + r0,2i+1h ln |h|)hi,

I
[1]
1,1(h) =

∑
i≥0

(r1,2i + r1,2i+1h ln |h|)hi,

I
[1]
2,1(h) =

∑
i≥0

(r2,2i + r2,2i+1h ln |h|)hi.

(3.10)

By (3.5), we easily get

r1,0 = −
√

2

4
π, r1,1 = 0, r1,2 = −

√
2π, r1,2i+1 = r1,2i+2 = 0, i ≥ 1. (3.11)

Directly by Maple or Theorem 2.2 in [12], we have

r0,0 =
4

3
, r0,1 = −1, r2,0 =

16

15
, r2,1 = 0. (3.12)

To prove Theorem 1.2, in the following we first suppose n = 2m with m ≥ 1,
and then suppose n = 2m− 1 with m ≥ 2.

3.1. Case 1: n = 2m

In this subsection we first suppose m ≥ 2. By (3.6), Ms(h, σ) can be rewritten as
the following form:

Ms(h, σ) =

2∑
j=0

(
αj,0(σ) + hαj,1(σ) + · · ·+ hm−2αj,m−2(σ)

)
I

[s]
j,1(h)

+ hm−1
(
α0,m−1(σ)I

[s]
0,1(h) + α1,m−1(σ)I

[s]
1,1(h)

)
, m ≥ 2.

(3.13)

Then, by (2.1), (3.10) and (3.13), we can obtain the coefficients appearing in the
expansion of Ms(h, σ) as follows:

c2i,1(σ) =

2∑
j=0

i∑
l=0

αj,l(σ)rj,2i−2l,

c2i,2(σ) =

2∑
j=0

i∑
l=0

(−1)jαj,l(σ)rj,2i−2l,

c2i+1(σ) =

2∑
j=0

i∑
l=0

αj,l(σ)rj,2i−2l+1

(3.14)
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for 0 ≤ i ≤ m− 2, and

c2(m−1),1(σ)=

2∑
j=0

m−2∑
l=0

αj,l(σ)rj,2(m−1)−2l+α0,m−1(σ)r0,0+α1,m−1(σ)r1,0,

c2(m−1),2(σ)=

2∑
j=0

m−2∑
l=0

(−1)jαj,l(σ)rj,2(m−1)−2l+α0,m−1(σ)r0,0−α1,m−1(σ)r1,0,

c2m−1(σ)=

2∑
j=0

m−2∑
l=0

αj,l(σ)rj,2m−2l−1 + α0,m−1(σ)r0,1 + α1,m−1(σ)r1,1.

(3.15)
By (3.14), it can be seen that

∂(c2i,1, c2i,2, c2i+1)

∂(α0,j , α1,j , α2,j)
=


r0,2(i−j) r1,2(i−j) r2,2(i−j)

r0,2(i−j) −r1,2(i−j) r2,2(i−j)

r0,2(i−j)+1 r1,2(i−j)+1 r2,2(i−j)+1

 ≡ Ai−j (3.16)

with 0 ≤ i ≤ m− 2, 0 ≤ j ≤ i. Especially, by (3.11), (3.12) and (3.16) we have

detA0 =

∣∣∣∣∣∣∣∣∣
4
3 −

√
2

4 π
16
15

4
3

√
2

4 π
16
15

−1 0 0

∣∣∣∣∣∣∣∣∣ =
8
√

2

15
π.

By (3.16) and the formula of c2(m−1),1(σ) in (3.15), we further obtain

det
∂
(
c0,1, c0,2, c1, · · · , c2(m−2),1, c2(m−2),2, c2m−3, c2(m−1),1

)
∂ (α0,0, α1,0, α2,0, · · · , α0,m−2, α1,m−2, α2,m−2, α0,m−1)

= det


A0

A1 A0
...

...
. . .

Am−2 Am−1 . . . A0

Pm−1 Pm−2 · · · P 1 r0,0


(3m−2)×(3m−2)

6= 0,

(3.17)

where P l = (r0,2l, r1,2l, r2,2l), 1 ≤ l ≤ m− 1.
On the other hand, by (3.7), (3.8) and (3.9) we have

det
∂ (α0,0, α1,0, α2,0, · · · , α0,m−2, α1,m−2, α2,m−2, α0,m−1)

∂
(
σ0,0, σ1,0, σ2,0, · · · , σ0,2(m−2), σ1,2(m−2), σ2,2(m−2), σ0,2(m−1)

)

= det


B0 C1,1 · · · C1,m−2 Q0

B1 · · · C2,m−2 Q1
. . .

...
...

Bm−2 Qm−2

λ
[m−1]
0,2(m−1)


(3m−2)×(3m−2)

6= 0,

(3.18)
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where Ql(0 ≤ l ≤ m−2) is a 3×1 matrix, and Ci,l(i = 1, 2, · · · ,m−2, i ≤ l ≤ m−2)
is a 3× 3 matrix. Then, it follows from (3.17) and (3.18) that

det
∂
(
c0,1, c0,2, c1, · · · , c2(m−2),1, c2(m−2),2, c2m−3, c2(m−1),1

)
∂
(
σ0,0, σ1,0, σ2,0, · · · , σ0,2(m−2), σ1,2(m−2), σ2,2(m−2), σ0,2(m−1)

) 6= 0, (3.19)

which means that the equations c2i,1 = c2i,2 = c2i+1 = 0 (0 ≤ i ≤ m−2), c2(m−1),1 =
0 of σ have a unique solution of the form

(σ0,0, σ1,0, σ2,0, · · · , σ0,2(m−2), σ1,2(m−2), σ2,2(m−2), σ0,2(m−1))

= ϕ(σ0,1, σ0,3, · · · , σ0,2m−1, · · · , σ2m−1,0).
(3.20)

Let σ|(3.20) holds ≡ σ0. From the above we know that

c2(m−1),1(σ0) = 0, c2i,1(σ0) = c2i,2(σ0) = c2i+1(σ0) = 0, 0 ≤ i ≤ m− 2. (3.21)

Next, we will give c2(m−1),2(σ0) and c2m−1(σ0).
By (3.14), it is easy to obtain that

c0,1(σ) =

2∑
l=0

αl,0rl,0, c0,2(σ) =

2∑
l=0

(−1)lαl,0rl,0, c1(σ) =

2∑
l=0

αl,0rl,1.

Note that (3.16) holds for i = 0, j = 0 and detA0 6= 0, which means that

c0,1(σ) = c0,2(σ) = c1(σ) = 0⇐⇒ α0,0(σ) = α1,0(σ) = α2,0(σ) = 0. (3.22)

If α0,0(σ) = α1,0(σ) = α2,0(σ) = 0, by (3.14) we further obtain

c2,1(σ) =

2∑
l=0

αl,1rl,0, c2,2(σ) =

2∑
l=0

(−1)lαl,1rl,0, c3(σ) =

2∑
l=0

αl,1rl,1.

Note that (3.16) holds for i = 1, j = 1 and detA0 6= 0, which yields that

c2,1(σ) = c2,2(σ) = c3(σ) = 0⇐⇒ α0,1(σ) = α1,1(σ) = α2,1(σ) = 0. (3.23)

Similarly, one can prove that if α0,l(σ) = α1,l(σ) = α2,l(σ) = 0 for 0 ≤ l ≤ i − 1
and i = 2, · · · ,m− 2, then

c2i,1(σ) = c2i,2(σ) = c2i+1(σ) = 0⇐⇒ α0,i(σ) = α1,i(σ) = α2,i(σ) = 0. (3.24)

If α0,i(σ) = α1,i(σ) = α2,i(σ) = 0 for 0 ≤ i ≤ m− 2, by (3.15), (3.11) and (3.12)
we obtain

c2(m−1),1(σ) =
4

3
α0,m−1(σ)−

√
2

4
πα1,m−1(σ),

c2(m−1),2(σ) =
4

3
α0,m−1(σ) +

√
2

4
πα1,m−1(σ),

c2m−1(σ) = −α0,m−1(σ).

(3.25)

Solving the equation c2(m−1),1(σ) = 0 for α0,m−1(σ) we obtain

α0,m−1(σ) =
3

16

√
2πα1,m−1(σ), (3.26)
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by (3.7) which further gives

σ0,2(m−1) =
3

16

√
2π ·

η
[m−1]
1,2m−2

λ
[m−1]
0,2m−2

σ1,2m−2. (3.27)

Now, by (3.25), (3.26) and (3.7), we easily obtain

c2(m−1),2(σ0) =

√
2π

2
η

[m−1]
1,2m−2σ1,2m−2,

c2m−1(σ0) = −3
√

2π

16
η

[m−1]
1,2m−2σ1,2m−2.

(3.28)

By (3.13) and (3.26), we further have

Ms(h, σ0) = hm−1α1,m−1

(
3

16

√
2πI

[s]
0,1(h) + I

[s]
1,1(h)

)
=

[
m−1∑
i=0

(m−1

i

)(
h+

1

4

)i(
−1

4

)m−1−i
]
α1,m−1

×
(

3

16

√
2πI

[s]
0,1(h) + I

[s]
1,1(h)

)
, s = 1, 2.

(3.29)

By [4], for 0 < h + 1
4 � 1, Ms(h, σ), I

[s]
0,1(h) and I

[s]
1,1(h) can be expanded as the

forms below

Ms(h, σ) = b
[s]
0 (σ)(h+

1

4
) +O((h+

1

4
)2), (3.30)

I
[s]
j,1(h) = b

[s]
j,0(h+

1

4
) +O((h+

1

4
)2), j = 0, 1, (3.31)

where
b
[1]
0,0 =

√
2π, b

[1]
1,0 = −

√
2π, b

[2]
0,0 =

√
2π, b

[2]
1,0 =

√
2π.

Then, by (3.29) and (3.31) we obtain

b
[1]
0 (σ0) =

√
2π

(
−1

4

)m−1(
3

16

√
2π − 1

)
η

[m−1]
1,2m−2σ1,2m−2,

b
[2]
0 (σ0) =

√
2π

(
−1

4

)m−1(
3

16

√
2π + 1

)
η

[m−1]
1,2m−2σ1,2m−2.

(3.32)

It follows from (1.5) and (3.21) that

M1(h, σ0) = c2m−1(σ0)hm ln |h|+O(hm), 0 < −h� 1,

M2(h, σ0) = c2(m−1),2(σ0)hm−1 +O(hm ln |h|), 0 < −h� 1.

Hence, let σ1,2m−2, the element of σ0, satisfy σ1,2m−2 6= 0. By (3.28), (3.30) and
(3.32), we obtain

M1(ε, σ0)M1(−1

4
+ ε, σ0) > 0, M2(ε, σ0)M2(−1

4
+ ε, σ0) > 0

for 0 < ε� 1, which means that we can not find simple zeros of Ms(h, σ0)(s = 1, 2)
for h ∈ (− 1

4 , 0).
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Note that c2(m−1),2(σ0)c2m−1(σ0) < 0. Then, by Theorem 2.1 system (1.1)
has at least 5m − 4 limit cycles near L0 for some (ε, σ) near (0, σ0) with three
distributions: (2m−2, 2m−2)+m, (2m−1, 2m−3)+m and (2m−1, 2m−2)+m−1.

Next, we will prove that for m ≥ 2 there exists another parameter σ̃0 such
that system (1.1) has at least 5m − 4 limit cycles near L0 for some (ε, σ) near
(0, σ̃0) with three distributions: (2m − 2, 2m − 2) + m, (2m − 3, 2m − 1) + m and
(2m− 2, 2m− 1) +m− 1.

Similar to (3.19), we have

det
∂
(
c0,1, c0,2, c1, · · · , c2(m−2),1, c2(m−2),2, c2m−3, c2(m−1),2

)
∂
(
σ0,0, σ1,0, σ2,0, · · · , σ0,2(m−2), σ1,2(m−2), σ2,2(m−2), σ0,2(m−1)

) 6= 0.

Therefore, the equations c2i,1 = c2i,2 = c2i+1 = 0 (0 ≤ i ≤ m − 2), c2(m−1),2 = 0 of
σ have a unique solution of the form

(σ0,0, σ1,0, σ2,0, · · · , σ0,2(m−2), σ1,2(m−2), σ2,2(m−2), σ0,2(m−1))

= ψ(σ0,1, σ0,3, · · · , σ0,2m−1, · · · , σ2m−1,0).
(3.33)

Let σ|(3.33) holds ≡ σ̃0. By (3.22)-(3.24) and (3.7) we obtain that c2i,1(σ̃0) =
c2i,2(σ̃0) = c2i+1(σ̃0) = 0 for 0 ≤ i ≤ m− 2, c2(m−1),2(σ̃0) = 0 and

c2(m−1),1(σ̃0) = −
√

2

2
πη

[m−1]
1,2m−2σ1,2m−2,

c2m−1(σ̃0) =
3
√

2

16
πη

[m−1]
1,2m−2σ1,2m−2,

(3.34)

Ms(h, σ̃0) =

[
m−1∑
i=0

(
m−1

i

)(
h+

1

4

)i(
−1

4

)m−1−i
]
α1,m−1

×
(
− 3

16

√
2πI

[s]
0,1(h) + I

[s]
1,1(h)

)
.

(3.35)

Then, by (3.30), (3.31) and (3.35) we obtain

b
[1]
0 (σ̃0) = −

√
2π

(
1 +

3
√

2

16
π

)(
−1

4

)m−1

η
[m−1]
1,2m−2σ1,2m−2,

b
[2]
0 (σ̃0) =

√
2π

(
1− 3

√
2

16
π

)(
−1

4

)m−1

η
[m−1]
1,2m−2σ1,2m−2.

(3.36)

Suppose σ1,2m−2 6= 0. In this case, we can not find simple zeros of Ms(h, σ̃0)(s =
1, 2) for h ∈ (− 1

4 , 0). On the other hand, note that c2(m−1),1(σ̃0)c2m−1(σ̃0) < 0.
Then, the conclusion follows from Theorem 2.1.

Next, suppose m = 1. In this case, note that α1,0 = σ1,0 and α0,0 = σ0,0. Then,
by (3.25) we can obtain the coefficients c0,1, c0,2 and c1 appearing in (1.5) with

c0,1(σ) =
4

3
σ0,0 −

√
2

4
πσ1,0, c0,2(σ) =

4

3
σ0,0 +

√
2

4
πσ1,0, c1(σ) = −σ0,0. (3.37)

Solving the equation c0,1(σ) = 0 for σ0,0 gives σ0,0 = 3
√

2
16 πσ1,0. Let σ0 = ( 3

√
2

16 πσ1,0,
σ1,0, σ0,1). Then, (3.28) and (3.32) hold for m = 1.
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It is obvious that c0,2(σ0)c1(σ0) < 0 if σ1,0 6= 0. Then, we can easily prove that
for some (ε, σ) near (0, σ0) with σ1,0 6= 0 system (1.1) has at least 1 limit cycle near
L0 with distribution (1, 0) + 0.

If we solve the equation c0,2(σ) = 0 in (3.37) for σ0,0, then σ0,0 = − 3
√

2
16 πσ1,0,

and (3.34) and (3.36) hold for m = 1, where σ̃0 = (− 3
√

2
16 πσ1,0, σ1,0, σ0,1). Similarly,

we can prove that for some (ε, σ) near (0, σ̃0) with σ1,0 6= 0 system (1.1) has at least
1 limit cycle near L0 with distribution (0, 1) + 0.

3.2. Case 2: n = 2m− 1

In this case, by (3.6), Ms(h, σ) can be written as the following form:

Ms(h, σ) =

2∑
j=0

(
αj,0(σ) + hαj,1(σ) + · · ·+ hm−2αj,m−2(σ)

)
I

[s]
j,1(h)

+ hm−1α0,m−1(σ)I
[s]
0,1(h).

(3.38)

Similar to the case of n = 2m, (3.14) still holds for 0 ≤ i ≤ m− 2, and

c2(m−1),1(σ) =

2∑
j=0

m−2∑
l=0

αj,l(σ)rj,2(m−1)−2l + r0,0α0,m−1(σ),

c2(m−1),2(σ) =

2∑
j=0

m−2∑
l=0

(−1)jαj,l(σ)rj,2(m−1)−2l + r0,0α0,m−1(σ),

c2m−1(σ) =

2∑
j=0

m−2∑
l=0

αj,l(σ)rj,2m−2l−1 + r0,1α0,m−1(σ).

(3.39)

By (3.19), it is easy to obtain that

det
∂
(
c0,1, c0,2, c1, · · · , c2(m−2),1, c2(m−2),2, c2m−3

)
∂
(
σ0,0, σ1,0, σ2,0, · · · , σ0,2(m−2), σ1,2(m−2), σ2,2(m−2)

) 6= 0.

Then, the equations c2i,1 = c2i,2 = c2i+1 = 0 (0 ≤ i ≤ m − 2) of σ have a unique
solution of the form

(σ0,0, σ1,0, σ2,0, · · · , σ0,2(m−2), σ1,2(m−2), σ2,2(m−2))

= φ(σ0,1, σ0,3, · · · , σ0,2(m−1), · · · , σ2(m−1),0).
(3.40)

Note that (3.22)-(3.24) still hold in this case. Let σ|(3.40) holds ≡ σ̂0. By (3.7),
(3.38)-(3.40) and (3.22)-(3.24), we obtain

c2i,1(σ̂0) = c2i,2(σ̂0) = c2i+1(σ̂0) = 0, 0 ≤ i ≤ m− 2,

c2(m−1),1(σ̂0) = c2(m−1),2(σ̂0) =
4

3
λ

[m−1]
0,2m−2σ0,2m−2,

and

Ms(h, σ̂0) =

[
m−1∑
i=0

(
m−1
i
)(

h+
1

4

)i(
−1

4

)m−1−i
]
λ

[m−1]
0,2m−2.σ0,2m−2I

[s]
0,1(h), s = 1, 2.
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Hence, by (3.30) and (3.31) we obtain

b
[1]
0 (σ̂0) = b

[2]
0 (σ̂0) =

√
2π

(
−1

4

)m−1

λ
[m−1]
0,2m−2σ0,2m−2.

Let σ0,2m−2 6= 0. In this case, we can not find simple zeros of Ms(h, σ̂0)(s = 1, 2)
for h ∈ (− 1

4 , 0). Note that c2(m−1),1(σ̂0)c2(m−1),2(σ̂0) > 0. By Theorem 1.1, system
(1.1) has at least 5m − 5 limit cycles near L0 for some (ε, σ) near (0, σ̂0) with
distributions (2m−2, 2m−2)+m−1, (2m−2, 2m−3)+m and (2m−3, 2m−2)+m.

4. Proof of Theorem 1.3

In this section, for system (1.1) we suppose that H satisfies (1.8) and f, g satisfy
(1.10) and n = 2m− 1, m ≥ 2. In this case, M1 = M2.

Similar to (3.1) and (3.6), the function M1 in (3.1) can be written as

M1(h, δ) =

2m−2∑
i+j=0
i+j even

1

j + 1
σi,jI

[1]
i,j+1

=

m−1∑
k=0

α0,k(σ)hkI
[1]
0,1(h) +

m−2∑
k=0

α2,k(σ)hkI
[1]
2,1(h)

=

m−2∑
k=0

hk
(
α0,k(σ)I

[1]
0,1(h) + α2,k(σ)I

[1]
2,1(h)

)
+hm−1α0,m−1(σ)I

[1]
0,1(h),

(4.1)

where α0,k(σ) and α2,k(σ) satisfy (3.7). By (4.1) and (3.10), we can obtain the
coefficients appearing in (1.5) with

c2i,1(σ) =

i∑
l=0

(α0,l(σ)r0,2i−2l + α2,l(σ)r2,2i−2l),

c2i+1(σ) =

i∑
l=0

(α0,l(σ)r0,2i−2l+1 + α2,l(σ)r2,2i−2l+1)

for 0 ≤ i ≤ m− 2, and

c2(m−1),1(σ) =

m−2∑
l=0

(α0,l(σ)r0,2(m−1)−2l + α2,l(σ)r2,2(m−1)−2l) + α0,m−1(σ)r0,0.

(4.2)

Similar to (3.16), (3.17) and (3.18), we have

∂(c2i,1, c2i+1)

∂(α0,j , α2,j)
=

 r0,2(i−j) r2,2(i−j)

r0,2(i−j)+1 r2,2(i−j)+1

 ≡ Ãi−j , 0 ≤ i ≤ m− 2, 0 ≤ j ≤ i,
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where det Ã0 = 16
15 , and further

det
∂
(
c0,1, c1, · · · , c2(m−2),1, c2m−3

)
∂ (α0,0, α2,0, · · · , α0,m−2, α2,m−2)

= det


Ã0

Ã1 Ã0
...

...
. . .

Ãm−2 Ãm−1 . . . Ã0


(2m−2)×(2m−2)

6= 0.

(4.3)

Noting that

∂ (α0,0, α2,0)

∂ (σ0,0, σ2,0)
= I2×2 ≡ B̃0,

∂ (α0,i, α2,i)

∂ (σ0,2i, σ2,2i)
=

λ[i]
0,2i ∗

0 τ
[i]
2,2i

 ≡ B̃i, 1 ≤ i ≤ m− 2,

and det B̃i 6= 0 for 0 ≤ i ≤ m− 2, we have

det
∂ (α0,0, α2,0, · · · , α0,m−2, α2,m−2)

∂
(
σ0,0, σ2,0, · · · , σ0,2(m−2), σ2,2(m−2)

)
= det


B̃0 C̃1,1 · · · C̃1,m−2

B̃1 · · · C̃2,m−2
. . .

...

B̃m−2


(2m−2)×(2m−2)

6= 0,
(4.4)

where C̃i,l(i = 1, 2, · · · ,m − 2, i ≤ l ≤ m − 2) is a 2 × 2 matrix. Further, by (4.3)
and (4.4), we obtain

det
∂
(
c0,1, c1, · · · , c2(m−2),1, c2m−3

)
∂
(
σ0,0, σ2,0, · · · , σ0,2(m−2), σ2,2(m−2)

) 6= 0. (4.5)

Similar to Section 3, we can prove that

c0,1(σ) = c1(σ) = 0⇐⇒ α0,0(σ) = α2,0(σ) = 0, (4.6)

and

c2i,1(σ) = c2i+1(σ) = 0⇐⇒ α0,i(σ) = α2,i(σ) = 0, i = 1, · · · ,m− 2 (4.7)

if α0,l(σ) = α2,l(σ) = 0 for 0 ≤ l ≤ i− 1.
By (4.5), the equations c2i,1 = c2i+1 = 0 (0 ≤ i ≤ m − 2) of σ have a unique

solution of the form

(σ0,0, σ2,0, · · · , σ0,2(m−2), σ2,2(m−2))

= ϑ(σ1,1, σ1,3, · · · , σ1,2m−3, · · · , σ2m−2,0).
(4.8)
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Let σ|(4.8) holds ≡ σ̂0. Then, by (4.2) we obtain

c2m−2,1(σ̂0) =
4

3
λ

[m−1]
0,2m−2σ0,2m−2.

And by (4.1), (4.6), (4.7), (3.30) and (3.31), we obtain

b
[1]
0 (σ̂0) =

√
2π

(
−1

4

)m−1

λ
[m−1]
0,2m−2σ0,2m−2.

Similar to the analysis in Section 3, we can not find simple zeros of M1(h, σ̂0)
in (− 1

4 , 0). If σ0,2m−2 6= 0, by Lemma 1.1, system (1.1) has at least 5m − 5 limit
cycles near L0 for some (ε, σ) near (0, σ̂0), of which m− 1 limit cycles surround L0.
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