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BIFURCATIONS AND HYDRA EFFECTS IN
ROSENZWEIG-MACARTHUR MODEL

Xiaoqing Lin1,2, Yue Yang3, Yancong Xu1,† and Mu He4

Abstract In this paper, a Rosenzweig-MacArthur predator-prey model with
intraspecific competition of predators and Holling type II functional response
with a prey refuge is investigated by using dynamical approach. We study
the number of positive equilibria, the local and global dynamics including
Hopf bifurcation, saddle-node bifurcation, Bautin bifurcation. We provide the
coexistence of stable and unstable limit cycles. In particular, we show the
hydra effect that describes the positive effect of the predator’s mortality, as
well as the positive effects of prey refuge and intraspecific competition among
predators, on the predator’s population density. Furthermore, numerical sim-
ulations demonstrate the theoretical results including the hydra effect region
and trophic cascade.
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bifurcation, hydra effect, prey refuge.
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1. Introduction

Competition, mutualism, and predation are the basic relations of species’ trophic
interactions in nature. Prey have developed a variety of defense mechanisms, one of
which is called refuge where part of the prey population is protected from predation
[24]. Many papers have studied the dynamic behavior of the prey-predator model
with a prey refuge [5, 12, 15, 23, 24, 29–31]. Wang and his collaborators [24, 30, 31]
explored inverted biomass pyramids in the presence of refuge. [32] showed that
the increasing number of prey shelters increases the densities of both prey and
predators. [16] showed that the existence of shelter can break the limit cycle of a
system and solutions reach the desired equilibrium state. [10] proposed two different
predator-prey models with Holling type II response function and assumed that the
number of prey in the refuge was proportional to the contacts between prey and
predators. [1] discussed the hydra effects occurring in Bazykin’s predator-prey model
without prey refuge, and only located the region for hydra effects with the intrinsic
growth rate of prey and the death rate of predators.
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The following Rosenzweig-MacArthur model with Holling type II functional re-
sponse has been well investigated in [13] and our model is based on this system:

dx

dt
= rx(1− x

k
)− β(1−m)xy

1 + a(1−m)x
,

dy

dt
=

cβ(1−m)xy

1 + a(1−m)x
− γy,

(1.1)

where the variables x and y represent (nonnegative) densities of prey and predator,
respectively. All parameters r, β,m, a, c, γ, s are positive numbers for all time t ≥ 0.
Parameter r is the growth rate of prey, k is the carrying capacity of prey, and r(1− x

k )
denotes the per capita growth rate of prey in the absence of predator. The parameter
γ is the density-independent death/mortality rate of the predator, c is the conversion
efficiency (between zero and one due to the second law of thermodynamics). β is
the attack rate, and a is the half-saturation constant for what βx

1+ax denotes Holling
type II functional response. The term mx represents a refuge protection of prey
and leaves (1−m)x of prey available to predators, where m ∈ [0, 1) is the fraction
of prey in refuge.

The within species competition for food, shelter, reproduction, or other living
resources, is called intraspecific competition [3–22,25,27]. Intraspecific competition
is a common phenomenon among aquatic and terrestrial species. Two basic types of
intraspecific competition have been identified: (1) Interference (adapted) intraspe-
cific competition and (2) exploitation (contest) intraspecific competition. The first
type occurs in species that establish hierarchies through aggressive behaviors where
one or more individuals within the population hold a dominant status over the oth-
ers. The second type occurs between individuals of the same population exploiting
the same resources and reducing or depleting its availability to others. Many prob-
lems with predator-prey models stem from the classic Rosenzweig-Macarthur food
chain model, but most existing models ignore the existence of intraspecific compe-
tition between predators and don’t find the relationship to the hydra effect. To be
more realistic, we consider intraspecific competition (also called self-limitation) in
our model.

Increased population size caused by increased mortality is now known as a “hy-
dra effect”. This phenomenon describing the seemingly paradoxical increase of a
species population size in response to an increase in its mortality rate has been
observed in several continuous-time and discrete-time models [17,18,26]. From the
theoretical point of view, [18] developed a mathematical criterion that guarantees
the occurrence of hydra effect in a species embedded in a continuous-time food web
model. Their result is quite general because their functions involved can embrace
not only a variety of multispecies interactions, but also stage-structured popula-
tions. Besides the hydra effect, there is also a positive effect between predator and
prey densities when the density is independent of the per capita mortality rate or
when the intraspecific competition of the predator increases. Generally speaking,
any parameter that affects one species’ growth but has no direct impact on the other
species in the system, will have a counterintuitive effect on the affected species sim-
ilar to the hydra effect the increased mortality has. For example, decreasing the
conversion efficiency of the predator can increase predator abundance under the
same conditions for which hydra effects occur. A predator-prey model with Allee
effect and intraspecific competition has been investigated in [19] without analytical
analysis, and demonstrated numerically the possibility of multiple hydra effects and
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trophic cascade conditional on the existence of bistability on the system, and drawn
a conclusion that the Allee effect can bring multiple hydra effects in the predator.

The paper is organized as follows. In section 2, we propose a model that incor-
porates the intraspecific competition of predators into the Rosenzweig-Macarthur
model with the prey refuge. The existence of equilibria and the stability analy-
sis are considered in this section as well. In section 3, we prove the existence of
Hopf bifurcation and show the condition that characterizes the stability of the limit
cycle from Hopf bifurcation. Furthermore, we show the existence of codimension-
two Bautin bifurcation. Numerical simulations are performed in section 4 to verify
the theoretical results. The multiple hydra effects and trophic cascade, due to the
mortality rate, intraspecific competition and prey refuge, are also found to exhibit
the similar dynamics induced by the mortality rate of predator. We conclude and
discuss this paper in section 5.

2. Model formulation and equilibria

2.1. Model formulation

Based on the above discussion, in this paper we consider a Rosenzweig-MacArthur
model with intraspecific interference of predator and Holling type II functional
response with prey refuge as follows:

dx

dt
= rx(1− x

k
)− β(1−m)xy

1 + a(1−m)x
,

dy

dt
=

cβ(1−m)xy

1 + a(1−m)x
− γy − sy2,

(2.1)

where x, y, r, k, β, a,m, c, γ have the same meaning as those in model (1.1). Due to
the intraspecific competition for resources, the death caused by this intraspecific
interference effect exists in predators, i.e., the per capita mortality rate of intraspe-
cific competition is proportional to the number of predators which is denoted as
sy.

Since system (2.1) is a biological system, then it is studied in R2
+ = {(x, y)|x ≥

0, y ≥ 0}, and the feasible region of system (2.1) is

Ω = {(x, y)|0 ≤ x ≤ k, 0 ≤ y ≤ cβ(1−m)k

s(1 + a(1−m)k)
− γ

s
}.

2.2. Equilibra and stability

In this section, we will discuss the existence of equilibria and their stability. System
(2.1) always has two boundary equilibria E0(0, 0) and Ek(k, 0). Through a simple
analysis of the eigenvalue of Jacobian matrix of system (2.1), we can easily get
conclusion as follows.

Theorem 2.1. System (2.1) always has two boundary equilibria E0(0, 0) and
Ek(k, 0). E0(0, 0) is a hyperbolic saddle. Ek(k, 0) is a degenerate equilibrium if

γ = βck(m−1)
ak(m−1)−1 , a hyperbolic saddle if γ < βck(m−1)

ak(m−1)−1 , a hyperbolic stable node if

γ > βck(m−1)
ak(m−1)−1 , respectively.
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Next, we consider the existence of positive equilibria E∗(x∗, y∗) of system (2.1).
For any positive equilibrium E∗(x∗, y∗), its coordinates satisfy

y∗ =
r(1− x∗

k )(1 + a(1−m)x∗)

β(1−m)
or

(m− 1)x∗(βc− aγ) + γ

s(a(m− 1)x∗ − 1)
, (2.2)

and the coordinate x∗ should be the positive root of the following cubic equation

g(x) = x3 + b1x
2 + b2x+ b3 = 0, (2.3)

where

b1 =
ak(1−m)− 2

−a(1−m)
,

b2 =
βk(1−m)2(βc− aγ) + rs(1− 2ak(1−m))

a2(1−m)2rs
,

b3 = −k(rs+ βγ(1−m))

a2(1−m)2rs
.

Note that the above equation may have one, two, or three positive roots for x ∈
(0, k). Thus, system (2.1) will have one, two, or three positive equilibria. Moreover,
we can easily get that

x1 + x2 + x3 = −b1, x1x2 + x1x3 + x2x3 = b2, x1x2x3 = −b3

by Vieta theorem and

g′(x) = 3x2 + 2b1x+ b2. (2.4)

By the roots of the cubic algebraic equation, we denote

B̃ = b21 − 3b2,

∆ = −4B̃3 + (3b1B̃ − b31 + 27b3)2.

Since the coefficient of the cubic equation b3 < 0, then system (2.1) has at most
three positive equilibria in addition to two boundary equilibria E0(0, 0) and Ek(k, 0).
According to the graph of g(x), we have the following lemma.

Lemma 2.1. When b3 < 0, system (2.1) may have one, two or three positive
equilibria. More precisely,

(1) when ∆ > 0, system (2.1) has a unique positive equilibrium Ē∗1 (x̄∗1, ȳ
∗
1), which

is a hyperbolic stable node or focus for tr(J(Ē∗1 )) < 0, a hyperbolic unstable
node or focus for tr(J(Ē∗1 )) > 0, and a weak focus or center for tr(J(Ē∗1 )) = 0;

(2) when ∆ = 0 and

(a) B̃ > 0, b1 < 0 and b2 > 0, system (2.1) have two different positive

equilibria: a degenerate equilibrium Ẽ∗(x̃∗, ỹ∗) and an elementary equilibrium
Ē∗1 (x̄∗1, ȳ

∗
1)
(
or Ē∗3 (x̄∗3, ȳ

∗
3)
)
. Ē∗i (i = 1 or 3) are hyperbolic stable node or focus

for tr(Ji) < 0, a hyperbolic unstable node or focus for tr(Ji) > 0, and a weak
focus or center for tr(Ji) = 0, where x̄∗1 < x̃∗ < x̄∗3;

(b) B̃ = 0 and b1 < 0, system (2.1) has a unique positive equilibrium Ê∗(x̂∗,ŷ∗)

= (− b13 ,
r(b1+3k)(3−ab1(1−m))

9βk(1−m) );
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(3) when ∆ < 0, b1 < 0 and b2 > 0, system (2.1) has three different positive
equilibria: Ē∗i (x̄∗i , ȳ

∗
i )(i = 1, 2, 3). Ē∗2 (x̄∗2, ȳ

∗
2) is a hyperbolic saddle. Ē∗i (i =

1, 3) are hyperbolic stable node or focus for tr(Ji) < 0, a hyperbolic unstable
node or focus for tr(Ji) > 0, and a weak focus or center for tr(Ji) = 0, where
0 < x̄∗1 < x̄∗2 < x̄∗3 < k.

Proof. By using the first equation the the second equation in system (2.1), we
can simplify the Jacobian matrix of system (2.1) at E(x, y) with the following form

J(E) =

 r
(
x+a(m−1)(k−2x)x

)
k(−1+a(m−1)x) − β(1−m)x

1+a(1−m)x

cr(k−x)
k−ak(m−1)x γ − c(m−1)xβ

−1+a(m−1)x

 , (2.5)

and

det(J(E)) =
1

k(−1 + a(m− 1)x)2
x
[
− cβ(m− 1)r

(
k + ak(m− 1)x− 2a(m− 1)x2

)
+ rγ

(
1 + a(m− 1)(k − 2x)

)(
− 1 + a(m− 1)x

)]
.

To solve the g(x) = 0, we have

c =
(−1 + a(m− 1)x)

(
rs(k − x)(−1 + a(m− 1)x) + kβγ(m− 1)

)
k(1−m)2xβ2

. (2.6)

By substituting (2.6) into above det(J(E)), the determinant of matrix J(E) be-
comes

det(J(E))

=
r(x− k)

(
rs(a(m− 1)x− 1)

(
ak(m− 1)x− 2a(m− 1)x2 + k

)
+ βγk(m− 1)

)
βk2(m− 1)(a(m− 1)x− 1)

=
a2(m− 1)r2s(k − x)

βk2(a(m− 1)x− 1)
(xg′(x)− g(x))

=
a2(m− 1)r2sx(k − x)

βk2(a(m− 1)x− 1)
g′(x). (2.7)

From (2.7), we know that r(x−k)
k2(m−1)(−1+a(m−1)x)β > 0, thus the sign of det(J(E)) is

equal to the sign of derivative of g(x). From the equation (2.3) and the property of
g′(x), we can complete the proof.

3. Bifurcation analysis

In this section, we will give a detailed analysis of Hopf bifurcation and generalized
Hopf bifurcation to determine the stability of limit cycle of system (2.1), and obtain
the Lyapunov coefficient to indicate the existence of Bautin bifurcation.

3.1. Hopf bifurcation

From the previous section, system (2.1) has one, two, or three equilibrium points
under the conditions of Lemma 2.1. Equilibria Ē∗1 and Ē∗3 are always saddles,
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so their stability will not change, and it is impossible for the occurrence of Hopf
bifurcation. Therefore, we will choose the equilibrium Ē∗2 to analyze the existence of
Hopf bifurcation as a pair of pure imaginary eigenvalue exists under the conditions
det(J) > 0 and tr(J) = 0.

The Jacobian matrix at Ē∗2 (x∗, y∗) is

J(Ē∗2 ) =

 r(a(m−1)x∗(k−2x∗)+x
∗)

k(a(m−1)x∗−1) − β(m−1)x∗

a(m−1)x∗−1
cr(k−x∗)

k−ak(m−1)x∗ γ − βc(m−1)x∗

a(m−1)x∗−1

 .

Let γ = −x
∗(a(m−1)r(k−2x∗)−βck(m−1)+r)

k(a(m−1)x∗−1) ≡ γH . Now we suppose that the following

three conditions are satisfied at γ = γH .
(H1) tr(J(Ē∗2 ; γ = γH)) = 0;
(H2) det(J(Ē∗2 ; γ = γH)) > 0;
(H3) If λ(γ) is the complex eigenvalue of J(Ē∗2 ), then d

dr (Re(λ(γ)))|γ=γH 6= 0.
Then Ē∗2 loses its stability through a Hopf bifurcation at γ = γH .

It is easy to obtain that the real part Re(λ(γ)) of a complex eigenvalue is as
follows:

Re(λ(γ)) =
tr(J(Ē∗2 ))

2
=

1

2

(
x∗(a(m− 1)r(k − 2x∗)− βck(m− 1) + r)

k(a(m− 1)x∗ − 1)
+ γ

)
,

which yields that

d

dγ
Re(λ(γ))

=
k(k(m− 1)(2a(m− 1)x∗ − 1)(ar − βc) + r(6a(m− 1)x∗(ax∗(1−m) + 1)− 1))

2(k(a(m− 1)x∗ − 1))2

× dx∗

dγ
+

1

2
.

(3.1)
Then we need to determine the sign of (3.1) which is the Hopf bifurcation threshold
for the parameterisations considered here.

3.2. Bautin bifurcation (Generalized Hopf bifurcation)

From the previous analysis, we know that there exist one, two or three equilibria,
and it is sufficient to analyze the Bautin bifurcation (generalized Hopf bifurcation)

at point Ê∗(x̂∗, ŷ∗) with x̂∗ = ak(m−1)+2
a(1−m) , ŷ∗ = − 2r(ak(m−1)+1)(ak(m−1)+3)

aβk(1−m)2 . Since

the equilibrium Ê∗ is not at the origin O(0, 0), we need to translate the coordinates

of Ê∗ to origin by X = x− x̂∗, Y = y − ŷ∗. System (2.1) can be transformed as
dX

dt
= r(X + x̂∗)

(
1− X + x̂∗

k

)
− β(1−m)(X + x̂∗)(Y + ŷ∗)

a(1−m)(X + x̂∗) + 1
,

dY

dt
=
βc(1−m)(X + x̂∗)(Y + ŷ∗)

a(1−m)(X + x̂∗) + 1
− s(Y + ŷ∗)2 − γ(Y + ŷ∗).

(3.2)

The Jacobian matrix of system (3.2) at origin (0, 0) is

J0 =

 (ak(m−1)+2)(3ak(m−1)+5)r
ak(ak(m−1)+3)(m−1) − (ak(m−1)+2)β

a(ak(m−1)+3)

2c(ak(m−1)+1)r
ak(ak(m−1)+3)(m−1) − (ak(m−1)+2)(3ak(m−1)+5)r

ak(ak(m−1)+3)(m−1)

 .
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Then the characteristic equation of J0 is

f(λ) ≡ λ2 + tr(J0)λ+ det(J0) = 0,

where

tr(J0)

=− β(m−1)r(ak(m−1) + 2)(3ak(m−1)+5)+4rs(ak(m−1) + 1)(ak(m−1) + 3)2

aβk(1−m)2(ak(m− 1)+ 3)

− βk(1−m)2(βc(ak(m− 1) + 2) + aγ(−akm+ ak − 3))

aβk(1−m)2(ak(m− 1) + 3)
,

det(J0)

=
r(ak(m− 1) + 2)

(
βk(1−m)2(βc(3ak(m− 1) + 4) + aγ(−3ak(m− 1)− 5))

a2βk2(m− 1)3(ak(m− 1) + 3)

+
4rs(ak(m− 1) + 1)(ak(m− 1) + 3)(3ak(m− 1) + 5)

)
a2βk2(m− 1)3(ak(m− 1) + 3)

.

Assume

a <
rs+ kcβ2(1−m)2

2krs(1−m) + γkβ(1−m)2
,

and the above hypothesis holds. The Jacobian matrix J0 has a pair of purely
imaginary roots ±iω when

s = −
aβk(1−m)2

(
βc(ak(m−1)+2)+aγ(−akm+ak−3)

a(ak(m−1)+3) + r(ak(m−1)+2)(3ak(m−1)+5)
ak(m−1)(ak(m−1)+3)

)
4r(ak(m− 1) + 1)(ak(m− 1) + 3)

(3.3)

with

ω=

√
−r(ak(m−1)+2) (r(ak(m−1)+2)(3ak(m−1)+5)2−2βck(m−1)(ak(m−1)+1))

a2k2(1−m)2(ak(m−1)+3)2
.

(3.4)

By (3.3) and (3.4), we obtain the vectors

q = (q1, q2)T ,

where

q1 =

√
r(ak(m−1)+2) (r(ak(m−1) + 2)(3ak(m−1) + 5)2−2βck(m−1)(ak(m−1)+1))

2cr(ak(m−1) + 1)

+
r(ak(m− 1) + 2)(3ak(m− 1) + 5)

2cr(ak(m− 1) + 1)
,

q2 =1,

and

p = (p1, p2)T ,
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with

p1 =
i
√
r(−(ak(m−1)+2)) (r(ak(m−1)+2)(3ak(m−1)+5)2−2βck(m−1)(ak(m−1)+1))

βk(m−1)(ak(m−1)+2)

− r(ak(m− 1) + 2)(3ak(m− 1) + 5)

βk(m− 1)(ak(m− 1) + 2)
,

p2 =1.

Vectors p and q satisfy

Jq = i
√
abq, JT p = −i

√
abp, 〈p, q〉 = 1.

Further calculation leads to

B(ξ, η) =


0

−ξ1η3 − ξ3η1

ξ1η2 + ξ2η1

 , C(ξ, η, τ) =


0

0

0

 .

It is easy to calculate J−10 and (2iωE − J0)−1. We have

l1 =
1

2ω
Re
[
〈p, C(q, q, q̄)〉 − 2

〈
p,B

(
q, J−1B (qv q̄)

)〉
+
〈
p,B

(
q̄, (2iωE − J)−1B(q, q)

)〉]
=

∆

6(α+ 1)2c2r2ω ((α+ 2)(3α+ 5)2r − 2(α+ 1)βck(m− 1))
,

where

α =ak(m− 1),

∆ =α(α+ 3)(3α+ 5)
(
(α+ 2)k(m− 1)r((α+ 1)βc(2α(α+ 3)ω + 5)

− a(α+ 3)(3α+ 5)ω)

+ a(α+ 3)k(m− 1)ω
√

(α+ 2)r (2(α+ 1)βck(m− 1)− (α+ 2)(3α+ 5)2r)

+ (3α+ 5)(α+ 2)2r2(9α+ (α+ 1)βck(m− 1) + 15)
)
. (3.5)

Therefore we obtain the following theorem:

Theorem 3.1. System (2.1) exhibits codimension-2 Bautin bifurcation at the equi-

librium Ê∗(x̂∗, ŷ∗) if and only if the following condition is satisfied:

s = −
aβk(1−m)2

(
βc(ak(m−1)+2)+aγ(−akm+ak−3)

a(ak(m−1)+3) + r(ak(m−1)+2)(3ak(m−1)+5)
ak(m−1)(ak(m−1)+3)

)
4r(ak(m− 1) + 1)(ak(m− 1) + 3)

and ∆ = 0,

Where ∆ is defined by (3.5).

4. Numerical simulations

In this section, we will summarize the results that we have proved in the previous
sections for model (2.1). We choose a set of the following parameters:

r = 10, β = 0.6, m = 0.4, a = 0.1, c = 0.02, γ = 0.09, (4.1)
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which are taken from [13]. In this paper, we take k = 1002.22.
Firstly, we consider the role of intraspecific competition of predators by taking

the intraspecific competition constant s as the primary bifurcation parameter. Fix-
ing the rest of the parameters as (4.1) and k = 1002.22, we obtain one-parameter bi-
furcation diagrams. As shown in Fig. 1 (a), there are a subcritical Hopf bifurcation
point HB(491.42, 431.59) at s = 6.04×10−5, and two saddle-node bifurcation points
SN1(130.16, 212.94) as s = 7.69×10−5, and SN2(445.95, 427.95) as s = 5.99×10−5.
As noted in [18] for stable systems, the predator has a hydra effect if and only if
det(J) and Mii have the same sign, where Mii denotes the ith principle minor of the
Jacobian, i.e., the determinant of the matrix which the ith row and ith column of the
Jacobian matrix has been removed. It should satisfy the condition ∂

∂y ( 1
y
dy
dt ) < 0 for

system (2.1), i.e., ∂
∂y ( 1

y
cβ(1−m)xy
1+a(1−m)x − γy − sy

2) = −s < 0. Then there are two hydra

effect intervals 5.99× 10−5 ≤ s ≤ 6.04× 10−5 and 5.99× 10−5 ≤ s ≤ 7.69× 10−5.
Note that, the second region also denotes the region with three positive equilibria,
and the transition from instability to stability via the Hopf bifurcation occurs. The
region for multiple hydra effects is 5.99× 10−5 ≤ s ≤ 6.04× 10−5.

There are three coexisting positive equilibria (two unstable equilibria, one stable
equilibrium). When intraspecific interference of predators is stronger and stronger,
the predator population will extinct for all nonnegative initial value (Fig. 1 (b)).
We continue from the Hopf bifurcation point (HB) and obtain a family of unsta-
ble limit cycles with periods approaching +∞, i.e., the limit cycles are actually
approaching a homoclinic orbit connecting E∗(417.13, 399.50) (see Fig. 1 (c) (d))
and relaxation oscillations occur [11]. According to Fig. 1 (a) and Fig. 1 (b),
the density of prey remains increasing while the density of predator increases in a
short parameter region and then decreases sharply when the intensity of intraspe-
cific competition increases up to the threshold value s = 7.69 × 10−5. That is to
say, the intraspecific competition within predators do benefit them in some situa-
tions. However, it will have a negative effect if the intraspecific competition is too
intense beyond the threshold value s = 7.69× 10−5. There exists a critical interval
s ∈ [5.99 × 10−5, 7.69 × 10−5] for the evolution of predators. If s ≥ 6.04 × 10−5,
so-called tropic cascade takes place, that is, the density of predator decreases while
the density of prey increases. Once the intraspecific competition constant s enters
the interval, the density of prey will increase rapidly like a S-type. However, the
density of predator will increase until it reaches the maximum, then the density of
predator will decrease promptly as the intraspecific competition becomes stronger.

Secondly, we take the half-saturation constant a as the primary bifurcation
parameter, s = 0.01, and keep other parameters fixed as (4.1). There are two
Hopf bifurcation points: a supercritical Hopf bifurcation point HB1(57.84, 28.82) at
a = 0.0029 and a subcritical Hopf bifurcation pointHB2(387.74, 64.60) at a = 0.012,
and a saddle-node bifurcation point of limit cycles SN(77.8, 66.9) at a = 0.012045
with period T = 15.081. (Fig. 2 (a), (b)). There are two coexisting limit cycles: the
inner one is unstable, and the outer one is stable when the parameter a = 0.0120058.
Further, there is only one limit cycle as a = 0.01201, shown in Fig. 3 (a) and (b).
According to Fig. 2, we know that the small half-saturation constant a enhances
the density of predator. However, the increased half-saturation constant a will have
a negative effect on the density of predator, while it still has a positive effect on
the density of prey. Interestingly, once the parameter a passes the critical value
0.01202, the density of predator will decrease quickly.

Thirdly, we take the prey refuge constant m as the primary bifurcation param-
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Figure 1. Bifurcation diagram and phase portrait of model (2.1). HB, SN1 and SN2 denote the
subcritical Hopf bifurcation point, two saddle-node bifurcation points. (a) One-parameter bifurcation
diagram for s vs x. (b) One-parameter bifurcation diagram for s vs y. (c) Bifurcation diagram of s vs the
period. (d) A family of unstable limit cycles approach a homoclinic orbit in phase portrait. Relaxation
oscillations occur.
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Figure 2. One-parameter bifurcation diagram of model (2.1). (a) One-parameter bifurcation diagram
with a vs x. (b) One-parameter bifurcation diagram for a vs y. Here HB1, HB2 and SN denote, the
supercritical Hopf bifurcation point, the subcritical Hopf bifurcation point and saddle-node bifurcation
point of limit cycles, respectively.
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Figure 3. Phase portrait of limit cycles in model (2.1). (a) One limit cycle at a = 0.01201. (b) For
the parameters a = 0.0120058, the positive equilibrium point is an attractor, surrounded by two limit
cycles: the inner one is unstable and the outer one is stable.
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Figure 4. Bifurcation diagrams of model (2.1). HB, TC and LP denote the Hopf bifurcation point,
transcritical bifurcation and saddle-node bifurcation point. (a) One-parameter bifurcation diagram for
m vs x. (b) One-parameter bifurcation diagram for m vs y. (c) Bifurcation diagram of m vs the period.
(d) A family of unstable limit cycles approach a homoclinic orbit in phase portrait, and relaxation
oscillations occur.
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Figure 5. Two-parameter bifurcation diagrams of model (2.1). (a) Bifurcation diagram in s-k parameter
space. (b) Hopf bifurcation diagram in m-a parameter space. Here SN1L, SN2R,, H, BT and GH
denote, respectively, the left and right saddle-node bifurcation curves (red), Hopf bifurcation curve
(black), the Bogdanov-Takens bifurcation point and generalized Hopf bifurcation point.
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Figure 6. Bifurcation diagrams of model (2.1). HB, TC and SNi(i = 1, 2) denote the Hopf bifurca-
tion point, transcritical bifurcation and saddle-node bifurcation point. (a) One-parameter bifurcation
diagram for m vs x. (b) One-parameter bifurcation diagram for m vs y. (c) Bifurcation diagram of m
vs the period. (d) A family of unstable limit cycles approach a homoclinic orbit in phase portrait, and
relaxation oscillations occur.
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eter and keep the other parameters fixed as in (4.1) and s = 6 × 10−5. There is
a subcritical Hopf bifurcation HB(491.135, 432.097) for m = 0.42066, shown in
Fig. 4 (a) and (b); and saddle-node bifurcation points LP1(190.622, 287.811) and
LP2(445.949, 427.949) for m = 0.557996 and m = 0.399977, respectively; and one
transcritical bifurcation point TC(1002.22, 0) for m = 0.95. If the intraspecific com-
petition is weak (s = 10−5), the number of prey and predators will increase until
m reaches the hydra effect intervals m ∈ [0.399977, 0.557996] or [0.399977, 0.42066].
The corresponding multiple hydra effects region is [0.399977, 0.42066]. If the prey
refuge becomes larger and larger, the density of prey will increase until it reaches the
carrying capacity. In the meanwhile, the density of predator will decrease sharply
until extinction. If we continue from the subcritical Hopf bifurcation point HB, a
family of unstable limit cycles approach a homoclinic cycle. Relaxation oscillations
occur, as shown in Fig. 4 (c) and (d).

To find the relation between the intraspecific competition of predators and the
carrying capacity, we take s and k as the primary bifurcation parameters. There are
one codimension 2 Bogdanov-Takens bifurcation point BT (1.12523×104, 9.42576×
103) at s = 3.16394 × 10−6, k = 2.25887 × 104, and one Bautin bifurcation (gen-
eralized Hopf bifurcation) point GH(61.8208, 73.2086) at s = 6.17169 × 10−5, k =
140.389, shown in Fig. 5 (a), where the red curve and the black curve denote the
saddle-node bifurcation and Hopf bifurcation. Note that, the hydra effect region
(red) is bounded by the left saddle-node bifurcation curve SN1L and the right
saddle-node bifurcation curve SN2R. If k and s are chosen from the red region,
then the predators will experience multiple hydra effects. Meanwhile, the Hopf bi-
furcation curve with m vs a is also given in Fig. 5 (b), where H and GH denote
the Hopf bifurcation curve and Bautin bifurcation point, respectively. It indicates
that there always exists one subcritical Hopf bifurcation point and one supercrit-
ical Hopf bifurcation point if a varies, with GH(457.3381, 429.5388) happening at
m∗ = 0.86471 and a = 0.0874897, where a stable limit cycle and an unstable limit
cycle coexist when 0 < m < m∗.

Finally, we take the predator’s mortality rate γ as the primary bifurcation pa-
rameter, choose s = 7.5× 10−5 and keep the other parameters fixed as (4.1). Then
we obtain one parameter bifurcation curve, shown as in Fig. 6 (a), (b), there are one
subcritical Hopf bifurcation point HB(491.1, 431.592) as γ = 0.0836918, two saddle-
node bifurcation points SN1(132.516, 215.762) and SN2(457.048, 429.474) when γ =
0.0904114 and γ = 0.0835675, respectively. The multiple hydra effects occur when
the mean density of predator increases in response to a greater mortality. There are
two hydra effect intervals [0.0835675, 0.0836918] and [0.0835675, 0.0904114], while
the interval [0.0835675, 0.0836918] is for the occurrence of multiple hydra effects. If
r ≥ 0.0836918, there is a trophic cascade. The predator population will collapse and
the system tends to the bound equilibrium Ek(k, 0), where k denotes the carrying
capacity of the prey. A family of limit cycles originating from the HB point ap-
proach a homoclinic cycle, shown as Fig. 6 (c), (d). Further, two-parameter (r vs a)
bifurcation curves about saddle-node bifurcation and Hopf bifurcation are also given
in Fig. 7. Here GH denotes the Bautin bifurcation point GH(491.899, 431.595) at
γ = 0.0991082, s = 3.92942 × 10−5. The blue region indicates the region for the
occurrence of multiple hydra effects, where SN1L and SN2R denote the left and
right saddle-node bifurcation curves, respectively. The predators will experience
multiple hydra effects if s and γ are chosen from the blue region.

Note that, we find that the occurrence of relaxation oscillation in Rosenzweig-
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Figure 7. Two-parameter bifurcation diagram with s and γ, where SN1L, SN2R,, H and GH denote
the left and right saddle-node bifurcation curves, the saddle-node bifurcation, the Hopf bifurcation curve
and Bautin bifurcation point, respectively.

MacArthur model which was mentioned in [2], this kind of very slow dynamics
always denotes the fast-collapse of system. As shown in Fig 1 (d), Fig 4 (d) and
Fig 6 (d), we find that the relaxation oscillation could coexist with the occurrence
of the hydra effect.

5. Conclusion and discussion

To investigate the role of the predator’s intraspecific competition on the relationship
between predators and prey, we proposed a Rosenzweig-MacArthur model with
Holling type II functional response and intraspecific competition. The model has
two boundary equilibria and up to three positive equilibria. Their local and global
stability were rigorously analyzed.

Moreover, we have presented a detailed analysis to prove the existence of Hopf
bifurcation and conditions for stable and unstable limit cycles. The analysis consists
of one-parameter and two-parameter bifurcation diagrams of the proposed system.
Furthermore, the Lyapunov coefficient is used to determine the Bautin bifurcation.

Numerical simulations provide the following insights:

(1) Once the intraspecific competition is involved, model (2.1) may have one, two,
or three positive equilibria, while the original model (1.1) may only have one
positive equilibrium;

(2) Through the continuation of the half-saturation constant a, we have a su-
percritical Hopf bifurcation and a subcritical Hopf bifurcation in model (2.1)
including the coexistence of stable and unstable limit cycles. As a comparison,
there are only two supercritical Hopf bifurcation points in model (1.1);
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(3) The prey population may not decrease when the predator population in-
creases. Nonetheless, it is important to note that there exists a parameter
interval where a trophic cascade (the density of predator decreases while the
density of prey increases) takes place in a one-parameter bifurcation diagram.
Finally, as expected for values of γ above a critical level (where γ ≥ γ0, where
γ0 denotes the second saddle-node bifurcation value), the predator population
collapses and the system tends to the boundary equilibrium Ek(k, 0) where
the prey population stabilizes at its carrying capacity. Interestingly, the hy-
dra effect region also denotes the region with three positive equilibria, and the
transition from instability to stability via Hopf bifurcation point occurs.

Note that, although Allee effect may induce the bistability and multiple hydra ef-
fects to occur, in this paper we show that the bistability is not a necessary condition
for multiple hydra effects. Besides the predator’s mortality rate, the intraspecific
competition and prey refuge may also cause the hydra effect. More precisely, the
intraspecific competition among predators has no obvious effect on the increase of
the prey population but causes the predator population to increase in a range of
the parameter and decrease afterward rapidly. It is interesting to observe that there
are hydra effect regions for intraspecific competition, prey refuge, and the preda-
tor’s mortality rate. Although the hydra effect is defined as a positive response
of a population to an increased mortality rate, other parameters may produce a
similar hydra effect. Biologically speaking, an increase in the mortality rate of a
species, such as predation, disease, harsh environment or other factors, always in-
tuitively leads to a decrease in its population size. However, The counterintuitive
phenomenon of hydra effect indeed exists in natural populations. The further empir-
ical and theoretical studies of hydra effect is appealing in biology since, for instance,
harvesting or removal of a species is an alternative form of mortality. In this paper,
we additionally find the coexistence of hydra effect and relaxation oscillations. It is
intriguing to further investigate the relation between relaxation oscillations and the
species’ extinction, including the canard trajectories in a Rosenzweig-MacArthur
model.
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