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DYNAMICAL BEHAVIOR OF THE
FECAL-ORAL TRANSMISSION DISEASES
MODEL ON A T -PERIODIC EVOLUTION

DOMAIN∗

You Zhou1, Beibei Zhang1 and Zhi Ling1,†

Abstract We study the transmission dynamics of a fecal-oral diseases model
on a T -periodic evolution domain. We introduce the basic reproduction num-
ber R0(ρ) as a threshold by some operator semigroup theory and give the
relationship between it and that of the fixed domain, where ρ(t) is the domain
evolution rate. By means of upper and lower solutions method, we investi-
gate the existence, uniqueness and attractivity of endemic and disease-free
equilibria respectively. Under certain conditions, there exists a unique global
asymptotically stable positive periodic solution if R0(ρ) > 1. When R0(ρ) ≤ 1,
the model possesses only zero solutions and is globally asymptotically stable.
The final numerical simulations further verify our conclusions and illustrate
the effect of the evolution rate. Based on the index ρ−2 := 1

T

∫ T
0

1
ρ(t)2

dt, com-

pared with the model on a fixed domain, we show that the transmission risk
of the diseases increases if the index is lower than 1 and the risk decreases if
the index is equal or greater than 1.

Keywords Periodic evolution domain, fecal-oral transmission diseases, basic
reproduction number, dynamical behavior.
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1. Introduction

Emerging infectious diseases such as SARS, dengue fever, malaria, COVID-19, etc.
are major public health problems worldwide. Some characteristic features of these
emerging infectious diseases are sudden and widespread outbreaks. Thousands of
people suffer from these emerging infectious diseases every year, meanwhile, many
easy-to-treat diseases have not been paid enough attention to, for example cholera,
schistosomiasis, rabies and so on, resulting in the endemic diseases. As an endemic
disease, the fecal-oral transmission diseases (FOTD) are caused by the bacteria and
viruses from feces of infected persons entering the respiratory and alimentary tracts
of the susceptible. Take hand-foot-and-mouth diseases (HFMD) as an example,
millions of children who are mainly under five-years old have been affected in the
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Western Pacific [25, 33]. Since the viruses can persist in feces for several weeks,
HFMD is prone to outbreaks in nurseries, summer camps or within households etc.,
putting family members and close contacts at risk. It follows then that it is very
important and urgent to study the transmission law and diffusion mechanism of
viruses so as to effectively prevent and cure endemic infectious diseases similar to
the FOTD.

In view of the non-experimental characteristic of infectious diseases, mathemati-
cal modeling [23] is one of the important tools to investigate the outbreak and trans-
mission laws of contagious diseases and then to prevent and control contagion [15].
As early as 1760, Bernoulli [6] applied the mathematical model to investigate the
transmission of smallpox. In 1911, Ross [32] established the compartment model
to study the process of malaria transmission, which further advanced the process
of researching the dynamics of infectious diseases. By 1927, Kermack and McK-
endrick [21] established the SIR epidemic model to explore the transmission law
of Black Death and provided the threshold theory to predict the risk of its out-
breaks, which are still being perfected and widely applied. In 1981, Capasso and
Maddalena [8] proposed the following reaction-diffusion system to understand the
dynamics of the FOTD in the Mediterranean region of Europe:

u1t(x, t)− d1∆u1(x, t) = −a11u1(x, t) + a12u2(x, t), x ∈ Ω, t > 0,

u2t(x, t)− d2∆u2(x, t) = −a22u2(x, t) + g(u1(x, t)), x ∈ Ω, t > 0,

∂u1

∂η
+ α1u1 =

∂u2

∂η
+ α2u2 = 0, x ∈ ∂Ω, t > 0,

u1(x, 0) = u10(x) ≥ 0, u2(x, 0) = u20(x) ≥ 0, x ∈ Ω.

(1.1)

Here u1(x, t) and u2(x, t) represent the densities of bacteria and the infective at
time t and location x ∈ Ω ⊆ Rn (n = 1, 2, 3), respectively. The bounded habitat Ω
is an open domain with a sufficiently smooth boundary ∂Ω. Parameters d1, d2 ≥ 0
are the diffusion coefficients of u1 and u2. The natural mortality of bacteria is a11.
The ratio a12 denotes the infective contribution to the growth of bacteria. While
a22 represents the natural damping rate of the infected human population due to
the finite average duration of humans’ infectiousness. The normal derivative along
η on ∂Ω is denoted by ∂

∂η , where η is the outward unit normal vector. Under
the assumption that the total susceptible is constant during the evolution of the
epidemic, the last term g(u1) describes the infection rate of humans which satisfies
the following conditions:

(C1) g ∈ C2([0,∞)), g(0) = 0;

(C2) g
′
(z) > 0 and g

′′
(z) < 0 for all z ≥ 0;

(C3)
g(z)

z
is decreasing and lim

z→∞

g(z)

z
<
a11a22

a12
.

They considered the Robin boundary conditions
∂ui
∂η

+αiui = 0 for x ∈ ∂Ω and i =

1, 2, where more detailed biological interpretations on its boundary conditions can
see for example [7]. The initial conditions satisfied ui0 ∈ C2(Ω) and were both not
identically zero for all x ∈ ∂Ω. This model can be applied to explain many epidemics
through fecal-oral transmission such as typhoid, infectious hepatitis, colitis and so
on.
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In recent years, multiple issues based on the FOTD model (1.1) have been re-
searched by scholars from various countries. S.L. Wu, G.S. Chen, C.H. Hsu [37]
and W.B. Xu, W.T. Li, S.G. Ruan [39] considered the nonlocal diffusion epidemic
model arising from the spread of fecally–orally transmitted diseases, respectively.
Specifically, Wu et al. were concerned with the well-posedness of entire solutions to
the model while Xu et al. focused on the effects of initial values and nonlocal dis-
persal on its spatial propagation. Tang and Ouyang [35] introduced the chemotaxis
into model (1.1) with Neumann boundary conditions generating Turing bifurcations
and also proved the stability of positive equilibrium. In addition, based on model
(1.1), Huang and Tan [17] introduced the pathogens’ incubation period to inves-
tigate the global dynamical behaviors of the model under homogeneous Dirichlet
boundary conditions by utilizing operator semigroup theory and dynamical systems
approach. More work about the variants of model (1.1) can refer to [16, 24, 28, 41]
and the references therein.

Compared with the work on changing underlying areas, most of the foregoing
work is confined to fixed domains, which exists certain biological limitations. In real
life, the species’ habitat may expand or shrink in response to the changing ecologi-
cal environment. For instance, influenced by geography, the boundaries of species’
habitats expand or contract over time as populations invade into the new environ-
ments, which is mathematically reduced to a free boundary problem [11,12,18,28].
In particular, some bounded habitats may present certain regular changes in reality
under the influence of natural environment. For example, some insects inhabit on
growing leaves [34]; the habitats of some fish expand with the rise of river tempera-
tures [9,31]; the area of lakes and vegetation are periodically changeful on account of
the seasonal replacement [22]. In fact, we often attribute these types of the biologi-
cal habitat’s evolution to the problems of growing domain [13,26,40,43] and periodic
evolution [19,20,27,36,38,44], describing the process of species dispersal and its pat-
tern formation and long term behavior. Madzvamuse [26] discovered the conditions
under which standard linear stability theory holds for reaction-diffusion systems
with constant coefficients on growing domains. Garduño et al. [13] focused on the
spatial and spatio-temporal patterns in the reaction-diffusion FitzHugh-Nagumo
model on growing curved domains. Zhang et al. [40] established a FOTD model
with homogeneous Robin boundary conditions on a growing domain to explore the
effect of growth function ρ(t) on its asymptotic behavior. Zhu et al. were concerned
with the dengue fever model on a growing domain [43] and a T -periodic evolution
domain [44], respectively, to investigate the long term dynamic behaviors of dengue
virus in terms of the corresponding basic reproduction numbers and compare with
results obtained in the case of fixed domains. Moreover, for spatially isotropic and
temporally periodic evolution domains, Montano and Lisena [27] dealt with the dy-
namics of a diffusive Lotka-Volterra model with periodic coefficients and zero-flux
boundary conditions. Kavallaris et al. [20] were devoted to the dynamics of the
shadow system of a singular Gierer–Meinhardt model and gave blow-up results for
the nonlocal equation to interpret instability patterns. Jiang and Wang [19] derived
a n-dimensional diffusive logistic equation and analyzed the effect of evolution on
the persistence of single species. Tong and Lin [36] considered an SIS reaction-
diffusion model with logistic term. They explored the effect of periodically evolving
domains on the spread of diseases and discussed the stability of the disease-free
equilibrium by the basic reproduction number. Xu et al. [38] proposed a general-
ized logistic model with impulses in an evolving domain to research the impacts of
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regional evolution and impulses on the persistence or extinction of species.
Inspired by the work mentioned above, we introduce a periodic evolution domain

into the FOTD model (1.1). Compared with the FOTD model on a growing domain
which can see for example [40], our aim here is to discuss the effect of periodic
evolution on the dynamics of bacteria and reveal some new phenomena caused by
the domain evolution.

The rest of this paper is organized as follows. We first derive the FOTD model
and its basic reproduction number R0 followed by some preliminaries in section 2.
Existence, uniqueness and attractivity of endemic and disease-free equilibria on
the evolution and fixed domains are analysed in section 3. In section 4, we give
some numerical simulations and epidemiological explanations. We end with a brief
summary in section 5.

2. Preparatory work

In this section, we first deduce the FOTD model on the evolution domain and then
transform it into a model with time-period coefficients on the fixed domain followed
by derivation of basic reproduction number R0 and its some properties which can
be useful for later sections.

Suppose that the evolution domain Ω(t) ⊂ Rn (n ≥ 1) is simply connected and
bounded with evolution boundary ∂Ω(t) for time t ≥ 0. Considering any point
x = (x1(t), x2(t), . . . , xn(t)) in Ω(t), we denote the spatial densities of bacteria and
the infective at location x and time t by u1(x, t) and u2(x, t), respectively. Based on
Law of conservation of mass and Reynold transport theorem [1], we can establish
the following evolution FOTD model:

∂u1

∂t +∇u1 · a+ u1(∇ · a) = d1∇2u1 − a11(t)u1(x, t) + a12(t)u2(x, t),

∂u2

∂t +∇u2 · a+ u2(∇ · a) = d2∇2u2 − a22(t)u2(x, t) + g(u1(x, t)),
(2.1)

where (x, t) ∈ Ω(t) × (0,+∞), the domain evolution produces a flow velocity field
a = (ẋ1(t), ẋ2(t), . . . , ẋn(t)), terms ∇ui · a (i = 1, 2) are the advection terms which
represent the transport of species around Ω(t) at a rate determined by the flow a,
and ui(∇·a) denote dilution terms due to local volume expansion (contraction) [10],
parameters di represent the diffusion coefficients of ui which are assumed to be
constants. We typically consider homogeneous Neumann boundary conditions

∂ui
∂η

= 0, for i = 1, 2, x ∈ ∂Ω(t), (2.2)

which mean that there is no population flux across the boundary ∂Ω(t) and both
bacteria and the infective live in a self-contained environment. These equations are
supplemented with initial conditions

ui(x, 0) = ui0(x), for i = 1, 2, x ∈ Ω(0), (2.3)

where ui0 are nonnegative bounded functions and Ω(0) is the initial domain.
However, due to problem (2.1)–(2.3) containing advection and dilution terms,

studying the properties of its solutions directly is difficult in most instances. For-
tunately, we can consider this problem on a continuously deforming domain Ω(t)
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from a transformation of Lagrangian coordinates [5] point of view. Let the fixed
cartesian coordinate y = (y1, y2, . . . , yn) ∈ Ω(0) satisfy

xi(t) = x̂i(y1, y2, . . . , yn, t), for i = 1, 2, . . . , n.

These positions xi(t) are then mapped to fixed positions determined by the coordi-
nate y. Thus, we assume u1 and u2 are mapped into the new functions defined by,
respectively,

u1(x(t), t) = u1(x1(t), x2(t), . . . , xn(t), t) := u(y1, y2, . . . , yn, t) = u(y, t),

u2(x(t), t) = u2(x1(t), x2(t), . . . , xn(t), t) := v(y1, y2, . . . , yn, t) = v(y, t).
(2.4)

Then problem (2.1)–(2.3) can be converted into the model on a fixed domain Ω(0)
that remains complicated. In order to further simplify the model, we assume that
domain evolution is bounded, temporally periodic and spatially isotropic. Then
x ∈ Ω(t) can be denoted by

x = ρ(t)y, y ∈ Ω(0), (2.5)

where the domain evolution rate ρ(t) is subject to ρ(t) ∈ C1 : [0, T ] → (0,∞),
ρ(0) = 1 and ρ(t) = ρ(t + T ) for a given positive period T , the boundary of Ω(0)
satisfies ∂Ω(0) ∈ C2. Combining (2.4) with (2.5), we obtain that

a = ẋ = ρ̇(t)y =
ρ̇

ρ
x, ∇ · a =

nρ̇

ρ
,

ut = u1t +∇u1 · a, vt = u2t +∇u2 · a,

∆u1 =
1

ρ2(t)
∆u, ∆u2 =

1

ρ2(t)
∆v.

Similarly, the boundary condition can be transmuted into

∂u

∂η
=
∂v

∂η
, y ∈ ∂Ω(0).

Then, we can transform the FOTD model with time-periodic coefficients on a T -
period evolution domain into the model on a fixed domain as follows:

ut =
d1

ρ2(t)
∆u− nρ̇(t)

ρ(t)
u− a11(t)u+ a12(t)v, y ∈ Ω(0), t > 0,

vt =
d2

ρ2(t)
∆v − nρ̇(t)

ρ(t)
v + g(u)− a22(t)v, y ∈ Ω(0), t > 0,

∂u

∂η
=
∂v

∂η
= 0, y ∈ ∂Ω(0), t > 0,

(2.6)

with the initial condition

u(y, 0) = u0(y) := u10(x(0)) ≥ 0, v(y, 0) = v0(y) := u20(x(0)) ≥ 0, y ∈ Ω(0).
(2.7)

We also consider the problem under the periodic condition

u(y, 0) = u(y, T ) ≥ 0, v(y, 0) = u(y, T ) ≥ 0, y ∈ Ω(0). (2.8)
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Here, the corresponding coefficients of reaction terms a11(t), a12(t) and a22(t) are
all assumed to be nonnegative, T -periodic and sufficiently smooth. The Laplacian

∆ is with respect to y and g satisfies (C1), (C2) and (C3∗) g(z)
z is decreasing

and lim
z→∞

g(z)
z <

(am11−nmaxt∈[0,T ]| ρ̇ρ |)(a
m
22−nmaxt∈[0,T ]| ρ̇ρ |)

aM12
, where am11 = min

t∈[0,T ]
a11(t),

am22 = min
t∈[0,T ]

a22(t), aM12 = max
t∈[0,T ]

a12(t) and maxt∈[0,T ]| ρ̇ρ | <
min{am11,a

m
22}

n .

Particularly, domain Ω(t) can be regarded as a fixed one Ω(0) if ρ(t) ≡ 1, that
is, problem (2.6), (2.7) is a reaction-diffusion FOTD model on the fixed domain.

We will reveal the long term behavior of this problem and draw the effect of
evolution on the spread of FOTD by means of the basic reproduction number R0.
Next, we first give the definition of R0 according to operator semigroup theory
and study some of its properties by spectral analysis method [42] and eigenvalue
problem theory [2, 7].

Consider the following linearized system of (2.6) at the disease-free equilibrium
(0, 0) 

Ut −D(t)∆U = F (t)U − V (t)U , y ∈ Ω(0), t > 0,

∂U

∂η
= 0, y ∈ ∂Ω(0), t > 0,

where the initial conditions here are the same as in problem (2.6) and

U =

u
v

 , F (t) =

 0 a12(t)

g
′
(0) 0

 ,

D(t) =

 d1
ρ2(t) 0

0 d2
ρ2(t)

 , V (t) =

a11(t) + nρ̇(t)
ρ(t) 0

0 a22(t) + nρ̇(t)
ρ(t)

 .

Let E(t, s) be the evolution operator of the following system
Ut −D(t)∆U = −V (t)U , y ∈ Ω(0), t > 0,

∂U

∂η
= 0, y ∈ ∂Ω(0), t > 0.

According to the standard operator semigroup theory, there exist positive constants
K and c0 such that

‖E(t, s)‖ ≤ Ke−c0(t−s), ∀t > s, t, s ∈ R.

Moreover, suppose that

CT = {f ∈ C(R, C(Ω(0),R)) : ∀t ∈ R, f(t) = f(t+T ) for given positive period T},

then we define a positive cone C+
T with the maximum norm ‖ · ‖ by

C+
T := {ϕ ∈ CT : ϕ(t)y ≥ 0, (y, t) ∈ Ω(0)× R},

which is an ordered Banach space and denote ϕ(t)y by ϕ(y, t) for any ϕ ∈ CT .
Assume that ζ = (φ, ψ) ∈ CT × CT is the density distribution of bacteria and the
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infective at location y ∈ Ω(0) and time s. It follows from the statements in [42] that
the next generation infection operator L : CT × CT → CT × CT can be defined by

L(ζ)(t) :=

∫ t

−∞
E(t, s)F (s)ζ(·, s)ds =

∫ ∞
0

E(t, t− a)F (t− a)ζ(·, t− a)da.

Here positive operator L is continuous and compact on CT × CT , that is, L(C+
T ×

C+
T ) ⊂ C+

T ×C
+
T . Therefore, consulting [42], we formulateR0, the basic reproduction

number of model (2.6), by the spectral radius of operator L, denoted by

R0 = ρ(L).

In addition, in order to study some properties of R0, we need the following Lemmas
which can refer to Proposition 3.9, Theorem 3.7 and Theorem 3.8 in [42].

Lemma 2.1. R0 = µ0, where µ0 > 0 is the unique principal eigenvalue of the
following periodic parabolic eigenvalue problem

∂Φ

∂t
− d1

ρ2(t)
∆Φ =

a12(t)Ψ

µ
−
(
a11(t) +

nρ̇(t)

ρ(t)

)
Φ, y ∈ Ω(0), t > 0,

∂Ψ

∂t
− d2

ρ2(t)
∆Ψ =

g
′
(0)Φ

µ
−
(
a22(t) +

nρ̇(t)

ρ(t)

)
Ψ, y ∈ Ω(0), t > 0,

∂Φ

∂η
=
∂Ψ

∂η
= 0, y ∈ ∂Ω(0), t > 0,

Φ(y, 0) = Φ(y, T ), Ψ(y, 0) = Ψ(y, T ), y ∈ Ω(0),

(2.9)

and corresponds to an eigenfunction pair (Φ0,Ψ0) ∈ CT ×CT satisfying Φ0,Ψ0 > 0
in Ω(0)× (0,∞).

Lemma 2.2. sign(1−R0) = sign(λ0), where λ0 is the unique principal eigenvalue
of the following periodic parabolic eigenvalue problem

∂φ

∂t
− d1

ρ2(t)
∆φ = a12(t)ψ −

(
a11(t) +

nρ̇(t)

ρ(t)

)
φ+ λφ, y ∈ Ω(0), t > 0,

∂ψ

∂t
− d2

ρ2(t)
∆ψ = g

′
(0)φ−

(
a22(t) +

nρ̇(t)

ρ(t)

)
ψ + λψ, y ∈ Ω(0), t > 0,

∂φ

∂η
=
∂ψ

∂η
= 0, y ∈ ∂Ω(0), t > 0,

φ(y, 0) = φ(y, T ), ψ(y, 0) = ψ(y, T ), y ∈ Ω(0),
(2.10)

and corresponds to an eigenfunction pair (φ0, ψ0) ∈ CT × CT satisfying φ0, ψ0 > 0
in Ω(0)× (0,∞).

Remark 2.1. It follows from Lemma 2.1 and [3,4] that R0 monotonically increases
with respect to a12(t) and g

′
(0). Hence, if a12(t) and g

′
(0) are sufficiently big, then

R0 > 1 holds.

Meanwhile, in order to describe the dependence of R0 with respect to periodic
evolution rate ρ(t), we denote R0(ρ) = R0 and the integral average of any continuous
function f(t) over (0, T ) by

f =
1

T

∫ T

0

f(t)dt.



724 Y. Zhou, B. Zhang & Z. Ling

In what follows, we give the estimation of lower bound with respect to R0(ρ).

Theorem 2.1. Fix variable coefficients a11(t), a12(t) and a22(t) in eigenvalue prob-
lem (2.9). Then we can deduce that

R0(ρ) ≥
√
a12(t)g′(0)√
a11(t) · a22(t)

. (2.11)

In particular, if there exist constants a∗11, a∗12 and a∗22 such that a11(t), a12(t) and
a22(t) are respectively identically equal to them, then

R0(ρ) ≥

√
a∗12g

′(0)

a∗11a
∗
22

:= R0, (2.12)

where R0 is the basic reproduction number of the FOTD model (1.1) with homoge-
neous Neumann boundary conditions.

Proof. First, due to the homogeneous Neumann boundary conditions, we assume
that one eigenfunction pair of problem (2.9) corresponding to principal eigenvalue
µ0 are Φ0(y, t) = z1(t) and Ψ0(y, t) = z2(t), where

zi(t) = zi(t+ T ) > 0, for t ∈ [0,∞) and i = 1, 2,

are to be determined later. By simplifying, we can obtain
ż1(t) =

a12(t)z2(t)

R0(ρ)
−
(
a11(t) +

nρ̇(t)

ρ(t)

)
z1(t),

ż2(t) =
g
′
(0)z1(t)

R0(ρ)
−
(
a22(t) +

nρ̇(t)

ρ(t)

)
z2(t).

(2.13)

In fact, according to the assumptions of ρ(t) and ρ̇(t) and some ordinary differ-
ential equations arguments [14], there exist a differentiable T -periodic solution
(z1(t), z2(t)) satisfying system (2.13). With the appropriate transformation, sys-
tem (2.13) can be rewritten as

ż1(t)

z1(t)
=
a12(t)

R0(ρ)

z2(t)

z1(t)
−
(
a11(t) +

nρ̇(t)

ρ(t)

)
,

ż2(t)

z2(t)
=

g
′
(0)

R0(ρ)

z1(t)

z2(t)
−
(
a22(t) +

nρ̇(t)

ρ(t)

)
.

Thanks to the periodicity of zi(t)(i = 1, 2) and the assumption of ρ(t), we integrate
and average the above equations over [0, T ] and achieve

1

R0(ρ)
· 1

T

∫ T

0

a12z2(t)

z1(t)
dt = a11(t),

1

R0(ρ)
· 1

T

∫ T

0

g
′
(0)z1(t)

z2(t)
dt = a22(t).

Therefore,

a11(t) · a22(t) =
1

T

∫ T

0

a11(t)dt · 1

T

∫ T

0

a22(t)dt
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=
1

R2
0(ρ)

· 1

T

∫ T

0

a12z2(t)

z1(t)
dt · 1

T

∫ T

0

g
′
(0)z1(t)

z2(t)
dt

≥ 1

R2
0(ρ)

·
(

1

T

∫ T

0

√
a12(t)g′(0)dt

)2

,

where the inequality relation is obtained by the Hölder inequality. It implies that

R2
0(ρ) ≥

(√
a12(t)g′(0)

)2
a11(t) · a22(t)

.

The proof of inequality (2.11) is completed.

Obviously, when a11(t) ≡ a∗11, a12(t) ≡ a∗12 and a22(t) ≡ a∗22, we can directly
deduce inequality (2.12) from the above inequality. Furthermore, if ρ(t) ≡ 1, then
the corresponding problem can be regarded as the problem on a fixed domain, i.e.,
problem (1.1) with homogeneous Neumann boundary conditions. Similarly, we can
obtain 

ż1(t) = −a∗11z1(t) +
a∗12z2(t)

R0
,

ż2(t) =
g
′
(0)z1(t)

R0
− a∗22z2(t),

(2.14)

we can easily calculate that

z1(t) = e(−a∗11+
Ka∗12
R0

)t, z2(t) = Ke(−a∗11+
Ka∗12
R0

)t

are a set of solutions to system (2.14), where

K =
a∗11 − a∗22 +

√
(a∗11 − a∗22)2 +

4a∗12g
′ (0)

R0
2

2a∗12/R0
.

By periodicity hypothesis of zi(t)(i = 1, 2), we further calculate to get

R0 =

√
a∗12g

′
(0)

a∗11a
∗
22

which is consistent with the second equality relation of Formula (2.12).

Thus we can summarize what we have proved as Theorem 2.1.

Remark 2.2. R0(1) ≥ R0 and the equality holds if and only if a11(t), a12(t) and
a22(t) are all constants.

3. Main results

In this section, we first give the definition of upper and lower solutions to our prob-
lem and with that show the existence, uniqueness and attractivity of disease-free
and endemic equilibria on the periodic evolution and fixed domains, respectively.
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Notice that problem (2.6) with the periodic condition (2.8) is equivalent to

ut −
d1

ρ2(t)
∆u = f1(t, u, v), y ∈ Ω(0), t > 0,

vt −
d2

ρ2(t)
∆v = f2(t, u, v), y ∈ Ω(0), t > 0,

∂u

∂η
=
∂v

∂η
= 0, y ∈ ∂Ω(0), t > 0,

u(y, 0) = u(y, T ), v(y, 0) = v(y, T ), y ∈ Ω(0),

(3.1)

where

f1(t, u, v) = −
(
a11(t) +

nρ̇(t)

ρ(t)

)
u+ a12(t)v, y ∈ Ω(0), t > 0,

f2(t, u, v) = g(u)−
(
a22(t) +

nρ̇(t)

ρ(t)

)
v, y ∈ Ω(0), t > 0.

Owing to the nonnegativity of a12(t) and hypotheses in g(u), the reaction terms f1

and f2 are all quasimonotone nondecreasing. In what follows, we define the ordered
upper and lower solutions to problem (3.1).

Definition 3.1. Suppose that ũ(y, t), û(y, t), ṽ(y, t) and v̂(y, t) are nonnegative
functions in C2,1(Ω(0)× (0,∞))∩C(Ω(0)× [0,∞)). Then ũ = (ũ, ṽ) and û = (û, v̂)
are called ordered upper and lower solutions to problem (3.1) if ũ ≥ û ≥ 0 and if

ũt −
d1

ρ2(t)
∆ũ ≥ f1(t, ũ, ṽ), ṽt −

d2

ρ2(t)
∆ṽ ≥ f2(t, ũ, ṽ), y ∈ Ω(0), t > 0,

ût −
d1

ρ2(t)
∆û ≤ f1(t, û, v̂), v̂t −

d2

ρ2(t)
∆v̂ ≤ f2(t, û, v̂), y ∈ Ω(0), t > 0,

∂ũ

∂η
≥ 0 ≥ ∂û

∂η
,
∂ṽ

∂η
≥ 0 ≥ ∂v̂

∂η
, y ∈ ∂Ω(0), t > 0,

ũ(y, 0) ≥ ũ(y, T ), ṽ(y, 0) ≥ ṽ(y, T ), y ∈ Ω(0),

û(y, 0) ≤ û(y, T ), v̂(y, 0) ≤ v̂(y, T ), y ∈ Ω(0).
(3.2)

Remark 3.1. We call ũ ≥ û if ũ ≥ û and ṽ ≥ v̂. Moreover, we denote any function
pair û ≤ u := (u, v) ≤ ũ by u ∈ 〈û, ũ〉.

Indeed, these foregoing ordered upper and lower solutions do not have to be T -
periodic in time.

Next, employing some standard upper and lower solutions arguments, we will
describe the well-posedness of solutions to problem (3.1).

3.1. Existence and uniqueness of periodic solutions

Theorem 3.1. If R0(ρ) > 1, then there exist two sets of positive periodic solutions
u := (u, v) and u := (u, v) satisfying (3.1) such that any solution to problem (3.1)
u ∈ 〈u,u〉. Moreover, if u(y, 0) = u(y, 0), then u = u = u∗ := (u∗, v∗) is the
unique solution to problem (3.1).



The FOTD model on the evolution domain 727

Proof. Let

ũ(y, t) = (M1,M2), û(y, t) = (δφ0, δψ0) ∈ Ω(0)× [0,∞), (3.3)

where (φ0, ψ0) > 0 is an eigenfunction pair of problem (2.10) corresponding to
principal eigenvalue λ0 and δ > 0 is to be selected later. Constants M1,M2 are
positive and should satisfy the following relationships

−a11(t)M1 −
n ˙ρ(t)

ρ(t)
M1 + a12(t)M2 ≤ 0, t > 0,

g(M1)− a22(t)M2 −
n ˙ρ(t)

ρ(t)
M2 ≤ 0, t > 0.

(3.4)

It is sufficient to show that
−am11M1 + nmaxt∈[0,T ]| ρ̇ρ |M1 + aM12M2 ≤ 0,

g(M1)− am22M2 + nmaxt∈[0,T ]| ρ̇ρ |M2 ≤ 0,

(3.5)

which is equivalent to 
M2

M1
≤
am11 − nmaxt∈[0,T ]| ρ̇ρ |

aM12

,

g(M1)

M1
≤ (am22 − n max

t∈[0,T ]
| ρ̇
ρ
|) · M2

M1
.

(3.6)

In fact, substituting (3.3) back into (3.2), it follows from hypothesis (C3∗) that
there exists M∗ > 0 such that

g(M)

M
≤

(am11 − nmaxt∈[0,T ]| ρ̇ρ |)(a
m
22 − nmaxt∈[0,T ]| ρ̇ρ |)

aM12

for any M ≥ M∗, which implies that (3.6) holds. Hence, we can take M1 = M∗

and M2 =
(am11−nmaxt∈[0,T ]| ρ̇ρ |)M

∗

aM12
. Meanwhile, the rest inequalities of (3.2) are

transformed into

(φ0)t −
d1

ρ2(t)
∆φ0 ≤ −

(
a11(t) +

nρ̇(t)

ρ(t)

)
φ0 + a12(t)ψ0,

(ψ0)t −
d2

ρ2(t)
∆ψ0 ≤ −

(
a22(t) +

nρ̇(t)

ρ(t)

)
ψ0 +

g(δφ0)

δ
.

(3.7)

Combining with (2.10), we observe that

λ0 ≤ 0 and λ0 ≤
(
g(δφ0)

δ
− g

′
(0)φ0

)
/ψ0.

Owing to hypotheses (C1) and (C2), we know g(δφ0)
δ − g

′
(0)φ0 < 0 if δ > 0 is

sufficiently small. By now we deduce that λ0 < 0 which is consistent with R0(ρ) > 1
according to Lemma 2.2. In other words, we construct a pair of ordered upper and
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lower solutions (3.3) satisfying condition (3.4). Thanks to Theorem 2.1 in [30], there
exists at least one periodic solution to problem (3.1).

On the other hand, problem (3.1) is further equivalent to the following system

ut −
d1

ρ2(t)
∆u+K1u = F1(t, u, v), y ∈ Ω(0), t > 0,

vt −
d2

ρ2(t)
∆v +K2v = F2(t, u, v), y ∈ Ω(0), t > 0,

∂u

∂η
=
∂v

∂η
= 0, y ∈ ∂Ω(0), t > 0,

u(y, 0) = u(y, T ), v(y, 0) = v(y, T ), y ∈ Ω(0),

where K1,K2 are constants and

K1 ≥ max
t∈[0,T ]

{
a11(t) +

nρ̇(t)

ρ(t)

}
, K2 ≥ max

t∈[0,T ]

{
a22(t) +

nρ̇(t)

ρ(t)

}
,

F1(t, u, v) = K1u+ f1(t, u, v), F2(t, u, v) = K2v + f2(t, u, v).

Notice that F1 and F2 are all monotone nondecreasing with respect to u and v.
Let u(0) = û and u(0) = ũ as the initial iterations. We can construct sequences
{u(k)}∞k=1 and {u(k)}∞k=1 from the following iteration process:

u
(k)
t −

d1

ρ2(t)
∆u(k) +K1u

(k) = F1(t, u(k−1), v(k−1)), y ∈ Ω(0), t > 0,

v
(k)
t −

d2

ρ2(t)
∆v(k) +K1v

(k) = F2(t, u(k−1), v(k−1)), y ∈ Ω(0), t > 0,

u
(k)
t −

d1

ρ2(t)
∆u(k) +K1u

(k) = F1(t, u(k−1), v(k−1)), y ∈ Ω(0), t > 0,

v
(k)
t −

d2

ρ2(t)
∆v(k) +K1v

(k) = F2(t, u(k−1), v(k−1)), y ∈ Ω(0), t > 0,

∂u(k)

∂η
=
∂v(k)

∂η
=
∂u(k)

∂η
=
∂v(k)

∂η
= 0, y ∈ ∂Ω(0), t > 0,

(3.8)

with the periodic condition{
u(k)(y, 0) = u(k−1)(y, T ), v(k)(y, 0) = v(k−1)(y, T ), y ∈ Ω(0),

u(k)(y, 0) = u(k−1)(y, T ), v(k)(y, 0) = v(k−1)(y, T ), y ∈ Ω(0).
(3.9)

According to [30, Lemma 3.1] and [29, Lemma 2.1], the sequences generated by
process (3.8) with (3.9) possess the monotone property as follows:

û ≤ u(k) ≤ u(k+1) ≤ u(k+1) ≤ u(k) ≤ ũ, (3.10)

where u(k) and u(k) satisfy (3.2) for k = 1, 2, . . .. It follows from some classical
partial differential equations arguments that {u(k)}∞k=1 and {u(k)}∞k=1 belong to
C2,1(Ω(0)× (0,∞))∩C(Ω(0)× [0,∞). Owing to the bounded monotonic principle,
the limit of sequences {u(k)}∞k=1 and {u(k)}∞k=1 exist as k →∞, which are denoted
by

lim
k→∞

u(k) = u, lim
k→∞

u(k) = u.
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Combining with (3.10), the following monotonicity property holds:

û ≤ u(k) ≤ u(k+1) ≤ u ≤ u ≤ u(k+1) ≤ u(k) ≤ ũ (3.11)

and u,u satisfy model (3.8) with (3.9) which implies that u,u are both solutions
to problem (3.1). In fact, u,u are also T -periodic referring to the argument of
Theorem 2.1 in [29].

Moreover, we claim that for any periodic solution u of problem (3.1), the function
pair u belongs to the sector 〈u,u〉. Set

S =

{
u ∈ C(Ω(0)× [0,∞)) : u ∈ 〈û, ũ〉

}
.

For any periodic solution u in S, let u be a solution to problem (3.1) and consider
ũ and u as a pair of ordered upper and lower solutions to (3.1). Choosing u(0) = ũ
and u(0) = u as the initial iterations and repeating the above argument, we obtain

u = u(0) = u(k) ≤ u ≤ u(k) ≤ ũ,

which implies that
u ≤ u for (y, t) ∈ Ω(0)× [0,∞).

By the similar argument for u and û, it is sufficient to prove that

u ≥ u for (y, t) ∈ Ω(0)× [0,∞).

The above two inequalities indicate that u ∈ 〈u,u〉.
Finally, we assert that u = u if u(y, 0) = u(y, 0), which one can see for example

[30, Theorem B]. Actually, choosing the initial condition (2.7), that is, u(y, 0) =
(u0(y), v0(y)), problem (3.1) can be regarded as an initial-boundary value parabolic
problem. For this type of initial-boundary value (IBV) problems, the uniqueness of
solutions is classical. We will not repeat it here. The proof is completed.

It follows from the foregoing theorem that periodic solutions to problem (3.1)
exist in the case of R0(ρ) > 1. Naturally, we also want to know what would happen
when R0(ρ) ≤ 1. The following theorem answers this question.

Theorem 3.2. If R0(ρ) ≤ 1, then there is none positive periodic solution satisfying
(3.1).

Proof. Proof by contradiction. Suppose that there exists a positive periodic so-
lution u+ := (u+, v+)(y, t) such that

u+
t −

d1

ρ2(t)
∆u+ = −

(
a11(t) +

nρ̇(t)

ρ(t)

)
u+ + a12(t)v+, y ∈ Ω(0), t > 0,

v+
t −

d2

ρ2(t)
∆v+ = −

(
a22(t) +

nρ̇(t)

ρ(t)

)
v+ + g(u+), y ∈ Ω(0), t > 0,

∂u+

∂η
=
∂v+

∂η
= 0, y ∈ ∂Ω(0), t > 0,

u+(y, 0) = u+(y, T ), v+(y, 0) = v+(y, T ), y ∈ Ω(0).
(3.12)

Due to hypotheses (C1) and (C2), we have

v+
t −

d2

ρ2(t)
∆v+ < −

(
a22(t) +

nρ̇(t)

ρ(t)

)
v+ + g

′
(0)u+, y ∈ Ω(0), t > 0. (3.13)
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Without loss of generality, we can define u+ := (C1φ0, C2ψ0), where (φ0, ψ0) > 0 is
the eigenfunctions pair of problem (2.10) corresponding to principal eigenvalue λ0

and C1, C2 are given positive constants.
Notice that the principal eigenvalue λ0 satisfies

∂φ0

∂t
− d1

ρ2(t)
∆φ0 = a12(t)ψ0 −

(
a11(t) +

nρ̇(t)

ρ(t)

)
φ0 + λφ0, y ∈ Ω(0), t > 0,

∂ψ0

∂t
− d2

ρ2(t)
∆ψ0 = g

′
(0)φ0 −

(
a22(t) +

nρ̇(t)

ρ(t)

)
ψ0 + λ0ψ0, y ∈ Ω(0), t > 0,

∂φ0

∂η
=
∂ψ0

∂η
= 0, y ∈ ∂Ω(0), t > 0,

φ0(y, 0) = φ0(y, T ), ψ0(y, 0) = ψ0(y, T ), y ∈ Ω(0).
(3.14)

Consulting [3, 4], we know that λ0 monotonically decreases with respect to a12(t)
and g

′
(0). Thus we deduce that λ0 < 0 by comparing (3.13) with (3.14). However,

Lemma 2.2 indicates sign(1 − R0(ρ)) = sign(λ0) which implies that R0(ρ) > 1
contrary to condition R0(ρ) ≤ 1. The proof is completed.

3.2. Attractivity of disease-free and endemic equilibria

Our aim in this subsection is to present the attractivity of periodic solutions to
problem (3.1). For this purpose, we need some lemmas which one can refer to [30,
Theorem B, Lemma 3.1, Lemma 3.2]. We omit the details of their proofs here.

Lemma 3.1. Suppose that {u(k)}∞k=1 and {u(k)}∞k=1 are the sequences constructed
by (3.8) and the initial condition changed by (2.7), that is,

{u(k)}∞k=1(y, 0) = {u(k)}∞k=1(y, 0) = u0 := (u0(y), v0(y)),

where u0 ∈ 〈û, ũ〉 in Ω(0). Then {u(k)}∞k=1 and {u(k)}∞k=1 converge monotonically
to the unique solution u of problem (2.6) equipped with the initial condition (2.7)
and satisfy the relation

û = u(0) ≤ u(k−1) ≤ u(k) ≤ u ≤ u(k) ≤ u(k−1) ≤ u(0) = ũ

for k = 1, 2, . . ..

For IBV problem (2.6),(2.7), we exhibit the existence-comparison theorem
(Lemma 3.1). Besides, the above sequences possess some additional properties.

Lemma 3.2. For any two positive integers k and k
′
, the functions pair u(k),

u(k
′
) are a pair of ordered upper and lower solutions to problem (3.1) and prob-

lem (2.6),(2.7), respectively, if u0 ∈ 〈u(k
′
),u(k)〉 in Ω(0).

Lemma 3.3. Let u(y, t; u0) := (u(y, t;u0), v(y, t; v0)) be the solution to problem
(2.6),(2.7) with any u0 ∈ S0, where

S0 =

{
u0 ∈ C(Ω(0)) : u0 ∈ 〈û, ũ〉(y, 0)

}
.

Then for every k, the following relationship holds:

u(k)(·, t) ≤ u(·, t+ kT ; u0) ≤ u(k)(·, t) in Ω(0)× [0,∞). (3.15)
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Next, we show the attractivity of disease-free and endemic equilibria.

Theorem 3.3. Let u(y, t),u(y, t) be the T -periodic solutions determined in The-
orem 3.1. Denote by u(y, t; u0) the solution to problem (2.6),(2.7). If R0(ρ) > 1,
then

lim
k→∞

u(y, t+ kT ; u0) =

{
u(y, t), if u0 ∈ 〈û,u〉 in Ω(0),

u(y, t), if u0 ∈ 〈u, ũ〉 in Ω(0),

and the following relationship holds for any u0 ∈ S0:

u(y, t) ≤ u(y, t+ kT ; u0) ≤ u(y, t) (3.16)

in Ω(0)× [0,∞) as k →∞. Moreover, if u(y, 0) = u(y, 0) = u∗(y, 0), then u(y, t) =
u(y, t) = u∗(y, t) and

lim
k→∞

u(y, t+ kT ; u0) = u∗(y, t). (3.17)

Proof. For the case u0 ∈ 〈û,u〉, regarding u as an upper solution to problem
(2.6),(2.7), then it follows from Lemma 3.1 that

û = u(0) ≤ u ≤ u(0) = u in Ω(0)× [0,∞), (3.18)

and particularly, for every k,

u(y, t+ kT ; u0) ≤ u(y, t+ kT ) = u(y, t). (3.19)

On the other hand, according to Lemma 3.3, we obtain

u(y, t+ kT ; u0) ≥ u(k)(y, t) in Ω(0)× [0,∞)

for every k. Letting k →∞ and noticing that lim
k→∞

u(k) = u yield

lim
k→∞

u(y, t+ kT ; u0) = u(y, t).

For the other case u0 ∈ 〈u, ũ〉, it is similar to obtain

lim
k→∞

u(y, t+ kT ; u0) = u(y, t).

And we can easily check that relationship (3.16) holds due to (3.11) and Lemma 3.3.
In addition, the claim that u = u = u∗ if u(y, 0) = u(y, 0) = u∗(y, 0) has been

verified in the proof of Theorem 3.1. Meanwhile, relationship (3.17) is apparent
under the result u = u. The proof is completed.

Theorem 3.4. If R0(ρ) ≤ 1 and u(y, t; u0) is the solution to problem (2.6),(2.7),
then the following relationship holds for any u0 ≥ 0:

lim
t→∞

u(y, t; u0) = (0, 0) uniformly for y ∈ Ω(0). (3.20)

Proof. Let positive constant-pair (M1,M2) satisfy (3.6). Then for any constant-
pair (M∗1 ,M

∗
2 ) ≥ (M1,M2), it is easy to check that ũ ≡ (M∗1 ,M

∗
2 ) and û ≡ (0, 0)

satisfy Definition 3.1. By the iteration process established in the proof of Theo-
rem 3.1, we can similarly obtain two T -periodic solutions u and u which satisfy
(3.1) and

(0, 0) ≤ u ≤ u ≤ (M∗1 ,M
∗
2 ).
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Besides, it follows from Theorem 3.2 that there is none positive periodic solution
satisfying (3.1), which implies that u = u ≡ 0. Analogous to the method used
in Theorem 3.3 and with the help of the arbitrariness of (M∗1 ,M

∗
2 ), the uniform

convergence property of u(y, t; u0) is valid:

u(y, t+ kT ; u0)→ (0, 0) as k →∞ in Ω(0)× [0,∞).

The proof is completed.

3.3. Existence and attractivity of periodic solutions on the
fixed domain

Assume that the domain Ω(t) is fixed, then problem (2.6)–(2.8) is rewritten by the
following FOTD model

ut − d1∆u = −a11(t)u+ a12(t)v, y ∈ Ω(0), t > 0,

vt − d2∆v = g(u)− a22(t)v, y ∈ Ω(0), t > 0,

∂u

∂η
=
∂v

∂η
= 0, y ∈ ∂Ω(0), t > 0,

(3.21)

with two different conditions, respectively, which one is the initial condition (2.7)
and the other is periodic condition (2.8).

According to the next generation infection operator, we can similarly define
the corresponding basic reproduction number of (3.21),(2.8) by R0(1) which also
represents the principal eigenvalue of system (3.22) as follows:

∂Φ̂0

∂t
− d1∆Φ̂0 =

a12(t)Ψ̂0

µ̂
− a11(t)Φ̂0, y ∈ Ω(0), t > 0,

∂Ψ̂0

∂t
− d2∆Ψ̂0 =

g
′
(0)Φ̂0

µ̂
− a22(t)Ψ̂0, y ∈ Ω(0), t > 0,

∂Φ̂0

∂η
=
∂Ψ̂0

∂η
= 0, y ∈ ∂Ω(0), t > 0,

Φ̂0(y, 0) = Φ̂0(y, T ), Ψ̂0(y, 0) = Ψ̂0(y, T ), y ∈ Ω(0).

(3.22)

Notice that sign(1 − R0(1)) = sign(λ̂0), where λ̂0 denotes the principal eigenvalue
of problem (3.23) as follows:

∂φ̂0

∂t
− d1∆φ̂0 = a12(t)ψ̂0 − a11(t)φ̂0 + λ̂φ̂0, y ∈ Ω(0), t > 0,

∂ψ̂0

∂t
− d2∆ψ̂0 = g

′
(0)φ̂0 − a22(t)ψ̂0 + λ̂ψ̂0, y ∈ Ω(0), t > 0,

∂φ̂0

∂η
=
∂ψ̂0

∂η
= 0, y ∈ ∂Ω(0), t > 0,

φ̂0(y, 0) = φ̂0(y, T ), ψ̂0(y, 0) = ψ̂0(y, T ), y ∈ Ω(0).

(3.23)

Here, Φ̂0, Ψ̂0, φ̂0 and ψ̂0 belonging to CT are strictly positive principal eigenfunctions
in Ω(0)× (0,∞). The first two correspond to principal eigenvalue R0(1) while the

rest correspond to λ̂0.
Similar to Definition 3.1, we can define the ordered upper and lower solutions

to (3.21),(2.8) by ũ = (ũ, ṽ) and û = (û, v̂) as follows:
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Definition 3.2. Suppose that ũ(y, t), ṽ(y, t), û(y, t) and v̂(y, t) are nonnegative
functions in C2,1(Ω(0) × (0,∞)) ∩ C(Ω(0) × [0,∞)). Then ũ and û are called
ordered upper and lower solutions to problem (3.21),(2.8) if ũ ≥ û ≥ 0 and if

ũt − d1∆ũ ≥ −a11(t)ũ+ a12(t)ṽ, ṽt − d2∆ṽ ≥ g(ũ)− a22(t)ṽ, y ∈ Ω(0), t > 0,

ût − d1∆û ≤ −a11(t)û+ a12(t)v̂, v̂t − d2∆v̂ ≤ g(û)− a22(t)v̂, y ∈ Ω(0), t > 0,

∂ũ

∂η
≥ 0 ≥ ∂û

∂η
,
∂ṽ

∂η
≥ 0 ≥ ∂v̂

∂η
, y ∈ ∂Ω(0), t > 0,

ũ(y, 0) ≥ ũ(y, T ), ṽ(y, 0) ≥ ṽ(y, T ), y ∈ Ω(0),

û(y, 0) ≤ û(y, T ), v̂(y, 0) ≤ v̂(y, T ), y ∈ Ω(0).

Subsequently, we present some results on problem (3.21) analogous to Theo-
rem 3.1–Theorem 3.4.

Theorem 3.5. The following statements hold.
(i) If R0(1) > 1, then there exist two positive periodic solutions u and u satisfy-

ing (3.21),(2.8) such that any solution to problem (3.21),(2.8) u ∈ 〈u,u〉. Moreover,
if u(y, 0) = u(y, 0), then u = u = u∗ is the unique solution to this problem;

(ii) If R0(1) ≤ 1, then problem (3.21),(2.8) possesses no positive T -periodic
solution.

Theorem 3.6. Let u(y, t; u0) be the solution to problem (3.21),(2.7) and ũ, û ≥ 0
be a pair of ordered upper and lower solutions to it.

(i) If R0(1) > 1, then

lim
k→∞

u(y, t+ kT ; u0) =

{
u(y, t), if u0 ∈ 〈û,u〉 in Ω(0),

u(y, t), if u0 ∈ 〈u, ũ〉 in Ω(0).

Moreover, for any u0 ∈ Ŝ0,

u(y, t) ≤ u(y, t+ kT ; u0) ≤ u(y, t)

holds as k →∞ in Ω(0)× [0,∞), where

Ŝ0 :=

{
u0 ∈ C(Ω(0)) : u0 ∈ 〈û, ũ〉(y, 0)

}
.

Particularly, if u(y, 0) = u(y, 0) = u∗(y, 0), then

lim
k→∞

u(y, t+ kT ; u0) = u∗(y, t);

(ii) If R0(1) ≤ 1, then for any u0 ∈ Ŝ0,

lim
t→∞

u(y, t; u0) = (0, 0) uniformly for y ∈ Ω(0).

4. Numerical simulations

The aim of this section is to present the effect of evolution on the spread of fecal-
oral diseases. We will provide a numerical illustration on R1 to support theoretical
results established above.
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Assume first that the reaction and diffusion coefficients are all constants, where
d1 = 0.2 and d2 = 0.4. We choose g(u) = (u + 1)2/3 − 1 and then g

′
(0) = 2

3 .
Let the initial domain Ω(0) = (0, 1). Then Ω(t) = (0, x(t)) = (0, ρ(t)y), where
y ∈ (0, 1) and ρ(t) ∈ C1([0, T ], (0,∞)) satisfying ρ(0) = 1 is periodic. We take
u0(y) = 5+0.1 sin(πy), v0(y) = 3+0.1 sin(πy)+0.05 sin(3πy) as the initial condition
and set the periodic evolution rates as follows:

ρ1(t) ≡ 1, ρ2(t) = e0.3(1−cos 2t) and ρ3(t) = e−0.25(1−cos 2t).

Example 4.1. Let a11(t) ≡ 0.75, a12(t) ≡ 2/3 and a22(t) ≡ 0.3. Then

R0 =

√
2
3 ×

2
3

0.75× 0.3
≈ 1.4055.

It follows from Theorem 2.1 that R0(ρ) ≥ R0 > 1.
First, we consider the fixed domain case ρ(t) = ρ1(t). Then R0(1) = R0. Due

to Theorem 3.5(i) and Theorem 3.6(i), the endemic equilibrium exists periodically
and is globally asymptotically stable if R0(1) > 1. As shown in Figures (a) and
(b), the infective tends to a positive stable solution which implies that fecal-oral
transmission diseases will persist and become endemic.

Then take ρ(t) = ρ2(t) and ρ(t) = ρ3(t), respectively. We compute maxt∈[0,T ]| ρ̇2ρ2 |
≈ 0.2338 and maxt∈[0,T ]| ρ̇3ρ3 | ≈ 0.1624 satisfying (3.4). It is also easy to get ρ−2

2 ≈
0.5993 < 1 and ρ−2

3 ≈ 1.7534 > 1 which imply that the periodic evolution rate ρ2

is larger than ρ3. It follows from Theorem 3.1 and Theorem 3.3 that the endemic
disease persists periodically and is globally asymptotically stable if R0(ρ) > 1. From
figures (c) and (e), we present that the infective all stabilizes to a positive periodic
solution. It means that fecal-oral transmission diseases will persist and become
endemic periodically in the both cases of ρ(t) = ρ2(t) and ρ(t) = ρ3(t). Figures (d)
and (f) show the periodic evolution of the domain.

Example 4.2. Choose a11(t) ≡ 0.3, a12(t) ≡ 1/3 and a22 ≡ 0.95. Then

R0 =

√
1
3 ×

2
3

0.3× 0.95
≈ 0.8830.

Considering the fixed domain case, it follows from Theorem 3.5(ii) and Theo-
rem 3.6(ii) that the disease-free equilibrium exists and is globally asymptotically
stable if R0(1) < 1. Here R0(1) = R0 < 1. As shown in Figure 2(a) and Fig-
ure 2(b), the infective converges to zero which implies that fecal-oral transmission
diseases will become extinct.

Then take ρ(t) = ρ2(t) and ρ(t) = ρ3(t), respectively. In these cases, we can
not estimate the relationship of size between R0(ρ) and 1. From Figure 2(c), we
present that the infective v will converge to a positive periodic solution. It means
that fecal-oral transmission diseases will persist and become endemic periodically
in the case of ρ(t) = ρ2(t). Figure 2(d) shows the periodic evolution of the domain.
Meanwhile, it is easy to see from Figure 2(e) and Figure 2(f) that the infective v
will decay to zero as the domain periodically evolves, that is, FOTD will vanish on
the evolution domain with the evolution rate ρ(t) = ρ3(t). Moreover, we notice that
the periodic evolution rate ρ2 is larger than ρ3. Hence, we can conjecture that the
risk of spreading would become smaller as the evolution rate ρ(t) decreases.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. a11 = 0.75, a12 = 2/3, a22 = 0.3 and R0(ρ) ≥ R0 > 1. Figures (a), (c) and (e) all show that
infected individuals stabilize to a positive periodic solution when R0(ρ) > 1 while pictures (b), (d) and
(f) are the corresponding contour maps of the infective, respectively. Figures (a)(b), (c)(d) and (e)(f)
correspond to the case of ρ(t) = ρ1(t), ρ2(t) and ρ3(t), respectively.

5. Conclusions

On account of the foregoing analysis, we realize that evolution plays significant
effect on the transmission of fecal-oral diseases. Compared with existing studies
by reaction-diffusion model (1.1), in order to explore the effect of evolution on the
prevention and control of FOTD, we first transform model (2.1)–(2.3) into that
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(a) (b)

(c) (d)

(e) (f)

Figure 2. a11 = 0.3, a12 = 1/3, a22 = 0.95 and R0 < 1. Figures (a) and (e) all show that infected
individuals will decrease to zero while picture (c) stabilizes to a positive periodic solution. The corre-
sponding contour maps of (a), (c) and (e) are figures (b), (d) and (f), respectively. Figures (a)(b), (c)(d)
and (e)(f) correspond to the case of ρ(t) = ρ1(t), ρ2(t) and ρ3(t), respectively.

on a fixed domain at the expense of turning the constant diffusion coefficients to
time-period ones. Such transformation in coefficients is a key difficulty to be solved
in investigating the asymptotic properties. To see this, we give the hypothesis
of spatial isotropy. We then define the basic reproduction number R0(ρ) as the
corresponding threshold parameter. Due to the complexity of FOTD model, it is
difficult for R0(ρ) to find the clear analytic expression. However, we can estimate
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its lower bound by one important tool, the integral average, which can be used to
predict the development trend of fecal-oral bacteria to some extent. Based on it,
the effect of evolution on the spreading of FOTD is analyzed.

According to Theorem 2.1, we deduce the relationship R0(ρ) ≥ R0 which implies
that the periodic evolution can increase the risk of transmissions. Here, R0(ρ) and
R0 are the basic reproduction numbers of FOTD model on a periodic evolution and
fixed domain with constant coefficients, respectively.

When R0 > 1, we have R0(ρ) ≥ R0 > 1. It follows from Theorem 3.3 and Theo-
rem 3.6(i) that the solution of problem (2.6),(2.7) will tend to a positive steady-state
periodic solution, which means that the diseases will spread and eventually become
endemic on the both fixed and periodic evolution domain. Moreover, combining
with Example 4.1, we show that the diseases will spread regardless of whether
ρ−2 < 1 or ρ−2 > 1 when R0 > 1.

When R0 ≤ 1, accurately estimating the relationship of size between R0(ρ) and
1 comes to nothing. According to Theorem 3.3 and Theorem 3.6(ii), if R0(ρ) >
1 > R0, then the development tendency of bacteria and the infective will happen
a fundamental change, that is, the bacteria and infected individuals will vanish on
the initial fixed domain Ω(0) but persist on the evolution domain Ω(t). Combining
with the numerical simulation Example 4.2 and related conclusions in [19, 40], we
can conjecture that the transmission risk of bacteria and the infective may become
larger in the case of ρ−2 < 1 and oppose in the case of ρ−2 > 1. If 1 ≥ R0(ρ) ≥ R0,
then it follows from Theorem 3.4 and Theorem 3.6(ii) that the bacteria and infected
individuals will die out whether on the evolution domain or fixed one.

Through the research and analysis in this paper, we clearly recognize the basic
fact that the virus living environment presents seasonal changes. Theses results
indicate that evolution will increase the transmission risk of FOTD, where the risk
of the large evolution rate may be larger than that of small evolution rate. It will be
detrimental to the prevention and control of FOTD. Therefore, only by improving
the living environment of human beings, increasing the mortality rate of bacteria,
and at the same time reducing the mutual transmission rate between bacteria and
people can the spread of fecal-oral transmission diseases be effectively prevented
and controlled.
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