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DYNAMIC ANALYSIS AND OPTIMAL
CONTROL OF A TOXICANT-POPULATION
MODEL WITH REACTION-DIFFUSION∗
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Abstract In this paper, we study the threshold dynamics and optimal con-
trol of a toxicant-population model with reaction-diffusion to understand how
toxicant affect populations. In order to obtain the extinction and persistent
conditions of the toxicant, the basic reproduction number of the model is
considered, when R0 < 1, the toxicant-free equilibrium is globally attractive,
when R0 > 1, the solution to the system is uniformly persistent. We also intro-
duce the optimal control strategy, with the method of dynamic programming,
the Hamilton-Jacobi-Bellman (HJB) equation is constructed and the optimal
control is obtained. Finally, we conduct numerical simulations to verify the
theoretical analysis.
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1. Introduction

In recent years, with the rapid development of industry and agriculture, the en-
vironmental pollution problem has become more and more serious [1, 23, 24], and
many ecological problems have appeared one after another (e.g., the decrease of
species diversity and the extinction of some species). Although people all over the
world have been fighting against environmental pollution, a large number of pol-
lution problems are still emerging. Therefore, it is extremely important to reduce
the impact of toxicant on the population and the environment. Many scholars have
studied the dynamic behavior of population in a polluted environment by establish-
ing mathematical models.

In the 1980s, Hallam et al. [3–5] proposed a classic deterministic system of
toxicant-population and studied the persistence and extinction of populations. Since
then, a large number of toxicant-population models considering different influencing
factors have been proposed to analyze the effects of toxicant [11,13–16,20,21,34,36].
For example, for ordinary differential equations, Liu et al. [13] investigated the ef-
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fects of impulsive toxicant input on the population in a polluted environment, and
showed that the population is extinct when the impulsive period is less than some
critical value, otherwise the population is permanent. Liu et al. [15] studied the
survival analysis of a stochastic single-species population model with jumps in a
polluted environment, and they found that Lévy jumps have significant effects to
the persistence and extinction results. For age-structured equations, Luo et al. [16]
studied the optimal control of the age-dependent population hybrid system in a
polluted environment, the existence of optimal control policy is carefully verified by
means of Ekeland’s variational principle. Li et al. [11] used the truncated Euler-
Maruyama (EM) method to study a stochastic age-structured population model
with Markovian switching in a polluted environment. However, the above men-
tioned references did not consider the spatial heterogeneity. In the real world,
spatial factors affect the sex ratio, age composition, immigration rate and emigra-
tion rate of organisms, in addition, we also know that the populations and toxicant
in the ecology drift randomly around media such as soil and water (e.g., the nuclear
waste water will diffuse into the surrounding seas), that is, spatial diffusion also has
practical significance to be considered. Many population models introduce spatial
diffusion such as [12, 30, 31], but the effects of toxicant are not considered, only a
few articles on toxicant-population models have studied it, for example, Kang et al.
studied the diffusion mechanism of populations and toxicant in [9].

In addition, it is well known that the proliferation of toxicant will lead to huge
economic costs, mainly including the reduction of crop yields and the expenditures
related to pollution prevention. Therefore, from the perspective of ecotoxicology and
socioeconomics, how to formulate the control strategies for toxicant is an important
and meaningful issue. To solve these problems, the optimal control strategy for
toxicant should be formulated. As far as we know, most of the existing literature
on optimal control use the method of maximum principle, it only considers the
control over a period of time with fixed initial time and state. However, the control
of toxicant may start at any time, so the dynamic programming is considered in
this paper, the basic idea of this method applied to optimal control is to consider
a family of optimal control problems with different initial times and states. In this
way, we can control toxicant at any time and achieve the goal of minimizing the
concentration of toxicant and the cost of application control.

In this paper, we discuss the threshold dynamics before studying the optimal
control, when the threshold parameter R0 < 1, the toxicant will go extinct, there
is no need to control the toxicant, when R0 > 1, the toxicant is persistent, so we
consider controlling the toxicant in this situation. The contributions of this article
are listed as follows:

• We establish a toxicant-population model with reaction-diffusion and obtain
the threshold parameter of toxicant extinction and toxicant persistence.

• With the dynamic programming method, we construct the Hamilton-Jocobi-
Bellman equation and prove the existence and uniqueness of its viscosity so-
lution, obtain the optimal control of toxicant.

The organization of this paper is as follows. In section 2, we present model
formulation and some important information. In section 3, we investigate the dy-
namics of the model, first prove the well-posedness and define the basic reproduction
number R0, then we show that R0 is a threshold parameter of toxicant extinction
and the toxicant persistence. In section 4, the optimal control problem is studied,
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we first give the objective function and prove the uniqueness and existence of the
viscosity solution of the HJB equation, then the optimal control is obtained through
the Hamiltonian function. In section 5, we perform numerical simulations to verify
the correctness of the threshold dynamics and optimal control strategy.

2. Model formulation and preliminaries

Luo and He [16] established a toxicant-population model with age-structure in a
polluted environment which takes the form

∂P (a, t)

∂a
+
∂P (a, t)

∂t
= −µ(a,C0(t))P (a, t),

dC0(t)

dt
= kCe(t)− gC0(t)−mC0(t),

dCe(t)

dt
= −k1Ce(t)P (t)− hCe(t) + g1C0(t)P (t) + u(t),

(2.1)

where P (a, t) represents the density of the population of age a at time t, C0(t)
represents the concentration of the toxicant in the organism at time t and Ce(t)
represents the concentration of the toxicant in the environment at time t, and u(t)
is the rate of external input of the toxicant into the environment. The coefficients
µ, k, g,m, k1, g1 and h denote positive constants characterizing the functional inter-
actions among the model components.

However, environment in reality typically varies with respect to space and time,
and this heterogeneity may directly affect the viability of the population and the
persistence of the toxicant, thus the space-dependent parameters should be used
due to spatial heterogeneity. Furthermore, it is already mentioned that spatial dif-
fusion is an important factor in the biological system. Therefore, inspired by model
(2.1) and combined with the above ideas, we consider a spatiotemporal dependent
population model in a closed polluted environment as follows

∂P (x, t)

∂t
=d1∆P (x, t) + Λ(x)− r(x)P (x, t)− α(x)C0(x, t)P (x, t),

x ∈ Ω, t > 0,

∂C0(x, t)

∂t
=k(x)Ce(x, t) + f(x)C0(x, t)P (x, t)− (g(x) +m(x))C0(x, t),

x ∈ Ω, t > 0,

∂Ce(x, t)

∂t
=d2∆Ce(x, t)− k1(x)Ce(x, t)P (x, t)− h(x)Ce(x, t)

+ g1(x)C0(x, t)P (x, t), x ∈ Ω, t > 0,

(2.2)

with boundary and initial condition
∂P (x, t)

∂v
=
∂C0(x, t)

∂v
=
∂Ce(x, t)

∂v
= 0, x ∈ ∂Ω, t > 0,

P (x, 0) = P 0(x), C0(x, 0) = C0
0 (x), Ce(x, 0) = C0

e (x), x ∈ Ω,

(2.3)

where P (x, t) represents the density of the population at position x and time t,
while C0(x, t) and Ce(x, t) represent the concentration of toxicant in the organism



582 A. Ma, J. Hu & Q. Zhang

and environment at position x and time t, respectively. The notation ∂
∂v means

the normal derivative along v to ∂Ω. The biological meaning of the parameters in
model (2.2) are listed in Table 1.

Table 1. The meaning of the parameters

Parameters Description

r(x) the mortality rate function of the population

Λ(x) the recruitment of population

α(x) the decreasing of the growth associated

with the uptake of the toxicant

k(x) the net organismal uptake rate of toxicant

from the environment

g(x) the net organismal excretion rate of toxicant

m(x) the depuration rate of toxicant due to metabolic

process and other losses

h(x) the total loss rate of toxicant from the environment

f(x) the change in the amount of toxicant as reflected

by newborn organisms

k1(x) the loss rate of the toxicant that is due to the uptake

of toxicant by the population

g1(x) the increase of the toxicant coming from the egestion

of the total population

Let X := C(Ω,R3) be the state space associated with the supremum norm ‖φ‖X,

where ‖φ‖X = max

{
sup
x∈Ω

|φ1(·)|, sup
x∈Ω

|φ2(·)|, sup
x∈Ω

|φ3(·)|

}
. Define X+ := C(Ω,R3

+), it

follows that (X,X+) is a strongly ordered Banach space.
Denote Γi(t, x, y)(i = 1, 2) is the Green function associated with the operator

∂v
∂t = ∆v in Ω subject to the Neumann boundary condition as (2.3). Let Ξ1(t) :

C(Ω, R)→ C(Ω, R) be the C0 semigroup associated with d1∆−r(·) subject to (2.3),
therefore, we obtain that

(Ξ1(t)φ)(·) = e−r(·)t
∫

Ω

Γ1(t, ·, y)φ(y)dy, ∀φ ∈ C(Ω,R), t ≥ 0,

and Ξ3(t) : C(Ω, R) → C(Ω, R) is the C0 semigroup associated with d2∆ − h(x)
subject to (2.3), so

(Ξ3(t)φ)(·) = e−h(·)t
∫

Ω

Γ2(t, ·, y)φ(y)dy, ∀φ ∈ C(Ω,R), t ≥ 0.

Follow the conclusion in [25, Section 7.1], for ∀t ≥ 0, Ξi(t) : C(Ω,R) → (Ω,R)(i =
1, 3) is a strongly positive and compact semigroup. Denote

(Ξ2(t)φ)(·) = e−(g(·)+m(·))tφ(·).
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Through the above setting, we obtain X(t) = (Ξ1(t),Ξ2(t),Ξ3(t)) : X → X, t ≥ 0,
is a C0 semigroup(see, [22]).

Denote G = (G1, G2, G3) : X+ → X, and Gi(i = 1, 2, 3) is defined by
G1(φ)(·) = Λ(·)− α(·)φ1(·)φ2(·),
G2(φ)(·) = f(·)φ1(·)φ2(·) + k(·)φ3(·),
G3(φ)(·) = g1(·)φ1(·)φ2(·)− k1(·)φ1(·)φ3,

where x ∈ Ω and φ := (φ1, φ2, φ3) = (P 0, C0
0 , C

0
e ) ∈ X+. Then (2.2) can be written

as the following equation

u(·, t) = X(t)φ+

∫ t

0

X(t− s)G(u(·, s))ds,

where u(·, t) = (P (·, t), C0(·, t), Ce(·, t)).
For convenience, we simply set

q̄(x) := max
x∈Ω
{q(x)}, q̃(x) := min

x∈Ω
{q(x)},

where q(x) = r(x), α(x), k(x), g(x),m(x), k1(x), g1(x), h(x).

3. Threshold dynamics

In this section, we study the threshold dynamics of model (2.2). We first prove the
well-posedness and define the basic reproduction number, and then show that R0

is a threshold parameter for the extinction and persistence of toxicant.

3.1. Well-posedness

The following lemma considers the local solution of the system (2.2) on X+, which
depends on the initial date φ.

Lemma 3.1. For any initial date φ := (φ1, φ2, φ3) ∈ X+, system (2.2) exists a
unique solution u(·, t;φ) = (P (·, t), C0(·, t), Ce(·, t)) on [0, τmax) with u(·, 0;φ) = φ,
where τmax ≤ ∞. Furthermore, if t ∈ [0, τmax), u(·, t;φ) ∈ X+.

Proof. Since X is generated by the linear homogeneous part of (2.2) and denoted
by B with the domain as

D(B) =

{
φ :

∂φ

∂v
= 0 on ∂Ω,Bφ ∈ X

}
.

In fact, for any φ ∈ X+ and θ ≥ 0, we have

φ+ θG(φ) =


φ1(·) + θ[Λ(·)− α(·)φ1(·)φ2(·)]

φ2(·) + θ[f(·)φ1(·)φ2(·) + k(·)φ3(·)]

φ3(·) + θ[g1(·)φ1(·)φ2(·)− k1(·)φ1(·)φ3]

 ≥

φ1(·)[1− θᾱφ2(·)]

φ2(·)

φ3(·)[1− θk̄1φ1(·)]

 .
Therefore, we have the following equation

lim
θ→0+

1

θ
dist(φ+ θG(φ),X+) = 0, ∀φ ∈ X+.
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By [25, Corollary 4], we know that system (2.2) exists a unique positive solution
u(·, t) on [0, τmax), where 0 ≤ τmax ≤ ∞. Furthermore, u(·, t) ∈ X+ is a classical
solution of system (2.2).

Lemma 3.2. [35, Lemma 1] For any dW > 0, W 0(x) 6≡ 0, the following reaction-
diffusion equation 

∂ω

∂t
= d1∆ω + Λ(x)− r(x)ω, x ∈ Ω, t > 0,

∂ω

∂v
= 0, x ∈ ∂Ω, t > 0,

ω(·, 0) = ω0(·), x ∈ Ω,

(3.1)

exists a unique globally asymptotically stable positive steady state P ∗(x). Further-
more, if Λ(x) = Λ, r(x) = r, then P ∗ = Λ

r .

The following lemma shows that the local solution can be extended to a global
one, that is, τmax =∞.

Lemma 3.3. For ∀φ ∈ X+, system (2.2) exists a unique solution u(·, t;φ) =
(P (·, t), C0(·, t), Ce(·, t)) on [0,∞) with u(·, 0;φ) = φ and the semiflow Φ(t) : X+ →
X+, t ≥ 0, generated by system (2.2) is defined by

Φ(t)φ := u(·, t;φ) := (P (·, t;φ), C0(·, t;φ), Ce(·, t;φ)), ∀x ∈ Ω, t ≥ 0.

Moreover, Φ(t) is a point dissipative(ultimately bounded).

Proof. We first establish the boundedness of P (x, t). According to the first equa-
tion of system (2.2) and Lemma 3.1, it is evident that P (x, t) satisfies the following
inequality


∂P (x, t)

∂t
≤ d1∆P (x, t) + Λ(x)− r(x)P (x, t), x ∈ Ω, t > 0,

∂P (x, t)

∂v
= 0, x ∈ ∂Ω, t > 0.

(3.2)

It is easy to see that P (x, t) is a subsolution of (3.2) according to (3.1). Through
Lemma 3.2 and the standard parabolic comparison theorem, we have

lim sup
t→∞

P (x, t) ≤ P ∗(x), uniformly for x ∈ Ω. (3.3)

Thus, the ultimately bounded of P (x, t) is proved. Then there exists a positive
constant M0, such that

lim sup
t→∞

‖P (x, t)‖ ≤M0 (3.4)

holds, where M0 := ‖P ∗(x)‖.
From [6,17], it is easy to see that the solution of C0(x, t) satisfies the L1 bounded

estimate, then there exists M ′ such that lim sup
t→∞

‖C0(x, t)‖1 ≤ M ′. Now we apply
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the divergence theorem and integrate the third equation of system (2.2) yield that

∂

∂t

∫
Ω

Ce(x, t)dx

=

∫
Ω

d2∆Ce(x, t)dx−
∫

Ω

k1(x)Ce(x, t)P (x, t)dx

−
∫

Ω

h(x)Ce(x, t)dx+

∫
Ω

g1(x)C0(x, t)P (x, t)dx

≤[ḡ1(M0 + 1)(M ′ + 1)]|Ω| − h̃
∫

Ω

Ce(x, t)dx.

It follows that

lim sup
t→∞

(‖Ce(x, t)‖1) ≤M ′′, with M ′′ = [ḡ1(M0 + 1)(M ′ + 1)]/h̃.

In summary, we have the result that there exists a positive constant M1, such that

lim sup
t→∞

(‖P (x, t)‖1 + ‖C0(x, t)‖1 + ‖Ce(x, t)‖1) ≤M1. (3.5)

Therefore, the solution of (2.2) satisfies the L1 bounded estimate.
The following will prove the ultimate boundedness of solution (C0(x, t), Ce(x, t))

of system (2.2). We first verify it satisfies the L2n bounded estimate, that is for
n ≥ 0, there exists a positive constant M2n , such that

lim sup
t→∞

(‖C0(·, t)‖2n + ‖Ce(·, t)‖2n) ≤M2n , ∀t > T, (3.6)

for some large time T > 0. We will use induction to prove (3.6). The case for n = 0
is valid in (3.5), then we assume that (3.6) is valid for n− 1, that is,

lim sup
t→∞

(‖C0(·, t)‖2n−1 + ‖Ce(·, t)‖2n−1) ≤M2n−1 , ∀t > T. (3.7)

Multiply the both sides of the third equation of (2.2) by C2n−1
e (x, t) and integrate

over Ω, we have

1

2n
∂

∂t

∫
Ω

C2n

e (x, t)dx

≤d2

∫
Ω

C2n−1
e (x, t)∆Ce(x, t)dx−

∫
Ω

k1(x)C2n

e (x, t)P (x, t)dx

−
∫

Ω

h(x)C2n

e (x, t)dx+

∫
Ω

g1(x)C2n−1
e (x, t)C0(x, t)P (x, t)dx.

(3.8)

Since that

d2

∫
Ω

C2n−1
e (x, t)∆Ce(x, t)dx

≤− d2

∫
Ω

∇Ce(x, t) · ∇C2n−1
e (x, t)dx

=− (2n − 1)d2

∫
Ω

(∇Ce(x, t) · ∇Ce(x, t))C2n−2
e (x, t)dx

=− 2n − 1

22n−2
d2

∫
Ω

| ∇C2n−1

e (x, t) |2 dx.
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Then (3.8) becomes

1

2n
∂

∂t

∫
Ω

C2n

e (x, t)dx

≤−Dn

∫
Ω

| ∇C2n−1

e (x, t) |2 dx−
∫

Ω

k1(x)C2n

e (x, t)P (x, t)dx

−
∫

Ω

h(x)C2n

e (x, t)dx+

∫
Ω

g1(x)C2n−1
e (x, t)C0(x, t)P (x, t)dx,

(3.9)

where Dn = 2n−1
22n−2 d2.

Applying Young’s inequality: ab ≤ εap + ε−
q
p bq, where a, b, ε > 0, p, q > 1 and

1
p + 1

q = 1. Take p = 2n, q = 2n/(2n − 1), we estimate
∫

Ω
C0(x, t)C2n−1

e (x, t)dx as
follows ∫

Ω

C0(x, t)C2n−1
e (x, t)dx

≤ε0

∫
Ω

C2n

0 (x, t)dx+Gε0

∫
Ω

C2n

e (x, t)dx, for t ≥ t0, Gε0 = ε
− 1

2n−1

0 .

Thus (3.9) can be estimated by

1

2n
∂

∂t

∫
Ω

C2n

e (x, t)dx

≤−Dn

∫
Ω

| ∇C2n−1

e (x, t) |2 dx+Hn

∫
Ω

C2n

e (x, t)dx

+ ḡ1(M0 + 1)ε0

∫
Ω

C2n

0 (x, t)dx, for t ≥ t0,

(3.10)

where Hn = ḡ1(M0 + 1)Gε0 .
Multiplying both sides of the second equation of (2.2) by C2n−1

0 (x, t) and inte-
grate it over Ω, we have

1

2n
∂

∂t

∫
Ω

C2n

0 (x, t)dx

≤
∫

Ω

k(x)C2n−1
0 (x, t)Ce(x, t)dx+

∫
Ω

f(x)C2n

0 (x, t)P (x, t)dx

−
∫

Ω

(g(x) +m(x))C2n

0 (x, t)dx

≤k̄
∫

Ω

C2n−1
0 (x, t)Ce(x, t)dx− [g̃ + m̃− (M0 + 1)f̄ ]

∫
Ω

C2n

0 (x, t)dx.

(3.11)

Applying Young’s inequality again, by setting p = 2n and q = 2n/(2n−1) as follows∫
Ω

C2n−1
0 (x, t)Ce(x, t)dx

≤ε2

∫
Ω

C2n

e (x, t)dx+Gε2

∫
Ω

C2n

0 (x, t)dx, for t ≥ t0, Gε2 = ε
− 1

2n−1

2 .

Then (3.11) becomes

1

2n
∂

∂t

∫
Ω

C2n

0 (x, t)dx ≤ −H ′n
∫

Ω

C2n

0 (x, t)dx+ k̄ε2

∫
Ω

C2n

e (x, t)dx, (3.12)
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where H ′n = [g̃ + m̃− (M0 + 1)f̄ ]− k̄Gε2 .
Therefore, from (3.10) and (3.12), we obtain that

1

2n
∂

∂t

∫
Ω

(C2n

0 (x, t) + C2n

e (x, t))dx

=−Dn

∫
Ω

| ∇C2n−1

e (x, t) |2 dx+X

∫
Ω

C2n

e (x, t)dx

− Y
∫

Ω

C2n

0 (x, t)dx, for t ≥ t0,

(3.13)

where X = Hn + k̄ε2 and Y = H ′n − ḡ1(M0 + 1)ε0.
Applying interpolation inequality: for ∀ε > 0, there exists Gε > 0 such that

‖ζ‖22 ≤ ε ‖∇ζ‖
2
2 +Gε ‖ζ‖21 , where ζ ∈W 1,2(Ω).

Let ε3 = Dn/(2X), ξ = C2n−1

e (x, t), then

−Dn

∫
Ω

| ∇C2n−1

e (x, t) |2 dx ≤ −2X

∫
Ω

C2n

e (x, t)dx+ 2XGε3

(∫
Ω

C2n−1

e (x, t)dx

)2

.

Therefore, (3.13) becomes

1

2n
∂

∂t

∫
Ω

(C2n

0 (x, t) + C2n

e (x, t))dx

≤−X
∫

Ω

C2n

e (x, t) + 2XGε3

(∫
Ω

C2n−1

e (x, t)dx

)2

− Y
∫

Ω

C2n

0 (x, t)dx

≤− Z
∫

Ω

(C2n

0 (x, t) + C2n

e (x, t))dx+ 2XGε3

(∫
Ω

C2n−1

e (x, t)dx

)2

,

where Z = min{X,Y }.
Then follows from (3.7) that lim sup

t→∞

∫
Ω
C2n−1

e (x, t)dx ≤ M2n−1

2n−1 , which implies

that
lim sup
t→∞

‖(C0(·, t) + Ce(·, t))‖2n ≤M2n ,

with M2n =
2n
√

2XGε3M
2n

2n−1

Z .

According to continuous embedding Lq(Ω) ⊂ LP (Ω), q ≥ p ≥ 1, we can conclude
that for ∀p > 1, there exists a positive constant Mp, such that

lim sup
t→∞

‖(C0(·, t) + Ce(·, t))‖p ≤Mp.

Applying the general results in [32, Lemma 2.4], it is clear that there exists a
positive constant M∞ such that lim sup

t→∞
‖C0(·, t)‖ ≤ M∞ and lim sup

t→∞
‖Ce(·, t)‖ ≤

M∞. It implies that C0(x, t) and Ce(x, t) is ultimately bounded. Therefore, the
solution exists globally for t ∈ [0,∞) and Φ(t) : X+ → X+ is point dissipative.

Since there is no diffusion term in the second equation of system (2.2), the
asymptotic smoothness of the solution semiflow Φ(t) is considered. We introduce
the Kuratowski measure of noncompactness and define κ(·) by

κ(E) := inf{r : E has a finite cover of diameter < r},
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for any bounded set E. Thus E is precompact if and only if κ(E) = 0. And Φ(t) is a
κ-contraction that there exists a continuous function s(t) : R+ → R+, 0 ≤ s(t) ≤ 1,
such that for ∀t > 0 and bounded set E, {Φ(z)E, 0 ≤ z ≤ t} is bounded and
κ(Φ(t)E) ≤ s(t)κ(E).

Lemma 3.4. Φ(t) is κ-contracting that

lim
t→∞

κ(Φ(t)E) = 0, for any bounded set E ⊂ X+,

where Φ(t) is defined in Lemma 3.3.

Proof. The right hand of the second equation of system (2.2) can be denoted as

σ(C0, Ce) = k(x)Ce(x, t) + f(x)C0(x, t)P (x, t)− (g(x) +m(x))C0(x, t).

Then there exists a δ > 0, such that

∂σ(C0, Ce)

∂C0
= −(g(x) +m(x)− f(x)P (x, t)) ≤ −δ, (C0, Ce) ∈ X+, (3.14)

where δ = g̃ + m̃− f̄M0.

In fact, Φ(t) can be decomposed as Φ(t) = Φ1(t) + Φ2(t), t ≥ 0, where

Φ1(t)(φ)

=(P (·, t;φ),

∫ t

0

e−(g(x)+m(x)−f(x)P (x,t))(t−s)k(x)Ce(·, t;φ)ds, Ce(·, t;φ)), t ≥ 0,

and

Φ2(t)(φ) = (0, e−(g(x)+m(x)−f(x)P (x,t))tφ2, 0), t ≥ 0.

Similar to [32, Lemma 2.5], for ∀t > 0, Φ1(t)E is precompact. Therefore, κ(Φ1(t)E)
= 0. Furthermore, the operator norm of Φ2(t) can be estimated as

‖Φ2(t)‖ = sup
φ∈X

‖Φ2(t)φ‖X
‖φ‖X

≤ e−δt sup
φ∈X

‖φ‖X
‖φ‖X

= e−δt,

which implies that for t > 0,

κ(Φ(t)E) ≤ κ(Φ1(t)E) + κ(Φ2(t)E) ≤ 0 + ‖Φ2(t)‖κ(E) ≤ e−δtκ(E).

Thus, Φ(t) is a κ−contraction on X+ with the contraction function s(t) = e−δt.
This completes the proof.

Theorem 3.1. Φ(t) admits a connected global attractor on X+.

Proof. From Lemma 3.3, we know that the solution of (2.2) is globally existing,
unique, and ultimately bounded. From Lemma 3.4, we know from the κ-contraction
condition that Φ(t) is asymptotically smooth. Therefore, as direct consequence
of [2, Theorem 2.4.6], system (2.2) has a connected global attractor. This completes
the proof.
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3.2. Basic reproduction number

Apply similar results as in [29, Section 3], we define the basic reproduction number
R0 for system (2.2), which is closely related to the stability of E0, where E0 =
(P ∗(x), 0, 0) is the unique toxicant-free equilibrium of system (2.2). Linearizing
(2.2) with (2.3) at E0, we get the following subsystem for C0(x, t) and Ce(x, t)
component

∂C0(x, t)

∂t
=k(x)Ce(x, t) + f(x)C0(x, t)P ∗(x)− (g(x) +m(x))C0(x, t),

x ∈ Ω, t > 0,

∂Ce(x, t)

∂t
=d2∆Ce(x, t)− k1Ce(x, t)P

∗(x, t)− h(x)Ce(x, t)

+ g1(x)C0(x, t)P ∗(x, t), x ∈ Ω, t > 0.

(3.15)

Define T (t) as the solution semigroup of (3.15) with generator

B =

 f(x)P ∗(x)− (g(x) +m(x)) k(x)

g1(x)P ∗(x) d2∆− k1(x)P ∗(x)− h(x)

 := B1 +B2,

where

B1 =

 f(x)P ∗(x)− (g(x) +m(x)) 0

g1(x)P ∗(x) d2∆− k1(x)P ∗(x)− h(x)

 ,
and

B2 =

0 k(x)

0 0

 .
Define T1(t) as the C0−semigroup generated by operator B1. we know that

B1 is cooperative for any x ∈ Ω, this indicates that T1(t) is a positive semigroup.
According to [27, Theorem 3.12], we know that both B and B1 are resolvent-positive
operators. Then we define the operator L := −B2B

−1
1 which has the following form

L(φ)(x) =

∫ ∞
0

B2(x)T1(t)φ(x)dt

= B2(x)

∫ ∞
0

T1(t)φ(x)dt, φ ∈ C(Ω,R2), x ∈ Ω,

(3.16)

L is well-defined, continuous, and positive operator on C(Ω,R2), which maps the
initial toxicant distribution φ to the distribution of the total new toxicant produced.
We then follow the procedure in [29] to define the spectral radius of L as the basic
reproduction number

R0 = r(L) = r(−B2B
−1
1 ) = sup{| λ |, λ ∈ σ(L)},

where σ(L) is the spectrum of L. By [27, Theorem 3.5] and [29, Lemma 2.2], we
can obtain the following results.
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Lemma 3.5. Let s(B) = sup{Reλ, λ ∈ σ(B)} be the spectral bound of B. Then
R0 − 1 has the same sign as s(B).

Lemma 3.6. Let λ0 be the principal eigenvalue of the following eigenvalue problem
d2∆Ψ− (h(x) + k1(x)P ∗(x))Ψ + λH(x)Ψ = 0, x ∈ Ω,

∂Ψ

∂v
= 0, x ∈ ∂Ω,

(3.17)

where

H(x) =
g1(x)k(x)P ∗(x)

g(x) +m(x)− f(x)P ∗(x)
, (3.18)

then R0 = 1/λ0.

Proof. Similar arguments in [29, Theorem 3.3], we define

B̂1 =

d2∆− V11 −V12

0 −V22

 and B̂2 =

 0 0

F21 0

 ,
where

F11 := 0, F12 := 0, F21 := k(x), F22 := 0,

V11 := k1(x)P ∗(x) + h(x), V12 := −g1(x)P ∗(x),

V21 := 0, V22 := g(x) +m(x)− f(x)P ∗(x).

From F12 = 0 and F22 = 0, it then follows that R0 = r(−B−1
1 B2) = r(B−1

1 F1),
where B1 = d2∆− (V11 − V12V

−1
22 V21) = d2∆− (k1(x)P ∗(x) + h(x)), and

F1 : = F11 − V12V
−1
22 F21

=
g1(x)k(x)P ∗(x)

g(x) +m(x)− f(x)P ∗(x)
.

Therefore, for Ψ ∈ C(Ω, R2),

−B−1
1 F1Ψ = −[d2∆− (k1(x)P ∗(x) + h(x))]−1H(x)Ψ,

where H(x) is defined as in (3.18). Then, R0 satisfies

[−[d2∆− (k1(x)P ∗(x) + h(x))]−1H(x)]Ψ = R0Ψ,Ψ ∈ C(Ω,R2),

that is

d2∆Ψ− (k1(x)P ∗(x) + h(x))Ψ + H(x)
1

R0
Ψ = 0,Ψ ∈ C(Ω,R2).

From elliptic problem (3.17), and apply similar results as in [28], we obtain that

R0 =
1

λ
= sup

Ψ∈H1(Ω),Ψ6=0

∫
Ω
H(x)Ψ2dx∫

Ω
[d2 | ∇Ψ |2 +(k1(x)P ∗(x) + h(x))Ψ2]dx

, (3.19)

which completes the proof.
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Remark 3.1. When all parameters in (2.2) are constants, we have P ∗(x) = Λ
r ,

thus R0 can be reduced to

Rconst
0 =

1

λ̃
= (

g1kΛ

r(g +m)− fΛ
)/(h+

k1Λ

r
). (3.20)

From Remark 3.1, we can see that how R0 depends on the model parameters.
We immediately obtain the following statements.

(i) R0 is a monotone decreasing and positive function of d2 > 0.

(ii) R0 → max{ H(x)
h(x)+k1(x)P∗(x) : x ∈ Ω} as d2 → 0.

(iii) R0 →
∫
Ω
H(x)dx∫

Ω
(h(x)+k1(x)P∗(x))dx

as d2 →∞.

(iv) If
∫

Ω
H(x)dx <

∫
Ω

(h(x) + k1(x)P ∗(x))dx, then there exists d̃2 ∈ (0,∞) such

that R0 > 1 for d2 < d̃2, and R0 < 1 for d2 > d̃2.

(v) If
∫

Ω
H(x)dx >

∫
Ω

(h(x) + k1(x)P ∗(x))dx, for all d2 > 0, we have R0 > 1.

3.3. Toxicant extinction

The following results show that R0 is a threshold parameter of the model (2.2) for
the toxicant extinction.

Theorem 3.2. The toxicant-free steady state E0 is globally attractive if R0 < 1,
then the following equation hold

lim
t→∞

‖u(x, t;φ)− E0‖X = 0, uniformly for ∀x ∈ Ω.

Proof. Fix ε > 0, then follows from (3.3), we know that there exists t0 > 0 such
that

P ∗(x)− ε ≤ P (x, t) ≤ P ∗(x) + ε, x ∈ Ω,∀t > t0.

It follows from the comparison principal for cooperative systems (see, [19]), we have

(C0(x, t), Ce(x, t)) ≤ (Ĉ0(x, t), Ĉe(x, t)), x ∈ Ω, t > t0,

where (Ĉ0(x, t), Ĉe(x, t)) satisfies

∂Ĉ0(x, t)

∂t
=k(x)Ĉe(x, t) + f(x)Ĉ0(x, t)(P ∗(x) + ε)− (g(x) +m(x))Ĉ0(x, t),

x ∈ Ω, t > t0,

∂Ĉe(x, t)

∂t
=d2∆Ĉe(x, t)− k1(x)Ĉe(x, t)(P

∗(x)− ε)− h(x)Ĉe(x, t)

+ g1(x)C0(x, t)(P ∗(x) + ε), x ∈ Ω, t > t0,

∂C0(x, t)

∂v
=
∂Ce(x, t)

∂v
= 0, x ∈ ∂Ω, t > t0.

(3.21)
Since s(B) < 0, there is a ε > 0 such that s(Bε) < 0 and it corresponded to an
associated eigenvector (ψε2, ψ

ε
3) � 0. Suppose that for any initial date φ ∈ X+,

we can find some M > 0 such that (C0(x, t0;φ), Ce(x, t0;φ)) ≤ M(ψε2, ψ
ε
3), x ∈ Ω.
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Note that the linear system (3.21) provide a solution Mes(Bε)(t−t0)ψε, where ψε =
(ψε2, ψ

ε
3). According to the comparison (see, [35]), we obtain the following

(C0(x, t0;φ), Ce(x, t0;φ)) ≤ (Ĉ0(x, t;φ), Ĉe(x, t;φ)) = Mes(Bε)(t−t0)(ψε2, ψ
ε
3).

Therefore, we have (Ĉ0(x, t), Ĉe(x, t)) → (0, 0) as t → ∞ uniformly for x ∈ Ω.
Then, (C0(x, t), Ce(x, t)) → (0, 0) as t → ∞ uniformly for x ∈ Ω. Furthermore,
from the first equation (2.2) and Lemma 3.2, we obtain that lim

t→∞
P (x, t) = P ∗(x)

uniformly for x ∈ Ω. This completes the proof.

3.4. Toxicant persistence

This subsection indicates that R0 is a threshold index for toxicant persistence.

Theorem 3.3. System (2.2) is uniformly persistent if R0 > 1, that is, there exists
σ > 0 such that for any φ ∈ X+ with φ2(·) 6≡ 0 or φ3(·) 6≡ 0,

lim inf
t→∞

z(x, t;φ) ≥ σ, uniform for ∀x ∈ Ω, z = P,C0, Ce. (3.22)

In addition, system (2.2) with (2.3) exists at least one positive steady state E∗.

Proof. To proceed further, we define the sets

W0 = {φ(·) ∈ X+ : φ3(·) 6≡ 0},

and
∂W0 = X+ \W0 = {φ(·) ∈ X+ : φ3(·) ≡ 0}.

Then X+ = W0 ∪ ∂W0, W0 being relatively open in X+.
Let ω(φ) be the omega limit set of the orbit γ+ := {Φ(t)φ : t ≥ 0}. Set

M∂ := {φ ∈ ∂W0 : Φ(t)φ ∈ ∂W0, ∀t ≥ 0}. (3.23)

Note that for any φ ∈ W0, as the same arguments in [28, Lemma 3.5], we can get
that Ce(x, t;φ) > 0,∀x ∈ Ω, t > 0, and W0 was positively invariant in terms of the
solution semifiow Φ(t), that is, Φ(t)W0 ⊆W0.

Next, we prove the following claims.

Claim 1. ω(φ) = {E0},∀φ ∈M∂ .
For φ ∈ M∂ , we have Φ(t)φ ∈ M∂ , ∀t ≥ 0. It follows that Ce(x, t;φ) ≡ 0,

∀t ≥ 0, this together with the last two equations of system(2.2), we can get that
C0(·, t;φ) ≡ 0, ∀t ≥ 0. Then it follows that the first equation of system (2.2) is
asymptotic to system (3.1), we obtain that

∂P (x, t)

∂t
= d1∆P (x, t) + Λ(x)− r(x)P (x, t), x ∈ Ω, t > 0. (3.24)

From Lemma 3.2, we know that system (3.24) exists a positive steady state P ∗,
which was globally asymptotically stable in C(Ω,R+). Thus ω(φ) = {E0}, for
∀φ ∈M∂ . This proves Claim 1.

Claim 2. lim sup
t→∞

‖Φ(t)φ− E0‖ ≥ σ, ∀φ ∈W0.

Assume for the contrary that there exists φ0 ∈W0 such that

lim sup
t→∞

‖Φ(t)φ0 − E0‖ < σ,
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then there exists a t1 > 0 such that

P ∗(x)− σ < P (x, t;φ0) < P ∗(x) + σ, C0(x, t;φ0) < σ,

Ce(x, t;φ0) < σ, ∀t > t1, x ∈ Ω.

Thus (C0(x, t;φ), Ce(x, t;φ)) satisfies

∂C0(x, t)

∂t
≥k(x)Ce(x, t) + f(x)C0(x, t)(P ∗(x)− σ)− (g(x) +m(x))C0(x, t),

x ∈ Ω, t > t1,

∂Ce(x, t)

∂t
≥d2∆Ce(x, t)− k1(x)Ce(x, t)(P

∗(x) + σ)− h(x)Ce(x, t)

+ g1(x)C0(x, t)(P ∗(x)− σ), x ∈ Ω, t > t1,

∂C0(x, t)

∂v
=
∂Ce(x, t)

∂v
= 0, x ∈ ∂Ω, t > t1.

It follows that C0(x, t) > 0, Ce(x, t) > 0,∀x ∈ Ω, t > 0, recall that the linear system

∂Č0(x, t)

∂t
=k(x)Če(x, t) + f(x)(P ∗(x)− σ)Č0(x, t)− (g(x) +m(x))Č0(x, t),

x ∈ Ω, t > t1,

∂Če(x, t)

∂t
=d2∆Če(x, t)− k1(x)Če(x, t)(P

∗(x) + σ)− h(x)Če(x, t)

+ g1(x)Č0(x, t)(P ∗(x)− σ), x ∈ Ω, t > t1,

∂Č0(x, t)

∂v
=
∂Če(x, t)

∂v
= 0, x ∈ ∂Ω, t > t1,

admits a solution ε0e
s(Bσ)(t−t1)ψσ for some positive constant ε0, where ψσ =

(ψσ2 , ψ
σ
3 ). According to the comparison principal, we have

(C0(·, t;φ0), Ce(·, t;φ0)) ≥ ε0e
s(βσ)(t−t1)(ψσ2 , ψ

σ
3 ), t ≥ t1, x ∈ Ω.

Then C0(·, t;φ0) and Ce(·, t;φ0) are unbounded as s(Bσ) > 0, this leads a contra-
diction. This completes the proof of Claim 2.

According to the standard procedures in [26], define a continuous function p(·) :
X+ → [0,∞)

p(φ) := min{φ3(·)},∀φ ∈ X+,

obviously, p−1(0,∞) ⊆ W0, and if p(φ) = 0 with φ ∈ W0 or p(φ) > 0, then
p(Φ(t)φ) > 0,∀ t > 0. Then p is a generalized distance function for the semiflow
Φ(t) : X+ → X+. This discussion demonstrated that γ+(φ) in M∂ converged to E0

and was isolated in W0, in addition, for the stable subset of E0, W s(E0)
⋂
W0 = ∅.

There is no cycle from E0 to E0 in M∂ . Therefore, from [26, Theorem 3] and similar
arguments in [8, Theorem 3.4], we find that there exists a σ > 0 such that

lim inf
t→∞

p(Φ(t)ψ) > σ,∀ψ ∈W0,

which implies that
lim inf
t→∞

Ce(x, t;φ) ≥ σ, ∀φ ∈W0.

In summary, Φ(t) is uniformly persistent with respect to (W0, ∂W0). By [18],
it follows that Φ(t) : W0 →W0 has a global attractor E0, and system (2.2) admits
at least one steady state û(·) in W0, (see, [32]), which is a positive steady state of
(2.2). This completes the proof.
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4. Optimal control strategy

4.1. Problem statement

In this section, we formulate an optimal problem on the basis of system (2.2). We
assume that the natural growth of toxicant will be affected by decision makers,
that is, decision makers can take measures to control the toxicant. Specifically,
decision makers can control the toxicant by increasing the loss rate of toxicant in
the environment, h is the total loss rate in the natural environment, and we suppose
h+ u is the total loss rate of the environment after the decision makers implement
governance, where u is the governance intensity, and 0 ≤ u(x, t) ≤ 1.

Taking into account the above assumption, the control problem of the model is
given by

∂P (x, t)

∂t
=d1∆P (x, t) + Λ(x)− r(x)P (x, t)− α(x)C0(x, t)P (x, t),

x ∈ Ω, t > 0,

∂C0(x, t)

∂t
=k(x)Ce(x, t) + f(x)C0(x, t)P (x, t)− (g(x) +m(x))C0(x, t),

x ∈ Ω, t > 0,

∂Ce(x, t)

∂t
=d2∆Ce(x, t)− k1(x, t)Ce(x, t)P (x, t)− h(x)Ce(x, t)

+ g1(x)C0(x, t)P (x, t)− u(x, t)Ce(x, t), x ∈ Ω, t > 0.

(4.1)

Here the control u(x, t) is in

V[Ω× I] = {u(x, t) : Ω× I → U | u(x, t) is measureable}.

The control system can be written as follows
∂y(x, t)

∂t
= b(x, t, y(x, t), u(x, t)), x ∈ Ω, t ∈ [s, T ],

y(0, s) = y0,
(4.2)

where y(x, t) = (P (x, t), C0(x, t), Ce(x, t))
> ∈ X+, and y0 is an initial value at time

s, (s, y0) ∈ [0, T )× X+. For convenience, we denote I = [s, T ].
The purpose of the optimal control problem is to implement the control strategy

to reduce the concentration of toxicant and minimize the cost. Therefore, the
objective function we constructed is as follows

J(s, y0;u(x, t))

=

∫ T

s

∫
Ω

[τ1u
2(x, t) + τ2C0(x, t) + τ3Ce(x, t)]dxdt+

∫
Ω

h(y(x, T ))dx,
(4.3)

where τ1, τ2, τ3 ∈ R+ and
∫

Ω
h(y(x, T ))dx is the penalty function corresponding

to the terminal state. The meaning of the objective functional J(s, y0;u(x, t)) is
described as follows

(i) The term
∫ T
s

∫
Ω

[τ2C0(x, t) + τ3Ce(x, t)]dxdt represents the total number of
toxicant concentration in the organism and environment over the time period
T .
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(ii) The term
∫ T
s

∫
Ω

[τ1u
2(x, t)]dxdt gives the total cost of applying the control

strategy.

Then we denote

L(x, t, y(x, t), u(x, t)) :=

∫
Ω

[τ1u
2(x, t) + τ2C0(x, t) + τ3Ce(x, t)]dx. (4.4)

Our object is to design the optimal controller u∗(x, t), t ∈ I, which minimizes or
nearly minimize the cost functional J(s, y0;u(x, t)). The value function is as followsV (s, y0) = inf

u(x,t)∈V[Ω×I]
J(s, y0;u(x, t)), ∀(s, y0) ∈ [0, T )× X+,

V (T, y0) = h(y0), ∀y0 ∈ X+.
(4.5)

Before further study, we first make the following assumptions:

Assumption 4.1. (U, d) is a separable metric space and T > 0.

Assumption 4.2. The control set U is convex.

Assumption 4.3. Different controls correspond to the same terminal state.

Then, by [33, Chapter 4], we propose the following result called Bellman’s prin-
ciple of optimality.

Theorem 4.1. Let Assumption 4.1, Assumption 4.2 hold, then for any (s, y0) ∈
[0, T )× X+,

V (s, y0) = inf
u(x,t)∈V[Ω×I]

{∫ ŝ

s

∫
Ω

[τ1u
2(x, t) + τ2C0(x, t) + τ3Ce(x, t)]dxdt

+V (ŝ, y(x̂, ŝ; s, y0, u(x, t)))} , ∀0 ≤ s ≤ ŝ ≤ T.
(4.6)

Proof. We denote the right-hand side of (4.6) by V (s, y0). According to (4.5), we
have

V (s, y0) ≤J(s, y0;u(x, t))

=

∫ ŝ

s

∫
Ω

[τ1u
2(x, t) + τ2C0(x, t) + τ3Ce(x, t)]dxdt

+ J(ŝ, y(x̂, ŝ);u(x, t)), ∀u(x, t) ∈ V[Ω× I].

Therefore, taking the infimum over u(x, t) ∈ V [Ω× I], we obtain

V (s, y0) ≤ V (s, y0). (4.7)

Conversely, for ∀ε > 0, there exists a uε(x, t) ∈ V[Ω× I], such that

V (s, y0) + ε ≥ J(s, y0;uε(x, t))

≥
∫ ŝ

s

∫
Ω

[τ1u
2
ε(x, t) + τ2C0(x, t) + τ3Ce(x, t)]dxdt+ V (ŝ, yε(x̂, ŝ))

≥ V (s, y0),

(4.8)

where yε(x, t) = y(x, t; s, y0, uε(x, t)). Combining (4.7) and (4.8), we obtain (4.6).
This completes the proof.
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Theorem 4.2. Suppose Assumption 4.1, Assumption 4.2 hold, then V (s, y0) is a
solution to the following terminal value problem of a first-order partial differential
equation:

0 = −Vt + sup
u∈U
{
∫

Ω

{−VP (t, y)[d1∆P (x, t) + Λ(x)− r(x)P (x, t)

−α(x)C0(x, t)P (x, t)]− VC0(t, y)[k(x)Ce(x, t) + f(x)C0(x, t)P (x, t)

−(g(x) +m(x))C0(x, t)]− VCe(t, y)[d2∆Ce(x, t)− k1(x)Ce(x, t)P (x, t)

−h(x)Ce(x, t) + g1C0(x, t)P (x, t)− u(x, t)Ce(x, t)]}dx

−
∫

Ω

[τ1u
2(x, t) + τ2C0(x, t) + τ3Ce(x, t)]dx}, (x, t, y) ∈ Ω× [0, T )× X+,

V |t=T =

∫
Ω

h(y(x, T ))dx, y ∈ X+,

(4.9)

we call (4.9) the Hamilton-Jacobi-Bellman(HJB) equation associated with the value
function (4.5).

Proof. Fix a u ∈ U . Let y(x, t) be the state trajectory corresponding to the
control u(x, t) ≡ u. By (4.6) with ŝ ↓ s, we obtain

0 ≥− V (ŝ, y(·, ŝ))− V (s, y0)

ŝ− s
− 1

ŝ− s

∫ ŝ

s

∫
Ω

[τ1u
2 + τ2C0(x, t) + τ3Ce(x, t)]dxdt

→− Vt(s, y0)− {
∫

Ω

{VP (t, y)[d1∆P (x, t) + Λ(x)− r(x)P (x, t)

− α(x)C0(x, t)P (x, t)] + VC0 [k(x)Ce(x, t) + f(x)C0(x, t)P (x, t)

− (g(x) +m(x))C0(x, t)] + VCe [d2∆Ce(x, t)− k1(x)Ce(x, t)P (x, t)

− h(x)Ce(x, t) + g1(x)C0(x, t)P (x, t)− u(x, t)Ce(x, t)]}dx}

−
∫

Ω

[τ1u
2 + τ2C0(x, t) + τ3Ce(x, t)]dx,

which results in

0 ≥− Vt(s, y0) + sup
u∈U
{
∫

Ω

{−VP (t, y)[d1∆P (x, t) + Λ(x)− r(x)P (x, t)

− α(x)C0(x, t)P (x, t)]− VC0
(t, y)[k(x)Ce(x, t) + f(x)C0(x, t)P (x, t)

− (g(x) +m(x))C0(x, t)]− VCe(t, y)[d2∆Ce(x, t)− k1(x)Ce(x, t)P (x, t)

− h(x)Ce(x, t) + g1(x)C0(x, t)P (x, t)− uCe(x, t)]}dx

−
∫

Ω

[τ1u
2 + τ2C0(x, t) + τ3Ce(x, t)]dx}.

(4.10)

On the other hand, for ∀ε > 0, 0 ≤ s ≤ ŝ ≤ T with ŝ − s > 0 small enough, there
exists a u ≡ uε,ŝ(x, t) ∈ V[Ω× I] such that

V (s, y0) + ε(ŝ− s) ≥
∫ ŝ

s

∫
Ω

[τ1u
2(x, t) + τ2C0(x, t) + τ3Ce(x, t)]dxdt+ V (ŝ, y(x̂, ŝ)).

Therefore it follows that

−ε ≤− V (ŝ, y(x, ŝ))− V (s, y0)

ŝ− s
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− 1

ŝ− s

∫ ŝ

s

∫
Ω

[τ1u
2(x, t) + τ2C0(x, t) + τ3Ce(x, t)]dxdt

=
1

ŝ− s

∫ ŝ

s

{−Vt(t, y)−
∫

Ω

{VP (t, y)[d1∆P (x, t) + Λ(x)− r(x)P (x, t)

− α(x)C0(x, t)P (x, t)] + VC0
[k(x)Ce(x, t) + f(x)C0(x, t)P (x, t)

− (g(x) +m(x))C0(x, t)] + VCe [d2∆Ce(x, t)− k1(x)Ce(x, t)P (x, t)

− h(x)Ce(x, t) + g1(x)C0(x, t)P (x, t)− u(x, t)Ce(x, t)]}dx

−
∫

Ω

[τ1u
2(x, t) + τ2C0(x, t) + τ3Ce(x, t)]dx}dt

≤ 1

ŝ− s

∫ ŝ

s

{−Vt(t, y) + sup
u∈U
{
∫

Ω

{−VP (t, y)[d1∆P (x, t) + Λ(x)− r(x)P (x, t)

− α(x)C0(x, t)P (x, t)]− VC0(t, y)[k(x)Ce(x, t) + f(x)C0(x, t)P (x, t)

− (g(x) +m(x))C0(x, t)]− VCe(t, y)[d2∆Ce(x, t)− k1(x)Ce(x, t)P (x, t)

− h(x)Ce(x, t) + g1(x)C0(x, t)P (x, t)− uCe(x, t)]}dx

−
∫

Ω

[τ1u
2 + τ2C0(x, t) + τ3Ce(x, t)]dx}}dt

→− Vt(s, y0) + sup
u∈U
{
∫

Ω

{−VP (t, y)[d1∆P (x, t) + Λ(x)− r(x)P (x, t)

− α(x)C0(x, t)P (x, t)]− VC0
(t, y)[k(x)Ce(x, t) + f(x)C0(x, t)P (x, t)

− (g(x) +m(x))C0(x, t)]− VCe(t, y)[d2∆Ce(x, t)− k1(x)Ce(x, t)P (x, t)

− h(x)Ce(x, t) + g1(x)C0(x, t)P (x, t)− uCe(x, t)]}dx

−
∫

Ω

[τ1u
2 + τ2C0(x, t) + τ3Ce(x, t)]dx}. (4.11)

Combining (4.10) and (4.11), we obtain our results.
Next, by [33, Chapter 4], we define the viscosity solution of (4.9).

Definition 4.1. A function V ∈ C([0, T ]×X+) is called a viscosity subsolution(or
supersolution) of (4.9) if

V (T, y) ≤
∫

Ω

h(y)dx (or V (T, y) ≥
∫

Ω

h(y)dx),∀y ∈ X+,

and for any ϕ ∈ C1([0, T ] × X+), whenever V − ϕ attains a local maximum(or
minimum) at (t, y) ∈ [0, T ]× X+, we have

− ϕt(t, y) + sup
u∈U

H(t, y, u,−ϕy(t, y)) ≤ 0,

(or − ϕt(t, y) + sup
u∈U

H(t, y, u,−ϕy(t, y)) ≥ 0).

In the case that V is both a viscosity subsolution and supersolution of (4.9), it is
called a viscosity solution of (4.9).

Theorem 4.3. Let Assumption 4.1, Assumption 4.2 and Assumption 4.3 hold.
Then the value function V (·, ·) satisfies

|V (s,y0)− V (s, y0)| ≤ K|s− s̄|,∀(s, y0), (s, y0) ∈ [0, T ]× X+, (4.12)
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for some K > 0. Moreover, V is the only viscosity solution of (4.9) in the class
C([0, T ]× X+).

Proof. Since

|V (s,y0)− V (s, y0)|

=| inf
u(x,t)∈V[Ω×I]

∫ T

s

∫
Ω

[τ1u
2(x, t) + τ2C0(x, t) + τ3Ce(x, t)]dxdt+

∫
Ω

h(y(x, T ))dx

− inf
u(x,t)∈V[Ω×I]

∫ T

s̄

∫
Ω

[τ1u
2(x, t) + τ2C0(x, t) + τ3Ce(x, t)]dxdt+

∫
Ω

h(y(x, T ))dx|

≤|
∫ s̄

s

∫
Ω

[τ1u
2(x, t) + τ2C0(x, t) + τ3Ce(x, t)]dxdt|

=K|s− s̄|,
(4.13)

where K = max
t∈I

∫
Ω

[τ1u
2(x, t) + τ2C0(x, t) + τ3Ce(x, t)]dx. Therefore, (4.12) is valid.

Then apply the general results in [33, Chapter 4], we know that V (·, ·) is a viscosity
solution of the HJB equation (4.9).

4.2. Optimal control

In this subsection, we discuss the existence of the optimal control for the system (4.1)
and construct the Hamiltonian H(t, y, u, p) to solve the optimal control problem.

Theorem 4.4. There exists an optimal control u∗(x, t) ∈ U and a corresponding
optimal state (P ∗(x, t), C∗0 (x, t), C∗e (x, t)) such that

V (s, y0) = inf
u(x,t)∈U

J(s, y0;u∗),

subject to the control system (4.1).

Proof. We can complete the proof in a similar way as in [10, Theorem 4.1].

Theorem 4.5. Let u∗(x, t) be optimal control variable, P ∗(x, t), C∗0 (x, t) and
C∗e (x, t) are corresponding optimal state variables, then we have the following opti-
mal control:

u∗(x, t) = min

{
1,max

{
0,−1

2
τ−1
1 C∗e (x, t)p3(x, t)

}}
, (4.14)

where

∂p1(x, t) ={[−d1∆ + r(x) + α(x)C0(x, t)]p1(x, t)− f(x)C0(x, t)p2(x, t)

+ [k1(x)Ce(x, t)− g1(x)C0(x, t)]p3(x, t)}∂t,
∂p2(x, t) ={α(x)P (x, t)p1(x, t) + [(g(x) +m(x))− fP (x, t)]p2(x, t)

− g1(x)P (x, t)p3(x, t)− τ2}∂t,
∂p3(x, t) ={−k(x)p2(x, t) + [−d2∆ + k1(x)P (x, t) + h(x) + u(x, t)]p3(x, t)

− τ3}∂t.



A toxicant-population model with reaction-diffusion 599

Proof. The Hamiltonian function H(t, y, u, p) is given by

H(t, y, u, p)

:=p1(x, t)[d1∆P (x, t) + Λ(x)− r(x)P (x, t)− α(x)C0(x, t)P (x, t)]

+ p2(x, t)[k(x)Ce(x, t) + f(x)C0(x, t)P (x, t)− (g(x) +m(x))C0(x, t)]

+ p3(x, t)[d2∆Ce(x, t)− k1(x)Ce(x, t)P (x, t)− h(x)Ce(x, t)

+ g1(x)C0(x, t)P (x, t)− u(x, t)Ce(x, t)]

− τ1u2(x, t) + τ2C0(x, t) + τ3Ce(x, t),∀(t, y, u, p) = [0, T ]× X+ × U × R3,

(4.15)

where p(x, t) is equivalent to Vy(t, y).

Applying the general results in [33], let ∂H(t,y,u,p)
∂u = 0, we obtain the optimal

control u∗(x, t) as follows

u∗(x, t) = −1

2
τ−1
1 C∗e (x, t)p3(x, t). (4.16)

Therefore, according to the properties of control variables, (4.14) holds. This com-
pletes the proof.

Remark 4.1. For different initial value, we can construct an optimal control prob-
lem to obtain the optimal pair. The main steps are as follows. Firstly, solve the
HJB equation (4.9) to find the V (T, y(x, t)); Secondly, find u∗(x, t) through Hamil-
tonian function (4.15); Finally, combine the u∗(x, t) to solve model (4.1) to get the
optimal pair (y∗(x, t), u∗(x, t)).

5. Numerical simulations

This section aims to illustrate the effectiveness of our theoretical results that ob-
tained in previous sections. To simulate the threshold dynamics of persistence and
extinction, we selected two sets of parameters, which are obtained from [9, 11, 14]
and listed in Table 2. For both sets of parameters, we calculate R0 = 0.17 and
R0 = 1.8 through (3.20) (i.e., R0 = ( g1kΛ

r(g+m)−fΛ )/(h+ k1Λ
r )).

Table 2. Parameter values of numerical experiments for model (2.2)

Parameters d1 d2 r k g m h α Λ f k1 g1

Value(R0 = 0.17) 0.005 0.05 0.2 0.1 0.2 0.08 0.1 0.4 0.1 0.1 0.05 0.1

Value(R0 = 1.8) 0.005 0.05 0.1 0.1 0.08 0.12 0.1 0.2 0.1 0.1 0.01 0.2

5.1. Numerical simulation of threshold dynamics

We use the Milstein method [7] and Matlab software to perform numerical simula-
tions in this subsection. We first discretize the model (2.2) to obtain the following
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form

P (η, θ) = P (η, θ − 1) + [(d1(P (η + 1, θ − 1)− 2P (η, θ − 1)

+ P (η − 1, θ − 1)))/h2 + Λ− rP (η, θ − 1)

− αC0(η, θ − 1)P (η, θ − 1)]∆t,

C0(η, θ) = C0(η, θ − 1) + [kCe(η, θ − 1) + fC0(η, θ − 1)P (η, θ − 1)

− (g +m)C0(η, θ − 1)]∆t,

Ce(η, θ) = Ce(η, θ − 1) + [(d2(Ce(η + 1, θ − 1)− 2Ce(η, θ − 1)

+ Ce(η − 1, θ − 1)))/h2 − k1Ce(η, θ − 1)P (η, θ − 1)− hCe(η, θ − 1)

+ g1C0(η, θ − 1)P (η, θ − 1)]∆t.

Figure 1 is a simulation of R0 < 1, simple calculation from the data in the
table to get R0 = 0.17, as shown in Fig 1(b) and Fig 1(c), the concentration of
the toxicant converges to 0 over time, that is to say, the toxicant eventually goes
extinct. This is the same conclusion as given by Theorem 3.2, and E0 ∈ X+ is
globally attractive.
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Figure 1. The evolution of P , C0 and Ce of system (2.2) for R0 = 0.17 < 1.

The case of R0 > 1 is shown in Figure 2. It can be seen that the concentration
of toxicant tend to be a positive constant distribution over time, in other words,
the toxicant is persistent. This is the same conclusion as Theorem 3.3, and system
(2.2) with (2.3) exists a positive steady state E∗.

5.2. Numerical simulation of optimal control

In order to obtain the discrete optimal control problem, we assume the step size is
4 > 0, and T = n4, where n is a positive integers. Then, time interval [0, T ] can
be divided as

t0 = 0 < t1 < · · · < tn = T.

In the following, we give the algorithm for optimal control in Table 3.
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Figure 2. The evolution of P , C0 and Ce of system (2.2) for R0 = 1.8 > 1.

Table 3. Algorithm 1

Step 1: for λ = 0 do

Pλ = P (0); Cλ0 = C0(0); Cλe = Ce(0)

end for

for λ = n do

pλ1 = p1(0); pλ2 = p2(0); pλ3 = p3(0)

end for

Step 2: for λ = 0, 1, · · ·, n− 1 do

Pλ+1 = Pλ +4[d1∆Pλ + Λ− rPλ − αCλ0 Pλ]

Cλ+1
0 = Cλ0 +4[kCλe + fCλ0 − (g +m)Cλ0 ]

Cλ+1
e = Cλe +4[d1∆Cλe − k1C

λ
e P

λ − hCλe + g1C
λ
0 P

λ − uλCλe ]

for j = 1, 2, 3 do

pn−λ−1
j = pn−λj −4× Tempj

end for

Dλ+1 = − 1
2τ
−1
1 Cλe p

n−λ
3

uλ+1 = min{1,max{0, Dλ+1}}
end for

Step 3: for λ = 1, 2, · · ·, n do

P ∗(tλ) = Pλ; C∗0 (tλ) = Cλ0 ; C∗e (tλ) = Cλe
u∗(tλ) = uλ

end for

Where

Temp1 = −d1∆pn−λ1 + (r + αCλ0 )pn−λ1 − fCλ0 pn−λ2 + (k1C
λ
e − g1C

λ
0 )pn−λ3 ,

Temp2 = αPλpn−λ1 + (g +m− fPλ)pn−λ2 − g1P
λpn−λ3 − τ2,

Temp3 = −kpn−λ2 − d2∆pn−λ3 + (k1P
λ + h+ uλ)pn−λ3 − τ3.

With the help of Algorithm 1, we can define the values of P,C0, Ce, pi and u at
nodal points by P k, Ck0 , C

k
e , p

k
i and uk, respectively, where 0 ≤ k ≤ n and i = 1, 2, 3.

The initial value is selected as (P 0, C0
0 , C

0
e ) = (1, 1, 0.8), and the wight constants in

objective function (4.3) are set as τ1 = 1.5× 10−3, τ2 = 1× 10−3, τ3 = 2× 10−3.
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In Fig 3, we compare the trajectories of state variables with no control and
optimal control, and present the trajectory of optimal control variable. As shown
in Fig 3(a) and Fig 3(b), the concentration of toxicant decrease more rapidly and
significantly after the control is applied. More precisely, the decrease in toxicant
concentration is the fastest in the initial stage, especially in the first 50 days af-
ter implementation of control. Afterwards, the decline rate slows down and the
concentration of the toxicant gradually approaches zero. The corresponding con-
trol intensity is shown in Fig 3(c), it can be observed that the control intensity
continues to increase in an initial short period of time, which helps to lower the
peak concentration of toxicant in the environment and reduce the duration of toxi-
cant. Eventually, the intensity of control stabilizes with the stability of the toxicant
concentration. This shows the effectiveness of our control strategy.
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Figure 3. The paths of the optimal state variables C0, Ce, and the optimal control variable u.

6. Conclusions

In this work, we establish a toxicant-population model with reaction-diffusion, and
study its dynamic behavior and optimal control problems respectively. By defining
the basic reproduction number R0, we discuss the threshold dynamics, which shows
that R0 is a threshold parameter for the extinction (Theorem 3.2) and persistence
(Theorem 3.3) of toxicant. Due to the persistence of toxicant when R0 > 1, the opti-
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mal control of toxicant is considered, with the goal of minimizing the concentration
of toxicant while minimizing the cost of control. By means of dynamic program-
ming, the HJB equation is constructed, and the existence and uniqueness of the
viscosity solution of the HJB equation is proved. Through Hamiltonian function,
the optimal control of toxicant is obtained. Finally, several numerical examples are
provided to illustrate the theoretical results.
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