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Abstract In this paper, we focus our attention on a (2+1)-dimensional
variable-coefficient general combined fourth-order soliton equation in a fluid
or plasma. Under certain coefficient constraints, we get the Painlevé inte-
grable property. We obtain the bilinear form and bilinear auto-Bäcklund
transformation. By virtue of the truncated Painlevé expansion, we derive
an auto-Bäcklund transformation. Under certain coefficient constraints, we
graphically analyse the one-kink waves, one soliton, two-kink waves and two
solitons. We get the expressions of the amplitude and velocity of the one soli-
ton and analyse the types of the two solitons and two-kink waves before and
after the interactions.

Keywords Fluid or plasma, (2+1)-dimensional variable-coefficient general
combined fourth-order soliton equation, Painlevé integrable property, bilinear
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1. Introduction

Fluid dynamics has been considered as the basic mechanism of studying the liquids,
gases and plasmas and the forces they are subjected to [7, 17, 24]. Plasma physics
has been used to study the interactions of charged particles and fluids with the self-
consistent electromagnetic fields [2]. Researchers have investigated the nonlinear
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evolution equations (NLEEs) to describe some phenomena in fiber optics, plasma
physics and fluid mechanics [1, 5, 7, 8, 19, 23, 24, 26–29, 31–34, 38, 39]. Methods have
been found to get some analytic solutions for the NLEEs, including the Bäcklund
transformations and Hirota method [6, 18, 21, 41, 43]. Soliton and kink solutions
have been associated with the wave phenomena in the plasmas and fluids [4, 9, 12].

Since the variable-coefficient NLEEs have shown us more information than their
constant-coefficient counterparts in, e.g., the optical fibers [35], fluids [13] and so on,
we will consider a (2+1)-dimensional variable-coefficient general combined fourth-
order soliton equation in a fluid or plasma,

α (6uxuxx + uxxxx) + β [3 (uxut)x + uxxxt] + γ
[
3 (uxuy)x + uxxxy

]
+ δ1(t)uyt + δ2(t)uxx + δ3(t)uxt + δ4(t)uxy + δ5(t)uyy + δ6(t)utt = 0, (1.1)

where u is a differentiable function of the variables x, y and t, the real constants α,
β and γ cannot be zero simultaneously, δi(t)’s (1 ≤ i ≤ 6) are the real differentiable
functions of t, and the subscripts represent the partial derivatives.

Some special cases of Eq. (1.1) have been discussed in types of the fluids or
plasmas:

• When α = β = δ2(t) = δ6(t) = 0 and γ = 1, Eq. (1.1) has been reduced to the
(2+1)-dimensional variable-coefficient Boiti-Leon-Manna-Pempinelli equation,

uxxxy + 3(uxuy)x + δ1(t)uyt + δ3(t)uxt + δ4(t)uxy + δ5(t)uyy = 0, (1.2)

to describe an incompressible fluid [14,25,30].

• When δ1(t) = ζ1, δ2(t) = ζ2, δ3(t) = ζ3, δ4(t) = ζ4, δ5(t) = ζ5 and δ6(t) = ζ6,
Eq. (1.1) has become a general combined fourth-order soliton equation,

α (6uxuxx + uxxxx) + β [3 (uxut)x + uxxxt] + γ
[
3 (uxuy)x + uxxxy

]
+ ζ1uyt + ζ2uxx + ζ3uxt + ζ4uxy + ζ5uyy + ζ6utt = 0, (1.3)

for the shallow-water waves, where ζi’s are the constants [40,42].

• When β = δ1(t) = δ6(t) = 0, δ2(t) = ζ2, δ3(t) = 1, δ4(t) = ζ4 and δ5(t) =
ζ5, Eq. (1.1) has become a (2+1)-dimensional generalized Bogoyavlensky-
Konopelchenko equation,

α (6uxuxx + uxxxx) + γ
[
3 (uxuy)x + uxxxy

]
+ ζ2uxx + uxt + ζ4uxy + ζ5uyy = 0, (1.4)

for the shallow-water waves, stratified internal waves in a fluid or ion-acoustic
waves in a plasma [3,20,22].

However, to our knowledge, Painlevé integrable property, bilinear form, auto-
Bäcklund transformation, kink and soliton solutions of Eq. (1.1) have not been
studied. In Section 2, we will get the Painlevé integrable property of Eq. (1.1).
In Section 3, we will derive the bilinear form of Eq. (1.1). In Section 4, bilinear
Bäcklund transformation and one-kink solutions of Eq. (1.1) will be given. In Sec-
tion 5, one- and two-soliton solutions of Eq. (1.1) will be constructed. In Section 6,
two-kink solutions of Eq. (1.1) will be obtained. Section 7 will be our conclusions.
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2. Painlevé integrable property of Eq. (1.1)

According to Refs. [7, 15,16], we suppose that

u = u0ϕ
p, (2.1)

where u0 and ϕ are the real differentiable functions of x, y and t, p is a non-positive
integer. Substituting Expression (2.1) into Eq. (1.1), we find that the leading-order
analysis yields p = −1, let the coefficient of ϕ−5 equal to zero and get u0 = 2ϕx.
Next, we rewrite u as

u = ujϕ
−1+j + u0ϕ

−1, (2.2)

where uj is a real differentiable function of x, y and t and j is an integer. Substi-
tuting Expression (2.2) into Eq. (1.1) and making the coefficient of ϕ−5+j equal to
zero, we find that j = −1, 1, 4, 6. We set

u = ϕ−1
6∑
j=0

ujϕ
j , (2.3)

take Expression (2.3) into Eq. (1.1) and sort out the coefficients of ϕ−j ’s (−1 ≤ j ≤
5). Afterwards, we find the coefficient of ϕ−4 is zero, which means that u1 is an
arbitrary function. Next, we let the coefficient of ϕ−3 equal to zero and obtain the
expression of u2. Taking u2 into Eq. (1.1) and letting the coefficient of ϕ−2 equal
to zero, we get the the expression of u3. We substitute u3 into Eq. (1.1) and obtain
the coefficient of ϕ−1 is zero, which means that u4 is an arbitrary function. Then,
in order to simplify the verification of the remaining resonant condition j = 6, we
adopt Kruskal’s simplified expressions as [37]

ϕ = η + φ(t), uj = uj(η, t), η = x+ y. (2.4)

Based on Expression (2.4), we let the coefficient of ϕ0 equal to zero and obtain the
expression of u5. Taking u5 into Eq. (1.1), we find that u6 is an arbitrary function
when

δ3(t) = ζ1 − δ1(t), δ2(t) = ζ2 − δ4(t)− δ5(t), δ6(t) = ζ6. (2.5)

Thus, we derive the Painlevé integrable property of Eq. (1.1).

3. Bilinear form of Eq. (1.1)

Motivated by Ref. [40], we assume that

u = 2(ln f)x, (3.1)

where f is the real function of x, y and t. We take Expression (3.1) into Eq. (1.1)
and get the bilinear form of Eq. (1.1)

[αD4
x + βD3

xDt + γD3
xDy + δ1(t)DyDt + δ2(t)D2

x

+ δ3(t)DxDt + δ4(t)DxDy + δ5(t)D2
y + δ6(t)D2

t ]F · F = 0, (3.2)
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where Dx, Dy and Dt are the Hirota bilinear derivative operators [10], defined as

Dm
x D

n
yD

k
t (η · σ)

≡
(
∂

∂x
− ∂

∂x′

)m(
∂

∂y
− ∂

∂y′

)n(
∂

∂t
− ∂

∂t′

)k
η(x, y, t)σ(x′, y′, t′)

∣∣∣∣
x′=x,y′=y,t′=t

,

with x′, y′ and t′ being the formal variables, m, n and k being the non-negative
integers, η being the differentiable function of x, y, z and t, while σ being the
differentiable function of x′, y′, z′ and t′.

4. Bilinear Bäcklund transformation and one-kink
solutions of Eq. (1.1)

Based on Bilinear Form (3.2), we consider the following equation:

0 =g2[αD4
x + βD3

xDt + γD3
xDy + δ1(t)DyDt + δ2(t)D2

x

+ δ3(t)DxDt + δ4(t)DxDy + δ5(t)D2
y + δ6(t)D2

y]f · f

− f2[αD4
x + βD3

xDt + γD3
xDy + δ1(t)DyDt + δ2(t)D2

x

+ δ3(t)DxDt + δ4(t)DxDy + δ5(t)D2
y + δ6(t)D2

y]g · g, (4.1)

where g is another solution of Bilinear Form (3.2). According to the exchange
identities [10]:

g2
(
D3
xDtf · f

)
− f2

(
D3
xDtg · g

)
= 2

[
Dt

(
D3
xf · g

)
· (fg)

]
+ 6 [Dx (DxDtf · g) · (Dxg · f)] ,

g2
(
D3
xDyf · f

)
− f2

(
D3
xDyg · g

)
= 2

[
Dy

(
D3
xf · g

)
· (fg)

]
+ 6 [Dx (DxDyf · g) · (Dxg · f)] ,

g2
(
D4
xf · f

)
− f2

(
D4
xg · g

)
= 2

[
Dx

(
D3
xf · g

)
· (fg)

]
+ 6

[
Dx

(
D2
xf · g

)
· (Dxg · f)

]
,

g2 (DyDtf · f)− f2 (DyDtg · g) = 2 [Dt (Dyf · g) · gf ] , (4.2)

g2 (DyDyf · f)− f2 (DyDyg · g) = 2 [Dy (Dyf · g) · gf ] ,

g2 (DxDtf · f)− f2 (DxDtg · g) = 2 [Dt (Dxf · g) · gf ] ,

g2 (DxDyf · f)− f2 (DxDyg · g) = 2 [Dy (Dxf · g) · gf ] ,

g2 (DtDtf · f)− f2 (DtDtg · g) = 2 [Dt (Dtf · g) · gf ] ,

g2
(
D2
xf · f

)
− f2

(
D2
xg · g

)
= 2 [Dx (Dxf · g) · gf ] ,
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we obtain the bilinear Bäcklund transformation of Eq. (1.1) as follows:

2αD3
xf · g + 2δ2(t)Dxf · g + 2δ3(t)Dtf · g = λ1gf,

6αD2
xf · g + 6βDxDtf · g + 6γDxDyf · g + λ2Dxf · g = 0,

2βD3
xf · g + δ6(t)Dtf · g = λ3gf,

δ6(t)gf = λ4Dtg · f,

2γD3
xf · g + 2δ4(t)Dxf · g + 2δ5(t)Dyf · g + 2δ1(t)Dtf · g = λ5gf,

(4.3)

where λκ’s, κ = 1, 2, 3, 4, 5, are the constants.
We take g = 1 as a solution of Bilinear Form (3.2) and f = exp[b(t)y + c(t)t +

d(t)x] + 1, and substitute them into Bilinear Bäcklund Transformation (4.3), where
b(t), c(t) and d(t) are the functions about t. We choose the coefficient constraints
as follows:

δ6(t) = β = 0,

γ = α,

δ1(t) = δ3(t),

δ2(t) = δ4(t) + δ5(t).

(4.4)

Via Coefficient Constraints (4.4), we take λ1 = λ3 = λ4 = λ5 = 0, b(t) = d(t) = 1
and λ2 = −12α, then obtain the one-kink solutions of Eq. (1.1) as

u =
2 exp[c(t)t+ x+ y]

exp[c(t)t+ x+ y] + 1
, (4.5)

where c(t) =

∫ δ2(t)+α

−δ3(t)
dt

t .

(a1) (a2)

Figure 1. One kink wave via Solutions (4.5) under Coefficient Constraints (4.4), (a1−c1) y=0; (a2−c2)
x=0. Parameters are (a1) and (a2): δ2(t)=t− 1, δ3(t)=−t, δ4(t)=-1 and α=1.

Figs. 1 and 2 present the propagation of the one kink waves via Solutions (4.5)
on the x-t and y-t planes when the coefficient δ2(t) varies but δ3(t) and δ4(t) keep
unchanged. According to Figs. 1 and 2, we find that the amplitudes of the one
kink waves keep unchanged during the propagation. This behavior shows that the
amplitudes of one kink waves are not related to the coefficient δ2(t).

Figs. 1 and 3 present the propagation of the one kink waves via Solutions (4.5)
on the x-t and y-t planes when the coefficient δ3(t) varies but δ2(t) and δ4(t) keep
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(b1) (b2)

(c1) (c2)

Figure 2. The same as Figs. 1 (a1) and (a2) except that (b1) and (b2): δ2(t)=2t2 − 1; (c1) and (c2):
δ2(t)=t(sin t+ t cos t)− 1.

(b1) (b2)

(c1) (c2)

Figure 3. The same as Figs. 1 (a1) and (a2) except that (b1) and (b2): δ3(t)=−0.5; (c1) and (c2):
δ3(t)=− t

sin t+t cos t .

unchanged. According to Figs. 1 and 3, we find that the amplitudes of the one
kink waves keep unchanged during the propagation. This behavior shows that the
amplitudes of one kink waves are not related to the coefficient δ3(t).

Figs. 1 and 4 present the propagation of the one kink waves via Solutions (4.5)
on the x-t and y-t planes when the coefficient δ4(t) varies but δ2(t) and δ3(t) keep
unchanged. According to Figs. 1 and 4, we find that the amplitudes of the one
kink waves keep unchanged during the propagation. This behavior shows that the
amplitudes of one kink waves are not related to the coefficient δ4(t).
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(b1) (b2)

(c1) (c2)

Figure 4. The same as Figs. 1 (a1) and (a2) except that (b1) and (b2): δ4(t)=2t2 − 1 ; (c1) and (c2):
δ4(t)=t(sin t+ t cos t)− 1.

5. One- and two-soliton solutions of Eq. (1.1)

Motivated by Ref. [11], we assume that

f = exp

{
d1(t) exp[b1(t)y + c1(t)t+ d1(t)x]

exp[b1(t)y + c1(t)t+ d1(t)x] + 1

}
, (5.1)

where b1(t), c1(t) and d1(t) are the real functions of t. Then we take Expression (5.1)
into Bilinear Form (3.2) and get the coefficient constraints as

δ6(t) = β = 0,

α+ γ = 0,

δ1(t) + δ3(t) = 0,

δ4(t) + δ2(t) + δ5(t) = 0.

(5.2)

Based on Coefficient Constraints (5.2), we take b1(t) = d1(t) = 1 and c1(t) = δ1(t),
then give the one-soliton solutions of Eq. (1.1) as

u = 2

{
exp[δ1(t)t+ x+ y]

exp[δ1(t)t+ x+ y] + 1
− exp[2δ1(t)t+ 2x+ 2y]

{exp[δ1(t)t+ x+ y] + 1}2

}
. (5.3)

Meanwhile, the amplitude B and velocity V = (vx, vy)T of One-Soliton Solu-
tions (5.3) can be given, respectively

B =
1

2
, (5.4a)

vx = −{t[δ1(t)]t + δ1(t)} , (5.4b)

vy = −{t[δ1(t)]t + δ1(t)} , (5.4c)



Combined fourth-order soliton equation 749

(a1) (a2)

Figure 5. One soliton via Solutions (5.3) under Coefficient Constraints (5.2), (a1− c1) y = 0; (a2− c2)
x = 0. Parameters are (a1) and (a2): δ2(t)=t, δ1(t)=1, δ4(t)=1 and α=1.

(b1) (b2)

(c1) (c2)

Figure 6. The same as Figs. 5 (a1) and (a2) except that (b1) and (b2): δ1(t)=t; (c1) and (c2):
δ1(t)=sin t.

where T represents the transpose of a vector.

Figs. 5 and 6 present the propagation of the one soliton via Solutions (5.3)
on the x-t and y-t planes when the coefficient δ1(t) is a constant or a function
of t. According to Eq. (5.4a), the amplitudes of one soliton are not related to
the coefficient δ1(t), which is consistent with the amplitudes of one soliton keep
unchanged in Figs. 5 and 6. Based on Eqs. (5.4b) and (5.4c), the velocities of one
soliton are related to the coefficient δ1(t).

At the same time, we take c1(t) = δ2(t).

We take c1(t) = δ4(t).

Through Figs. 5, 6, 7 and 8, we keep any two of the δ1(t), δ2(t) and δ4(t)
unchanged, the propagation of one soliton is similar. It can be found that the
coefficients δ2(t) and δ4(t) have the similar effects on the one soliton. With the
coefficients δ1(t), δ2(t) and δ4(t) taking the constants, we observe that the one
soliton presents the linear type. With the coefficients δ1(t), δ2(t) and δ4(t) taking
the linear functions, we observe that the one soliton presents the parabolic type.
With the coefficients δ1(t), δ2(t) and δ4(t) taking the periodic functions, we observe
that the one soliton presents the periodic type.
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(b1) (b2)

(c1) (c2)

Figure 7. The same as Figs. 5 (a1) and (a2) except that (b1) and (b2): δ2(t)=1; (c1) and (c2):
δ2(t)=sin t.

(b1) (b2)

(c1) (c2)

Figure 8. The same as Figs. 5 (a1) and (a2) except that (b1) and (b2): δ4(t)=t; (c1) and (c2):
δ4(t)=sin t.

We suppose that

f = exp

{
k[d2(t) + e(t)] exp[b2(t)y + c2(t)t+ d2(t)x+ e(t)x+ f(t)y + g(t)t]

A

+
d2(t) exp[b2(t)y + c2(t)t+ d2(t)x] + e(t) exp[e(t)x+ f(t)y + g(t)t]

A

}
, (5.5)

where e(t), f(t), g(t), b2(t), c2(t) and d2(t) are the real functions of t, k is a real
constant and A = exp[b2(t)y+c2(t)t+d2(t)x+e(t)x+f(t)y+g(t)t]k+exp[b2(t)y+
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c2(t)t+d2(t)x]+exp[e(t)x+f(t)y+g(t)t]+1. Taking Expression (5.5) into Bilinear
Form (3.2), we get the coefficient constraints as

δ6(t) = β = 0,

α+ γ = 0,

δ1(t) + δ3(t) = 0,

δ4(t) + δ2(t) + δ5(t) = 0.

(5.6)

According to Coefficient Constraints (5.6), we take k = 3, e(t) = f(t) = b2(t) =
d2(t) = 1 and c2(t) = δ1(t), g(t) = δ2(t), then give the two-soliton solutions of
Eq. (1.1) as

u =2

{
12 exp[δ1(t)t+ δ2(t)t+ 2x+ 2y] + exp[δ1(t)t+ x+ y] + exp[δ2(t)t+ x+ y]

3 exp[δ1(t)t+ δ2(t)t+ 2x+ 2y] + exp[δ1(t)t+ x+ y] + exp[δ2(t)t+ x+ y] + 1

− {6 exp[δ1(t)t+ δ2(t)t+ 2x+ 2y] + exp[δ1(t)t+ x+ y] + exp[δ2(t)t+ x+ y]}2

{3 exp[δ1(t)t+ δ2(t)t+ 2x+ 2y] + exp[δ1(t)t+ x+ y] + exp[δ2(t)t+ x+ y] + 1}2

}
.

(5.7)

(a1) (a2)

Figure 9. Two solitons via Solutions (5.7) under Coefficient Constraints (5.6), (a1−c1) y = 0; (a2−c2)
x = 0. Parameters are (a1) and (a2): δ4(t)=1, α=1, δ1(t)=2 and δ2(t)=t.

We assume that c2(t) = δ1(t) and g(t) = δ4(t).
We assume that c2(t) = δ2(t) and g(t) = δ4(t).
Figs. 9 and 10 present the propagation of the two solitons via Solutions (5.7) on

the x-t and y-t planes. According to Figs. 9 and 10, we find that the two solitons
are composed of two one solitons which are similar to those in Figs. 5-8. Figs. 9
and 11 present the coefficient δ4(t) has the similar effects on the two solitons with
δ2(t). Figs. 9 and 12 present the coefficient δ2(t) has the similar effects on the two
solitons with δ1(t).

From Figs. 9, 10, 11 and 12, we observe three types of the two solitons, i.e., two
solitons composed of linear-type one soliton and parabolic-type one soliton, two
solitons composed of two parabolic-type one solitons and two solitons composed
of periodic-type one soliton and parabolic-type one soliton. For the two solitons
composed of linear-type one soliton and parabolic-type one soliton, we find that
the linear-type one soliton keeps linear type and parabolic-type one soliton keeps
parabolic type after the interaction. For the two solitons composed of two parabolic-
type one solitons, we find that the two parabolic-type one solitons keep parabolic
type after the interaction. For the two solitons composed of periodic-type one
soliton and parabolic-type one soliton, we find that the periodic-type one soliton



752 Y.-Q. Chen, B. Tian, Q.-X. Qu, C.-C. Wei & D.-Y. Yang

(b1) (b2)

(c1) (c2)

Figure 10. The same as Figs. 9 (a1) and (a2) except that (b1) and (b2): δ1(t)=t and δ2(t)=2t; (c1)
and (c2): δ1(t)=t and δ2(t)=cos t.

(b1) (b2)

(c1) (c2)

Figure 11. The same as Figs. 9 (a1) and (a2) except that (b1) and (b2): δ1(t)=t and δ4(t)=2t; (c1)
and (c2): δ1(t)=t and δ4(t)=cos t.

keeps periodic type and parabolic-type one soliton keeps parabolic type after the
interaction.

6. Two-kink waves of Eq. (1.1)

Motivated by Ref. [36], we take

u = ϕ−1 (2ϕx + u1ϕ) , (6.1)
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(b1) (b2)

(c1) (c2)

Figure 12. The same as Figs. 9 (a1) and (a2) except that (b1) and (b2): δ4(t)=2t; (c1) and (c2):
δ4(t)=cos t.

where ϕ and u1 are the functions about x, y and t. Substituting Expression (6.1) into
Eq. (1.1), we equate ϕ−i+1’s to zero and sort out the Painlevé-Bäcklund equations

ϕ−5 : u0 = 2ϕx, (6.2a)

ϕ−4 : 0, (6.2b)

ϕ−3 : δ6(t)ϕ2
t + δ1(t)ϕtϕy + δ5(t)ϕ2

y + δ3(t)ϕtϕx + δ4(t)ϕyϕx + δ2(t)ϕ2
x

+ 3βu1tϕ
2
x + 3γu1yϕ

2
x + 3βu1xϕtϕx + 3γu1xϕyϕx + 6αu1xϕ

2
x

− 3βϕxtϕxx − 3γϕxyϕxx − 3αϕ2
x + 3βϕxϕxxt + 3γϕxϕxxy

+ βϕtϕxxx + γϕyϕxxx + 4αϕxϕxxx = 0, (6.2c)

ϕ−2 : δ5(t)ϕyyϕx + 2δ3(t)ϕxϕxt + 6βu1xϕxϕxt + δ6(t) (ϕttϕx + 2ϕtϕxt)

+ 3βu1xtϕ
2
x + 2δ5(t)ϕyϕxy + 2δ4(t)ϕxϕxy + 6γu1xϕxϕxy

+ δ1(t) (ϕytϕx + ϕyϕxt + ϕtϕxy) + 3γu1xyϕ
2
x + δ3(t)ϕtϕxx + δ4(t)ϕyϕxx

+ 3δ2(t)ϕxϕxx + 9βu1tϕxϕxx + 9γu1yϕxϕxx + 3βu1xϕtϕxx

+ 3γu1xϕyϕxx + 18αu1xϕxϕxx + 3βu1xxϕtϕx + 3γu1xxϕyϕx + 6αu1xxϕ
2
x

− 2βϕxtϕxxx − 2γϕxyϕxxx − 2αϕxxϕxxx + 4βϕxϕxxxt + 4γϕxϕxxxy

+ βϕtϕxxxx + γϕyϕxxxx + 5αϕtϕxxxx = 0, (6.2d)

ϕ−1 : δ6(t)ϕxtt + δ1(t)ϕxyt + δ5(t)ϕxyy + 3βu1xtϕxx + 3γu1xyϕxx + 3βu1xxϕxt

+ 3γu1xxϕxy + 6αu1xxϕxx + 3βu1xϕxxt + δ3(t)ϕxxt + 3γu1xϕxxy

+ δ4(t)ϕxxy + δ2(t)ϕxxx + 3βu1tϕxxx + 3γu1yϕxxx + 6αu1xϕxxx

+ αϕxxxxx + βϕxxxxt + γϕxxxxy = 0, (6.2e)
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ϕ0 : δ6(t)u1tt + δ1(t)u1yt + δ5(t)u1yy + δ3(t)u1xt + 3βu1xu1xt + δ4(t)u1xy

+ 3γu1xu1xy + δ2(t)u1xx + 3βu1tu1xx + 3γu1yu1xx + 6αu1xu1xx

+ αu1xxxx + βu1xxxt + γu1xxxy = 0. (6.2f)

Eqs. (6.1) and (6.2) are the auto-Bäcklund transformations of Eq. (1.1). For
Eq. (1.1), we select a seed solution and obtain another solution via Auto-Bäcklund
Transformations (6.1) and (6.2).

We suppose that u1 = 0 and

ϕ(x, y, t) =k1 exp[d3(t)x+ b3(t)y + c3(t)t+ e1(t)x+ f1(t)y + g1(t)t]

+ exp[d3(t)x+ b3(t)y + c3(t)t] + exp[e1(t)x+ f1(t)y + g1(t)t] + 1,
(6.3)

where e1(t), f1(t), g1(t), b3(t), c3(t) and d3(t) are all the real functions of t, and k1

is a real constant. Substituting Expression (6.3) into Painlevé-Bäcklund Eqs. (6.2),
we obtain that

δ6(t) = β = 0,

α+ γ = 0,

δ1(t) + δ3(t) = 0,

δ4(t) + δ2(t) + δ5(t) = 0.

(6.4)

Via Coefficient Constraints (6.4), we take k1 = 3, e1(t) = f1(t) = b3(t) = d3(t) = 1
and c3(t) = δ1(t), g1(t) = δ2(t), then get the two-kink solutions of Eq. (1.1) as

u =
2 {2 exp[δ1(t)t+ δ2(t)t+ 2x+ 2y] + exp[δ1(t)t+ x+ y] + exp[δ2(t)t+ x+ y]}
3 exp[δ1(t)t+ δ2(t)t+ 2x+ 2y] + exp[δ1(t)t+ x+ y] + exp[δ2(t)t+ x+ y] + 1

.

(6.5)

(a1) (a2)

Figure 13. Two kink waves via Solutions (6.5) under Coefficient Constraints (6.4), (a1 − c1) y = 0;
(a2 − c2) x = 0. Parameters are (a1) and (a2): δ4(t)=1, α=1, δ1(t)=1 and δ2(t)=3.

Figs. 13 and 14 present the propagation of the two kink waves via Solutions (6.5)
on the x-t and y-t planes. According to Figs. 13 and 14, we find that the two kink
waves are composed of two one kink waves which are similar to those in Figs. 1-4.

We take c3(t) = δ1(t) and g1(t) = δ4(t).
We take c3(t) = δ2(t) and g1(t) = δ4(t).
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(b1) (b2)

(c1) (c2)

Figure 14. The same as Figs. 13 (a1) and (a2) except that (b1) and (b2): δ1(t)=t and δ2(t)=2; (c1)
and (c2): δ1(t)=t and δ2(t)=sin t.

(b1) (b2)

(c1) (c2)

Figure 15. The same as Figs. 13 (a1) and (a2) except that (b1) and (b2): δ1(t)=t and δ4(t)=2; (c1)
and (c2): δ1(t)=t and δ4(t)=sin t.

Figs. 13 and 15 present the coefficient δ4(t) has the similar effects on the two
kink waves with δ2(t). Figs. 13 and 16 present the coefficient δ2(t) has the similar
effects on the two kink waves with δ1(t).

Though the analysis of one- and two-kink waves, we find one- and two-kink waves
present linear, parabolic and periodic types when the coefficients δ1(t), δ2(t) and
δ4(t) take constants, linear functions and periodic functions. For the two-kink waves
composed of linear-type one-kink wave and parabolic-type one-kink wave, we find
that the linear-type one-kink wave keeps linear type and parabolic-type one-kink
wave keeps parabolic type after the interaction. For the two-kink waves composed
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(b1) (b2)

(c1) (c2)

Figure 16. The same as Figs. 13 (a1) and (a2) except that (b1) and (b2): δ2(t)=t and δ4(t)=2; (c1)
and (c2): δ2(t)=t and δ4(t)=sin t.

of two parabolic-type one-kink waves, we find that the two parabolic-type one-kink
waves keep parabolic type after the interaction. For the two-kink waves composed
of periodic-type one-kink wave and parabolic-type one-kink wave, we find that the
periodic-type one-kink wave keeps periodic type and parabolic-type one-kink wave
keeps parabolic type after the interaction.

7. Conclusions

In this paper, we have investigated a (2+1)-dimensional variable-coefficient general
combined fourth-order soliton equation in a fluid or plasma. The Painlevé integrable
property has been derived under Coefficient Constraints (2.5). We have obtained
Bilinear Form (3.2) to get Bilinear Bäcklund Transformation (4.3). By virtue of
Truncated Painlevé Expansion (6.1), we have gotten Auto-Bäcklund Transforma-
tions (6.1) and (6.2).

Though the analysis of one- and two-kink waves, we have found that one- and
two-kink waves present linear, parabolic and periodic types when the coefficients
δ1(t), δ2(t) and δ4(t) take constants, linear functions and periodic functions. For
the two-kink waves composed of linear-type one-kink wave and parabolic-type one-
kink wave, we have found that the linear-type one-kink wave keeps linear type
and parabolic-type one-kink wave keeps parabolic type after the interaction. For
the two-kink waves composed of two parabolic-type one-kink waves, we have found
that the two parabolic-type one-kink waves keep parabolic type after the interaction.
For the two-kink waves composed of periodic-type one-kink wave and parabolic-type
one-kink wave, we have found that the periodic-type one-kink wave keeps periodic
type and parabolic-type one-kink wave keeps parabolic type after the interaction.
Based on Eqs. (5.4a) and (5.4c), we have gotten that the amplitudes of one soliton
keep unchanged but the velocities of one soliton change with the coefficient δ1(t).
We have also observed that the behavior of two solitons is similar to the two-kink
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waves.
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