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Abstract In this paper, we obtain the existence results for positive solutions
of a class of boundary value problems for fractional differential equations with
Riesz-Caputo derivative by using of the theory of Leray-Schauder degree. The
interesting point is the nonlinear term f(¢,u) may be singular at w = 0. An
example is also given to demonstrate the validity of the main result.
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1. Introduction

During the past few decades, fractional calculus has attracted the attention of
many researchers in different fields [3, 12, 14-16, 18]. For example, in many dy-
namic processes, even if the factors affecting the process have disappeared, the
influence of memory is often persistent, only by applying the fractional derivative
can we describe this process accurately. In addition, fractional calculus also is ap-
plied in physics, chemistry, mechanics, economics, etc. Most of the work done so
far discusses Riemann-Liouville or Caputo derivative, which is one-side fractional
operators only reflected the past or future memory effect. In order to describe
many processes which started at the past states, also relying on its development
in the future, we introduce the Riesz fractional derivative. Some recent applica-
tions of this derivative were given in [4,5,8,11,17,20,21,24], but we can see all the
Riesz fractional derivative appeared in these literatures are in the framework of the
Riemann-Liouville fractional derivative. In contrast to the Riemann-Liouville frac-
tional derivative, the Caputo fractional derivative was shown to possess a suitable
generalization of the extremum principle [13]. So, it makes more sense to study the
Riesz-Caputo fractional derivative, but to our knowledge, there are few results have
been seen in literature about existence results of fractional differential equation with
Riesz-Caputo derivative.
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We now present the basic definitions and Lemmas about Riesz-Caputo derivative
so that readers can understand the introduction better with R-C derivatives.
Let >0andn—1< 3 <n, n€ N and n = [v], [-] the ceiling of a number.

Definition 1.1. [9] (Riemann-Liouville fractional integrals) Let f be a continu-
ous function in [0,T]. For 7 € [0,T], the left Riemann-Liouville fractional integral
oI2 f(7) and the right Riemann-Liouville fractional integral Tffw f(7) of order 8 > 0
are given by

) = i | (= 9P s
I8f(r) = ﬁ | = s

Definition 1.2. [9] (Riesz fractional integral) Let f be a continuous function in
[0,T]. For 7 € [0,T], the Riesz fractional integral (?Iéif(T) of order 8 > 0 is given
by

1 T
RI*Bszi/ T—sﬁ_lfsds
Remark 1.1. [9] From Definition 1.1 and 1.2, we have

R f(r) = <ofﬁf< ) +- ILf(T)).

Definition 1.3. [9] (Fractional derivative in the sense of Caputo) Let f be a
continuous function in [0,T]. For 7 € [0,7], the left Caputo fractional derivative
¢DP f(r) and the right Caputo fractional derivative €D f(7) of order § > 0 are
given by

NS B G 10
§DL) =0 D) = s ||

—1)" T (n)
¢ pp n—8(_pyn (=1 / f(s)
D :T I —D =
T Tf(T) T ( ) f(T) F(n—ﬁ) . (8_7_)134,1,71 s
Definition 1.4. [9] (Fractional derivative in the sense of Riesz-Caputo) Let f be
a continuous function in [0,T]. For 7 € [0, T, the Riesz-Caputo fractional derivative
ORCDgf(T) of order 3 > 0 is given by

1 T (n)
FODLI) = D) = o [ s

I'(n— |7 — s|f+1—n

Remark 1.2. [9] From Definition 1.3 and 1.4, we have

FCDLf(r) = 3 ((DLF(r) + (-1)" CDAF(r)).
Lemma 1.1. [12,19] If f(7) € C™[0,T], then

l
IﬂCDBf Zf() l

and

n—l (l
10 CDRf(r) - )y CED iy,

=0
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From above, thus we have

RC
(1)%176“ 0 D?‘ ()
1 nl

c c
= 5 (o176 DY+ 12§ D2) f(7) + (-1)
1 n
= 5 (17 ¢ DY + (-1)77 TDp) f(7).
In particular, if 0 < 3 < 1 and f(7) € C1[0,T], then
1
o175 D f(r) = £(7) = 5(F(0) + £(T)). (L1)

Chen et al. [6] discussed a class of boundary value problems for fractional dif-
ferential equations with the Riesz-Caputo derivative
0 Dyy(r) =g(ry(r)), T7€[0,T], 0<y<1,

y(0) =yo, y(T)=yr,

(17 £ D+, 17 7 DR f(7)

o |

where gch% is the Riesz-Caputo derivative. By means of a new fractional Gronwall
inequalities and some fixed point theorems, the authors obtained some existence
results of the above problems.

Chen et al. [7] studied the anti-periodic fractional boundary value problems with
Riesz-Caputo derivative

ORCD’YY“y(T):g(T>y(T))7 red, J= [OvT]v 1<y<2
y(0) +y(T) =0, y'(0)+y'(T)=0,

where §¢ D7, is the Riesz-Caputo derivative.
Gu et al. [10] presented the existence results for a class of fractional differential
equations with the Riesz-Caputo derivative

0 DYa(E) = h(g,x(), £€[0,1], 0<a<l,
z(0) = zg, (1) =y,

where ¢ D¢ is the Riesz-Caputo derivative. By use of Leray-Schauder and Kras-
nosel’skii fixed point theorems, the authors obtained the positive solutions for the
above problems.

However, as far as the authors know, there are few papers on the existence of
solutions for fractional differential equation with Riesz-Caputo derivative and no
work has been reported on the singular Riesz-Caputo fractional equation. Thus,
motivated by the above documents, this paper will pay attention to the following
singular four-point fractional boundary value problems

0 CDYy(t) = fty(), tel0,1], 0<y<1, (1.2)
y(0) = ay(§), y(1) =by(n), (1.3)

where §“ D] is the Riesz-Caputo derivative.
Now we list some conditions for convenience.
(H)a>0,b>0,a4+b<2, 0<&n<1;
(Hz2) f:]0,1] x (0,00) — [0,00) is continuous, i.e. f(t,u) is singular at u = 0.
The work presented in this paper has the following new features. First, different
from [6,7,10],the nonlinear term f(¢,u) may be singular at « = 0 in this paper.
Second, the boundary condition (1.3) is a generalization of document [6,7,10].
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2. The preliminary lemmas

Lemma 2.1. Let h € C([0,1],R),¢ is a fized positive constant. A function y €
C1[0,1] is a solution of the fractional boundary value problem

FCDYy(t) = h(t), te[0,1], 0<~y<I1, (2.1)
y(0) —ay(§) =96, y(1) —by(n) =9,

if and only if y(t) is given by

20 a d y—1
y(t) = 2_a_b+(2_a_lb)r(,y)/o (€~ ) h(u)du

(2—a—-bI(v) /5 (u =" h(u)du
b n o
_|_—(2 —T o /O (n—w)"" "h(u)du (2.3)
b ! I
+—(2 DT /n (u—n)"""h(u)du
1

I ' — W) Yh(uw)du i 1u— Y= h(u)du
+F(’y)/0(t )" h(u)d +F('y)/t( )" h(u)du.

Proof. Applying Lemma 2.1 to the equation (2.1), we have

+

yit) = 30)+ 500 + 775 | ) |
_ %y(O) + %y(l) + ﬁ/o (t — w7~ h(u)du + ﬁ/t (o — )7 () du.

3 1
() = 5900)+ g0) + iy [ (€ i+ s [

1

y(n) = %y(O) + iy(l) + ﬁ /07](77 —u)Y " h(u)du + ﬁ/ (u—n)"""h(u)du.

Considering the boundary condition (2.2), we obtain

a a a 5 a 1
(0) = 5 5(0)+ 5o + / (€ —u) "h(u)du+ <2 /5 (u— )7 h(u)du,

2 2 I'(7)
(2.5)
Y1) = 5+ 30(0) + 53(1)+ i [ = hwdus g [y b
! (2.6)
By (2.5), we get
_ 0 a ‘ T h(u)du
VO = 1o+ 5 gy [, € o
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From (2.6), (2.7), we have

(-0 =0+ 412 4 5 0+ s [ wr
2 =z = T s

T o e J, o

b b !
—_— n—u)" 1h du—|——/ u— )" h(u)du.
T Jo oGy J, o)

Therefore,

v =220 B e Cjbb)w /0 (€ — uy - h(u)du
+ m /;(u — &) h(u)du (2.9)

(0) = ) . ad 4 abd
T e " e " 2-a)2—a-b)

a’bt2a(2-a") ‘ — )" h(uw)du
i (2—0)(2—a—b)1“(7)/0 (€ —u)" h(u)d
a’b+2a(2 —a—b) 1u_ .
HCER P ENC) /5 (u—=2¢)"" h(u)d (2.10)
ab n 1
+ m/{) (n—u)"" h(u)du

ab ! N1
T @ e T /77 (u—n)"""h(u)du.

From (2.4), (2.9), (2.10), we complete the proof. O

3. Positive solutions of the singular problem (1.2),
(1.3)

Let the space X = C[0, 1] be endowed with the maximum norm ||y| = max ly(t)].
It is well known that X is a Banach space.

Let F': [0,1] x R — [0, 400) is continuous.
We now transform the following fractional boundary value problem

FEDYy(t) = F(t,y(t), te[0,1], 0<y<1, (3.1)
y(0) —ay(§) =6, y(1) —by(n) =4,
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into a fixed point problem. Define an integral operator T': X — X by

26 a ¢ o
T = 5o+ e |, € T )

+ f;(u - S)Vle(u, y(u))du]
(2 ) ) Uon(?? —u) " F (u, y(u))du

4—/771 VlFuy())d]
F(lv

t 1
1
| =0t Fyydu+ 5 [ =7 ()
) L'(v) Js
(3.3)
Lemma 3.1. The operator T is a completely continuous operator.

Proof. Now, for the sake of proving that 7' is continuous, we have to show that
I Tyn — Ty|| — 0 as n — oo,

a

3
Tyn(t) — Ty(t)] < @ —a-br() {/0 (& —w) HE(u, yn(u) = F(u, y(u))|du

1
n /€ (u— € [P, ya(w)) — Flu, y(umdu}

T —u) Y F (uy yn(u) — F(u, y(u))|du
+ i | 0 0 ) - Py

[ = R )~ P, y(u))du}

1 ! -1 _
e /O (¢ — ) F (u, yo () — F(u, y(u))|du

I v
+ 5 / (u — £ [Pty g () — F (s ()
<[aw+<1—gm+bw+<1—n>v1+2<2—a—b>
= @—a_DI( + 1)

I um() — FCoy())]-

Since F' is continuous, we have

Ty, — Tyl — 0 as n — 0o.

Now, we prove T is compact. Let Qr = {y € C0,1]|||y|| < R}. For any y € Qg, we
have F'(u,y(u)) < maxyeo1],ve[-r,r F(u,Y) = M.
Therefore,

a 3
Tl == + i |, (€ 0" Flap(w)an
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v ™ Pl )]

b " o
+ PR {/0 (n—u)"" " F(u,y(u))du

¥ / ) F )il

1 i 1 L 1u_ o
#7077 F )
20 Ma

S5=a=b " @—a—prnrn ¢ TE-YY

Mb ' I M . s
20 Ma r r
SZ—a—b+(2—a—b)F(7+1)<£ =g
" S i p—

2—a-bl(v+1)
Further, we know for 0 < t; <ty <1,

[(Ty)(t2) = (Ty) ()|

TH+D

_L ta . o1 . . y i 1 . 1 . . :
=t J, (= Pyt s [ 0 Py

7L ! *’U,“/*l u u ufi 1u7 v—1 u " u

F(v)/o (t1 —u) " F(u,y(u))d ey /tl( 1)V (u, y(u))d

" y—1 1 " -1
/0<t2—u> Pl y(w)du+ 5 / (b2 — )™ F(u, y(u))du

1 1 i . ! —w) P (u, y(u))du
by [ = @) s [0

" -l —L 1u— YR (u, y(u))du
iy ot Gy s [ ) Py

<

M 2l 2 vy _ _ ~
I‘(’y—i— 1) (t2 —t + (1 _t2) (1 tl) )

So, we get ||(Ty)(t2) — (Ty)(t1)|| — 0 as t2 — t1, thus, the operator T is equicon-
tinuous. The Arzela-Ascoli theorem guarantees that 7" is compact. O

Lemma 3.2. Assume that (Hy),(Hsz) hold. If y(t) is a solution of the fractional
5

boundary value problem (3.1), (3.2), then y(t) > Sp—

Proof. As we all know, the solution of the problem (3.1), (3.2) is a fixed point
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of the integral operator T, the conditions a,b > 0, a +b < 2, F: [0,1] x R —

20
[0,4+00), 0 < &,n <1 imply that y(t) > S —a_b =

20
Lemma 3.3. Assume that there exists a constant M > Sy p— independent of
such that for A € [0,1], ||y|| # M, where y(t) satisfies
FODTy(t) = AF(t,y(t), te0,1], 0<y<1,
y(0) —ay(§) =0, y(1) —by(n) =o.

Then problem (3.4)1 has at least one solution y(t) with ||y| < M, where (3.4)1
denotes the problem of (3.4) when A = 1.

Proof. For any A € [0,1], define T : X — X by

(3.4)

20 a

Thy(t) =
w(t) 2—a—b+(2—a—b

3
)T(7) U (€ = u) " AF (u,y(u))du

+ /g (= € AP (u (o)

b o
e el KU TR

1 _
" / (u— )" AF (u, y(u))du

t 1
+ﬁ /O (t — w) = AP (u, y(u))du + ﬁ /t (1 — 1)~ NF (u, y(u))du.
Hence, the solution y(t) of (3.4) is nothing but the fixed point of T}, i.e., y(t) =
Ty y(t). From Lemma 3.1, T is completely continuous. Let Q = {y € X : |ly|| < M}
is an open set in F. Suppose that there exists y € 9 such that Ty = y, then y(t)
is a solution of (3.4); with ||ly|| < M. So the proof is completed. Otherwise, for any
y e, Ty #y. If A\=0, for y € 09,

20 26

e — f =M>——:.
5 70 for [yl e S—

(I = To)y(t) = y(t) — Toy(t) = y(t) = 5—

For A € (0,1), if the fractional boundary value problem (3.4) has a solution y(t),
then we get ||y|| # M, which is a contradiction to y € 99Q. So, for any y € 9
and X € [0,1], Thy # y. By the homotopy invariance of Leray-Schauder degree, we
obtain

Deg{I —T1,9Q,0} = Deg{I — Tp,2,0} = 1.

Therefore, we deduce that 77 has a fixed point y €  which is a solution y(t) with

llyll < M of the problem (3.4);. The proof is completed. O
Let
a ¢ ~y—1 ! ~y—1
00 = = ey, € emtwau+ | o ]
b ! — )" Ly (u)du uw—n)"" o (u)du
i L 00 et [ o]

1 ' y—1 L ' — ) o0 (w)du
+W/O(t—u) wM(u)du—l-F(’y)/t (1 — 1) s () du.
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Theorem 3.1. Assume that (Hy), (Ha) hold. In addition, the following conditions
hold:

(Hs) for each K > 0, there exists a function wx which is continuous on [0,1]
and positive on (0,1) satisfying f(t,y) > wk(t) on (0,1) x (0, KJ;

(Hy) for each 6 > 0, there exist nonnegative continuous function p(t) and non-
negative nondecreasing continuous function ¥ (y) such that 0 < f(t,y) < ()Y (y)
for (t,y) € [07 1] X [ijfbvoo);

(Hs) there exists M > 0 such that

(a[@ + 1=+ +A—n)]+2(2—-a—b)
2—a-bT(v+1)

where ¢* = sup{¢(t) : t € [0,1]}. Then the singular fractional boundary value
problem (1.2) (1.3) has a positive solution y(t) with ||y|| < M.

>¢*¢(Af)<iﬂﬂ

*

Proof. From (Hs), we select M > 0 and 0 < € < M such that
(e Qe =] 2t2

2—a—-bIl(y+1) )‘P*w(M)—F& <M. (3.5)

Choose ng € {1,2,3,- - -} to satisfy < ¢, let Ng = {ng,no + 1,10 +
no

2
(2—a-0)
2,n9+3, -}
In the following, we demonstrate the following problem
CODTy(t) = f(ty(1), te[0,1], 0<y<1,
y(0) —ay(§) = . y(1) —by(n) = 5

has a solution for each m € Ny.
For the sake of getting a solution of the problem (3.6) for each m € Ny, we study
the following problem

(3.6)

FODTy(t) = f*(t.y(t), te0,1], 0<y<1,

(3.7)
y(0) —ay(&) = o, y(1) —by(n) = 5,
where )
P ltg) = f(ty), ) y2m7
f(t’im@—a—b))’ y<7m(2_a_b).

Obviously, f* € C([0,1] x R,[0,+0c0)). In order to obtain a solution of problem
(3.7)for each m € Ny, we discuss the following family of problems

(I)%CDiyy(t):)‘f*(tvy(t)% te [Oal]a 0<y<1,

y(0) —ay(€) = L, y(1) —by(n) = L.

For VA € [0,1], we claim that any solution y(t) of (3.8) must satisfy |ly|| # M.
Otherwise, for some A € [0,1], let y(¢) be a solution of (3.8) such that ||y|| = M.
From Lemma 3.2,

(3.8)

y(t) > —— for t€]0,1]. (3.9)
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By (3.9) and (H,), we have

M =|ly]|

2 a ¢ y—1 *
Sm(2 —a—>b) + 2—a-bIl(y) {/0 (& —u) " A" (u, y(u))du

+ /;(u - S)”_lkf*(%y(U))dU}

b ! v—1 *
e | -0

" / A, y(u))du}

i ' _u’Y*]- *(u u U i lu_ ~y—1 *(u ” ”
+F(7)/0(t YN (u, y(w))d +F(7)/t( £)TINS* (u, y(u))d

2 a 3 .
Sno(2—a—b) + (2=a—bI(v) {/o (€ —u) """ fu,y(u))du

" /£ - y(u))du}

’ ! 71 1 — )" (u, y(u))du
+(2ab)r(7){/0 (n—u) f(u,y(u))duﬂL/n(u n)" f(u,y(u))d

1 t V1 L 1 .
+W/O (t—u) f(u,y(u))du—i—r(,y)/t (u—t)"" f(u, y(u))du.

a

< ‘ V-1 d
4 e | € 0 s

+ /:(u - 6)”‘1¢(U)¢(y(U))dU]

b K Y1
et R e O

" / S n>“s0<u>w<y<u>>du}

1 t Y1 1 1 .
O] /O (t—u) <p(u)w(y(u))du+W /t (u— )" () (y(u))du

= <(2 —a = b)T () H +E _qu T E b () m + 4 _vm
T e R
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<e+ (a[f” +A =+ + (A=) +2(2—a-b)

2—a—_bl(y+1) )“‘J*w(M)‘

Thus,

alf* + (A - +bn"+ (A —n)]+2(2—-a—b)
(2—a—-b(y+1)

M=yl <=+ ( Jeutan <t

This is a contradiction. So the claim is proved. Thus from Lemma 3.3, we have
(3.7) has at least a solution y™(t) with ||y™(¢)|| < M for any fixed m. Lemma
3.2 guarantees y™(t) > 2 —a=b)’ so f*(t,y™(t)) = f(t,y™(t)). Consequently,

y™(t) is a solution of the fractional boundary value problem (3.6).
Next, we claim that y™(¢) has a uniform sharper lower bound, i.e., there exists
a function O(¢) which is continuous on [0, 1] and positive on (0, 1) such that

y"(t) = e(t), te[0,1]

for all m € Ny. Considering 0 < < y™(t) < M. (Hs) guarantees there
m

2
(2—a—0)
exists a continuous function wys : (0,1) — (0, +00) satisfying

fty™ (1) 2 wn(t), te(0,1).

So, we have

V0 = g | €0
. S €7 uy™ (w)du
e | 0 e )
v/ S )]
+ ﬁ /Ot(t —u)" 7 f (u, y™ () du + ﬁ /tl(u — )7 (u,y™ (w))du
zm [ / (6w wns (w)du + /5 S s)vlwmu)du]
t i | [, - 0 e+ / o W sl
+ ﬁ /Ot(t —u)"  wpy (u)du + ﬁ /tl(u — )7 war (u)du.

Thus, we have for any m € Ny,
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For t,7 € [0,1],7 < t, we can get

ly™ (t) — y™ (7]

! t 71 ™ (u U L ' u — y—1 w. ™ (u "
:‘w/o<f—U> flu,y™ (w)d +m)/t< 67 (uy™ (w)d

! ' 71 m L 1u—7'“*71 w, y"™ (u))du
~ 5 | T e e = s [ =y )

e [l ()
w5 [ =0 e s [0 )

S ‘

L g () — = [ () () e
*’m)/t(u—t) f (g™ (u)))d rm/r( ) (y™ (u))d

1 T y—1 m 1 ' _u’y—l w, Y™™ (u u
:‘F(’Y)/o (t—u) " flu,y (u))du+Fm/T(t )Y f (s y™ (u)d
1 T »Y_l m
o / (7 — u) ™ (5™ (u))du

1 ' y—1 ™ ufi tu7T771 w ™ (u)) du
*‘r(v)/t(“” F(uy™ (w)d rm/f )y (w))d

- [
g‘ o [ = - w0 sy
tles [ (¢ — ) ™ )
e | 1 =07 = = st )
tees | (= ™ ()
<reren t”—(t—WT)V—T’V Nl wm‘“jw
* P(lv)(p*w(M)'(l_t)v_(l _VT)VHt_T)W i 1“(17) MM)‘U _77')7
Therefore,

ly™(t) —y™ ()| =0, [t—7]—=0.

So, we have {y"(t)}men, is equicontinuous on [0,1]. On the other hand, 0 <
y™(t) < M implies that {y™(t)}men, is uniformly bounded on [0,1]. Using the
Arzela-Ascoli Theorem, there is a subsequence N; C Ny and a function y(t), be-
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sides {y™(t)}men, converges uniformly on [0, 1] to y(t). For

a 13
O = e L, € e

o f S 7wy (w)du]

b

s K 7’[1,’\/71 w mu "
+(2—a—b)r(7)[/0(’7 ) f (s y™ (u)d

o f ) a )]

1 ' y—1 m L ! w— y—1 w ™ (u "
+W/o (t—u)" flu,y (u))du+F(7)/t( £ f (u, y™( )z)d ,)
3.10

let m — +o0 in (3.10), considering the Lebegue’s dominated convergence theorem,
we get

“Te o [ / (€ — ) Flu y(u))du + /E S s>“f<u,y<u>>du}

o e [ [ o= 0 syt + / Sy y(u))du]

: t i b 1 — )" (u, y(u)))du
s [ =0 )dus s [ )

which implies that

FODYy(t) = ft,y(t), tel0,1], 0<vy<1,
y(0) = ay(§), y(1) = by(n),

this combing with 0 < ||y|| < M implies that y(t) is a positive solution of the singular

fractional boundary value problem with Riesz-Caputo derivative (1.2),(1.3). O
4. Example
Example 4.1. Consider the following BVP:
RCD2y(t) = f(ty(), telo,1 41
0 1y() f(ay())v 6[7}7 ()
1 1 1
— (= 1) = —y(= 4.
where
1
y§
ty) = —2——.
f(t,y) 1+ ey

Then the fractional boundary value problem (4.1), (4.2) has at least one positive
solution.
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Proof. Herea=1>0,b=1>0,a+b=2<2¢(=31n=1y=1
(Hs) for each positive constant K,
) QR LA (1) on (0,1)  (0,K]
b = - =w on ) ) ;
Vo lvey = treyrd K
1
(Hy) for each positive constant ¢, let ¢(t) = T et W(y) = y3 %‘3’”, Obviously,
e

0 < f(t,y) < p(t)(y), for (t,y) € [0,1] x [327,00), 0" = 3, (M) = M5 252,

(Hs) D(y+1) =T(3) ~ 0.88, & =(3)7 =05 (1= =(§)* =152, o =
(3)2 =0.707, (1—n)Y =(3)2 =0.707, thus

*

1[

al{" + (1 =+ +(1—n)"]+2(2—a-b)
2—a-bT(y+1)

~ 6.937,

for each positive constant §, we can always choose the appropriate M > 0 to satisfy
895T4(M) < M. According to Theorem 3.1, BVP (4.1), (4.2) has at least one
positive solution on [0, 1]. O
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