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Abstract Within this paper, we consider the existence and uniqueness of
solutions for fractional integro-differential equations with state-dependent de-
lay on the Lipschitz continuous function space. Our results are obtained by
using the resolvent operator theory and the generalized Banach contraction
mapping principle. The regularity of solutions of fractional integro-differential
equations with state-dependent delay is also discussed. Finally, an example is
provided as an application.
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1. Introduction

In the process of modeling, the variation of things is not only related to the current
moment, but also to the past moment. Therefore, it is necessary to introduce the
time delay term, that is, the representation of the past state, which can reveal
important features concerning the evolution of the modeled phenomenon. This
kind of equation is called delay differential equation. In some applications, the time
delay term is affected by time variation, and the equation is called time-varying
delay differential equation. Besides that, if the delay term depends on unknown
variables, we call it state-dependent delay differential equation.

In recent years, the differential equation with state-dependent delay is one of
the research hotspot of functional differential equations, such as the maturity of
biological population, the incubation period of virus, the lag effect of drug efficacy
and so on. We can refer to [3, 5, 8, 15, 17, 18, 26, 27, 33] and references therein. The
earliest research on differential equations with state-dependent delay can be traced
back to an 1806 paper of Poisson in [29], but what really attracts attention is the
two body problem in electric power science, which discussed by Driver in the 1960s.
For more details we refer the reader to [9–11].
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Compared with the ordinary delay differential equation, the differential equation
with state-dependent delay does not have smoothness. But it can further accurately
describe some properties of the system, which makes the research results more
valuable in application. See literatures [1, 21]. The time-varying delay differential
equation is usually regarded as a linear approximation of the differential equation
with state-dependent delay. Therefore, the dynamics and analytical properties of
the latter are more complicated.

In practical application, the following model with state-dependent delay was
often used in population dynamics, see [4, 7, 13,14],

z′(t, ς) = 4z(t, ς) + L
(
t,

∫ t

0

k(t, s)z (s− ξ(s, z(s, ·), ς)) ds

)
, t ∈ [0, a],

z(t, ·) |∂Ω= 0,

z(s, ς) = ϕ(s, ς), s ∈ [−p, 0],

where Ω ⊂ Rn is open, bounded and has smooth boundary. 4 is the Laplacian
operator in the sense of distributions. L is continuous function. ς ∈ Ω and k ∈
C([0, a]× [0, a];R).

In [6], Cooke and Huang interpreted the local stability of the single bottle-
neck network by applying the formal linearization result for equation with state-
dependent delay,

du(t)/dt = f(ut,

∫ 0

−r0
dη(s)g(ut(−τ(ut) + s))),

where f : C([−r, 0];Rn) × Rn → Rn, g : Rn → Rn are continuously differentiable.
τ : C([−r, 0];Rn)→ [0, r1](r0+r1 ≤ r) is continuous, and η is the bounded variation
on [−r0, 0].

Recently, E. Hernández and J. Wu in [20] discussed the existence and unique-
ness of C1+α strict solutions for the following abstract integro-differential equa-
tions with state-dependent delay by means of the Banach contraction principle in
CLip([−p, a];X) space,

u′(t) = Au(t) + F (t, u(t),

∫ t

0

K(t, τ)u(σ(τ, u(τ)))dτ), t ∈ [0, a],

u0 = ϕ ∈ C([−p, 0];X),

where X is a Banach space, −A : D(A) ⊂ X → X is the generator of the analytic
semigroup of the bounded linear operator {T (t) : t ≥ 0}. K is an operator valued
map and F , σ are suitable functions.

Fractional calculus models are of universal application in population dynamics,
electrical dynamics of the composite medium, memory and genetic properties of
many materials. For further account we refer to [23, 25, 31, 32, 35]. It is of great
significance in real life to investigate the fractional equations with state-dependent
delay. Examples include oil exploration, 3D printing and so on. Therefore, the
fractional equation with state-dependent delay has become the focus of many re-
searchers.

However, so far, we have not found the results of fractional integro-differential
equations with state-dependent delay in Lipschitz function space. To close the gap,
motivated by the above works, the purpose of this paper is to extend the idea of
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the literature [22] to the following fractional integro-differential system with state-
dependent delay,

cDqx(t) +Ax(t) = Z
(
t, xµ(t,xt), (Gx)(t)

)
, 0 ≤ t ≤ T, (1.1)

x0 = φ ∈ BX = C([−r, 0];X), −r ≤ t ≤ 0, (1.2)

where cDq is the generalized fractional derivative of order q ∈ (0, 1) in Caputo sense.
−A : D(A) ⊂ X → X is the generator of the analytic semigroup of the bounded
linear operator {T (t) : t ≥ 0} on Banach space X . G is defined as (Gx)(t) =∫ t

0
a(t, s, xµ(s,xs))ds, a is continuous function. µ and Z are continuous functions to

be specified later. For any continuous function x , we employ xt to represent the
element in BX , which is defined as xt(θ) = x(t+ θ), θ ∈ [−r, 0], t ∈ [0, T ]. Here xt
shows that the historical state until time t .

The mapping x 7−→ xµ(·,x(·)) is generally not Lipschitz, which is the main ob-
struction to get the results of form (1.1)-(1.2) in space C([−r, T ];X). The innovation
of [22] is to give the results of the existence and uniqueness of the solutions on Lips-
chitz function space for a highly nontrivial problem in the framework of semigroups.
The main approach is Banach contraction mapping principle that forms the core of
the proof of Theorem 2.1 in [22].

Compared with the integer order in [22], this article mainly highlights two as-
pects. On the one hand, the integer order is extended to the fractional order by
the theory of resolvent operator. In the process of proving Theorem 3.1, similarly
to [22], we would like to get Qq(·)φ(0) is Lipschitz continuous on the whole interval
[0, T ] but that is beyond our reach at this point. To deal with this problem, we first
obtain the internally closed Lipschitz continuity, and then Qq(·)φ(0) is Lipschitz
continuous if the initial value φ(0) is sufficiently smooth. On the other hand, the
global solutions are achieved and the relevant coefficient conditions are weakened by
applying the generalized Banach contraction mapping principle, rather than the lo-
cal solutions. In addition, we prove the existence of the strict solution of the system
(1.1)-(1.2) by using a necessary and sufficient condition of the strict solution.

The structure of the paper is as follows. Section 2 reviews some symbols, def-
initions and lemmas. Section 3 proves the existence and uniqueness of the mild
solution of the system (1.1)-(1.2) on CLip([−r, T ];X) by the principle of general-
ized Banach contraction mapping. Section 4 gives the results of the strict solution
of (1.1)-(1.2). The last section illustrates the feasibility of the results through an
example.

2. Preliminaries

Let E and F be Banach spaces, R and N be the sets of real numbers and positive
integers. C([0, T ];E) and CLip([0, T ];E) are function spaces, consisting respec-
tively of the continuous functions and Lipschitz continuous functions. C([0, T ];E)
is equipped with the supremum norm ‖z‖C([0,T ];E) = sup

s∈[0,T ]

‖z(s)‖. CLip([0, T ];E)

is endowed with the norm ‖z‖CLip([0,T ];E) = ‖z‖C([0,T ];E) + [z]CLip([0,T ];E), where

[z]CLip([0,T ];E) = sup
t,s∈[0,T ],t6=s

‖z(t)− z(s)‖
| t− s |

<∞.
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Similarly, CLip([0, T ]× E;F ) is endowed with the norm

‖z‖CLip([0,T ]×E;F ) = ‖z‖C([0,T ]×E;F ) + [z]CLip([0,T ]×E;F ),

where [z]CLip([0,T ]×E;F ) =
{

sup |z(t,x)−z(s,y)|
|t−s|+‖x−y‖E , (t, x), (s, y)∈ [0, T ]× E, (t, x) 6=(s, y)

}
.

Let L(E;F ) be the space which is bounded linear operators from E to F , L(E) =
L(E;E) for short. The set Br(φ;E) := {ξ ∈ C([0, T ];E); ‖ξ − φ‖ ≤ r}, where φ is
the origin and r is the radius.

Throughout the rest of the article, let −A : D(A) ⊂ X → X be the generator
of the analytic semigroup of the bounded linear operator {T (t) : t ≥ 0} on Banach
space X . Assume that 0 ∈ ρ(A), where ρ(A) is the resolvent of A. The space
X1 = D(A) is endowed with the norm ‖x‖X1

= ‖Ax‖. Moreover, the fractional
power Ak, 0 < k ≤ 1 can be defined as a closed linear operator on the domain
D(Ak). The semigroup {T (t) : t ≥ 0} has the following properties:
(i) There exists a constant M ≥ 1 such that M := sup

0≤t<∞
| T (t) |<∞.

(ii) For any 0 < t ≤ T and 0 < k ≤ 1, there is a constant Mk such that ‖AkT (t)‖ ≤
Mk

tk
.
During the following discuss, we give some concepts needed in this text.

Definition 2.1. ( [28]) Let g ∈ L1([0, a];X). The Riemann-Liouville integral of
the order γ ∈ (0,+∞) is characterized as

Jγ0 g(t) =

∫ t

0

(t− τ)γ−1g(τ)

Γ(γ)
dτ, t ∈ [0, a],

where Γ is the Gamma function.

Definition 2.2. ( [28]) Let m − 1 < γ < m, m ∈ N, and g ∈ Cm([0, a];X). The
Caputo fractional derivative of order γ is given by

cDγ
0g(t) =

∫ t

0

(t− τ)m−γ−1g(m)(τ)

Γ(m− γ)
dτ, t ∈ [0, a].

The integrals in the above definitions can be understood in the sense of Bochner.

Definition 2.3. A function x ∈ C([−r, T ];X) is said to be a mild solution of the
system (1.1)-(1.2) if

x(t) =

Qq(t)φ(0) +

∫ t

0

(t− s)q−1Rq(t− s)Z
(
s, xµ(s,xs), (Gx)(s)

)
ds, t ∈ [0, T ],

φ(t), t ∈ [−r, 0],

(2.1)

where

Qq(t) =

∫ ∞
0

ξq(θ)T (tqθ)dθ, Rq(t) = q

∫ ∞
0

θξq(θ)T (tqθ)dθ,

ξq(θ) =
1

q
θ−1− 1

q$q(θ
− 1
q ), $q(θ) =

1

π

∞∑
n=1

(−1)n−1θ−nq−1 Γ(nq + 1)

n!
sin(nπq),

ξq is the probability density function defined on (0,∞), i.e., 0 < θ <∞, ξq(θ) ≥ 0,
and

∫∞
0
ξq(θ)dθ = 1.
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Remark 2.1. It is checked that∫ ∞
0

θvξq(θ)dθ =

∫ ∞
0

θ−qv$q(θ)dθ =
Γ(1 + v)

Γ(1 + qv)
, for all v ∈ [0, 1].

Remark 2.2. In the process of solving the fractional equations, we obtain the well-
posedness of the homogeneous equations by using the resolvent operators theory.
In general, the solution given in terms of the probability density is a special form
of the solution that given by a family of resolvent operators. Therefore, the above
mentioned operators {Qq(t); t ≥ 0} and {Rq(t); t ≥ 0} are also a family of resolvent
operators in [2] and [24].

Lemma 2.1. ( [34]) Assume the bounded linear operator {T (t), t ≥ 0} is the ana-
lytic semigroup and has a generator A on (X, ‖ · ‖X). The following statements are
valid:
(i) for any fixed t ≥ 0, the operators Qq(t) and Rq(t) are bounded linear,

‖Qq(t)x‖ ≤M‖x‖, ‖Rq(t)x‖ ≤
qM

Γ(1 + q)
‖x‖, ∀x ∈ X;

(ii) for any fixed t ≥ 0, the operators Qq(t) and Rq(t) are strongly continuous;
(iii) for any 0 ≤ t ≤ T , ‖AQq(t)x‖ ≤M‖Ax‖, ∀x ∈ D(A);
(iv) for any 0 < t ≤ T , ‖ARq(t)x‖ ≤ qM1t

−q‖x‖, ∀x ∈ X.

3. Existence and uniqueness of mild solutions

In this section, we prove the existence and uniqueness of the solutions of (1.1)-(1.2),
based on assumptions and lemmas as follows.

Now, we assume that (E, ‖ · ‖E) and (F, ‖ · ‖F ) are Banach spaces. (E, ‖ · ‖E) ↪→
(F, ‖ · ‖F ) ↪→ (X, ‖ · ‖X), where the notation (E, ‖ · ‖E) ↪→ (X, ‖ · ‖X) is used to
indicate that (E, ‖ · ‖E) is continuously embedded into (X, ‖ · ‖X).

Lemma 3.1. ( [19]) Let x , y ∈ CLip([−r, T ];E), x0 = y0 = φ, and µ ∈ CLip([0, T ]×
BE ; [0, T ]). If for any 0 ≤ t ≤ T , µ(t, xt) ≤ T and µ(t, yt) ≤ T , one has
(i) x(·), xµ(·,x(·)) ∈ CLip([0, T ];BE);
(ii) [x(·)]CLip([0,T ];BE) ≤ max{[x]CLip([0,T ];E); [φ]CLip([−r,0];E)};
(iii) [xµ(·,x(·))]CLip([0,T ];BE)

≤ [x(·)]CLip([0,T ];BE)[µ]CLip([0,T ]×BE ;[0,T ])

(
1 + [x(·)]CLip([0,T ];BE)

)
;

(iv) ‖xµ(·,x(·)) − yµ(·,y(·))‖C([0,T ];E)

≤
(
1 + [y(·)]CLip([0,T ];E)[µ]CLip([0,T ]×BE ;[0,T ])

)
× ‖x− y‖C([0,T ];E).

Lemma 3.2. Suppose that x ∈ E. For any ε > 0, Qq(·)x ∈ CLip([ε, T ];E).

Proof. Since x ∈ E and {T (t), t ≥ 0} is the analytic semigroup, for any 0 < ε ≤
t ≤ T , the result shows that

‖Qq(t+ h)x−Qq(t)x‖ =

∥∥∥∥∫ ∞
0

ξq(θ)[T ((t+ h)qθ)− T (tqθ)]xdθ

∥∥∥∥
=

∥∥∥∥∥
∫ ∞

0

ξq(θ)[

∫ t+h

t

AT (τ qθ)xdτ qθ]dθ

∥∥∥∥∥
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=

∥∥∥∥∥
∫ t+h

t

τ q−1ARq(τ)xdτ

∥∥∥∥∥
≤ qM1

∫ t+h

t

τ q−1τ−qdτ · ‖x‖

≤ qM1‖x‖t−1h

≤ qM1ε
−1‖x‖h.

Thus Qq(·)x ∈ CLip([ε, T ];E). The proof is completed.

Remark 3.1. By [ [24], Lemma 4.5], if φ(0) is sufficiently smooth, that is, φ(0) ∈
D(An) with nq ≥ 1, we have Qq(·)φ(0) ∈ CLip([0, T ];X). In fact, let A generates a
q-times resolvent family Qq, then for any x ∈ D(An), nq ≥ 1, one has

Qq(t)x = x+ (gq ∗Qq)(t)Ax
= x+ (gq ∗ 1)(t)Ax+ (gq ∗ (gq ∗Qq))(t)A2x

= · · ·+ · · ·
= x+ gq+1(t)Ax+ · · ·+ g(n−1)q+1(t)An−1x+ (gnq ∗Qq)(t)Anx.

Thus,

Q′q(t)x = gq(t)Ax+ · · ·+ g(n−1)q(t)A
n−1x+ (gnq−1 ∗Qq)(t)Anx

=

n−1∑
j=1

gjq(t)A
jx+ (gnq−1 ∗Qq)(t)Anx.

By continuous differentiability of Qq(t)x, we can deduce that Qq(·)x is Lipschitz
continuous on [0, T ].

Remark 3.2. Recently, in [17], the authors studied the existence and uniqueness
of solutions as well as the local well-posedness for fractional differential equations
with state-dependent delay on the Lipschitz continuous space. The core point of [17]
and the present paper is that Qq(·)x ∈ CLip([0, T ];X), for any x ∈ D(An) (Qq(·)x
means the same as the Sα(·)x in [17]). However, the approaches of the two papers
are different. In [17], assuming that A is an almost sectorial operator, the authors
used resolvent operators of growth β with the Mittag-Leffler function to obtain
Sα(·)x ∈ CLip([0, a];X) for all x ∈ D(An), n is sufficiently large. But in this paper,
we only need to assume that A is an analytic semigroup to directly prove that
Qq(·)x ∈ CLip([0, T ];X), for any x ∈ D(An) with nq ≥ 1.

The specific conclusions are deduced in this paper under the following assump-
tions:

(H1) The function a : D := {(t, s) ∈ [0, T ]× [0, T ] : 0 ≤ s ≤ t ≤ T} ×BE → E
is continuous and there are two constants La > 0 and L∗a > 0 such that for any
(ti, si) ∈ D, i = 1, 2, x, y ∈ BE , we have

‖a(t1, s1, x)− a(t2, s2, y)‖E ≤ La (| t1 − t2 | + | s1 − s2 | +‖x− y‖BE
)

and

L∗a = max
0≤s≤t≤T

‖a(t, s, 0)‖E .
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(H2) Rq ∈ L1([0, T ];L(F,E)), Z ∈ C([0, T ] ×BE × E;F ) and there is a non-
decreasing positive function Pz ∈ C([0, T ];R+) such that

‖Z(t, x1, y1)− Z(s, x2, y2)‖ ≤ Pz(δ)(| t− s | +‖x1 − x2‖BE
+ ‖y1 − y2‖E),

where for any t, s ∈ [0, T ], xi ∈ Bδ(φ;BE), yi ∈ Bδ(0;E), i = 1, 2.
(H3) The function µ ∈ CLip([0, T ] × BE ; [0, T ]) and µ(0, φ) = 0. There is a

constant r∗ > 0 such that 0 ≤ µ(t, ψ) ≤ t, for any t ∈ [0, T ] and ψ ∈ Br∗(φ;BE) ⊂
BE .

For notational convenience, denote υ1 := [µ]CLip([0,T ]×BE ;[0,T ]), υ2 := LaT , υ3 :=
La‖φ‖BE

+ L∗a.
(H4) There exists ζ > 0 such that

Pz (ζ(1 + ζ)υ1T ) (Λ1 + Λ2ζ(1 + ζ)) + [Qq(·)φ(0)]CLip([0,T ];E) ≤ ζ,

where

Λ1 =
(2 + q)MT q(1 + υ2 + υ3)

Γ(2 + q)
, Λ2 =

(2 + q)MT q(1 + υ2)υ1

Γ(2 + q)
, and φ(0) ∈ E.

Lemma 3.3. If the hypotheses (H1) and (H3) hold, for any x ∈ CLip([−r, T ];E),
we have (Gx)(·) ∈ CLip([0, T ];E), where the operator G defined by

(Gx)(t) =

∫ t

0

a(t, s, xµ(s,xs))ds, a ∈ C(D ×BE ;E).

Proof. According to Lemma 3.1 (i)-(iii) and the condition (H3), for any x ∈
CLip([−r, T ];E) and 0 ≤ t ≤ T , we know

‖xµ(t,xt) − φ‖BE

≤[x]CLip([−r,T ];E) | µ(t, xt)− µ(0, x0) |
≤[x]CLip([−r,T ];E)[µ]CLip([0,T ]×BE ;[0,T ]) (t+ ‖xt − x0‖)
≤[x]CLip([−r,T ];E)[µ]CLip([0,T ]×BE ;[0,T ])

(
1 + [x]CLip([−r,T ];E)

)
T.

Hence, we have

‖xµ(t,xt)‖BE

≤‖xµ(t,xt) − φ‖BE
+ ‖φ‖BE

≤[x]CLip([−r,T ];E)[µ]CLip([0,T ]×BE ;[0,T ])

(
1 + [x]CLip([−r,T ];E)

)
T + ‖φ‖BE

.

In addition, for 0 ≤ t < T and h > 0 with t+ h ∈ [0, T ], we find

‖(Gx)(t+ h)− (Gx)(t)‖E

≤
∫ t

0

∥∥a(t+ h, s, xµ(s,xs))− a(t, s, xµ(s,xs))
∥∥
E

ds

+

∫ t+h

t

∥∥a(t+ h, s, xµ(s,xs))
∥∥
E

ds

≤LaTh+

∫ t+h

t

∥∥a(t+ h, s, xµ(s,xs))− a(t+ h, s, 0)
∥∥
E

ds
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+

∫ t+h

t

‖a(t+ h, s, 0)‖E ds

≤LaTh+ La
(
[x]CLip([−r,T ];E)[µ]CLip([0,T ]×BE ;[0,T ])

×(1 + [x]CLip([−r,T ];E))T + ‖φ‖BE

)
h+ L∗ah

≤
(
υ1υ2[x]CLip([−r,T ];E)(1 + [x]CLip([−r,T ];E)) + υ2 + υ3

)
h.

Therefore,

[Gx]CLip([0,T ];E) ≤ υ1υ2[x]CLip([−r,T ];E)(1 + [x]CLip([−r,T ];E)) + υ2 + υ3.

The proof is completed.

Lemma 3.4. Assume that the conditions (H1)-(H3) are satisfied, x ∈ CLip([−r, T ];

E), then Z
(
·, xµ(·,x(·)), (Gx)(·)

)
∈ CLip([0, T ];F ).

Proof. We know that

‖xµ(t,xt) − φ‖BE
≤ [x]CLip([−r,T ];E)[µ]CLip([0,T ]×BE ;[0,T ])

(
1 + [x]CLip([−r,T ];E)

)
T,

for t ∈ [0, T ]. By condition (H2) and Lemma 3.3, for 0 ≤ t < T , h > 0, and
t+ h ∈ [0, T ], we get∥∥Z(t+ h, xµ(t+h,xt+h), (Gx)(t+ h))− Z(t, xµ(t,xt), (Gx)(t))

∥∥
F

≤Pz
(
[x]CLip([−r,T ];E)[µ]CLip([0,T ]×BE ;[0,T ])(1 + [x]CLip([−r,T ];E))T

)
×
(
h+ ‖xµ(t+h,xt+h) − xµ(t,xt)‖+ ‖(Gx)(t+ h)− (Gx)(t)‖

)
≤Pz

(
[x]CLip([−r,T ];E)(1 + [x]CLip([−r,T ];E))υ1T

) (
h+ [x]CLip([−r,T ];E)

×(1 + [x]CLip([−r,T ];E))υ1h

+υ1υ2[x]CLip([−r,T ];E)(1 + [x]CLip([−r,T ];E))h+ υ2h+ υ3h
)

≤Pz
(
[x]CLip([−r,T ];E)(1 + [x]CLip([−r,T ];E))υ1T

) (
[x]CLip([−r,T ];E)

×(1 + [x]CLip([−r,T ];E))(1 + υ2)υ1 + 1 + υ2 + υ3

)
h.

Therefore, we can conclude that Z
(
·, xµ(·,x(·))

, (Gx)(·)
)
∈ CLip([0, T ];F ), and

[Z(·, xµ(·,x(·))
, (Gx)(·))]

CLip([0,T ];F )

≤Pz
(
[x]CLip([−r,T ];E)(1 + [x]CLip([−r,T ];E))υ1T

) (
[x]CLip([−r,T ];E)

×(1 + [x]CLip([−r,T ];E))(1 + υ2)υ1 + 1 + υ2 + υ3

)
.

The proof is completed.

Theorem 3.1. Suppose that the conditions (H1)-(H4) hold, and φ∈CLip([−r, 0];E).
If φ(0) ∈ D(An) with nq ≥ 1, and Z(0, φ, 0) = 0, the system (1.1)-(1.2) has a unique
mild solution x ∈ CLip([−r, T ];E).

Proof. Let

K(T ; ζ) = {x ∈ C([−r, T ];E) : x0 = φ, x ∈ CLip([−r, T ];E), [x]CLip([−r,T ];E) ≤ ζ},
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where ζ is in condition (H4). Consider the operator Γ : K(T ; ζ)→ C([−r, T ];E)
defined by

Γx(t) =

Qq(t)φ(0) +

∫ t

0

(t− s)q−1Rq(t− s)Z
(
s, xµ(s,xs), (Gx)(s)

)
ds, t ∈ [0, T ];

φ(t), t ∈ [−r, 0].

For x ∈ K(T ; ζ), Γx ∈ C([−r, T ];E), as is easily verified.
We divide our proof in two distinct parts.

Step 1. Prove that Γ transforms K(T ; ζ) into itself. Let x ∈ K(T ; ζ), according to
Lemma 3.4, we have

[Z(·, xµ(·,x(·))
, (Gx)(·))]

CLip([0,T ];F )

≤Pz
(
[x]CLip([−r,T ];E)(1 + [x]CLip([−r,T ];E))υ1T

) (
[x]CLip([−r,T ];E)

×(1 + [x]CLip([−r,T ];E))(1 + υ2)υ1 + 1 + υ2 + υ3

)
.

By Lemma 3.2, we have Qq(·)φ(0) ∈ CLip([ε, T ];E), for any φ(0) ∈ E. Since
φ(0) ∈ D(An), nq ≥ 1, it follows that Qq(·)φ(0) ∈ CLip([0, T ];E). Thus, for
t ∈ [0, T ), h > 0 and t+ h ∈ [0, T ], we obtain the estimate

‖Γx(t+ h)− Γx(t)‖E

≤ [Qq(·)φ(0)]CLip([0,T ];E) h+

∥∥∥∥∫ t

−h
(t− s)q−1Rq(t− s)Z

(
s+ h, xµ(s+h,xs+h),

(Gx)(s+ h)) ds−
∫ t

0

(t− s)q−1Rq (t− s)Z
(
s, xµ(s,xs), (Gx)(s)

)
ds
∥∥

≤ [Qq(·)φ(0)]CLip([0,T ];E) h+

∫ h

0

(t+ h− s)q−1
∥∥Rq(t+ h− s)Z

(
s, xµ(s,xs),

(Gx)(s))‖ds+

∫ t

0

(t− s)q−1
∥∥Rq(t− s) [Z (s+ h, xµ(s+h,xs+h), (Gx)(s+ h)

)
−Z

(
s, xµ(s,xs), (Gx)(s)

)]∥∥ ds

≤ [Qq(·)φ(0)]CLip([0,T ];E) h+

∫ h

0

(t+ h− s)q−1‖Rq(t+ h− s)
[
Z
(
s, xµ(s,xs),

(Gx)(s))− Z (0, φ, 0)]‖ ds+
MT q

Γ(1 + q)
[Z(·, xµ(·,x(·))

, (Gx)(·))]CLip([0,T ];F )h

≤ [Qq(·)φ(0)]CLip([0,T ];E) h+

∫ h

0

(t+ h− s)q−1‖Rq(t+ h− s)
[
Z
(
s, xµ(s,xs),

(Gx)(s))− Z
(
0, xµ(0,x0), (Gx)(0)

)]∥∥ds+
MT q

Γ(1 + q)
[Z(·, xµ(·,x(·))

,

(Gx)(·))]CLip([0,T ];F )h

≤ [Qq(·)φ(0)]CLip([0,T ];E) h+
Mq

Γ(1 + q)
[Z(·, xµ(·,x(·))

, (Gx)(·))]CLip([0,T ];F )

×
∫ h

0

(t+ h− s)q−1sds+
MT q

Γ(1 + q)
[Z(·, xµ(·,x(·))

, (Gx)(·))]CLip([0,T ];F )h

≤ [Qq(·)φ(0)]CLip([0,T ];E) h+
Mq

Γ(1 + q)
[Z(·, xµ(·,x(·))

, (Gx)(·))]CLip([0,T ];F )
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×
∫ 1

0

(1− z)q−1zdz · hq+1 +
MT q

Γ(1 + q)
[Z(·, xµ(·,x(·))

, (Gx)(·))]CLip([0,T ];F )h

≤ [Qq(·)φ(0)]CLip([0,T ];E) h+
MT q

Γ(2 + q)
[Z(·, xµ(·,x(·))

, (Gx)(·))]CLip([0,T ];F )h

+
MT q

Γ(1 + q)
[Z(·, xµ(·,x(·))

, (Gx)(·))]CLip([0,T ];F )h

≤ [Qq(·)φ(0)]CLip([0,T ];E) h+
MT qPz (ζ(1 + ζ)υ1T )

Γ(2 + q)
(ζ(1 + ζ)(1 + υ2)υ1 + 1

+υ2 + υ3)h+
MT qPz (ζ(1 + ζ)υ1T )

Γ(1 + q)
(ζ(1 + ζ)(1 + υ2)υ1 + 1 + υ2 + υ3)h

≤ [Qq(·)φ(0)]CLip([0,T ];E) h+
(2 + q)MT qPz (ζ(1 + ζ)υ1T )

Γ(2 + q)
(ζ(1 + ζ)(1 + υ2)

×υ1 + 1 + υ2 + υ3)h.

Consequently, from (H4), we can conclude that

[Γx]CLip([0,T ];E)

≤ [Qq(·)φ(0)]CLip([0,T ];E) +
(2 + q)MT qPz (ζ(1 + ζ)υ1T )

Γ(2 + q)
(ζ(1 + ζ)(1 + υ2)υ1

+1 + υ2 + υ3)

≤ [Qq(·)φ(0)]CLip([0,T ];E) + Pz (ζ(1 + ζ)υ1T ) (Λ1 + Λ2ζ(1 + ζ))

≤ζ,

where Λ1 = (2+q)MT q(1+υ2+υ3)
Γ(2+q) , Λ2 = (2+q)MT q(1+υ2)υ1

Γ(2+q) .

On the other hand, (Γx)0 = φ ∈ CLip([−r, 0];E), for all t ∈ [−r, 0]. Thus, from
Lemma 3.1, we know

[Γx]CLip([−r,T ];E) ≤ max{[Γx]CLip([0,T ];E), [φ]CLip([−r,0];E)} ≤ ζ.

In summary, we deduce that Γx ∈ CLip([−r, T ];E).

Step 2. To prove that Γ is a contraction mapping on K(T ; ζ). Let x, y ∈ K(T ; ζ).
From the hypothesis (H2), Lemma 3.1 (iv) and Lemma 3.4, we find

‖Γx(t)− Γy(t)‖

≤
∫ t

0

(t− s)q−1 ‖Rq(t− s)‖
∥∥Z (s, xµ(s,xs), (Gx)(s)

)
− Z

(
s, yµ(s,ys), (Gy)(s)

)∥∥ds

≤ qM

Γ(1 + q)
Pz (ζ(1 + ζ)υ1T )

∫ t

0

(t− s)q−1
(
‖xµ(s,xs) − yµ(s,ys)‖

+

∫ s

0

‖a(s, τ, xµ(τ,xτ ))− a(s, τ, yµ(τ,yτ ))‖dτ
)

ds

≤ qM

Γ(1 + q)
Pz(ζ(1 + ζ)υ1T )

∫ t

0

(t− s)q−1

×
(
(1 + [y]CLip([−r,T ];E)[µ]CLip([0,T ]×BE ;[0,T ]))‖x(s)− y(s)‖ds

+La

∫ s

0

(1 + [y]CLip([−r,T ];E)[µ]CLip([0,T ]×BE ;[0,T ]))‖x(τ)− y(τ)‖dτ
)

ds
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≤ qM

Γ(1 + q)
Pz (ζ(1 + ζ)υ1T ) (1 + ζυ1)

∫ t

0

(t− s)q−1‖x(s)− y(s)‖ds

+
qM

Γ(1 + q)
Pz (ζ(1 + ζ)υ1T ) (1 + ζυ1)La

∫ t

0

(t− s)q−1

∫ s

0

‖x(τ)− y(τ)‖dτds

≤MΦζ(1 + υ2)tq

Γ(1 + q)
‖x− y‖,

where Φζ is denoted by Φζ := Pz (ζ(1 + ζ)υ1T ) (1 + ζυ1).
Moreover,

‖Γ2x(t)− Γ2y(t)‖

≤ qMΦζ
Γ(1 + q)

∫ t

0

(t− s)q−1 ‖Γx(s)− Γy(s)‖ds+
qMΦζ

Γ(1 + q)
La

∫ t

0

(t− s)q−1

∫ s

0

‖Γx(τ)

−Γy(τ)‖ dτds

≤
(
qMΦζ

Γ(1 + q)

)2

(1 + υ2)

∫ t

0

(t− s)q−1

∫ s

0

(s− s1)q−1‖x(s1)− y(s1)‖ds1ds

+

(
qMΦζ

Γ(1 + q)

)2

(υ2 + υ2
2)

∫ t

0

(t− s)q−1

∫ s

0

(s− s1)q−1ds1ds‖x− y‖

≤
(
qMΦζ

Γ(1 + q)

)2

(1 + υ2)2 1

q

∫ t

0

(t− s)q−1sqds‖x− y‖

≤
(
qMΦζ

Γ(1 + q)

)2

(1 + υ2)2 1

q

Γ(q)Γ(1 + q)

Γ(1 + 2q)
t2q‖x− y‖

≤
M2Φ2

ζ(1 + υ2)2t2q

Γ(1 + 2q)
‖x− y‖.

Suppose that for any j ∈ N, the following inequality is established

‖Γjx(t)− Γjy(t)‖ ≤
M jΦjζ(1 + υ2)jtjq

Γ(1 + jq)
‖x− y‖.

Then, we obtain

‖Γj+1x(t)− Γj+1y(t)‖

≤ qMΦζ
Γ(1 + q)

∫ t

0

(t− s)q−1
∥∥Γjx(s)− Γjy(s)

∥∥ds+
qMΦζ

Γ(1 + q)
La

∫ t

0

(t− s)q−1

×
∫ s

0

∥∥Γjx(τ)− Γjy(τ)
∥∥dτds

≤ qMΦζ
Γ(1 + q)

M jΦjζ(1 + υ2)j

Γ(1 + jq)

∫ t

0

(t− s)q−1sjqds‖x− y‖

+
qMΦζLa
Γ(1 + q)

M jΦjζ(1 + υ2)j

Γ(1 + jq)

∫ t

0

(t− s)q−1

∫ s

0

τ jqdτds‖x− y‖

≤ qMΦζ
Γ(1 + q)

M jΦjζ(1 + υ2)j

Γ(1 + jq)

∫ 1

0

(1− z)q−1zjqdz · t(j+1)q‖x− y‖

+
qMΦζLa
Γ(1 + q)

M jΦjζ(1 + υ2)j

Γ(1 + jq)

1

1 + jq

∫ 1

0

(1− z)q−1zjq+1dz · t(j+1)q+1
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≤ qMΦζ
Γ(1 + q)

M jΦjζ(1 + υ2)j

Γ(1 + jq)

Γ(q)Γ(1 + jq)

Γ(1 + (j + 1)q)
t(j+1)q‖x− y‖

+
qMΦζυ2

Γ(1 + q)

M jΦjζ(1 + υ2)j

Γ(1 + jq)

Γ(q)Γ(2 + jq)

Γ(2 + (j + 1)q)

1

1 + jq
t(j+1)q‖x− y‖

≤
M j+1Φj+1

ζ (1 + υ2)j

Γ(1 + (j + 1)q)
t(j+1)q‖x− y‖+

1

1 + jq

M j+1Φj+1
ζ υ2(1 + υ2)j

Γ(1 + (j + 1)q)
t(j+1)q

× ‖x− y‖

≤
M j+1Φj+1

ζ (1 + υ2)j+1t(j+1)q

Γ(1 + (j + 1)q)
‖x− y‖.

Through mathematical induction, for any n = 1, 2, · · · , one has

‖(Γnx)(t)− (Γny)(t)‖ ≤
MnΦnζ (1 + υ2)ntnq

Γ(1 + nq)
‖x− y‖

≤
MnΦnζ (1 + υ2)nTnq

Γ(1 + nq)
‖x− y‖,

which implies that Γn is a contraction for sufficiently large n. By generalized
Banach contraction mapping principle, the operator Γ has a unique fixed point
x ∈ CLip([−r, T ];E), which is the mild solution of the system (1.1)-(1.2). The proof
is completed.

If the function Z in the assumption (H2) satisfies the uniform Lipschitz condi-
tion, the similar result holds.

(H2)′ Rq ∈ L1([0, T ];L(F,E)), Z ∈ C([0, T ] ×BE × E;F ), and there exists a
Lipschitz constant P > 0 such that

‖Z(t, x1, y1)− Z(s, x2, y2)‖ ≤ P (| t− s | +‖x1 − x2‖BE
+ ‖y1 − y2‖E),

where for any t, s ∈ [0, T ], xi ∈ BE , yi ∈ E, i = 1, 2.
(H4)′ There exists ζ ′ > 0 such that

Λ′1 + Λ′2ζ
′(1 + ζ ′) ≤ ζ ′,

where

Λ′1 = [Qq(·)φ(0)]CLip([0,T ];E) +
(2 + q)MT qP (1 + υ2 + υ3)

Γ(2 + q)
,

Λ′2 =
(2 + q)MT qP (1 + υ2)υ1

Γ(2 + q)
and φ(0) ∈ E.

Theorem 3.2. Assume that the conditions (H1), (H2)′, (H3), (H4)′ are true, and
φ ∈ CLip([−r, 0];E). If φ(0) ∈ D(An) with nq ≥ 1, and Z(0, φ, 0) = 0, the system
(1.1)-(1.2) has a unique mild solution x ∈ CLip([−r, T ];E).

Proof. Let

K(T ; ζ ′) = {x ∈ C([−r, T ];E) : x0 = φ, x ∈ CLip([−r, T ];E), [x]CLip([−r,T ];E) ≤ ζ ′},

where ζ ′ is in condition (H4)′, and Γ be defined as in the proof of Theorem 3.1.

Step 1. According to the condition (H2)′ and Lemma 3.3, for any x ∈ CLip([−r, T ];
E), we find

Z
(
·, xµ(·,x(·)), (Gx)(·)

)
∈ CLip([0, T ];F ),
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and

[Z(·, xµ(·,x(·))
, (Gx)(·))]

CLip([0,T ];F )

≤P
(
[x]CLip([−r,T ];E)(1 + [x]CLip([−r,T ];E))(1 + υ2)υ1 + 1 + υ2 + υ3

)
.

Step 2. To establish Γ(K(T ; ζ ′)) ⊂ K(T ; ζ ′). Similar to the proof of Theorem 3.1,
from the condition (H4)′, we can get that

[Γx]CLip([0,T ];E)

≤ [Qq(·)φ(0)]CLip([0,T ];E) +
(2 + q)MT qP

Γ(2 + q)
(ζ ′(1 + ζ ′)(1 + υ2)υ1 + 1 + υ2 + υ3)

≤Λ′1 + Λ′2ζ
′(1 + ζ ′)

≤ζ ′,

where Λ′1 = [Qq(·)φ(0)]CLip([0,T ];E) + (2+q)MT qP (1+υ2+υ3)
Γ(2+q) , Λ′2 = (2+q)MT qP (1+υ2)υ1

Γ(2+q) .

Therefore, Γx ∈ CLip([−r, T ];E).

Step 3. The mapping Γ is a contraction on K(T ; ζ ′) in the same way as the proof
of Theorem 3.1.

For any n = 1, 2, · · · , we have

‖(Γnx)(t)− (Γny)(t)‖ ≤ MnPn(1 + ζ ′υ1)n(1 + υ2)ntnq

Γ(1 + nq)
‖x− y‖

≤ MnPn(1 + ζ ′υ1)n(1 + υ2)nTnq

Γ(1 + nq)
‖x− y‖.

Thus, Γn is a contraction on K(T ; ζ ′), as n → ∞. From the generalized Banach
contraction mapping principle, we know that the system (1.1)-(1.2) has the mild
solution x ∈ CLip([−r, T ];E). The proof is completed.

Remark 3.3. In the proof of Theorem 3.1 and Theorem 3.2, the conditions (H4)
and (H4)′ are satisfied if some conditions are imposed on υ1 := [µ]CLip([0,T ]×BE ;[0,T ])

or T .

Remark 3.4. In [16, 18–22], the existence and uniqueness of local solutions for
integer order systems can be obtained by using the Banach contraction mapping
principle. In this paper, we use the principle of generalized Banach contraction
mapping to solve the existence and uniqueness of global solutions for fractional
order systems, rather than local solutions. In fact, we can also prove the existence
and uniqueness of local solutions for integer order systems by using the principle of
generalized Banach contraction mapping. In some sense, the conditions in [16,18–22]
can be optimized.

4. Existence of strict solutions

The remainder of this article focuses on how to obtain the existence of strict solu-
tions for the equations (1.1) and (1.2).

Definition 4.1. The function x ∈ C([−r, T ];X) is called strict solutions of (1.1)-
(1.2) if cDqx ∈ C([0, T ];X), x |[0,T ]∈ C([0, T ];X) ∩ C([0, T ];D(A)), x |[−r,0]= φ,
and x satisfies the equation (1.1).
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Now, we introduce the necessary and sufficient conditions for the strict solutions
of (1.1)-(1.2).

Lemma 4.1. ( [24]) Let A generates a q-resolvent family {Qq(t) : t ≥ 0}, 0 < q < 1,
φ(0) ∈ D(A) and Z ∈ C([0, T ]×BE ×E;F ). Then the following three conclusions
are equivalent:
(i) for any 0 ≤ t ≤ T , the system (1.1)-(1.2) has a strict solution;
(ii) for any 0 ≤ t ≤ T , H(t) ∈ D(A), and H ∈ C([0, T ];D(A)), where

H(t) =

∫ t

0

(t− s)q−1Rq(t− s)Z
(
s, xµ(s,xs), (Gx)(s)

)
ds;

(iii) for any 0 ≤ t ≤ T , Qq ∗ Z is differentiable.

Theorem 4.1. The assumptions of Theorem 3.1 remain valid and x ∈ CLip([−r, T ];
E) is the mild solution of (1.1)-(1.2) on [−r ,T ]. Then x(·) is the strict solution of
(1.1)-(1.2).

Proof. According to Lemma 4.1, we need to show that H(t) ∈ D(A) and H ∈
C([0, T ];D(A)). For 0 ≤ t ≤ T , we know

H(t) =

∫ t

0

(t− s)q−1Rq(t− s)
[
Z
(
s, xµ(s,xs), (Gx)(s)

)
− Z

(
t, xµ(t,xt),

(Gx)(t))] ds+

∫ t

0

(t− s)q−1Rq(t− s)Z
(
t, xµ(t,xt), (Gx)(t)

)
ds

=: m1(t) +m2(t).

First, we prove m1(t) ∈ D(A). From Lemma 2.1 (iv), Lemma 3.4 and the closedness
of A, for 0 ≤ t ≤ T , we have∥∥(t− s)q−1ARq(t− s)

[
Z
(
s, xµ(s,xs), (Gx)(s)

)
− Z

(
t, xµ(t,xt), (Gx)(t)

)]∥∥
≤qM1[Z(·, xµ(·,x(·))

, (Gx)(·))]CLip([0,T ];F )(t− s)q−1(t− s)−q(t− s)

≤qM1[Z(·, xµ(·,x(·))
, (Gx)(·))]CLip([0,T ];F ).

Consequently, the function

s→ (t− s)q−1ARq(t− s)
[
Z
(
s, xµ(s,xs), (Gx)(s)

)
− Z

(
t, xµ(t,xt), (Gx)(t)

)]
is integrable on [0, t].

Obviously, the function

s→ (t− s)q−1ARq(t− s)Z
(
t, xµ(t,xt), (Gx)(t)

)
is also integrable, for 0 ≤ s ≤ t. This indicates that H(t) ∈ D(A) for all t ∈ [0, T ].

Next, we prove AH(t) is continuous.

AH(t) =

∫ t

0

(t− s)q−1ARq(t− s)
[
Z
(
s, xµ(s,xs), (Gx)(s)

)
− Z

(
t, xµ(t,xt),

(Gx)(t))] ds+

∫ t

0

(t− s)q−1ARq(t− s)Z
(
t, xµ(t,xt), (Gx)(t)

)
ds

=: I1(t) + I2(t).
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By the proof of Lemma 3.2, we know

I2(t) = −(Qq(t)− I)Z
(
t, xµ(t,xt), (Gx)(t)

)
.

Therefore, from Lemma 2.1 (ii) and (H2), it is easy to know that I2(t) is continuous,
for all 0 ≤ t ≤ T .

Now, we estimate I1(t). Let 0 < h ≤ T − t, one has

‖I1(t+ h)− I1(t)‖

≤
∥∥∥∥∫ t

−h
(t− s)q−1ARq(t− s)

[
Z
(
s+ h, xµ(s+h,xs+h), (Gx)(s+ h)

)
− Z (t+ h,

xµ(t+h,xt+h), (Gx)(t+ h)
)]

ds−
∫ t

0

(t− s)q−1ARq(t− s)
[
Z
(
s, xµ(s,xs),

(Gx)(s))− Z
(
t, xµ(t,xt), (Gx)(t)

)]
ds
∥∥

≤

∥∥∥∥∥
∫ h

0

(t+ h− s)q−1ARq(t+ h− s)
[
Z
(
s, xµ(s,xs), (Gx)(s)

)
− Z (t+ h,

xµ(t+h,xt+h), (Gx)(t+ h)
)]

ds
∥∥+

∥∥∥∥∫ t

0

(t− s)q−1ARq(t− s) [Z (s+ h,

xµ(s+h,xs+h), (Gx)(s+ h)
)
− Z

(
s, xµ(s,xs), (Gx)(s)

)]
ds
∥∥+

∥∥∥∥∫ t

0

(t− s)q−1

ARq(t− s)
[
Z
(
t+ h, xµ(t+h,xt+h), (Gx)(t+ h)

)
− Z

(
t, xµ(t,xt), (Gx)(t)

)]
ds
∥∥

=:kt1(h) + kt2(h) + kt3(h).

For kt1(h), using Lemma 2.1 (iv) and Lemma 3.4, we get

‖kt1(h)‖

=

∥∥∥∥∥
∫ h

0

(t+ h− s)q−1ARq(t+ h− s)
[
Z
(
s, xµ(s,xs), (Gx)(s)

)
−Z

(
t+ h, xµ(t+h,xt+h), (Gx)(t+ h)

)]
ds
∥∥

≤

∥∥∥∥∥
∫ h

0

(t+ h− s)q−1ARq(t+ h− s)[Z(·, xµ(·,x(·))
, (Gx)(·))]CLip([0,T ];F )

×(t+ h− s)ds‖
≤qM1[Z(·, xµ(·,x(·))

, (Gx)(·))]CLip([0,T ];F )h,

which implies that kt1(h)→ 0 as h→ 0+.
Moreover, kt2(h)→ 0 as h→ 0+ by the following estimate

‖kt2(h)‖ =

∥∥∥∥∫ t

0

(t− s)q−1ARq(t− s)
[
Z
(
s+ h, xµ(s+h,xs+h), (Gx)(s+ h)

)
−Z

(
s, xµ(s,xs), (Gx)(s)

)]
ds
∥∥

≤[Z(·, xµ(·,x(·))
, (Gx)(·))]CLip([0,T ];F )

∥∥∥∥∫ t

0

(t− s)q−1ARq(t− s)hds

∥∥∥∥ .
Similarly, kt3(h)→ 0 as h→ 0+. Consequently, AH(t) is continuous, which implies
that H ∈ C([0, T ];D(A)).

To sum up, x(·) is a strict solution of (1.1)-(1.2). The proof is completed.
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Theorem 4.2. The assumptions of Theorem 3.2 remain valid and x ∈ CLip([−r, T ];
E) is the mild solution of (1.1)-(1.2) on [−r ,T ]. Then x(·) is the strict solution of
(1.1)-(1.2).

The proof is analogous to that in Theorem 4.1. We omit further details.

5. Application

In this section, we present an example motivated from population dynamics, which
indicates how our results can be applied to concrete problems.

We consider

cD
1
2ψ(t, ς) +

∂2

∂ς2
ψ(t, ς) =

∫ 0

−r
e2sψ(s+ µ1(t)µ2(‖ψ(t)‖), ς)ds+

∫ t

0

sin(t− s)

×
∫ 0

−r
e2τ [ψ(τ + µ1(t)µ2(‖ψ(t)‖), ς) + 1] dτds,

ψ(t, 0) = ψ(t, π) = 0,

ψ(θ, ς) = φ(θ, ς),
(5.1)

where t ∈ [0, 1], θ ∈ [−r, 0], ς ∈ [0, π], µi ∈ C([0, 1]; [0, 1]), i = 1, 2. Let BX =
C([−r, 0];X), φ ∈ BX .

Let X = L2[0, π] and −A : D(A) ⊂ X → X be the operator Aω = ω′′ with
domain D(A) := {ω ∈ X : ω(0) = ω(π) = 0, ω′′ ∈ X}. The operator A is given by

Aω =

∞∑
n=1

−n2〈ω, ωn〉ωn,

where ωn(t) =
√

2
π sinnt, n = 1, 2, · · · , is the orthogonal set of eigenvectors of A.

A is the infinitesimal generator of an analytic semigroup {T (t) : t ≥ 0} on X. For
every t > 0, ω ∈ X,

T (t)ω =

∞∑
n=1

e−n
2t〈ω, ωn〉ωn.

Moreover, we hypothesize that x(t)(ς) = ψ(t, ς), µ(t, xt) = µ1(t)µ2(‖ψ(t)‖) and
Z : [0, 1]×BX ×X → X is given by

Z(t, ϕ, (Gϕ)(t))(ς) =

∫ 0

−r
e2θϕ(θ)(ς)dθ +

∫ t

0

sin(t− s)
∫ 0

−r
e2θ [ϕ(θ)(ς) + 1] dθds.

Then, with these settings, the equation (5.1) can be written the abstract form of
system (1.1)-(1.2).

Therefore, for 0 ≤ t1 ≤ t2 ≤ 1 and ϕ, υ ∈ Bδ(φ;BX), we have

‖Z(t2, ϕ, (Gϕ)(t2))− Z(t1, υ, (Gυ)(t1))‖

=

∥∥∥∥∫ 0

−r
e2θϕ(θ)dθ +

∫ t2

0

sin(t2 − s)
∫ 0

−r
e2θ [ϕ(θ) + 1] dθds−

∫ 0

−r
e2θυ(θ)dθ

−
∫ t1

0

sin(t1 − s)
∫ 0

−r
e2θ [υ(θ) + 1] dθds

∥∥∥∥
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≤1

2
(1− e−2r) ‖ϕ− υ‖BX

+

∥∥∥∥∫ t2

0

sin(t2 − s)
∫ 0

−r
e2θϕ(θ)dθds

−
∫ t2

0

sin(t2 − s)
∫ 0

−r
e2θυ(θ)dθds

∥∥∥∥+

∥∥∥∥∫ t2

0

sin(t2 − s)
∫ 0

−r
e2θυ(θ)dθds

−
∫ t1

0

sin(t1 − s)
∫ 0

−r
e2θυ(θ)dθds

∥∥∥∥+
(1− e−2r)

2
(cos t1 − cos t2)

≤(1− e−2r) ‖ϕ− υ‖BX
+

1

2
(1− e−2r) (1 + ‖φ‖BX

+ δ) |t2 − t1|,

which implies that the condition (H2) is satisfied with

Pz(δ) =
1− e−2r

2
(3 + ‖φ‖BX

+ δ) .

In addition, through calculation, we get that condition (H1) is satisfied, where
La = 1

2 (1− e−2r) and L∗a = 1. We can choose the appropriate expressions of µ1(t)
and µ2(t) such that µ(t, xt) ≤ t.

Suppose that φ(0) ∈ D(An) with n ≥ 2 and some conditions are imposed on
υ1 := [µ1(·)µ2(‖ψ(·)‖)]CLip([0,1]×BX ;[0,1]) such that there exists a ζ > 0, such that
the following inequality holds(

1− e−2r

2
(3 + ‖φ‖BX

) +
1− e−2r

2
ζ(1 + ζ)υ1

)
(Λ1 + Λ2ζ(1 + ζ))

+ [Qq(·)φ(0)]CLip([0,1];E)

≤ζ,

where

Λ1 =
5M

(
4 + (1− e−2r)(1 + ‖φ‖BX

)
)

3
√
π

,

Λ2 =
5Mυ1(2 + (1− e−2r))

3
√
π

.

Thus, the assumptions in Theorem 3.1 and Theorem 4.1 are satisfied. It follows
that there exist unique mild and strict solutions to problem (5.1) defined on [0, 1].
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