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Abstract The main goal of this paper is to present new inequalities for con-
vex and log-convex functions. The significance of these inequalities follows
from the way they extend many known results in the literature concerning
convex functions, log-convex functions, means comparisons and matrix in-
equalities.
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1. Introduction

Different types of convex functions have played a major role in the field of Mathe-
matical inequalities. In this paper, we will be interested in convex and log-convex
functions.

Recall that a function f : I → R is said to be convex on the interval I if

f(αx+ βy) ≤ αf(x) + βf(y), (1.1)

for all x, y ∈ I and α, β > 0 with α+ β = 1. If f > 0 and log f is convex, then f is
called log-convex.

Accordingly, a log-convex function is a positive function satisfying

f(αx+ βy) ≤ f(x)αf(y)β , (1.2)

for the same parameters as in (1.1).
Recalling Young’s inequality that asserts the following inequality for the positive

numbers a, b, α and β with α+ β = 1,

aαbβ ≤ αa+ βb, (1.3)
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the inequality (1.2) implies that a log-convex function is necessarily convex.
The celebrated Jensen inequality extends (1.1) to n parameters as follows.

f
( n∑
i=1

µixi

)
≤

n∑
i=1

µif(xi), (1.4)

where f : I → R is convex, x1, · · · , xn ∈ I and µ1, · · ·µn ≥ 0 are such that∑n
i=1 µi = 1. The inequality (1.4) can be found in any standard book about convex

functions, see [24] for example. We refer the reader to [7,8,17,18,20–22,24–26] as a
sample of the rich literature treating convex functions and some of their applications.

Applying Jensen’s inequality (1.4) to the function log f implies the inequality

f
( n∑
i=1

µixi

)
≤

n∏
i=1

fµi(xi), (1.5)

for the same parameters as in (1.4), when f is log-convex.
A considerable attention has been paid in the literature to refine or reverse (1.4),

and hence (1.5). For example, in [22] the following refinement of (1.4) was shown

f

(
n∑
i=1

µixi

)
+ nµmin

(
1

n

n∑
i=1

f(xi)− f

(
n∑
i=1

xi
n

))
≤

n∑
i=1

µif(xi), (1.6)

where µmin = min{µ1, . . . , µn}. This inequality was reversed in the same reference
by the inequality

f

(
n∑
i=1

µixi

)
+ nµmax

(
1

n

n∑
i=1

f(xi)− f

(
n∑
i=1

xi
n

))
≥

n∑
i=1

µif(xi), (1.7)

where µmax = max{µ1, · · · , µn}.
Both inequalities were treated later by adding as many as refining terms in [25].
The inequalities (1.6) and (1.7) can be written in the form

min

{
µi

1/n

}(
1

n

n∑
i=1

f(xi)− f

(
n∑
i=1

xi
n

))

≤
n∑
i=1

µif(xi)− f

(
n∑
i=1

µixi

)

≤max

{
µi

1/n

}(
1

n

n∑
i=1

f(xi)− f

(
n∑
i=1

xi
n

))
. (1.8)

We notice here that the factor 1
n satisfies

∑n
i=1

1
n = 1. Extending (1.8), Aldaz [1]

proved the following more general inequality, which yields (1.8) upon letting τi = 1
n .

Theorem 1.1. Let f : I −→ R be convex, {x1, . . . , xn} ⊂ I, {µ1, . . . , µn} ⊂ (0, 1)
and {τ1, . . . , τn} ⊂ (0, 1) be such that

∑n
i=1 µi =

∑n
i=1 τi = 1. Then

min
i=1,...,n

{µi
τi

}
≤

∑n
i=1 µif(xi)− f

(∑n
i=1 µixi

)
∑n
i=1 τif(xi)− f

(∑n
i=1 τixi

) ≤ max
i=1,...,n

{µi
τi

}
. (1.9)
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If f : I → [0,∞) is convex, then fλ is convex, for any λ ≥ 1. Applying Theorem
1.1 to the function fλ implies

min
i=1,...,n

{µi
τi

}
≤

∑n
i=1 µif

λ(xi)− fλ
(∑n

i=1 µixi

)
∑n
i=1 τif

λ(xi)−fλ
(∑n

i=1 τixi

) ≤ max
i=1,...,n

{µi
τi

}
. (1.10)

On the other hand, raising (1.9) to the power λ ≥ 1, implies

min
i=1,...,n

{µi
τi

}λ
≤

(∑n
i=1 µif(xi)− f

(∑n
i=1 µixi

))λ
(∑n

i=1 τif(xi)− f
(∑n

i=1 τixi

))λ ≤ max
i=1,...,n

{µi
τi

}λ
. (1.11)

However, neither (1.10) nor (1.11) can be used to find upper or lower bounds
for the quotient (∑n

i=1 µif(xi)
)λ
− fλ

(∑n
i=1 µixi

)
(∑n

i=1 τif(xi)
)λ
− fλ

(∑n
i=1 τixi

) .
When n = 2, Sababheh [26] showed that

min
i=1,...,n

{µi
τi

}λ
≤

(∑n
i=1 µif(xi)

)λ
− fλ

(∑n
i=1 µixi

)
(∑n

i=1 τif(xi)
)λ
− fλ

(∑n
i=1 τixi

) ≤ max
i=1,...,n

{µi
τi

}λ
. (1.12)

The first goal of this paper is to prove that (1.12) is valid for any n ∈ N. The
method used in [26] to prove (1.12) for n = 2 was a differential Calculus approach,
that we cannot use for the general case. To prove the general case we will need the
following lemma, which will enable us to prove a more general result that implies
(1.12) upon selecting certain parameters.

Lemma 1.1 ( [3]). Let φ be a strictly increasing convex function defined on an
interval I. If x, y, z and w are points in I such that

z − w ≤ x− y

where w ≤ z ≤ x and y ≤ x, then

(0 ≤) φ(z)− φ(w) ≤ φ(x)− φ(y).

This lemma will be simply used to prove

φ
(

min
i=1,...,n

{µi
τi

} n∑
i=1

τif(xi)
)
− φ

(
min

i=1,...,n

{µi
τi

}
f
( n∑
i=1

τixi

))
≤φ
( n∑
i=1

µif(xi)
)
− φ ◦ f

( n∑
i=1

µixi

)
≤φ
(

max
i=1,...,n

{µi
τi

} n∑
i=1

τif(xi)
)
− φ

(
max

i=1,...,n

{µi
τi

}
f
( n∑
i=1

τixi

))
,

(1.13)
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for the pre-stated parameters. Then by selecting the proper function φ, we will be
able to prove (1.12) for any n.

Another strongly related goal of this paper is to prove

min
i=1,...,n

{µmi
τi

}
≤

(
∑n
i=1 µif(xi))

m − fm (
∑n
i=1 µixi)∑n

i=1 τif
m(xi)− fm

(∑n
i=1 τixi

) , (1.14)

as a mixture of (1.10) and (1.12), for a positive integer m and the log-convex
function f.

Once we show our main inequalities, we will present some applications that
include new comparisons between means, and new matrix inequalities that involve
the Heinz means and related inequalities for unitarily invariant norms.

To prove (1.14), we will need the following lemma from [13].

Lemma 1.2. Let n and m be two integers and let xi ∈ R. Set i0 := m, in := 0 and

A := {(i1, . . . , in−1) : 0 ≤ ik ≤ ik−1, 1 ≤ k ≤ n− 1}.

Then(
n∑
i=1

xi

)m
=

∑
(i1,...,in−1)∈A

(
i0
i1

)(
i1
i2

)
. . .

(
in−2
in−1

)
xi0−i11 xi1−i22 . . . xin−1−in

n .

We will present our results in the next two sections, where inequalities for convex
functions with emphasize on (1.12) will be presented in Section 2, while (1.14) will
be presented in Section 3.

Remark 1.1. In the sequel, our functions are assumed not to have the form f(x) =
ax+b. This is a trivial convex function in the sense that the inequality (1.4) becomes
an identity. The reason for this assumption is stated in Remark 2.1 below.

2. Convexity results

2.1. Inequalities for convex functions

The main result of this section is to prove (1.13).

Theorem 2.1. Let f : I −→ [0,∞) be convex and φ be a strictly increasing
convex function defined on [0,∞), {x1, . . . , xn} ⊂ I, {µ1, . . . , µn} ⊂ (0, 1) and
{τ1, . . . , τn} ⊂ (0, 1) be such that

∑n
i=1 µi =

∑n
i=1 τi = 1. Then

φ
(

min
i=1,...,n

{µi
τi

} n∑
i=1

τif(xi)
)
− φ

(
min

i=1,...,n

{µi
τi

}
f
( n∑
i=1

τixi

))
≤φ
( n∑
i=1

µif(xi)
)
− φ ◦ f

( n∑
i=1

µixi

)
≤φ
(

max
i=1,...,n

{µi
τi

} n∑
i=1

τif(xi)
)
− φ

(
max

i=1,...,n

{µi
τi

}
f
( n∑
i=1

τixi

))
.

(2.1)
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Proof. Let x =
∑n
i=1 µif(xi), y = f

(∑n
i=1 µixi

)
,

z = mini=1,...,n

{
µi
τi

}∑n
i=1 τif(xi), w = mini=1,...,n

{
µi
τi

}
f
(∑n

i=1 τixi

)
,

z′ = maxi=1,...,n

{
µi
τi

}(∑n
i=1 τif(xi)

)
and w′ = maxi=1,...,n

{
µi
τi

}
f
(∑n

i=1 τixi

)
.

Then based on Theorem 1.1, we have

z − w ≤ x− y ≤ z′ − w′.

The first and the second inequalities in (2.1) follow directly by applying Lemma 1.1
to the inequalities z − w ≤ x− y, with w ≤ z ≤ x, y ≤ x and x− y ≤ z′ − w′ with
y ≤ x ≤ z′, w′ ≤ z′, respectively. This completes the proof.

The significance of Theorem 2.1 is how certain selections of the function φ imply
some interesting inequalities. For example, letting φ(x) = xλ with λ ≥ 1 in Theorem
2.1 implies (1.12) for any positive integer n, as follows.

Corollary 2.1. Let f : I −→ [0,∞) be convex, {x1, . . . , xn} ⊂ I, {µ1, . . . , µn} ⊂
(0, 1) and {τ1, . . . , τn} ⊂ (0, 1) be such that

∑n
i=1 µi =

∑n
i=1 τi = 1. Then for all

real number λ ≥ 1,

min
i=1,...,n

{µi
τi

}λ
≤

(∑n
i=1 µif(xi)

)λ
− fλ

(∑n
i=1 µixi

)
(∑n

i=1 τif(xi)
)λ
− fλ

(∑n
i=1 τixi

) ≤ max
i=1,...,n

{µi
τi

}λ
. (2.2)

The limiting case λ→∞ implies the following interesting inequality for convex
functions.

Corollary 2.2. Let f : I −→ [0,∞) be convex, {x1, . . . , xn} ⊂ I, {µ1, . . . , µn} ⊂
(0, 1) and {τ1, . . . , τn} ⊂ (0, 1) be such that

∑n
i=1 µi =

∑n
i=1 τi = 1. Then

min

{
µi
τi

}
≤
∑n
i=1 µif(xi)∑n
i=1 τif(xi)

≤ max

{
µi
τi

}
.

Proof. This follows from Corollary 2.1 by letting λ→∞, and noting that

f

(
n∑
i=1

µixi

)
≤

n∑
i=1

µif(xi), f

(
n∑
i=1

τixi

)
≤

n∑
i=1

τif(xi),

and that

lim
λ→∞

(
aλ − bλ

) 1
λ = a,

when a > b.
We should remark that immediate computations show that, for any positive

function f , ∑n
i=1 µif(xi)∑n
i=1 τif(xi)

≤ max{µi}
min{τi}

.

However, Corollary 2.2 provides a better estimate for convex functions because

max

{
µi
τi

}
≤ max{µi}

min{τi}
.

A similar argument applies for the first inequality in Corollary 2.2.
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Remark 2.1. Tracking the proof of Corollary 2.1, we have

min
i=1,...,n

{µi
τi

}λ(( n∑
i=1

τif(xi)
)λ
− fλ

( n∑
i=1

τixi

))

≤
( n∑
i=1

µif(xi)
)λ
− fλ

( n∑
i=1

µixi

)
≤ max
i=1,...,n

{µi
τi

}λ(( n∑
i=1

τif(xi)
)λ
− fλ

( n∑
i=1

τixi

))
.

If it happens that
∑n
i=1 τif(xi) = f

(∑n
i=1 τixi

)
, then

( n∑
i=1

τif(xi)
)λ
− fλ

( n∑
i=1

τixi

)
= 0,

and hence
∑n
i=1 µif(xi) = f

(∑n
i=1 µixi

)
for any choice of the µi. The only function

that satisfies this identity is the linear function f(x) = ax+ b. However, our default
assumption is that f is not linear, see Remark 1.1 above.

On the other hand, applying Theorem 2.1 with φ(x) = exp(λx), λ > 0 implies
the following new refinement and reverse of the corresponding inequalities of log-
convex functions.

Corollary 2.3. Let f : I −→ (0,∞) be log-convex, {x1, . . . , xn} ⊂ I, {µ1, . . . , µn}
⊂ (0, 1) and {τ1, . . . , τn} ⊂ (0, 1) be such that

∑n
i=1 µi =

∑n
i=1 τi = 1. Then for

all real number λ > 0, ( n∏
i=1

fτi(xi)
)λm

− fλm
( n∑
i=1

τixi

)
≤
( n∏
i=1

fµi(xi)
)λ
− fλ

( n∑
i=1

µixi

)
≤
( n∏
i=1

fτi(xi)
)λM

− fλM
( n∑
i=1

τixi

)
,

(2.3)

where m = mini=1,...,n{µiτi } and M = maxi=1,...,n{µiτi }.

2.2. Scalar inequalities

In this subsection, we present concrete applications of the inequalities obtained

earlier. When x > 0 and 0 6= p < 1 the function f(x) = x
1
p is convex. Applying

Corollary 2.1, we obtain the following new bounds for the difference between the
arithmetic and power means. Here, we recall that given positive numbers x1, · · · , xn
and µ1, · · · , µn such that

∑n
i=1 µi = 1, the quantity A :=

∑n
i=1 µixi is called the

arithmetic mean of the {xi}. On the other hand, if p ∈ R, the power mean of {xi}
is defined by Mp := (

∑n
i=1 µix

p
i )

1
p . When p = 0, the power mean is calculated via

a limit to obtain the geometric mean, namely
∏n
i=1 x

µi
i . It is well known that, as a

function of p, (
∑n
i=1 µix

p
i )

1
p is an increasing function. Thus, when p ≤ 1, we have
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(
∑n
i=1 µix

p
i )

1
p ≤

∑n
i=1 µixi. The following is a refinement and a reverse for this

celebrated result.

Theorem 2.2. Let n be a positive integer and 0 6= p < 1. For i = 1, 2, . . . , n, let
xi > 0 and {µ1, . . . , µn} ⊂ (0, 1) and {τ1, . . . , τn} ⊂ (0, 1) be such that

∑n
i=1 µi =∑n

i=1 τi = 1. Then for λ ≥ 1,

min
i=1,...,n

{µi
τi

}λ
≤

(
∑n
i=1 µixi)

λ − (
∑n
i=1 µix

p
i )

λ
p

(
∑n
i=1 τixi)

λ − (
∑n
i=1 τix

p
i )

λ
p

≤ max
i=1,...,n

{µi
τi

}λ
. (2.4)

On the other hand, letting p = −1 in Theorem 2.2, we have the following bounds
for the difference between the arithmetic and harmonic means. We recall here that
the harmonic, denoted H, mean of the above parameters corresponds to the power
mean when p = −1. Since the power means increase in p, it is clear that H ≤ A.
The following is a reverse and a refinement of this inequality.

Corollary 2.4. Let n be a positive integer. For i = 1, 2, . . . , n, let xi > 0 and
{µ1, . . . , µn} ⊂ (0, 1) and {τ1, . . . , τn} ⊂ (0, 1) be such that

∑n
i=1 µi =

∑n
i=1 τi = 1.

Then for all real number λ ≥ 1,

min
i=1,...,n

{µi
τi

}λ
≤

(
∑n
i=1 µixi)

λ −
(∑n

i=1 µix
−1
i

)−λ
(
∑n
i=1 τixi)

λ −
(∑n

i=1 τix
−1
i

)−λ ≤ max
i=1,...,n

{µi
τi

}λ
. (2.5)

If we let p −→ 0 in Theorem 2.2, we get the following bounds for the difference
between the arithmetic and geometric means.

Corollary 2.5. Let n be a positive integer. For i = 1, 2, . . . , n, let xi > 0 and
{µ1, . . . , µn} ⊂ (0, 1) and {τ1, . . . , τn} ⊂ (0, 1) be such that

∑n
i=1 µi =

∑n
i=1 τi = 1.

Then for all real number λ ≥ 1,

min
i=1,...,n

{µi
τi

}λ
≤

(
∑n
i=1 µixi)

λ − (
∏n
i=1 x

µi
i )

λ

(
∑n
i=1 τixi)

λ − (
∏n
i=1 x

τi
i )

λ
≤ max
i=1,...,n

{µi
τi

}λ
. (2.6)

When x > 0 and p ∈ (−∞, 0), the function f(x) = x
1
p is log-convex. Applying

Corollary 2.3, we obtain the following new bounds for the difference between the
arithmetic and power means.

Theorem 2.3. Let n be a positive integer and p ∈ (−∞, 0). For i = 1, 2, . . . , n, let
xi > 0 and {µ1, . . . , µn} ⊂ (0, 1) and {τ1, . . . , τn} ⊂ (0, 1) be such that

∑n
i=1 µi =∑n

i=1 τi = 1. Then for all real number λ > 0,(
n∏
i=1

xτii

)λm
−

(
n∑
i=1

τix
p
i

)λm
p

≤

(
n∏
i=1

xµii

)λ
−

(
n∑
i=1

µix
p
i

)λ
p

≤

(
n∏
i=1

xτii

)λM
−

(
n∑
i=1

τix
p
i

)λM
p

,

where m = mini=1,...,n{µiτi } and M = maxi=1,...,n{µiτi }.
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On the other hand, letting p = −1 in Theorem 2.3, we have the following bounds
for the difference between the geometric and harmonic means.

Corollary 2.6. For i = 1, 2, . . . , n, let xi > 0 and {µ1, . . . , µn} ⊂ (0, 1) and
{τ1, . . . , τn} ⊂ (0, 1) be such that

∑n
i=1 µi =

∑n
i=1 τi = 1. Then for λ > 0,(

n∏
i=1

xτii

)λm
−

(
n∑
i=1

τix
−1
i

)−λm

≤

(
n∏
i=1

xµii

)λ
−

(
n∑
i=1

µix
−1
i

)−λ

≤

(
n∏
i=1

xτii

)λM
−

(
n∑
i=1

τix
−1
i

)−λM
,

where m = mini=1,...,n{µiτi } and M = maxi=1,...,n{µiτi }.

2.3. The special case n = 2

In this part of the paper, we present the special case n = 2. This was treated in [26].
Here, we have the more general result than (1.12), as follows.

Theorem 2.4. Let f : [0, 1] −→ [0,∞) be convex and φ be a strictly increasing
convex function defined on R and let τ, µ be real numbers with 0 < µ < τ < 1. Then

φ
(µ
τ

(τf(1) + (1− τ)f(0))
)
− φ

(µ
τ
f(τ)

)
≤φ(µf(1) + (1− µ)f(0))− φ ◦ f(µ)

≤φ
(1− µ

1− τ
(τf(1) + (1− τ)f(0))

)
− φ

(1− µ
1− τ

f(τ)
)
.

This entails the following result for log-convex functions.

Corollary 2.7. Let f : [0, 1] −→ [0,∞) be log-convex and let τ, µ and λ be real
numbers with λ > 0 and 0 < µ < τ < 1. Then(

fτ (1)f1−τ (0)
)λµ

τ − f
λµ
τ (τ)

≤
(
fµ(1)f1−µ(0)

)λ
− fλ(µ)

≤
(
fτ (1)f1−τ (0)

)λ(1−µ)
1−τ − f

λ(1−µ)
1−τ (τ).

We refer the reader to [26] to see the significance of the case n = 2, where then
the reader can apply Theorem 2.4 to obtain some applications. It is important to
notice that the motivation of [26] is to complement the study of [4, 19]. In [28] it
was noted that the result of [4] is better than the main result in [2]. Therefore, the
results in this paper extend in a more general setting the results in these references.

2.4. Matrix norm inequalities

Let Mn be the algebra of all complex matrices of order n × n. The positive semi-
definite matrix A ∈ Mn written as A ≥ 0, is a Hermitian matrix with 〈Ax, x〉 ≥ 0
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for all x ∈ Cn. If A ∈ Mn is a Hermitian matrix with 〈Ax, x〉 > 0 for all nonzero
x ∈ Cn, then A is called a positive definite matrix, written as A > 0. The set of all
positive semi-definite matrices is denoted by M+

n and the set of all positive definite
matrices in Mn is denoted by M++

n . The singular values of a matrix A ∈Mn are the
eigenvalues of the positive semi-definite matrix |A| = (A∗A)1/2, denoted by si(A)
for i = 1, 2, 3, . . . , n. A matrix norm ||| · ||| on Mn is called unitarily invariant if
|||UAV ||| = |||A||| for all A ∈ Mn and all unitary matrices U, V ∈ Mn. The trace
norm is given by ||A||1 = tr|A| =

∑n
k=1 sk(A), where tr is the usual trace. This

norm is unitarily invariant. An important example of unitarily invariant norms is
the Hilbert-Schmidt norm || · ||2 defined by

||A||2 = (tr(A∗A))
1
2 =

(∑
i,j

|ai,j |2
) 1

2

, (A = (ai,j)).

Let A,B ∈ M+
n , X ∈ Mn, and τ ∈ [0, 1]. The celebrated Hölder’s inequality

asserts that [15]

|||AτXB1−τ ||| ≤ |||AX|||τ |||XB|||1−τ . (2.7)

In particular

tr|AτB1−τ | ≤ (trA)τ (trB)1−τ . (2.8)

It is known that whenA,B∈M+
n andX ∈Mn, the function f(µ)= |||AµXB1−µ|||

is log-convex on [0, 1], (see [27]) for any unitarily invariant norm ||| · ||| on Mn. Ap-
plying Corollary 2.7, we obtain the following new refinement and reverse of the
Hölder’s inequality.

Theorem 2.5. Let A,B ∈ M+
n , X ∈ Mn and let τ, µ and λ be real numbers with

λ > 0 and 0 < µ < τ < 1. Then(
|||AX|||τ |||XB|||1−τ

)λµ
τ − |||AτXB1−τ |||

λµ
τ

≤|||AX|||µ|||XB|||1−µ − |||AµXB1−µ|||

≤
(
|||AX|||τ |||XB|||1−τ

)λ(1−µ)
1−τ − |||AτXB1−τ |||

λ(1−µ)
1−τ .

In particular, (
tr(A)τ tr(B)1−τ

)λµ
τ − tr(|AτB1−τ |)

λµ
τ

≤tr(A)µtr(B)1−µ − tr(|AµB1−µ|)

≤
(
tr(A)τ tr(B)1−τ

)λ(1−µ)
1−τ − tr(|AτB1−τ |)

λ(1−µ)
1−τ .

It is known that whenA,B ∈M+
n andX ∈Mn, the function f(µ) = |||AµXB1−µ

+A1−µXBµ||| is convex on [0, 1], (see [5, Theorem IX.4.8]) for any unitarily invariant
norm ||| · ||| on Mn. Then by using the Theorem 2.4 we have the following result.

Theorem 2.6. Let φ be a strictly increasing convex function defined on R and let
τ, µ be real numbers with 0 < µ < τ < 1. Then

φ
(µ
τ
|||AX +XB|||

)
− φ

(µ
τ
|||AτXB1−τ +A1−τXBτ |||

)
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≤φ(|||AX +XB|||)− φ(|||AµXB1−µ +A1−µXBµ|||)

≤φ
(1− µ

1− τ
|||AX +XB|||

)
− φ

(1− µ
1− τ

|||AτXB1−τ +A1−τXBτ |||
)
.

The next lemma provides a technical result which we will need in the next result.

Lemma 2.1 ( [26]). Let A,B ∈ M+
n and X ∈ Mn and let f(x) = ||AxXB1−x +

A1−xXBx||2. Then f is log-convex on [0, 1].

Using this lemma, together with Theorem 2.4, we have the following Theorem.

Theorem 2.7. Let A,B ∈ M+
n and X ∈ Mn and τ, µ and λ be real numbers with

λ > 0 and 0 < µ < τ < 1. Then

||AX +XB||
λµ
τ
2 − ||AτXB1−τ +A1−τXBτ ||

λµ
τ
2

≤||AX +XB||λ2 − ||AµXB1−µ +A1−µXBµ||λ2

≤||AX +XB||
λ(1−µ)
1−τ

2 − ||AτXB1−τ +A1−τXBτ ||
λ(1−µ)
1−τ

2 .

These inequalities are interesting refinement and reversal of the well known Heinz
inequality (see [5, Theorem IX.4.8])

||AτXB1−τ +A1−τXBτ ||2 ≤ ||AX +XB||2.

3. Log-convexity results

3.1. Inequalities for log-convex functions

In this part of the paper, we prove (1.14) to complement our analysis for log-convex
functions. The main result of this section reads as follows.

Theorem 3.1. Let f : I −→ (0,∞) be log-convex, {x1, . . . , xn} ⊂ I, {µ1, . . . , µn} ⊂
(0, 1) and {τ1, . . . , τn} ⊂ (0, 1) be such that

∑n
i=1 µi =

∑n
i=1 τi = 1. Then for all

positive integers m,

fm

(
n∑
i=1

µixi

)
+ min
i=1,...,n

{µmi
τi

}( n∑
i=1

τif
m(xi)− fm

( n∑
i=1

τixi

))

≤

(
n∑
i=1

µif(xi)

)m
.

(3.1)

Proof. We claim that(
n∑
i=1

µif(xi)

)m
− min
i=1,...,n

{µmi
τi

}( n∑
i=1

τif
m(xi)− fm

( n∑
i=1

τixi

))

≥fm
(

n∑
i=1

µixi

)
.

Indeed, by Lemma 1.2, we have the following equality(
n∑
i=1

µif(xi)

)m
− min
i=1,...,n

{µmi
τi

}( n∑
i=1

τif
m(xi)− fm

( n∑
i=1

τixi

))
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=
∑

(i1,...,in−1)∈A

(
i0
i1

)(
i1
i2

)
. . .

(
in−2
in−1

)
µi0−i11 µi1−i22 . . . µin−1−in

n f i0−i1(x1)

× f i1−i2(x2) . . . f in−1−in(xn)

− min
i=1,...,n

{µmi
τi

}( n∑
i=1

τif
m(xi)− fm

( n∑
i=1

τixi

))
.

Let B be a subset of A such that∑
(i1,...,in−1)∈A

(
i0
i1

)(
i1
i2

)
. . .

(
in−2
in−1

)
µi0−i11 µi1−i22 . . . µin−1−in

n

× f i0−i1(x1)f i1−i2(x2) . . . f in−1−in(xn)

=
∑

(i1,...,in−1)∈B

(
i0
i1

)(
i1
i2

)
. . .

(
in−2
in−1

)
µi0−i11 µi1−i22 . . . µin−1−in

n

× f i0−i1(x1)f i1−i2(x2) . . . f in−1−in(xn)

+

n∑
i=1

µmi f
m(xi).

Hence, by the log-convexity of the function fm it follows that.(
n∑
i=1

µif(xi)

)m
− min
i=1,...,n

{µmi
τi

}( n∑
i=1

τif
m(xi)− fm

( n∑
i=1

τixi

))

=
∑

(i1,...,in−1)∈B

(
i0
i1

)(
i1
i2

)
. . .

(
in−2
in−1

)
µi0−i11 µi1−i22 . . . µin−1−in

n f i0−i1(x1)f i1−i2(x2) . . . f in−1−in(xn)

+

n∑
i=1

(
µmi − min

i=1,...,n

{µmi
τi

}
τi

)
fm(xi) + min

i=1,...,n

{µmi
τi

}
fm
( n∑
i=1

τixi

)
≥

∑
(i1,...,in−1)∈B

(
i0
i1

)(
i1
i2

)
. . .

(
in−2
in−1

)
µi0−i11 µi1−i22 . . . µin−1−in

n fm
( n∑
k=1

ik−1 − ik
m

xk

)

+

n∑
i=1

(µmi − min
i=1,...,n

{µmi
τi

}
)τif

m(xi) + min
i=1,...,n

{µmi
τi

}
fm
( n∑
i=1

τixi

)
. (3.2)

We have ∑
(i1,...,in−1)∈B

(
i0
i1

)(
i1
i2

)
. . .

(
in−2
in−1

)
µi0−i11 µi1−i22 . . . µin−1−in

n

+

n∑
i=1

(µmi − min
i=1,...,n

{µmi
τi

}
)τi + min

i=1,...,n

{µmi
τi

}
=1.

Thus (3.2) is a convex combination of positive numbers. Therefore, by the Jensen’s
inequality and Lemma 1.2, we get(

n∑
i=1

µif(xi)

)m
− min
i=1,...,n

{µmi
τi

}( n∑
i=1

τif
m(xi)− fm

( n∑
i=1

τixi

))
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≥fm
( ∑

(i1,...,in−1)∈B

(
i0
i1

)(
i1
i2

)
. . .

(
in−2
in−1

)
µi0−i11 µi1−i22 . . . µin−1−in

n

×
( n∑
k=1

ik−1 − ik
m

xk

)
+

n∑
i=1

(µmi − min
i=1,...,n

{µmi
τi

}
)τixi + min

i=1,...,n

{µmi
τi

} n∑
i=1

τixi

)
=fm

(
n∑
i=1

µixi

)
.

This completes the proof.

3.2. Scalar inequalities

When x > 0 and p ∈ (−∞, 0) the function f(x) = x
1
p is log-convex. Applying

Theorems 3.1, we obtain the following new bounds for the difference between the
arithmetic and power means.

Corollary 3.1. Let n be a positive integer and p ∈ (−∞, 0). For i = 1, 2, . . . , n,
let xi > 0, {µ1, . . . , µn} ⊂ (0, 1) and {τ1, . . . , τn} ⊂ (0, 1) be such that

∑n
i=1 µi =∑n

i=1 τi = 1. Then for all positive integers m,(
n∑
i=1

µix
p
i

)m
p

+ min
i=1,...,n

{µmi
τi

}( n∑
i=1

τix
m
i −

( n∑
i=1

τix
p
i

)m
p

)
≤

(
n∑
i=1

µixi

)m
.

(3.3)

On the other hand, letting p = −1 in Corollary 3.1, we have the following bounds
for the difference between the arithmetic and harmonic means.

Corollary 3.2. Let n be a positive integer and p ∈ (−∞, 0). For i = 1, 2, . . . , n,
let xi > 0, {µ1, . . . , µn} ⊂ (0, 1) and {τ1, . . . , τn} ⊂ (0, 1) be such that

∑n
i=1 µi =∑n

i=1 τi = 1. Then for all positive integers m,(
n∑
i=1

µix
−1
i

)−m
+ min
i=1,...,n

{µmi
τi

}( n∑
i=1

τix
m
i −

( n∑
i=1

τix
−1
i

)−m)
≤

(
n∑
i=1

µixi

)m
.

(3.4)

If we let p −→ 0 in Corollary 3.1, we get the following bounds for the difference
between the arithmetic and geometric means.

Corollary 3.3. Let n be a positive integer and p ∈ (−∞, 0). For i = 1, 2, . . . , n,
let xi > 0, {µ1, . . . , µn} ⊂ (0, 1) and {τ1, . . . , τn} ⊂ (0, 1) be such that

∑n
i=1 µi =∑n

i=1 τi = 1. Then for all positive integers m,(
n∏
i=1

xµii

)m
+ min
i=1,...,n

{µmi
τi

}( n∑
i=1

τix
m
i −

( n∏
i=1

xτii

)m)
≤

(
n∑
i=1

µixi

)m
. (3.5)
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