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Abstract This paper characterizes a facultative mutualism model with feed-
back controls by using delayed stochastic differential equations, in which each
interspecific mutualism term contains saturation effects and distributed delays
with strong kernels. Firstly, we transform the stochastic facultative mutual-
ism model with strong kernels into an equivalent eight-dimensional stochastic
model by a linear chain technique. After that, sufficient criteria for partial per-
manence of both species and the existence of a unique stationary distribution
are established, respectively. Finally, illustrative examples and corresponding
numerical simulations are carried out to support our theoretical results.

Keywords Delayed stochastic mutualism model, feedback controls, partial
permanence, stationary distribution.

MSC(2010) 92D25, 60H10.

1. Introduction

As a ubiquitous phenomenon in nature, mutualism is a biological interaction be-
tween two/many species that benefits both/each other [35]. Practical examples
of mutualism are various, including associations between pollinators and flower-
ing plants [16, 42], seed dispersers and plants [33, 34], sea anemones and anemone
fishes [30,37], sphagnum and cyanobacteria [2,5]. By degree of dependence between
species, mutualism may be classified as obligate or facultative, where a facultative
mutualist is one which benefits in some way from the interactions with another
species but can also survive on its own [36]. In the past few decades, starting from
the classical Lotka-Volterra models [27, 43], many population models have been
proposed to describe facultative mutualist interactions [26, 31, 32, 40]. Note that
Qi et al. [38] recently introduced the following two-species facultative mutualism
model with saturation effects which was motivated from a corresponding competi-
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tive model proposed by Gopalsamy [11]
dz1(t) = z1(t)[r1 − µ1z1(t) +

α1z2(t)

1 + z2(t)
]dt,

dz2(t) = z2(t)[r2 − µ2z2(t) +
α2z1(t)

1 + z1(t)
]dt,

(1.1)

where the biological significance of the variable zi(t) and the parameters µi, ri, αi
can be found in Table 1, and all parameters are positive constants. The nonlinear
term α1z1/(1+z1) (or α2z2/(1+z2)) has a saturation value α1 (or α2) for sufficiently
large z1 (or z2), because in the real world, finite resources lead to the fact that as
the increase of one cooperator’s density, its cooperative capacity does not tend to
infinity and may be upper-bounded (see [22,38]).

Table 1. The biological significance of variables and parameters of models (1.1) and (1.2).

Natations Biological meanings

zi(t) The number of individual species i at time t (i = 1, 2)

ri The intrinsic growth rates

µi The intraspecific competition rates

αi The interspecific mutualism rates

ui(t) The ‘indirect control’ variables

ki The suppression rates of control variables ui to species zi

mi The inhibition rates of control variables ui

ni The controllable rates

It is worth noting that many species are at risk of extinction due to over-fishing
by humans. One of the important issues facing humans is how to regulate the
ecosystem rationally and protect the endangered species to ensure the sustainable
development of the ecosystem. Xiao et al. [44] showed that searching for certain
schemes (such as harvesting or culling procedures) to save species from extinction
would allow species to reach a desired state. To this end, feedback control variables
(or ‘indirect control’ variables [1,21]) are introduced into biomathematical modeling
to describe such certain schemes [12,13,44]. Later, this novel idea has been further
investigated in some more complex mutualism models [7, 14, 46]. Obviously, with
the idea of feedback controls, we can establish a new model based on model (1.1)

dz1(t) = z1(t)[r1 − µ1z1(t) +
α1z2(t)

1 + z2(t)
− k1u1(t)]dt,

dz2(t) = z2(t)[r2 − µ2z2(t) +
α2z1(t)

1 + z1(t)
− k2u2(t)]dt,

du1(t) = (−m1u1(t) + n1z1(t))dt,

du2(t) = (−m2u2(t) + n2z2(t))dt,

(1.2)

where the biological significance of ui(t), ki,mi and ni is listed in Table 1.
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Furthermore, for a realistic situation, the present state of species may be affected
by the cumulative effects of past history. Hence, it is natural to introduce the
distributed delays into biomathematical modeling [6,8,18,20,25]. For the distributed
delay, one typical form of the kernel can be chosen as a Gamma distribution delay
kernel [28]. The mathematical expression of the kernel is governed by G(t) =
thωh+1e−ωt

h! , where ω is a positive constant standing for the decay rate of past memory
effect, and h is a nonnegative integer. In particular, the strong kernel case G(t) =
tω2e−ωt implies that the maximum effect on growth rate response at any time comes
from species density at the previous time (see [38, 39]). Recalling model (1.2), we
incorporate distributed delays with strong kernels into model (1.2) and obtain



dz1(t) = z1(t)[r1 − µ1z1(t) + α1

∫ t

−∞

(t− s)ω2
2e
−ω2(t−s)z2(s)

1 + z2(s)
ds− k1u1(t)]dt,

dz2(t) = z2(t)[r2 − µ2z2(t) + α2

∫ t

−∞

(t− s)ω2
1e
−ω1(t−s)z1(s)

1 + z1(s)
ds− k2u2(t)]dt,

du1(t) = (−m1u1(t) + n1z1(t))dt,

du2(t) = (−m2u2(t) + n2z2(t))dt.

(1.3)

However, most species growth phenomena in the real world are not simply de-
terministic and are often influenced by environmental noises, it is more rational
to construct stochastic models than deterministic models that are fully determined
by the parameter values and the initial conditions. Since random perturbations are
ubiquitous, May [32] pointed out that the growth rates in population models should
be stochastic in his big book, and this topic has been extensively developed and
studied in some mutualism models [17, 23, 38, 47]. Along with this idea, we adopt
the perturbation approach used by [15, 38] to introduce two coupling noises, and
assume that the intrinsic growth rates of each species in model (1.3) are stochasti-
cally perturbed with ri → ri + βi1dW1(t) + βi2dW2(t) (i = 1, 2). Then a delayed
stochastic facultative mutualism model with feedback controls is derived as follows

dz1(t) = z1(t)[r1 − µ1z1(t) + α1

∫ t

−∞

(t− s)ω2
2e
−ω2(t−s)z2(s)

1 + z2(s)
ds− k1u1(t)]dt

+
∑2
i=1 β1iz1(t)dWi(t),

dz2(t) = z2(t)[r2 − µ2z2(t) + α2

∫ t

−∞

(t− s)ω2
1e
−ω1(t−s)z1(s)

1 + z1(s)
ds− k2u2(t)]dt

+
∑2
i=1 β2iz2(t)dWi(t),

du1(t) = (−m1u1(t) + n1z1(t))dt,

du2(t) = (−m2u2(t) + n2z2(t))dt,

(1.4)
where Wi(t) (i = 1, 2) are considered to be standard and mutually independent
Brownian motions defined on this probability space (Ω,F , {F}t≥0,P) obeying the
usual conditions, and β2

ij (i, j = 1, 2) are the intensities of white noises.
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Assign

fi(t) =

∫ t

−∞
(t− s)ω2

i e
−ωi(t−s) zi(s)

1 + zi(s)
ds, vi(t) =

∫ t

−∞
ωie
−ωi(t−s) zi(s)

1 + zi(s)
ds.

(1.5)

Next, similar to [10, 28,38], with the help of chain techniques we can transform
the above stochastic model (1.4) with strong kernel delays into a undelayed eight-
dimensional model

dz1(t) = z1(t)[r1 − µ1z1(t) + α1f2(t)− k1u1(t)]dt+

2∑
i=1

β1iz1(t)dWi(t),

dz2(t) = z2(t)[r2 − µ2z2(t) + α2f1(t)− k2u2(t)]dt+

2∑
i=1

β2iz2(t)dWi(t),

df1(t) = ω1(v1(t)− f1(t))dt,

df2(t) = ω2(v2(t)− f2(t))dt,

dv1(t) = ω1(
z1(t)

1 + z1(t)
− v1(t))dt,

dv2(t) = ω2(
z2(t)

1 + z2(t)
− v2(t))dt,

du1(t) = (−m1u1(t) + n1z1(t))dt,

du2(t) = (−m2u2(t) + n2z2(t))dt.

(1.6)

Similar to [41], we understand that the relationship between models (1.4) and
(1.6) is so-called equivalence from the following explanation: If (z1(t), z2(t), u1(t),
u2(t)) ∈ R4

+ is the solution of model (1.4) corresponding to continuous and bounded
initial function (ϕ1(t), ϕ2(t), ψ1(t), ψ2(t)) : (−∞, 0] → R4, then (z1(t), z2(t), f1(t),
f2(t), v1(t), v2(t), u1(t), u2(t)) ∈ R8

+ is a solution of model (1.6) with zi(0) = ϕi(0),
ui(0) = ψi(0), and

fi(0) = −
∫ 0

−∞
sω2

i e
ωis

ϕi(s)

1 + ϕi(s)
ds, vi(0) =

∫ 0

−∞
ωie

ωis
ϕi(s)

1 + ϕi(s)
ds.

Conversely, if (z1(t), z2(t), f1(t), f2(t), v1(t), v2(t), u1(t), u2(t)) is any solution of
model (1.6) defined on entire real line and bounded on (−∞, 0], then fi(t) and
vi(t) are given by (1.5), and so (z1(t), z2(t), u1(t), u2(t)) satisfies (1.4).

Due to the relationship between the solutions to models (1.4) and (1.6), then
we have focus on model (1.6) in the subsequent sections. As a continuation of
previous work [38], this paper aims to investigate the role of feedback controls and
noise perturbations on partial permanence and stationary distribution. The present
investigation is organized as follows. Two necessary lemmas and some notations are
provided in Section 2. Sufficient conditions for partial permanence of both species
are established in Section 3. Section 4 discusses the existence of a unique stationary
distribution. Some numerical examples and their corresponding simulation figures
are given in Section 5. A brief discussion section comes to the end of the paper.



Stochastic mutualism model with feedback controls 661

2. Fundamental preliminaries

For the convenience of subsequent proofs, we list below some notations and lemmas.

Let Rd+ = {x ∈ Rd : xi > 0, 1 ≤ i ≤ d}. For the continuous and bounded

function g(t) on [0,+∞), we define 〈g(t)〉 = t−1
∫ t

0
g(s)ds, g∗ = lim inft→+∞ g(t),

and g∗ = lim supt→+∞ g(t).

Lemma 2.1 ( [38]). For all t > 0, we have fi(t) ≤ 1, vi(t) ≤ 1 and limt→∞ fi(t)/t =
limt→∞ vi(t)/t = 0, i = 1, 2.

Lemma 2.2. For any initial value Z(0) = (z1(0), z2(0), f1(0), f2(0), v1(0), v2(0),
u1(0), u2(0)) ∈ R8

+, there exists a unique solution Z(t) = (z1(t), z2(t), f1(t), f2(t),
v1(t), v2(t), u1(t), u2(t)) to model (1.6) for all t ≥ 0 and Z(t) remains in R8

+ with
probability one.

The proof of Lemma 2.2 is postponed to Appendix A.

3. Partial permanence

This section is devoted to establishing partial permanence of both species, and
detailed proofs are listed in Appendix B.

Assign

δi = (β2
i1 + β2

i2)/2, λi = (miµi − kini)(ri − δi)/(miµi), i = 1, 2.

Theorem 3.1. Suppose that r2− δ2 +α2 < 0, r1− δ1 > 0 and λ1 > 0, then species
z2 is exponentially extinct (denoted by EE) while species z1 is permanent in time
average (denoted by PTA) and λ1/µ1 ≤ 〈z1(t)〉∗ ≤ 〈z1(t)〉∗ ≤ (r1 − δ1)/µ1 a.s.

Theorem 3.2. If r1 − δ1 + α1 < 0, r2 − δ2 > 0 and λ2 > 0, then species z1 is EE
while species z2 is PTA and λ2/µ2 ≤ 〈z2(t)〉∗ ≤ 〈z2(t)〉∗ ≤ (r2 − δ2)/µ2 a.s.

4. Stationary distribution

For model (1.6), this section explores the existence of a unique stationary distribu-
tion by using the theory of Has’minskill [19]. Three assumptions and preliminary
Lemmas 4.1-4.3 are needed later and listed in the following.

Assumption (H1). m1 > n1, m2 > n2.

Assumption (H2). ζi = ri − αi − ki − δi > 0, i = 1, 2.

Assumption (H3). (µi+αi−ki)/ξ > 0, where ξ = µ1µ2+k1k2−µ1k2−µ2k1−α1α2.

Consider the following integral equation

X(t) = X(t0) +

∫ t

t0

b(s,X(s))ds+

k∑
l=1

∫ t

t0

%l(s,X(s))dBl(s). (4.1)

Lemma 4.1 ( [19]). Let the vectors b(s, x), %1(s, x), . . . , %k(s, x) be continuous func-
tions of (s, x) and the coefficients of Eq. (4.1) are independent of t, such that the
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following conditions are satisfied on OR ∈ Rd+ for every R > 0

|b(s, x1)− b(s, x2)|+
k∑
l=1

|%l(s, x1)− %l(s, x2)| ≤ D|x1 − x2|,

|b(s, x)|+
k∑
l=1

|%l(s, x)| ≤ D(1 + |x|),
(4.2)

where D is a constant. Furthermore, there exists a twice continuously differentiable
C2− function V (x) in Rd+ satisfying LV (x) ≤ −1 outside some compact set. Then
Eq. (4.1) admits a solution, which is a stationary distribution.

Remark 4.1 ( [47]). The condition (4.2) of Lemma 4.1 can be replaced by the
global existence of the solution to Eq. (4.1) in view of Remark 5 of Xu et al. [45].

Lemma 4.2. If Assumption (H1) holds and let Z(t) be a solution to model (1.6)
with initial condition Z(0) > 0, then there exists a constant Kq > 0 such that for
any q > 0, E[zqi ] ≤ Kq,E[fqi ] ≤ Kq,E[vqi ] ≤ Kq,E[uqi ] ≤ Kq, i = 1, 2.

Lemma 4.3. Suppose Z(t) = (z1(t), z2(t), f1(t), f2(t), v1(t), v2(t), u1(t), u2(t)) is a
solution of model (1.6) with Z(0) ∈ R8

+. Then almost every path Z(t) of model (1.6)
is uniformly continuous on t ≥ 0.

Theorem 4.1. If Assumptions (H1)-(H3) hold, there exists a positive solution Z(t)
of model (1.6) which is a stationary Markov process. Moreover, this solution is
globally attractive. That is, model (1.6) has a unique stationary distribution.

The proofs of Lemmas 4.2-4.3 and Theorem 4.1 are presented in Appendices
C-E.

5. Illustrative examples and simulations

In the previous sections, we have presented the main results (Theorems 3.1, 3.2
and 4.1) of model (1.6). To further support our analytical results, we will perform
numerical simulations by using MATLAB.

Since the present study is not a case study, there is no real data available, and
hence the parameters of model (1.6) are estimated data. We first fix the initial value
(z1(0), z2(0), f1(0), f2(0), v1(0), v2(0), u1(0), u2(0)) = (0.13, 0.22, 0.16, 0.15, 0.21,
0.12, 0.18, 0.14) and partial parameter values (see Table 2). The noise intensities
β2
ij (i, j = 1, 2) and the suppression rates ki (i = 1, 2) are varied to verify the

analytical results.

Table 2. Parameter values used in model (1.6).

Parameters r1 r2 µ1 µ2 α1 α2 ω1 ω2 m1 m2 n1 n2

Values 0.48 0.59 0.57 0.68 0.15 0.13 0.17 0.27 4.1 4.5 3.2 3.5

Example 5.1. To visually analyze the role of noise intensities β2
ij and suppression

rates ki (i.e., the suppression intensities of the feedback control variables ui to
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species zi) on the partial permanence of both species, we will discuss two cases.

Case 1. For species z1, we choose relatively small suppression rates (k1 = 0.08, k2 =
0.09) and noise intensities (β2

11 = 0.0372, β2
12 = 0.0422) while for species z2, choose

relatively large suppression rates (k1 = 0.31, k2 = 0.29) and noise intensities (β2
21 =

0.842, β2
22 = 0.872). A calculation shows that r1 − δ1 = 0.4784 > 0, λ1 = 0.426 > 0

and r2 − δ2 + α2 = −0.0112 < 0. It follows from Theorem 3.1 that species z1 is
PTA while z2 is EE (see Figure 1).
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Figure 1. (a) Permanence in time average of species z1; (b) Exponential extinction of species z2.

Case 2. In contrast to Case 1, large suppression rates (k1 = 0.31, k2 = 0.29)
and noise intensities (β2

11 = 0.822, β2
12 = 0.852) are chosen for species z1 while

relatively small suppression rates (k1 = 0.08, k2 = 0.09) and noise intensities (β2
21 =

0.0322, β2
22 = 0.0462) are designed for species z2, then r1 − δ1 + α1 = −0.0674 <

0, r2 − δ2 = 0.5884 > 0 and λ2 = 0.5279 > 0. By Theorem 3.2 we can obtain that
species z1 is EE while z2 is PTA (see Figure 2).
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Figure 2. (a) Exponential extinction of species z1; (b) Permanence in time average of species z2.

Example 5.2. We fix a set of suitably small noise intensities (β2
11 = 0.0372, β2

12 =
0.0422, β2

21 = 0.0322, β2
22 = 0.0462) and vary suppression rates ki to simulate the
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stationary distribution of model (1.6). This example will be performed by the
following two cases.

Case 1
′
. When we select small suppression rates k1 = 0.08, k2 = 0.09, a direct

calculation shows that ζ1 = 0.2484 > 0, ζ2 = 0.3684 > 0, (µ1 + α1 − k1)/ξ =
2.3739 > 0, and (µ2 + α2 − k2)/ξ = 2.6706 > 0 and then Theorem 4.1 holds. So
model (1.6) has a unique stationary distribution (see Figure 3).

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

z
1
(t) at time 500

0

5

10

15

re
la

ti
v
e 

fr
eq

u
en

cy
 d

en
si

ty

Frequncy histogram
The PDF of z

1
(t)

0.5 0.6 0.7 0.8 0.9 1 1.1

z
2
(t) at time 500

0

5

10

15

re
la

ti
v
e 

fr
eq

u
en

cy
 d

en
si

ty

Frequncy histogram
The PDF of z

2
(t)

(a) (b)

Figure 3. (a)-(b) Frequency histograms of species z1 and z2, the curves are the probability density
function (PDF) of species z1 and z2 when k1 = 0.08, k2 = 0.09.

Case 2
′
. We choose relatively large suppression rates k1 = 0.31, k2 = 0.29 cam-

paried with Case 1
′
, we get ζ1 = 0.0184 > 0, ζ2 = 0.1684 > 0, (µ1 + α1 − k1)/ξ =

5.0061 > 0, and (µ2 + α2 − k2)/ξ = 6.3492 > 0. It follows from Theorem 4.1 that
model (1.6) owns a unique stationary distribution and the level of this distribution
is smaller than that of in Case 1

′
(see Figure 4).
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Figure 4. (a)-(b) Frequency histograms of species z1 and z2, the curves are the probability density
function (PDF) of species z1 and z2 when k1 = 0.31, k2 = 0.29.
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6. Discussions

This section is concerned with the biological discussions of model (1.6). Let us recall
Theorems 3.1-4.1 and corresponding numerical examples, we can find the following
interesting facts:

• It follows from the conditions (ri−δi > 0) of Theorem 3.1 (or Theorem 3.2) that
relatively small noise intensities are helpful to PTA (permanence in time average) of
species zi. At the same time, the conditions λi = [1−kini/(miµi)](ri−δi) > 0 show
that relatively small ki (i.e., the suppression rates of feedback control variables ui
to species zi) are also important. However, the conditions ri − δi + αi < 0 indicate
that the other species zj(i 6= j) will be exponentially extinct when noise intensities
are relatively large. The above results are also verified by Figures 1 and 2.

• It follows from the conditions ri −αi − ki − δi > 0 and (µi +αi − ki)/ξ > 0 of
Theorem 4.1 that relatively small noise intensities and suppression rates are helpful
for the existence of the unique stationary distribution. Moreover, comparing Figure
3 (a) and Figure 4 (a) (or comparing Figure 3 (b) and Figure 4 (b)), we observe
that if suppression rates are smaller, then the distribution level of species will be
larger when other parameters are unchanged. Especially, letting ki → 0, then
ri − αi − ki − δi > 0 are approximate to ri − αi − δi > 0 and (µi + αi − ki)/ξ >
0, ξ = µ1µ2 + k1k2 − µ1k2 − µ2k1 − α1α2 becomes α1α2 < µ1µ2. These degenerate
results are same as those in Theorem 4.1 in [38]. Also, we can conclude from the
inequality α1α2 < µ1µ2 that the influence of interspecific mutualism is weaker than
intraspecific competition.

Taking notice of the interesting experiment that parameter values of model may
follow Gamma distribution (see an insightful work in Ref. [9]), we will try to consider
a similar topic in the future.
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Appendices

A. The proof of Lemma 2.2

Proof. We construct a C2−function V1 : R8
+ → R+ in such a way that

V1(Z(t)) =

2∑
i=1

(zi − 1− ln zi + fi − 1− ln fi + vi − 1− ln vi + ui − 1− lnui +
kiui
mi

).

Note that V1(Z(t)) is a nonnegative function and it can be verified from the fact
0 ≤ x− 1− lnx for any x > 0. Applying Itô’s formula to V1(Z(t)), one derives that

dV1(Z(t)) = LV1(Z(t))dt+

2∑
i=1

(β1iz1dWi − β1idWi + β2iz2dWi − β2idWi),
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where LV1(Z(t)) is given by

LV1(Z(t)) = −µ1z
2
1 − µ2z

2
2 + α1f2z1 + α2f1z2 + r1z1 + r2z2 + µ1z1 + µ2z2

+ 2ω1 + 2ω2 + n1z1 + n2z2 +m1 +m2 − r1 − r2 − α1f2 − α2f1

− ω1f1 − ω2f2 −m1u1 −m2u2 − k1u1z1 − k2u2z2 −
ω1v1

f1

− ω2v2

f2
− ω1z1

v1(1 + z1)
− ω2z2

v2(1 + z2)
− n1z1

u1
− n2z2

u2
+

ω1z1

1 + z1

+
ω2z2

1 + z2
+
β2

11 + β2
12

2
+
β2

21 + β2
22

2
+
k2n2z2

m2
+
k1n1z1

m1

≤ λ+ 3ω1 + 3ω2 +m1 +m2 +
β2

11 + β2
12

2
+
β2

21 + β2
22

2
,

and

λ = r1z1 + r2z2 − µ1z
2
1 − µ2z

2
2 + α1f2z1 + α2f1z2 + µ1z1 + µ2z2

+ n1z1 + n2z2 +
k1n1z1

m1
+
k2n2z2

m2
.

We can know from Lemma 2.1 that f1 ≤ 1 and f2 ≤ 1, and then λ is bounded when
z1, z2 ∈ (0,+∞). Therefore, LV1(Z(t)) is upper bounded. The rest proof is similar
to that of Theorem 2.1 in [3] and hence we omit it.

B. The proofs of Theorems 3.1 and 3.2

B.1. The proof of Theorem 3.1

Proof. We first give the species z2 is EE (exponentially extinct). Using Itô’s
formula to the first two equations of model (1.6), one has

d ln zi(t) = (ri− δi−µizi(t) +αifj(t)−kiui(t))dt+
2∑
j=1

βijdWj(t), i, j = 1, 2, i 6= j.

(B.1)
An integration from 0 to t on both sides of (B.1) leads to

ln
zi(t)

zi(0)
= (ri − δi)t− µi

∫ t

0

zi(s)ds+ αi

∫ t

0

fj(s)ds− ki
∫ t

0

ui(s)ds+

2∑
j=1

βijWj(t).

(B.2)
Dividing both sides of (B.2) by t and using Lemma 2.1, we have

t−1 ln
zi(t)

zi(0)
≤ ri − δi +αi − t−1µ1

∫ t

0

zi(s)ds− t−1ki

∫ t

0

ui(s)ds+ t−1
2∑
j=1

βijWj(t).

(B.3)
In light of the strong law of large numbers for local martingales [29] we obtain that
limt→+∞ t−1Wi(t) = 0, which together with (B.3) and the condition r2−δ2+α2 < 0
of Theorem 3.1 yields

lim sup
t→+∞

t−1 ln z2(t) ≤ r2 − δ2 + α2 < 0,
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which means that species z2 is EE. Furthermore, we have

lim
t→+∞

z2(t) = 0 a.s. (B.4)

Next, we show that the species z1 is PTA (permanent in time average). We
integrate the fourth and sixth equations of model (1.6) over the interval [0, t] and
obtain

f2(t)− f2(0) = ω2(

∫ t

0

v2(s)ds−
∫ t

0

f2(s)ds),

v2(t)− v2(0) = ω2(

∫ t

0

z2(s)

1 + z2(s)
ds−

∫ t

0

v2(s)ds).

Consequently,

lim
t→+∞

t−1f2(t)= lim
t→+∞

t−1f2(0) + ω2 lim
t→+∞

〈v2(t)〉 − ω2 lim
t→+∞

〈f2(t)〉,

lim
t→+∞

t−1v2(t)= lim
t→+∞

t−1v2(0) + ω2 lim
t→+∞

〈 z2(t)

1 + z2(t)
〉 − ω2 lim

t→+∞
〈v2(t)〉.

Additionally, a direct application of Lemma 2.1 shows limt→+∞ t−1f2(t) = 0 and
limt→+∞ t−1v2(t) = 0. And combining limt→+∞ t−1f2(0) = 0, limt→+∞ t−1v2(0) =
0, we get

lim
t→+∞

〈f2(t)〉 = lim
t→+∞

〈v2(t)〉 = lim
t→+∞

〈 z2(t)

1 + z2(t)
〉. (B.5)

According to (B.4), for a arbitrarily small ε > 0, choose T > 0 such that for t > T ,

0 < 〈 z2(t)

1 + z2(t)
〉 < ε

2α1

is satisfied, which together with (B.5) gives that

0 < 〈f2(t)〉 < ε/(2α1). (B.6)

Also, a sufficiently small ε > 0 satisfies −ε < t−1 ln z1(0) < ε/2. Accordingly, one
obtains from (B.2) that

ln z1(t) ≤ (r1 − δ1 + ε)t− µ1

∫ t

0

z1(s)ds+

2∑
i=1

β1iWi(t).

Since r1 − δ1 > 0, applying Lemma 4 in [24] leads to

〈z1(t)〉∗ ≤ (r1 − δ1)/µ1 a.s. (B.7)

Note that the seventh equation of model (1.6) implies

u1(t) = u1(0) exp{−m1t}+ exp{−m1t}n1

∫ t

0

exp{m1s}z1(s)ds. (B.8)

In view of (B.7) and (B.8), we have

〈u1(t)〉∗ ≤ n1(r1 − δ1)/(m1µ1) a.s. (B.9)
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Reusing −ε < t−1 ln z1(0) < ε/2, by substituting (B.6) and (B.9) into (B.2), we
derive

ln z1(t) ≥ [r1 − δ1 −
k1n1(r1 − δ1)

m1µ1
− ε]t− µ1

∫ t

0

z1(s)ds+

2∑
i=1

β1iWi(t)

= (λ1 − ε)t− µ1

∫ t

0

z1(s)ds+

2∑
i=1

β1iWi(t),

where λ1 = (m1µ1 − k1n1)(r1 − δ1)/(m1µ1). Since λ1 > 0, and ε > 0 is arbitrarily
small, it follows from Lemma 4 in [24] that

〈z1(t)〉∗ ≥ λ1/µ1 a.s. (B.10)

By combining (B.7) and (B.10) we can get

λ1/µ1 ≤ 〈z1(t)〉∗ ≤ 〈z1(t)〉∗ ≤ (r1 − δ1)/µ1 a.s.

This completes the proof.

B.2. The proof of Theorem 3.2

Proof. Similar to Theorem 3.1, Theorem 3.2 is valid and the details are omitted.

C. The proof of Lemma 4.2

Proof. Let

V2(Z(t)) =
zq1
q

+
zq2
q

+
µ1f

q+1
1

2ω1
+
µ2f

q+1
2

2ω2
+
µ1v

q+1
1

2ω1
+
µ2v

q+1
2

2ω2
+
µ1u

q+1
1

4n1
+
µ2u

q+1
2

4n2
.

(C.1)
In light of Itô’s formula, one gets

dV2(Z(t)) = zq−1
1 dz1 +

q − 1

2
zq−2

1 (dz1)2 + zq−1
2 dz2 +

q − 1

2
zq−2

2 (dz2)2

+
µ1(q + 1)

2ω1
fq1df1 +

µ2(q + 1)

2ω2
fq2df2 +

µ1(q + 1)

2ω1
vq1dv1

+
µ2(q + 1)

2ω2
vq2dv2 +

µ1(q + 1)

4n1
uq1du1 +

µ2(q + 1)

4n2
uq2du2

= LV2(Z(t))dt+ zq1

2∑
i=1

β1idWi(t) + zq2

2∑
i=1

β2idWi(t),

in which

LV2(Z(t)) =[r1 − µ1z1 + α1f2 − k1u1 +
q − 1

2
(β2

11 + β2
12)]zq1

+ [r2 − µ2z2 + α2f1 − k2u2 +
q − 1

2
(β2

21 + β2
22)]zq2

+
µ1(q + 1)

2
(v1f

q
1 − f

q+1
1 ) +

µ2(q + 1)

2
(v2f

q
2 − f

q+1
2 )



Stochastic mutualism model with feedback controls 669

+
µ1(q + 1)

2
(
z1v

q
1

1 + z1
− vq+1

1 ) +
µ2(q + 1)

2
(
z2v

q
2

1 + z2
− vq+1

2 )

+
µ1(q + 1)

4
(z1u

q
1 −

m1

n1
uq+1

1 ) +
µ2(q + 1)

4
(z2u

q
2 −

m2

n2
uq+1

2 ). (C.2)

In order to estimate (C.2), we use Young’s inequality to obtain that

µi(q + 1)

2
(vif

q
i − f

q+1
i )

≤ µi(q + 1)

2
[

1

q + 1
vq+1
i +

q

q + 1
fq+1
i − fq+1

i ]

=
µi
2
vq+1
i − µi

2
fq+1
i .

(C.3)

Using the same technique as (C.3), we have

µi(q + 1)

2
(
ziv

q
i

1 + zi
− vq+1

i )

≤ µi(q + 1)

2
[

1

q + 1
(

zi
1 + zi

)q+1 +
q

q + 1
vq+1
i − vq+1

i ]

≤ µi
2
zq+1
i − µi

2
vq+1
i .

(C.4)

Under Assumption (H1), we derive

µi
4

(q + 1)(ziu
q
i −

mi

ni
uq+1
i )

≤ µi
4

(q + 1)[
1

q + 1
zq+1
i +

q

q + 1
uq+1
i − mi

ni
uq+1
i ]

≤ µi
4

(q + 1)[
1

q + 1
zq+1
i +

qmi

(q + 1)ni
uq+1
i − mi

ni
uq+1
i ]

=
µi
4
zq+1
i − µimi

4ni
uq+1
i .

(C.5)

It follows from Lemma 2.1 that fi ≤ 1. By combining (C.3)-(C.5), one can derive
from (C.2) that

LV2(Z(t)) ≤ −µ1

4
zq+1

1 + [r1 + α1 +
q − 1

2
(β2

11 + β2
12)]zq1 −

µ1

2
fq+1

1 − µ1m1

4n1
uq+1

1

− µ2

4
zq+1

2 + [r2 + α2 +
q − 1

2
(β2

21 + β2
22)]zq2 −

µ2

2
fq+1

2 − µ2m2

4n2
uq+1

2 .

Choosing a positive constant η, we have

L[eηtV2(Z(t))] = ηeηtV2(Z(t)) + eηtLV2(Z(t))

≤ eηt{−µ1

4
zq+1

1 + [r1 + α1 +
q − 1

2
(β2

11 + β2
12) +

η

q
]zq1

+ (
µ1η

2ω1
− µ1

2
)fq+1

1 +
µ1η

2ω1
vq+1

1 + (
µ1η

4n1
− µ1m1

4n1
)uq+1

1

− µ2

4
zq+1

2 + [r2 + α2 +
q − 1

2
(β2

21 + β2
22) +

η

q
]zq2

+ (
µ2η

2ω2
− µ2

2
)fq+1

2 +
µ2η

2ω2
vq+1

2 + (
µ2η

4n2
− µ2m2

4n2
)uq+1

2 }.
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Suppose the above constant η is sufficiently small such that 0 < η < min{ωi,mi},
and note that µiηv

q+1
i /2ωi ≤ µiη/2ωi, one further gets

L(eηtV2(Z(t))) ≤ S1e
ηt, (C.6)

where

S1 = max
z1,z2∈R2

+

{−µ1

4
zq+1

1 + [r1 + α1 +
q − 1

2
(β2

11 + β2
12) +

η

q
]zq1 +

µ1η

2ω1

− µ2

4
zq+1

2 + [r2 + α2 +
q − 1

2
(β2

21 + β2
22) +

η

q
]zq2 +

µ2η

2ω2
}.

Integrating both sides of (C.6) from 0 to t and taking the expectation, we get

E[V2(Z(t))] ≤ V2(Z(0))e−ηt + S1/η, t ≥ 0.

Based on the continuity of V2(Z(t)) and the boundedness of V2(Z(0))e−ηt, we know
that there exists a positive constant S2 such that

E[V2(Z(t))] ≤ S2, t ≥ 0.

We further obtain from (C.1) that E[zqi /q] ≤ E[V2(Z(t))] ≤ S2, that is

E[zqi ] ≤ qS2, i = 1, 2.

Meanwhile, it follows from (C.1) that E[fq+1
i ] ≤ 2ωiS2/µi. Then applying the

Cauchy-Schwarz inequality [29], we obtain positive constants ρi such that

E[fqi ] ≤ ρiE[fq+1
i ]

q
q+1 ≤ ρi(2ωiS2/µi)

q
q+1 , i = 1, 2.

Similarly, there exist positive constants σi such that

E[vqi ] ≤ σi(2ωiS2/µi)
q

q+1 , i = 1, 2,

and provide positive constants γi such that

E[uqi ] ≤ γi(4niS2/µi)
q

q+1 , i = 1, 2.

To sum up, we let

Kq = max{qS2, ρi(2ωiS2/µi)
q

q+1 , σi(2ωiS2/µi)
q

q+1 , γi(4niS2/µi)
q

q+1 , i = 1, 2},

which confirms Lemma 4.2.

D. The proof of Lemma 4.3

Proof. Firstly, we consider z1(t). Integrating the first equation of model (1.6)
over the interval [t1, t2], one has

z1(t2)− z1(t1) =

∫ t2

t1

z1(s)(r1 − µ1z1(s) + α1f2(s)− k1u1(s))ds

+

2∑
i=1

β1i

∫ t2

t1

z1(s)dWi(s).
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Let q > 2, with the help of the inequality |a+ b+ c|q ≤ 3q−1(|a|q + |b|q + |c|q), we
have

E[|z1(t2)− z1(t1)|q] = E[|
∫ t2

t1

z1(s)(r1 − µ1z1(s) + α1f2(s)− k1u1(s))ds

+

∫ t2

t1

β11z1(s)dW1(s) +

∫ t2

t1

β12z1(s)dW2(s)|]

≤ 3q−1{E[|
∫ t2

t1

z1(s)(r1 − µ1z1(s) + α1f2(s)− k1u1(s))ds|q]

+ E[|
∫ t2

t1

β11z1(s)dW1(s)|q] + E[|
∫ t2

t1

β12z1(s)dW2(s)|q]}.

(D.1)
Recalling Lemma 4.2 and using Hölder inequality [29], we get

E[|
∫ t2

t1

z1(s)(r1 − µ1z1(s) + α1f2(s)− k1u1(s))ds|q]

≤E[|(
∫ t2

t1

1
q

q−1 ds)
q−1
q (

∫ t2

t1

z1(s)q(r1 − µ1z1(s) + α1f2(s)− k1u1(s))qds)
1
q |q]

≤(t2 − t1)q−1E[

∫ t2

t1

|z1(s)(r1 − µ1z1(s) + α1f2(s)− k1u1(s))|qds]

≤(t2 − t1)q−1

∫ t2

t1

1

2
(E[|z1(s)|2q] + E[|r1 − µ1z1(s) + α1f2(s)− k1u1(s)|2q])ds

(D.2)

≤(t2 − t1)q−1

∫ t2

t1

1

2
(E[|z1(s)|2q] + 42q−1(r2q

1 + µ2q
1 E[|z1(s)|2q] + α2q

1 E[|f2(s)|2q]

+ k2q
1 E[|u1(s)|2q]))ds

≤(t2 − t1)q−1

∫ t2

t1

1

2
[K2q + 42q−1(r2q

1 + µ2q
1 K2q + α2q

1 K2q + k2q
1 K2q)]ds

=
(t2 − t1)q

2
[K2q + 42q−1(r2q

1 + µ2q
1 K2q + α2q

1 K2q + k2q
1 K2q)].

Moreover, by Moment inequality for stochastic integral [29], one has

E[|
∫ t2

t1

β11z1(s)dW1(s)|q] + E[|
∫ t2

t1

β12z1(s)dW2(s)|q]

≤ (βq11 + βq12)(
q(q − 1)

2
)

q
2 (t2 − t1)

q−2
2

∫ t2

t1

E[|z1(s)|q]ds

= (βq11 + βq12)[
q(q − 1)

2
(t2 − t1)]

q
2Kq.

(D.3)

Then substituting (D.2) and (D.3) into (D.1), we can derive that

E[|z1(t2)− z1(t1)|q]

≤ 3q−1(t2 − t1)q

2
[K2q + 42q−1(r2q

1 + µ2q
1 K2q + α2q

1 K2q + k2q
1 K2q)]

+ 3q−1(βq11 + βq12)[
q(q − 1)

2
(t2 − t1)]

q
2Kq

= M1(t2 − t1)
q
2 ,

(D.4)
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where

M1 = 3q−1[
(t2 − t1)

q
2

2
(K2q + 42q−1(r2q

1 + µ2q
1 K2q + α2q

1 K2q + k2q
1 K2q))

+ (βq11 + βq12)(
q(q − 1)

2
)

q
2Kq].

Secondly, we consider f1(t). Integrating the third equation of model (1.6) from t1
to t2 leads to

f1(t2)− f1(t1) =

∫ t2

t1

ω1(v1(s)− f1(s))ds.

Similar to (D.2), it follows from Hölder inequality [29] and Lemma 4.2 that

E[|f1(t2)− f1(t1)|q]

≤E[|
∫ t2

t1

ω1(v1(s)− f1(s)ds)|q]

≤E[|(
∫ t2

t1

1
q

q−1 ds)
q−1
q (

∫ t2

t1

ωq1(v1(s)− f1(s))qds)
1
q |q] (D.5)

≤(t2 − t1)q−1

∫ t2

t1

E[|ω1(v1(s)− f1(s))|q]ds

≤(t2 − t1)q−1

∫ t2

t1

2q−1(ωq1E[|v1(s)|q] + ωq1E[|f1(s)|q])ds

≤M2(t2 − t1)
q
2 ,

where M2 = 2q(t2 − t1)
q
2ωq1Kq.

Thirdly, we consider v1(t). For any 0 ≤ t1 ≤ t2, a direct integration of the fifth
equation of model (1.6) shows

v1(t2)− v1(t1) =

∫ t2

t1

ω1(
z1(s)

1 + z1(s)
− f1(s))ds.

Similar to (D.5), one obtains

E[|v1(t2)− v1(t1)|q]

= E[|
∫ t2

t1

ω1(
z1(s)

1 + z1(s)
− v1(s))ds|q]

≤ E[|(
∫ t2

t1

1
q

q−1 ds)
q−1
q (

∫ t2

t1

ωq1(
z1(s)

1 + z1(s)
− v1(s))qds)

1
q |q]

≤ (t2 − t1)q−1

∫ t2

t1

E[|ω1(
z1(s)

1 + z1(s)
− v1(s))|q]ds

≤ (t2 − t1)q−1

∫ t2

t1

2q−1(ωq1E[| z1(s)

1 + z1(s)
|q] + ωq1E[|v1(s)|q])ds

≤ (t2 − t1)q−1

∫ t2

t1

2q−1(ωq1E[|z1(s)|q] + ωq1E[|v1(s)|q])ds

≤M2(t2 − t1)
q
2 .

(D.6)
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Finally, we consider u1(t). Integrating the seventh equation of model (1.6) over the
interval [t1, t2] gives that

u1(t2)− u1(t1) =

∫ t2

t1

(n1z1(s)−m1u1(s))ds.

Similar to (D.6), we have

E[|u1(t2)− u1(t1)|q]

= E[|(
∫ t2

t1

1
q

q−1 )
q−1
q (

∫ t2

t1

(n1z1(s)−m1u1(s))qds)
1
q |q]

≤ (t2 − t1)q−1

∫ t2

t1

E[|n1z1(s)−m1u1(s)|q]ds

≤ (t2 − t1)q−1

∫ t2

t1

2q−1(nq1E[|z1(s)|q] +mq
1E[|u1(s)|q])ds

≤M3(t2 − t1)
q
2 ,

(D.7)

where M3 = 2q−1(t2 − t1)
q
2 (nq1 +mq

1)Kq.
By repeating the same analysis method as above, one gets that z2(t), f2(t), v2(t),

and u2(t) own similar results as those of (D.4)-(D.7), respectively. Thus, we know
from Lemma 3.4 in [45] that almost every sample path Z(t) of model (1.6) is uni-
formly continuous on t ≥ 0.

E. The proof of Theorem 4.1

Proof. We will prove Theorem 4.1 through the following two steps.

Step 1 (existence of a smooth Markov process). According to Lemma 4.1
and Remark 4.1, we only need to develop a nonnegative C2-function V (Z(t)) and
a closed set Γ ⊂ R8

+ satisfying LV (Z(t)) ≤ −1 for any Z(t) ∈ R8
+ \ Γ.

We first define

V3(Z(t)) = QV4(Z(t)) + V5(Z(t)) + V6(Z(t)),

where

V4(Z(t)) =
α1

ω2
v2 +

α2

ω1
v1 −

k1

m1
lnu1 −

k2

m2
lnu2 − ln z1 − ln z2,

V5(Z(t)) = − ln f1 − ln f2 − ln v1 − ln v2 − lnu1 − lnu2,

V6(Z(t)) =
1

θ + 2
(z1 + z2 + f1 + f2 + 2v1 + 2v2 + u1 + u2)θ+2,

with θ is a positive constant and Q will be given later. In view of the continuity
of the function V3(Z(t)), it is not difficult to see that there exists a point Z̃(t) =
(zmin

1 , zmin
2 , fmin

1 , fmin
2 , vmin

1 , vmin
2 , umin

1 , umin
2 ) in the interior of R8

+, at which V3(Z(t))
will be minimized, then we construct a nonnegative C2-function V : R8

+ → R+∪{0}

V (Z(t)) = V3(Z(t))− V3(Z̃(t)).
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Employing Itô’s formula to V4(Z(t)), we get

LV4(Z(t)) = −[r1 − µ1z1 + α1f2 − k1u1 − δ1] + α1(
z2

1 + z2
− v2)− k1n1z1

m1u1
+ k1

− [r2 − µ2z2 + α2f1 − k2u2 − δ2] + α2(
z1

1 + z1
− v1)− k2n2z2

m2u2
+ k2

≤ −ζ1 + µ1z1 + k1u1 − ζ2 + µ2z2 + k2u2,

(E.1)
where ζi = ri − αi − ki − δi, i = 1, 2. A calculation for V5(Z(t)) shows that

LV5(Z(t)) = − ω1z1

(1 + z1)v1
− ω2z2

(1 + z2)v2
− ω1v1

f1
− ω2v2

f2

− n1z1

u1
− n2z2

u2
+ 2ω1 + 2ω2 +m1 +m2.

(E.2)

Using Itô’s formula to V6(Z(t)), we obtain

LV6(Z(t)) = (z1 + z2 + f1 + f2 + 2v1 + 2v2 + u1 + u2)θ+1(r1z1 + r2z2 − µ1z
2
1

− µ2z
2
2 + α1f2z1 + α2f1z2 − k1u1z1 − k2u2z2 − ω1f1 − ω2f2 − ω1v1

− ω2v2 −m1u1 −m2u2 + n1z1 + n2z2 +
2ω1z1

1 + z1
+

2ω2z2

1 + z2
)

+ (θ + 1)(z1 + z2 + f1 + f2 + 2v1 + 2v2 + u1 + u2)θ(δ1z
2
1 + δ2z

2
2)

≤ (z1 + z2 + f1 + f2 + 2v1 + 2v2 + u1 + u2)θ+1(r1z1 + r2z2 + α1z1

(E.3)

+ α2z2 + n1z1 + n2z2 + 2ω1 + 2ω2)− µ1z
θ+3
1 − µ2z

θ+3
2 − ω1f

θ+2
1

− ω2f
θ+2
2 − ω1v

θ+2
1 − ω2v

θ+2
2 −m1u

θ+2
1 −m2u

θ+2
2 + (θ + 1)(z1 + z2

+ f1 + f2 + 2v1 + 2v2 + u1 + u2)θ(δ1z
2
1 + δ2z

2
2)

≤ −µ1z
θ+3
1

2
− µ2z

θ+3
2

2
− ω1f

θ+2
1

2
− ω2f

θ+2
2

2
− ω1v

θ+2
1

2
− ω2v

θ+2
2

2

− m1u
θ+2
1

2
− m2u

θ+2
2

2
+ F1,

where

F1 = sup
Z(t)∈R8

+

{(z1 + z2 + f1 + f2 + 2v1 + 2v2 + u1 + u2)θ+1(r1z1 + r2z2 + α1z1

+ α2z2 + n1z1 + n2z2 + 2ω1 + 2ω2)− µ1z
θ+3
1

2
− µ2z

θ+3
2

2
− ω1f

θ+2
1

2
− ω2f

θ+2
2

2

− ω1v
θ+2
1

2
− ω2v

θ+2
2

2
− m1u

θ+2
1

2
− m2u

θ+2
2

2
+ (θ + 1)(z1 + z2 + f1 + f2 + 2v1

+ 2v2 + u1 + u2)θ(δ1z
2
1 + δ2z

2
2)}

< +∞.
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From (E.1)-(E.3), we derive

LV (Z(t)) ≤ −Q(ζ1 + ζ2) + F2 −
ω1z1

(1 + z1)v1
− ω2z2

(1 + z2)v2
− ω1v1

f1
− ω2v2

f2
− n1z1

u1

− n2z2

u2
− µ1z

θ+3
1

4
− µ2z

θ+3
2

4
− ω1f

θ+2
1

2
− ω2f

θ+2
2

2
− ω1v

θ+2
1

2
− ω2v

θ+2
2

2

− m1u
θ+2
1

4
− m2u

θ+2
2

4
,

where

F2 = sup
(z1,z2,u1,u2)∈R4

+

{Qµ1z1 −
µ1z

θ+3
1

4
+Qµ2z2 −

µ2z
θ+3
2

4
+Qk1u1 −

m1u
θ+2
1

4

+Qk2u2 −
m2u

θ+2
2

4
+ 2ω1 + 2ω2 +m1 +m2 + F1}.

We choose a large enough Q > 0 satisfying −Q(ζ1 + ζ2) + F2 ≤ −2. Then

LV (Z(t)) ≤



−Q(ζ1 + ζ2) + F2 ≤ −2, as zi → 0+,

−Q(ζ1 + ζ2) + F2 −
ωivi
fi
→ −∞, as fi → 0+ and vi 9 0+,

−Q(ζ1 + ζ2) + F2 −
ωizi

(1 + zi)vi
→ −∞, as vi → 0+ and zi 9 0+,

−Q(ζ1 + ζ2) + F2 −
nizi
ui
→ −∞, as ui → 0+ and zi 9 0+,

−Q(ζ1 + ζ2) + F2 −
µiz

θ+3
i

4
→ −∞, as zi → +∞,

−Q(ζ1 + ζ2) + F2 −
ωif

θ+2
i

2
≤ −2, as fi → 1,

−Q(ζ1 + ζ2) + F2 −
ωiv

θ+2
i

2
≤ −2, as vi → 1,

−Q(ζ1 + ζ2) + F2 −
miu

θ+2
i

4
→ −∞, as ui → +∞.

It is straightforward to see that for a sufficient small ε > 0 such that LV (Z(t)) ≤ −1
for any (Z(t)) ∈ R8

+ \Γ, where Γ = [ε, 1
ε ]× [ε, 1

ε ]× [ε3, 1
1+ε3 ]× [ε3, 1

1+ε3 ]× [ε2, 1
1+ε2 ]×

[ε2, 1
1+ε2 ]× [ε2, 1

ε2 ]× [ε2, 1
ε2 ].

Step 2 (global attractivity). Let Z̄(t) = (z̄1(t), z̄2(t), f̄1(t), f̄2(t), v̄1(t), v̄2(t),
ū1(t), ū2(t)) be any positive solution to model (1.6) with Z̄(0) > 0. By the fifth and
sixth equations of model (1.6), we derive

d(vi(t)− v̄i(t)) = [ωi(
zi(t)

1 + zi(t)
− z̄i(t)

1 + z̄i(t)
)− ωi(vi(t)− v̄i(t))]dt, i = 1, 2. (E.4)

We integrate both sides of (E.4) and have

vi(t)− v̄i(t) = (vi(0)− v̄i(0))e−ωit+ωie
−ωit

∫ t

0

eωis(
zi(s)

1 + zi(s)
− z̄i(s)

1 + z̄i(s)
)ds. (E.5)
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Consequently,

|vi(t)− v̄i(t)| ≤ |vi(0)− v̄i(0)|e−ωit + ωie
−ωit

∫ t

0

eωis| zi(s)

1 + zi(s)
− z̄i(s)

1 + z̄i(s)
|ds.

Since

| zi(t)

1 + zi(t)
− z̄i(t)

1 + z̄i(t)
| = | zi(t)− z̄i(t)

(1 + zi(t))(1 + z̄i(t))
| ≤ |zi(t)− z̄i(t)|,

we have

|vi(t)− v̄i(t)| ≤ |vi(0)− v̄i(0)|e−ωit + ωie
−ωit

∫ t

0

eωis|zi(s)− z̄i(s)|ds. (E.6)

An integration of both sides of (E.6) over [0, t] leads to∫ t

0

|vi(s)− v̄i(s)|ds

≤ − 1

ωi
(e−ωit − 1)|vi(0)− v̄i(0)|+ ωi

∫ t

0

dν

∫ ν

0

eωi(s−ν)|zi(s)− z̄i(s)|ds

=
1

ωi
(1− e−ωit)|vi(0)− v̄i(0)|+ ωi

∫ t

0

eωis|zi(s)− z̄i(s)|ds
∫ t

s

e−ωiνdν

=
1

ωi
(1− e−ωit)|vi(0)− v̄i(0)|+

∫ t

0

|zi(s)− z̄i(s)|(1− eωi(s−t))ds

≤ 1

ωi
|vi(0)− v̄i(0)|+

∫ t

0

|zi(s)− z̄i(s)|ds.

(E.7)

Similarly, from the third and fourth equations of model (1.6) we have

d(fi(t)− f̄i(t)) = [ωi(vi(t)− v̄i(t))− ωi(fi(t)− f̄i(t))]dt, i = 1, 2.

Corresponding to (E.5), we can get

fi(t)− f̄i(t) = (fi(0)− f̄i(0))e−ωit + ωie
−ωit

∫ t

0

eωis(vi(s)− v̄i(s))ds.

Furthermore, one has∫ t

0

|fi(s)− f̄i(s)|ds

≤ − 1

ωi
(e−ωit − 1)|fi(0)− f̄i(0)|+ ωi

∫ t

0

dν

∫ ν

0

eωi(s−ν)|vi(s)− v̄i(s)|ds

=
1

ωi
(1− e−ωit)|fi(0)− f̄i(0)|+ ωi

∫ t

0

eωis|vi(s)− v̄i(s)|ds
∫ t

s

e−ωiνdν

=
1

ωi
(1− e−ωit)|fi(0)− f̄i(0)|+

∫ t

0

|vi(s)− v̄i(s)|(1− eωi(s−t))ds

≤ 1

ωi
|fi(0)− f̄i(0)|+

∫ t

0

|vi(s)− v̄i(s)|ds.

(E.8)

Similarly, we can conclude from the last two equations of model (1.6) that

d(ui(t)− ūi(t)) = [ni(zi(t)− z̄i(t))−mi(ui(t)− ūi(t))]dt, i = 1, 2.
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Thus

ui(t)− ūi(t) = (ui(0)− ūi(0))e−mit + nie
−mit

∫ t

0

emis(zi(s)− z̄i(s))ds,

from which we can derive that∫ t

0

|ui(s)− ūi(s)|ds

≤ − 1

mi
(e−mit − 1)|ui(0)− ūi(0)|+ ni

∫ t

0

dν

∫ ν

0

emi(s−ν)|zi(s)− z̄i(s)|ds

=
1

mi
(1− e−mit)|ui(0)− ūi(0)|+ ni

∫ t

0

emis|zi(s)− z̄i(s)|ds
∫ t

s

e−miνdν

=
1

mi
(1− e−mit)|ui(0)− ūi(0)|+ ni

mi

∫ t

0

|zi(s)− z̄i(s)|(1− emi(s−t))ds

≤ 1

mi
|ui(0)− ūi(0)|+

∫ t

0

|zi(s)− z̄i(s)|ds.

(E.9)

Assign

V7(t) =
µ2 + α2 − k2

ξ
| ln z1(t)− ln z̄1(t)|+ µ1 + α1 − k1

ξ
| ln z2(t)− ln z̄2(t)|.

Evaluating the right differential D+V7(t) of V7(t), we obtain that

D+V7(t) =
µ2 + α2 − k2

ξ
sgn{z1(t)− z̄1(t)}d(ln z1(t)− ln z̄1(t))

+
µ1 + α1 − k1

ξ
sgn{z2(t)− z̄2(t)}d(ln z2(t)− ln z̄2(t))

≤ µ2 + α2 − k2

ξ
[−µ1|z1(t)− z̄1(t)|+ α1|f2(t)− f̄2(t)|

+ k1|u1(t)− ū1(t)|]dt+
µ1 + α1 − k1

ξ
[−µ2|z2(t)− z̄2(t)|

+ α2|f1(t)− f̄1(t)|+ k2|u2(t)− ū2(t)|]dt,

which togerther with (E.7)-(E.9), yields that

V7(t)− V7(0)

≤µ2 + α2 − k2

ξ
[−µ1

∫ t

0

|z1(s)− z̄1(s)|ds+
α1

ω2
|f2(0)− f̄2(0)|

+ α1

∫ t

0

|v2(s)− v̄2(s)|ds+
k1

m1
|u1(0)− ū1(0)|+ k1

∫ t

0

|z1(s)− z̄1(s)|ds]

+
µ1 + α1 − k1

ξ
[−µ2

∫ t

0

|z2(s)− z̄2(s)|ds+
α2

ω1
|f1(0)− f̄1(0)|

+ α2

∫ t

0

|v1(s)− v̄1(s)|ds+
k2

m2
|u2(0)− ū2(0)|+ k2

∫ t

0

|z2(s)− z̄2(s)|ds]

≤α1(µ2 + α2 − k2)

ω2ξ
|f2(0)− f̄2(0)|+ α1(µ2 + α2 − k2)

ω2ξ
|v2(0)− v̄2(0)|
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+
α2(µ1 + α1 − k1)

ω1ξ
|f1(0)− f̄1(0)|+ α2(µ1 + α1 − k1)

ω1ξ
|v1(0)− v̄1(0)|

+
k1(µ2 + α2 − k2)

m1ξ
|u1(0)− ū1(0)|+ k2(µ1 + α1 − k1)

m2ξ
|u2(0)− ū2(0)|

+ (
α2(µ1 + α1 − k1)

ξ
+
k1(µ2 + α2 − k2)

ξ
− µ1(µ2 + α2 − k2)

ξ
)

×
∫ t

0

|z1(s)− z̄1(s)|ds

+ (
α1(µ2 + α2 − k2)

ξ
+
k2(µ1 + α1 − k1)

ξ
− µ2(µ1 + α1 − k1)

ξ
)

×
∫ t

0

|z2(s)− z̄2(s)|ds

=
α1(µ2 + α2 − k2)

ω2ξ
|f2(0)− f̄2(0)|+ α1(µ2 + α2 − k2)

ω2ξ
|v2(0)− v̄2(0)|

+
α2(µ1 + α1 − k1)

ω1ξ
|f1(0)− f̄1(0)|+ α2(µ1 + α1 − k1)

ω1ξ
|v1(0)− v̄1(0)|

+
k1(µ2 + α2 − k2)

m1ξ
|u1(0)− ū1(0)|+ k2(µ1 + α1 − k1)

m2ξ
|u2(0)− ū2(0)|

−
∫ t

0

|z1(s)− z̄1(s)|ds−
∫ t

0

|z2(s)− z̄2(s)|ds.

Rearranging the above inequality, one gets

V7(t) +

∫ t

0

|z1(s)− z̄1(s)|ds+

∫ t

0

|z2(s)− z̄2(s)|ds

≤ V7(0) +
α1(µ2 + α2 − k2)

ω2ξ
|f2(0)− f̄2(0)|+ α1(µ2 + α2 − k2)

ω2ξ
|v2(0)− v̄2(0)|

+
k1(µ2 + α2 − k2)

m1ξ
|u1(0)− ū1(0)|+ α2(µ1 + α1 − k1)

ω1ξ
|f1(0)− f̄1(0)|

+
α2(µ1 + α1 − k1)

ω1ξ
|v1(0)− v̄1(0)|+ k2(µ1 + α1 − k1)

m2ξ
|u2(0)− ū2(0)|

≤ +∞,

from which we obtain that |zi(t) − z̄i(t)| ∈ L1[0,+∞). By a similar deduction,
it follows from (E.7)-(E.9) that |fi(t) − f̄i(t)|, |vi(t) − v̄i(t)| and |ui(t) − ūi(t)| ∈
L1[0,+∞). Thus, by Barhalat’s Lemma [4] and Lemma 4.3, we get that

lim
t→+∞

|zi(t)− z̄i(t)| = lim
t→+∞

|fi(t)− f̄i(t)| = lim
t→+∞

|vi(t)− v̄i(t)|

= lim
t→+∞

|ui(t)− ūi(t)| = 0.

Combining Step 1 with Step 2, the proof of Theorem 4.1 is completed.
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