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STATISTICAL ENSEMBLES IN INTEGRABLE
HAMILTONIAN SYSTEMS WITH PERIODIC

FORCED TERMS
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Abstract The aim of this study was to explore the statistical ensembles
problem of integrable Hamiltonian systems with periodic forced terms. The
findings indicated that, over an extended time period, the average value of
the system’s observations converges to the initial average value within a single
cycle, for a given observation function G. This effect weakens the convergence
conditions. We also established the weak convergence of a measure induced
by a one-parameter flow, considering the time average, and made an inference
corresponding to the system discussed in this article.
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1. Introduction

The central focus of ensemble research, also referred to as the Gibbs ensemble
[12], is to investigate the conditions under which a system converges from a non-
equilibrium state to an equilibrium state, as well as identifying the equilibrium
state to which it converges. In mathematical context, the aim of the research is to
explore the conditions that must be satisfied for the mathematical expectation of
the observation function to approach infinity as time progresses under the evolution
of the system, considering an observable function G(q, p) and a probability density
function ρ(q, p, t) for (q, p) ∈ R2n. When the mathematical expectation of G is
independent of time t, the system is said to be in equilibrium; otherwise, it is said
to be in a non-equilibrium state. Furthermore, a key research area in this field is
to determine the form that the expectation converges.

Several studies and applications have been conducted in the field of ensemble
research. Chan [6] developed a non-equilibrium ensemble method for gas dilution
using the non-equilibrium grand canonical ensemble distribution function. The find-
ings indicated that the non-equilibrium grand canonical partition function can be
used to deduce all macroscopic non-equilibrium variables for any system that ex-
hibits deviations from equilibrium. Zhukov and Cao (2006) [17] established a non-
equilibrium statistical operator method applicable to particle ensembles in classical
phase space, which are governed by equations of motion other than Hamiltonian
dynamics. The method can be used for molecular dynamics simulations and quasi-
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classical or non-equilibrium approximations in quantum-classical dynamics. Bi and
Liu (2011) [1] explored the formalism associated with the theory of non-equilibrium
statistical ensembles, which was based on the foundations laid by the Brussels-
Austin School and incorporating further developments in subdynamic equations
proposed by other scholars. These scholars evaluated a spin boson model with
strong coupling using this methodology. Identifying the relevant non-decoherence
properties and obtaining the density reduction operator for a standard ensemble
are straightforward procedures. Next year, Subsequently, N Buri et al. (2012) an-
alyzed the general statistical ensemble of mixed quantum classical systems using
the Hamiltonian formula [4]. This perspective considers any probability density in
the mixed phase space as a potential physically distinguishable statistical set of the
mixed system. The statistical operators of the mixed state of the mixed system and
its quantum subsystems are obtained by derivation and analysis of the dynamic
equations. These equations exhibit an intrinsic dependence on the overall probabil-
ity density within the mixed phase space. N Buri et al. [5] analyzed the statistical
ensemble representation of quantum states on the quantum phase space as outlined
by the Hamiltonian formulation of quantum mechanics. The discussion focused on
the lack of uniqueness of probability density within quantum phase space concerning
quantum mixed states, the Liouville dynamics of probability density, and the poten-
tial use of edge distributions to represent reduced states in binary systems. Hahn
and Fine (2016) introduced the stability criteria for characterizing quantum statis-
tical ensembles of macroscopic systems [8]. The findings indicated that statistical
ensembles with restricted energy distributions, such as canonical or microcanonical
ensembles, can be used in the context of the fundamentals of quantum statisti-
cal physics. From a mathematical perspective, statistical ensembles are frequently
simplified to the evolution of the initial random variable distribution along specific
Hamiltonian systems over time. Yuzbashyan [16] established the concept of long-
term ensemble for Hamiltonian systems including quantum systems. In addition,
Chad Mitchell explored the long-term behavior of bounded orbits associated with
the initial ensemble in a nondegenerate integrable Hamiltonian system. He provided
the conditions for the ensemble’s convergence, expressed in terms of action angle,
towards the equilibrium state [11]. Liu and Li (2023) extended the investigation of
statistical ensembles and weak convergence of measures for integrable Hamiltonian
systems to include cases of integrable Hamiltonian systems with almost periodic
transitions [9].

Although integrable Hamiltonian systems hold significance in mathematical and
physical research, real-world scenarios typically involve various disturbances affect-
ing the system. In the current study, we primarily investigate a specific type of per-
turbed integrable Hamiltonian system namely, an integrable Hamiltonian system
with periodic forced terms. Several scholars have conducted research on perturbed
integrable Hamiltonian systems and obtained several intriguing results. Long (1990)
evaluated the presence and multiplicity of periodic solutions for a Hamiltonian sys-
tem with bounded forcing terms [10]. Yu and Zheng [15] used the three critical
point theorem and derived adequate conditions for the presence of three periodic
solutions in second-order discrete Hamiltonian systems with small strong forcing
terms. Bin and Huang (2009) presented findings on boundary value problems in-
volving forced terms in discrete Hamiltonian systems [3] based on the Saddle point
theorem and the minimum action principle. Furthermore, the scholars developed a
novel action functional to implement the variational method; which differed from the
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conventional action functional used when periodic boundary conditions are present.
The aim of this study was to explore the specific conditions required to ensure

that a statistical ensemble of orbits gradually converges to an invariant steady-state
under a smooth flow. In addition, we define and illustrate the concept of weak con-
vergence of probability measures under a one-parameter flow. The system evaluated
in this study is an integrable Hamiltonian system that undergoes evolution with the
influence of forced terms, characterized by periodic and continuous behavior over
time. Most previous studies mainly focused on the types and properties of solu-
tions, whereas in the current study, we explored the convergence behavior of the
statistical ensemble of the system under the influence of the system. The action
space of probability measures undergoes changes in response to the flow and to the
best of our knowledge, this field is currently unexplored. We demonstrated that un-
der certain specific assumptions, after time averaging, the ensemble of the system
converges to a fixed periodic average case.

The subsequent sections of article are organized as follows: the fundamental
definitions, lemmas, theorems, and the symbols for the application of the article are
presented in the Second section. The main results and the experimental validations
are presented in Section 3.

2. Preliminaries

This section is divided into two parts. In the first part, we provide the essential
explanations and assumptions for the perturbed Hamiltonian system under consid-
eration. Simultaneously, we provide the corresponding one-parameter flow of the
system to illustrate the problem under study; in the second part, we provide the
notations, definitions, lemmas, and theorems required to demonstrate the results of
this paper.

2.1. The system and the problems studied in this paper

Consider an integrable Hamiltonian system with forced terms

İ (t) = εp1 (t) ,

θ̇ (t) = ω (I) + εp2 (t) .
(2.1)

The coordinates (I, θ) are action-angle variables in which the action variable I ∈ Ω
and θ ∈ TN . Ω ⊂ RN is a nonempty and open set and TN = RN/ZN is the
N−dimensional torus. p1 (·) : R → RN and p2 (·) : R → RN are both peri-
odic functions with period T , and their 0-order Fourier coefficients are zero, which
ensures that their indefinite integrals are still periodic functions, that is to say
P1 (t) =

∫ t
0
p1 (s) ds, P2 (t) =

∫ t
0
p2 (s) ds, are both periodic functions with period T

The parameter ε is considered as a sufficient small constant and it is easy to
know that under the perturbations, the set Ω will have a slight deformatio. We
note the Ω under perturbations at time t as Ωεt and Ωε∞ =

⋃∞
t=0 Ωεt is a bounded

and open set since the perturbations are periodic.
We refer to the map ω (·) : Ωε∞ → RN as the frequency map of the system

(2.1). Dω (I) = {∂ωi(I)
∂Ij
}1≤i,j≤N is the Jaccobian matrix of ω (·) at I. We say

I ∈ Ωε∞ is the regular point of ω (·) if and only if rank [Dω (I)] = N . Otherwise I
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is called critical point. In order to provide results for this article, we must assume
the following assumptions for the frequency mapping ω (·) : Ωε∞ → RN :

(A1) ω (·) ∈ C4 (Ωε∞);

(A2) Dω,D2ω,D3ω are all bounded with MDω,MD2ω,MD3ω.

The system (2.1) defines a one-parameter flow which is given by

φt (I, θ) =

(
I + ε

∫ t

0

p1 (s) ds, θ +

∫ t

0

ω

(
I + ε

∫ s

0

p1 (τ) dτ

)
ds+ ε

∫ t

0

p2 (s) ds

)
.

The Jaccobian matrix of φt (I, θ) ,

Dφt (I, θ) =

1N 0

∗ 1N

 ,

satisfies det [Dφt (I, θ)] ≡ 1. Thus the flow is volume preserving and
det
(
Dφ−1

t (I, θ)
)
≡ 1. To simplify the symbols in the following, we set

Iε (I, t) = I + ε

∫ t

0

p1 (s) ds,

θε (I, θ, t) = θ +

∫ t

0

ω

(
I + ε

∫ s

0

p1 (τ) dτ

)
ds+ ε

∫ t

0

p2 (s) ds,

∆θt (I) =

∫ t

0

ω

(
I + ε

∫ s

0

p1 (τ) dτ

)
ds+ ε

∫ t

0

p2 (s) ds.

In this paper, we treat the system 2.1 as an initial value problem. Suppose the
probability density function ρ0 (I0, θ0) of the initial condition (I (0) , θ (0)) = (I0, θ0)
is in L1

(
Ω× TN

)
. And the point φt (I0, θ0) ∈ Ωεt is described by

ρt (I, θ) = ρ0

(
φ−1
t (I, θ)

)
.

The central topic of this paper will be introduced following.
Given an observable function G : Ωε∞ × TN → R, we define the expectation of

G under the flow φt as

< G >t= Et [G (I, θ)] =

∫
Ωε

t×TN

G (I, θ) ρt (I, θ) dIdθ

=

∫
Ω×TN

G (φt (I, θ)) ρt (φt (I, θ)) det (Dφt (I, θ)) dIdθ

=

∫
Ω×TN

G (φt (I, θ)) ρ0 (I, θ) dIdθ.

One of our aim is to explore the long time behavior of Mt [< G >s], where

Mt[f (s)] =
1

t

∫ t

0

f (s) ds.

And we will also consider the probability measures Pt defined by:

Pt (A) =

∫
A

ρt (I, θ) dIdθ, A ⊂ Ωεt × TN .
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2.2. Some necessary reviews

Let’s begin by reviewing the Riemann Lebesgue Lemma given in article [14], which
differs from the traditional one. In fact, their primary distinction depends on
whether or not the exponential position of exp is a function of x.

Lemma 2.1 (VIII 2.1 Proposition 4, [14]). Let Ω ⊂ Rn be open. Suppose that
a ∈ L1 (Ω) , and that φ ∈ C2 (Ω) is a real-valued function with ∇φ 6= 0. Then for
λ ∈ R,

I (λ) =

∫
Ω

a (x) exp
[√
−1λφ (x)

]
dx→ 0 as |λ| → ∞.

In article [9], Xinyu Liu and Yong Li have generalized the lemma in a more
general situation.

During the proof process, the following two theorems are necessary.

Theorem 2.1 (Chapter 12 Theorem 19, [13]). Let (X,A, µ) and (Y,B, ν) be two
measure spaces and ν be complete. Let f be integrable over X × Y with respect to
the product measure µ× ν. Then for almost all x ∈ X, the x−section of f , f (x, ·),
is integrable over Y with respect to ν and∫

X×Y
fd (µ× ν) =

∫
X

[∫
Y

f (x, y) dν (y)

]
dµ (x) .

Theorem 2.2 (Chapter 1 Theorem 3, [7]). Let fi be a sequence of complex-valued
measurable functions on a measure space (S,Σ, µ). Suppose that the sequence con-
verges pointwise to a function f and is dominated by some integrable function g in
the sense that

|fi (x) | ≤ g (x)

for all numbers i in the index set of the sequence and all points x ∈ S. Then f is
integrable (in the Lebesgue sense) and

lim
i→∞

∫
S

|fi (x)− f (x) |dµ = 0,

which also implies

lim
i→∞

∫
S

fi (x) dµ =

∫
S

f (x) dµ.

Parseval’s theorem is required to verify that the research object can satisfy the
conditions of the preceding two theorems. This theorem is fundamental and can be
seen in many textbooks

Theorem 2.3. Suppose f (x) is a square-integrable function over [−π, π] (i.e. f (x)
and f2 (x) are integrable on that interval), with the Fourier series

f (x) ' a0

2
+

∞∑
n=1

(an cos (nx) + bn sin (nx)) .

Then
1

π

∫ π

−π
f2 (x) dx =

a2
0

2
+

∞∑
i=1

(
a2
i + b2i

)
.
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Next, let’s provide some definitions. It is worth noting that here we provide
a measure of weak convergence in the sense of time average and apply it in the
subsequent proof.

Definition 2.1 (Chapter1 Definition 1, [2]). Let X be a metric space and let
B (X) denote the σ- algebra of Borel subsets of X. A sequence {Pn} of probability
measures defined on the measurable space (X,B (X)) is said to converge weakly to
a probability measure P , also defined on (X,B (X)), if for any g ∈ Cb (X) we have:

lim
n→+∞

∫
X

gdPn =

∫
X

gdP.

In this case, we write Pn ⇒ P .

Under the influence of the corresponding flow in system (2.1), the ρ0-induced
probability measure will vary. Unlike article [11], this change is not only predicated
on the probability measure, but also on its action space. Consequently, we offer the
definition weakly convergence of the probability measure under the influence of flow.

Definition 2.2. Let B (Ω× Tn) denote the σ- algebra of Borel subsets of Ω × Tn
equiped with probability measure P0. Under the influence of one-parameter flow
φt, P0 is transformed into Pt, and Ωt × TN = φt

(
Ω× TN

)
, Ω∞ =

⋃∞
t=0 Ωt. Pt

which is dependent on t is said to converge weakly to a probability measure P in
time-average sense, if for any g ∈ Cb (Ω∞ × Tn), we have:

lim
t→+∞

Mt

[∫
Ωt×Tn

gdPs

]
= MT

[∫
Ωt

gdP0

(
φ−1
t (I, θ)

)]
.

In this case, we write Pt⇒P0.

Moreover, we set

f̄ =
1

(2π)
N

∫
TN

fdθ,

f̂ (~n) =
1

(2π)
N

∫
TN

f (θ) exp
(
−
√
−1 < ~n, θ >

)
dθ.

3. Main results

This section contains two distinct parts. In the first part, we present several lemmas
and preliminary theorems, along with their proofs, ; in the second part, we present
the key findings and provide supporting evidence.

3.1. Lemmas and preliminary theorems

Firstly, we provide the following two lemmas, whose proofs are relatively simple.

Lemma 3.1. Assume M (t) is a bounded and locally integrable function defined on
R+ with bound M � 1 and

lim
t→+∞

M (t) = 0.

Then

lim
l→+∞

1

l

∫ l

0

M (t) dt = 0.
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Proof. By the assumptions of the M (t) : ∀ε > 0

∃ t′0 (ε) > 0, s.t. ∀t > t′0 (ε) , |M (t) | < ε

M
.

Taking t0 (ε) = max
{
t′0 (ε) ,

(
M2 − ε

)
t′0 (ε) / [(M − 1) ε]

}
, and we get: ∀l > t0 (ε),

1

l

∣∣ ∫ l

0

M (t) dt
∣∣ ≤ 1

l

∣∣(∫ t0(ε)

0

+

∫ l

t0(ε)

)
M (t) dt

∣∣
≤ 1

l

∫ t0(ε)

0

∣∣M (t)
∣∣dt+

1

l

∫ l

t0(ε)

∣∣M (t)
∣∣dt

≤Mt0 (ε) /l + (ε/M) [l − t0 (ε)] /l

< ε.

Lemma 3.2. Suppose the f : R→ R is a periodic funtion with period T > 0. Then

lim
t→+∞

Mt [f ] = MT [f ] .

Proof. Actually, for any t ∈ R+, we can write

t = nT + αt,

where n ∈ N and 0 ≤ αt < T , and

t→ +∞ ⇐⇒ n→ +∞, (3.1)

Mt [f ] =
1

t

∫ t

0

f (s) ds

=
1

nT + αt

∫ nT+αt

0

f (s) ds

=
1

nT + αt

(∫ nT

0

+

∫ nT+αt

nT

)
f (s) ds

=
1

nT + αt

(
n

∫ T

0

+

∫ αt

0

)
f (s) ds

=
n

nT + αt

∫ T

0

f (s) ds+
1

nT + αt

∫ αt

0

f (s) ds

=
1

T + αt

n

∫ T

0

f (s) ds+
1

nT + αt

∫ αt

0

f (s) ds,

lim
t→+∞

Mt [f ] = lim
n→+∞

{
1

T + αt

n

∫ T

0

f (s) ds+
1

nT + αt

∫ αt

0

f (s) ds

}

=
1

T

∫ T

0

f (s) ds

= MT [f ] .

Next, two preliminary Theorems are presented. They guarantee that theorems
2.1 and 2.2 will be utilized in the subsequent proof procedure.
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Theorem 3.1. Given G ∈ C
(
Ωε∞ × TN

)
,

Ĝ (Iε (I, t) , ~n) =
1

(2π)
N

∫
TN

G (Iε (I, t) , θ) exp
(
−
√
−1 < ~n, θ >

)
dθ, ~n ∈ ZN .

For any fixed ~n ∈ ZN , Ĝ (Iε (I, t) , ~n) is a contiunous function w.r.t I, and this
continuity is not affected by t, which implies ∀ε > 0, ∀I ∈ Ω, ∃ δ (ε, I) > 0, ∀I ′ ∈
Ω, |I − I ′| < δ (ε, I) ,

|Ĝ (Iε (I ′, t) , ~n)− Ĝ (Iε (I, t) , ~n) | < ε.

Proof. For any fixed ~n ∈ ZN ,

|Ĝ (Iε (I, t) , ~n) | = 1

(2π)
N

∣∣∣∫
TN

G (Iε (I, t) , θ) exp
(
−
√
−1 < ~n, θ >

)
dθ
∣∣∣

≤ 1

(2π)
N

∫
TN

∣∣∣G (Iε (I, t) , θ) exp
(
−
√
−1 < ~n, θ >

)∣∣∣dθ
≤ 1

(2π)
N

∫
TN

∣∣∣G (Iε (I, t) , θ)
∣∣∣dθ

≤ ||G||∞.

And ∀ε > 0, ∀I ∈ Ωε∞, ∃ δ (I, ε) > 0, ∀I ′ ∈ Ωε∞, |I ′ − I| < δ (I, ε) ,

|G (I ′, θ)−G (I, θ) | < ε.

Moreover, ∀I, I ′ ∈ Ω, |I ′ − I| < δ (I, ε) , |Iε (I ′, t)− Iε (I, t) | < δ (I, ε) ,

|Ĝ (Iε (I ′, t) , ~n)− Ĝ (Iε (I, t) , ~n) |

≤ 1

(2π)
N

∣∣∣∫
TN

[G (Iε (I, t) , ~n)−G (Iε (I ′, t) , ~n)] exp
(
−
√
−1 < ~n, θ >

)
dθ
∣∣∣

≤ 1

(2π)
N

∫
TN

∣∣∣G (Iε (I, t) , ~n)−G (Iε (I ′, t) , ~n)
∣∣∣∣∣∣exp

(
−
√
−1 < ~n, θ >

)∣∣∣dθ
≤ 1

(2π)
N

∫
TN

∣∣∣G (Iε (I, t) , ~n)−G (Iε (I ′, t) , ~n)
∣∣∣dθ

<ε.

Theorem 3.2. Suppose G ∈ C (Ωε∞) , ρ0 ∈ Cc
(
Ω× TN

)
, then∫

Ω

∑
~n∈ZN

|Ĝ (Iε (I, t) , ~n) ρ̂0 (I,−~n) |dI <∞.

Proof. By Theorem 2.3, we can get for fixed I ∈ Ω∑
~n∈ZN

|Ĝ (Iε (I, t) , ~n) | ≡ 1

(2π)
N

∫
TN

|G (Iε ((I, t) , ·)) |2dθ

= ‖G (Iε ((I, t) , ·)) ‖2L2 <∞.
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In a similar way,

‖ρ̂0 (I, ·) ‖2L2 <∞.

By Cauchy-Schwarz inequality,∑
~n∈ZN

|Ĝ (Iε (I, t) , ~n) ρ̂0 (I,−~n) |

≤

( ∑
~n∈ZN

|Ĝ (Iε (I, t) , ~n) |2
) 1

2
( ∑
~n∈ZN

|ρ̂0 (I,−~n) |2
) 1

2

≤‖G (Iε (I, t) , ·) ‖L2‖ρ0 (I, ·) ‖L2 .

We denote the support set of ρ0 as Kρ0 and have∫
Ω

∑
~n∈ZN

|Ĝ (Iε (I, t) , ~n) ρ̂0 (I,−~n) |dI ≤
∫

Ω

‖G (Iε (I, t) , ·) ‖L2‖ρ0 (I, ·) ‖L2dI

≤
∫
Kf0

‖G (Iε (I, t) , ·) ‖L2‖ρ0 (I, ·) ‖L2dI

<∞.

3.2. Main results and their proofs

Now we can present our main findings and provide proofs of them.

Theorem 3.3. In system (2.1), suppose the frequency map ω satisfies the assump-
tions (A1), (A2), and the probability density function ρ0 ∈ Cc

(
Ω× TN

)
. Then

for any G ∈ C
(
Ωε∞ × TN

)
and some ε > 0 fixed,

lim
t→∞

Mt [< G >s] =< MT

[
Ḡ [I + εP1 (t)]

]
>0 . (3.2)

Proof. As previously stated, we have

< G >t= Et [G (I, θ)] =

∫
Ωε

t×TN

G (I, θ) ρt (I, θ) dIdθ

=

∫
Ω×TN

G (φt (I, θ)) ρt (φt (I, θ)) det (Dφt (I, θ)) dIdθ

=

∫
Ω×TN

G (φt (I, θ)) ρ0 (I, θ) dIdθ

=

∫
Ω×TN

G (Iε (I, t) , θε (I, θ, t)) ρ0 (I, θ) dIdθ.

On the one hand, the Fourier coefficients of G (Iε (I, t) , θε (I, θ, t))

1

(2π)
2

∫
TN

G (Iε (I, t) , θε (I, θ, t)) exp
(
−
√
−1 < ~n, θ >

)
dθ

=
1

(2π)
2

∫
TN

G (Iε (I, t) , θ + ∆θt (I)) exp
(
−
√
−1 < ~n, θ >

)
dθ
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=
1

(2π)
2

∫
TN

G (Iε (I, t) , θ + ∆θt (I)) exp
(
−
√
−1 < ~n, θ + ∆θt (I) >

)
× exp

(√
−1 < ~n,∆θt (I) >

)
dθ

=
1

(2π)
2

∫
TN

G (Iε (I, t) , θ + ∆θt (I)) exp
(
−
√
−1 < ~n, θ + ∆θt (I) >

)
dθ

× exp
(√
−1 < ~n,∆θt (I) >

)
=

1

(2π)
2

∫
TN

G
(
Iε (I, t) , θ̃

)
exp

(
−
√
−1 < ~n, θ̃ >

)
dθ exp

(√
−1 < ~n,∆θt (I) >

)
=Ĝ (Iε (I, t) , ~n) exp

(√
−1 < ~n,∆θt (I) >

)
,

on the other hand, the Fourier coefficients of ρ∗0 (I, θ) = ρ0 (I, θ) ,

ρ̂∗0 (I, ~n) =
1

(2π)
2

∫
TN

ρ∗0 (I, θ) exp
(
−
√
−1 < −~n, θ >

)
dθ

=
1

(2π)
2

∫
TN

ρ0 (I, θ) exp
(
−
√
−1 < −~n, θ >

)
dθ

= ρ̂0 (I,−~n) ,

where ∗ denotes complex conjungation. Theorem 2.3 implies that

1

(2π)
N

∫
TN

G (Iε (I, t) , θε (I, θ, t)) ρ0 (I, θ) dθ

=
1

(2π)
N

∫
TN

G (Iε (I, t) , θε (I, θ, t)) ρ∗0 (I, θ) dθ

=
∑
~n∈ZN

Ĝ (Iε (I, t) , ~n) ρ̂∗0 (I, ~n) exp
(√
−1 < ~n,∆θt (I) >

)
=
∑
~n∈ZN

Ĝ (Iε (I, t) , ~n) ρ̂0 (I, ~n) exp
(√
−1 < ~n,∆θt (I) >

)
=
∑
~n∈NN

Ĝ [Iε (I, t) , ~n] ρ̂0 (I,−~n) exp

[√
−1t < ~n,

1

t
∆θt (I) >

]
=
∑
~n∈NN

a~n (I, t) exp
[√
−1tΦ~n (I, t)

]
exp

[
ε
√
−1 < ~n,Mt [p2] >

]
,

where

a~n (I, t) = Ĝ [Iε (I, t) , ~n] ρ̂0 (I,−~n) ,

Φ~n (I, t) =< ~n,Mt [ω (Iε (I, s))] >,

< G >t= (2π)
N
∑
~n∈NN

∫
Ω

a~n (I, t) exp
[√
−1tΦ~n (I, t)

]
exp

[
ε
√
−1 < ~n,Mt [p2] >

]
dI.

It is easy to know, ∀~n ∈ Nn, a~n ∈ Cb (Ω× R, T ) ,

Φ~n (I, t) = < ~n,
1

t

∫ t

0

ω [Iε (s) ds] >

=
1

t

∫ t

0

< ~n, ω (I) + ε < Dω (I) , P1 (s) >
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+ ε2

∫ 1

0

(1− α) < D2ω (Iα,s)P1 (s) , P1 (s) > dα > ds,

where Iα,s = I + αεP1 (s).
We analyze ∇IΦ~n (I, t) and ∆IΦ~n (I, t) separately. Note that

∇IΦ~n (I, t) = < ~n,Dω (I) > +
1

t

∫ t

0

ε < ~n,< D2ω (I) , P1 >>

+ ε2 < ~n,

∫ 1

0

(1− α) < D3ω (Iα,·)P1, P1 > dα > (s) ds.

If we set

ε� δ

2 (MD2ωMP1
+MD3ωMP1

)
,

then by trigonometric inequality,

|∇IΦ~n (I, t) | ≥|| < ~n,Dω > | − |1
t

∫ t

0

ε < ~n,< D2ω, P1 >>

+ ε2 < ~n,

∫ 1

0

(1− α) < D3ωP1, P1 > dα > ds||

≥|| < ~n,Dω > | − [
1

t

∫ t

0

ε | < ~n,< D2ω, P1 >> |

+ ε2| < ~n,

∫ 1

0

(1− α) < D3ωP1, P1 > dα| > ds]|

≥|~n|δ
2

>0,

∆IΦ~n (I, t) =<~n,D2ω (I) > +
1

t

∫ t

0

ε < ~n,< D3ω (I) , P1 >>

+ε2 < ~n,

∫ 1

0

(1− α) < D4ω (Iα,·)P1, P1 > dα > (s) ds.

For any closed set K ⊂ Ω̃,

|∆IΦ~n (I, t) | ≤ |~n|
(
MD2ω,K +MD3ω,KMP1

+
1

2
MD4ω,KMP1

)
.

We have,

∀~n 6= ~0, lim
t→+∞

(2π)
N
∫

Ω

a~n (I, t) exp
[√
−1tφ~n (I, t)

]
exp

[
ε
√
−1 < ~nP2 (t) >

]
dI = 0.

Then

lim
t→∞

1

t

∫ t

0

< G >s ds = lim
t→∞

1

t

∫ t

0

(2π)
N
∫

Ω

Ĝ
[
Iε (s) ,~0

]
ρ̂0

(
I,~0
)
dIds

= lim
t→∞

1

t

∫ t

0

{∫
Ω×TN

Ḡ [Iε (s)] ρ0 (I, θ) dIdθ

}
ds
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=

∫
Ω×TN

{
lim
t→∞

1

t

∫ t

0

Ḡ [I + εP1 (s)] ds

}
ρ0 (I, θ) dIdθ

=< MT

[
Ḡ [I + εP1 (t)]

]
>0 .

Remark 3.1. When ε = 0, the result above is the same as the one in article [11].

Corollary 3.1. In system (2.1), suppose the frequency map ω satisfies assumptions
(A1), (A2). And the probability density function ρ0 ∈ L1

(
Ω× TN

)
. For any

function G ∈ Cb
(
Ωε∞ × TN

)
, the conclusion in Theorem 3.3 still holds.

Proof. This is quite simple by a density argument. Suppose ρ0 ∈ L1
(
Ω× TN

)
,

we choose a sequence {ρn0}∞n=1, such that

‖ρ0 − ρn0‖L1 → 0, as n→∞.

Then

Mt (< G >s)−Mt
n (< G >s)

=
1

t

∫ t

0

∫
Ω×TN

G (φs (I, θ)) f0 (I, θ) dIdθ − 1

t

∫ t

0

∫
Ω×TN

G (φs (I, θ)) fn0 (I, θ) dIdθds

=
1

t

∫ t

0

∫
Ω×TN

G (φs (I, θ)) [f0 (I, θ)− fn0 (I, θ)] dIdθdt

implies that

|Mt (< G >s)−Mt
n (< G >s) |

≤1

t

∫ t

0

∫
Ω×TN

|G (φs (I, θ)) || [ρ0 (I, θ)− ρn0 (I, θ)] |dIdθds

≤‖ρ0 − ρn0‖L1 |G| → 0, as n→∞.

In the above corollary, we relaxed the requirement for the ρ0, but as a sacrifice,
the requirement for G was stricter. Next, we will relax the restrictions on G.

Corollary 3.2. In system (2.1), suppose that the frequency map ω satisfies as-
sumptions (A1), (A2). And the probability density function ρ0 ∈ L1

(
Ω× TN

)
. For

any function G ∈ C
(
Ωε∞ × TN

)
, if there exists h ∈ C (Ωε∞) , h > 0, such that∫

Ω×TN

h (I) ρ0 (I, θ) dIdθ = R <∞,

G′ (φt (I, θ)) :=
G (φt (I, θ))

h (I)
<∞ ∀ (I, θ) ∈ Ω× TN ,

then the conclusion in Theorem 3.3 still holds.

Proof. Define

ρ′0 (I, θ) =
h (I) ρ0 (I, θ)

R
.
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Since ρ′0 ≥ 0 and∫
Ω×TN

ρ′0 (I, θ) dIdθ =
1

R

∫
Ω×TN

h (I) ρ0 (I, θ) dIdθ = 1,

ρ′0 (I, θ) defines a probability density.

lim
t→∞

∫
Ω×TN

G′ (φs (I, θ)) ρ′0 (I, θ) dIdθ

= lim
t→∞

∫
Ω×TN

Mt [G′ (φt (I, θ))] ρ′0 (I, θ) dIdθ

=

∫
Ω×TN

Mt

[
Ḡ (φs (I, θ))

h̄ (I)

]
h (I) ρ0 (I, θ)

R
dIdθ

=

∫
Ω×TN

Mt

[
Ḡ (φs (I, θ))

]
h (I)

h (I) ρ0 (I, θ)

R
dIdθ

=
1

R

∫
Ω×TN

Mt

[
Ḡ (φs (I, θ))

]
ρ0 (I, θ) dIdθ,

so

lim
t→∞

Mt [< G >s] = R lim
t→∞

∫ t

0

∫
Ω×TN

G′ (φs (I, θ)) ρ′0 (I, θ) dIdθds

=< MT

[
Ḡ (φs (I.θ))

]
>0 .

Remark 3.2. In contrast to reference [11], Corollary 3.2 imposes more stringent
criteria on functions G and h. As the action variable fluctuates over time, it is unfea-
sible to reduce the requirement of G to the degree illustrated in [11]. Unfortunately,
the requirement for frequency mapping ω cannot be modified.

Theorem 3.4. In system (2.1), let the frequency map ω satisfy assumptions (A1),
(A2). Suppose the probability density function ρ0 ∈ L1

(
Ω× TN

)
, ρt is the proba-

bility density function of (I, θ) ∈ Ωεt ×TN under the one-parameter flow φt, and P0

and Pt are their induced probability measures, respectively. Then

Mt [Ps]⇒MT

[
P̄0

(
φ−1
s

)]
, as t→∞.

Proof. Following the equation 3.2 in Theorem 3.3, we have

lim
t→∞

1

t

∫ t

0

∫
Ωε

s×TN

G (I, θ) dPsds

= lim
t→∞

1

t

∫ t

0

∫
Ωs×TN

G (I, θ) ρs (I, θ) dIdθds

= lim
t→∞

1

t

∫ t

0

∫
Ωε

s×TN

G (I, θ) ρ0

(
φ−1
s (I, θ)

)
dIdθds

= lim
t→∞

Mt[< G >s]

= < MT[Ḡ[I + εP1 (t)]] >0
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=

∫
Ω×TN

1

T

∫ T

0

1

(2π)
N

∫
TN

G (φt (I, θ)) dθdtρ0 (I, θ) dIdθ

=
1

T

∫ T

0

∫
Ω×TN

G (φs (I, θ))
1

(2π)
N

∫
TN

ρ0 (I, θ) dθdIdθds

=
1

T

∫ T

0

∫
Ωε

s×TN

G (I, θ)
1

(2π)
N

∫
TN

ρ
(
φ−1
s (I, θ)

)
dθdIdθds

=
1

T

∫ T

0

∫
Ωε

s×TN

G (I, θ) dP̄0

(
φ−1
s

)
ds.
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