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1. Introduction

Let H = H(U) denote the class of analytic functions in the open unit disk

U = {z ∈ C : |z| < 1}.

For a ∈ C and n ∈ N = {1, 2, · · · }, let

H[a, n] = {f ∈ H : f(z) = a+ anz
n + an+1z

n+1 + · · · }.

Let f and F be members of H. The function f is said to be subordinate to F ,
or F is said to be superordinate to f , if there exists a function w analytic in U, with
w(0) = 0 and |w(z)| < 1 for z ∈ U, such that

f(z) = F (w(z)) (z ∈ U).

In such a case, we write

f ≺ F or f(z) ≺ F (z) (z ∈ U).

If the function F is univalent in U, then we have (cf. [23])

f ≺ F ⇐⇒ f(0) = F (0) and f(U) ⊂ F (U).
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Let Q be the class of functions f that are analytic and injective on U\E(f),
where

E(f) =

{
ζ ∈ ∂U : lim

z→ζ
f(z) =∞

}
,

and are such that f ′(ζ) 6= 0 for ζ ∈ ∂U\E(f).
We also denote M∗β by the class of univalent functions q ∈ H with q(0) = 1

satisfying the following condition:

R

[
(1− β)

zq′(z)

q(z)
+ β

(
1 +

zq′′(z)

q′(z)

)]
> 0 (β ∈ R; z ∈ U).

Then we also note that M∗1 is the class of convex (not necessarily normalized)
functions in U.

Let Ap denote the class of all analytic functions of the form

f(z) = zp +
∞∑
k=1

ak+pz
k+p (n, p ∈ N; z ∈ U). (1.1)

For any complex number κ, we define the multiplier transformations Iκλ of functions
f ∈ Ap by

Iκλ,pf(z) = zp +

∞∑
k=1

(
k + p+ λ

p+ λ

)κ
ak+pz

k+p,

(λ ∈ C\Z−0 ; Z−0 := {−p,−p+ 1, · · · }). (1.2)

The operator Iκλ,1 was introduced and studied by Srivastava and Attiya [36],
which was called as the Srivastava-Attiya operator [34]. Several interesting opera-
tors as special cases of the Srivastava-Attiya operator have been widely studied by
(for examples) Attiya and Yassen [4], Cho and Srivastava [4], Deniz et al. [13], Jung
et al. [14], Mostafa et al. [25], Owa and Srivastava [30], Sǎlǎgean [35], Uralegaddi
and Somanatha [37].

Let

fκλ,p(z) = zp +

∞∑
k=1

(
k + p+ λ

p+ λ

)κ
zk+p,

(κ ∈ C; λ ∈ C\Z−0 ; Z−0 := {−p,−p+ 1, · · · })

and let fκ,µλ,p be defined such that

fκλ,p(z) ∗ f
κ,µ
λ,p (z) =

zp

(1− z)µ+p
(µ > −p; z ∈ U), (1.3)

where the symbol ∗ stands for the Hadamard product(or convolution). Then, moti-
vated essentially by the Choi-Sagio-Srivastava operator [9] (see, also [20], [21], [27]
and [28]), we now introduce the operator Iκ,µλ,p : Ap → Ap, which are defined here
by

Iκ,µλ,p f(z) =
(
fκ,µλ,p ∗ f

)
(z), (1.4)

(f ∈ Ap; κ ∈ C; µ > −p).
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In view of (1.3) and (1.4), we obtain the following relations:

z
(
Iκ+1,µ
λ,p f(z)

)′
= (λ+ p)Iκ,µλ,p f(z)− λIκ+1,p

λ,p f(z), (1.5)

and

z
(
Iκ,µλ,p f(z)

)′
= (µ+ p)Iκ,µ+1

λ,p f(z)− µIκ,µλ,p f(z). (1.6)

By using the principle of subordination, various subordination theorems involv-
ing certain integral operators for analytic functions in D were investigated Bul-
boacă [6]- [8], Miller et al. [24] and Owa and Srivastava [31]. Also Kumar et al. [18]
gave an unified approach to study the properties of all these linear operators by con-
sidering the aspect that these operators satisfy recurrence relation of some common
forms. They studied properties of integral transforms in a similar way. Further-
more, the study of the subordinaton properties for various operators is a important
role in pure and applied mathematics. For some recent developments one may refer
to [3], [11] and [12] (see, also [1], [2], [14], [26], [29] and [34]).

The aim of the present paper, motivated by the works mentioned above, is
to investigate some subordination properties for multivalent functions associated
with the multiplier transformation Iκ,µλ,p defined by (1.1). Also we consider some
applications to the integral operator.

The following lemmas will be required in our present investigation.

Lemma 1.1. [22] Let p ∈ Q with p(0) = a and let

q(z) = a+ anz
n + · · ·

be analytic in U with
q(z) 6≡ a and n ∈ N.

If q is not subordinate to p, then there exist points

z0 = r0eiθ ∈ U and ζ0 ∈ ∂U\E(f),

for which

q(Ur0) ⊂ p(U), q(z0) = p(ζ0) and z0q
′(z0) = mζ0p

′(ζ0) (m ≥ n).

Lemma 1.2. [23] Let k be convex (univalent) and let A ≥ 0. Suppose that M >
4/k′(0) and that B(z) and D(z) are analytic with D(0) = 0 and satisfy

R{B(z)} ≥ A+M |D(z)| (z ∈ U).

If p ∈ H, with p(0) = k(0) satisfies

Az2p′′(z) +B(z)zp′(z) + p(z) +D(z) ≺ k(z) (z ∈ U),

then
p(z) ≺ k(z) (z ∈ U).

A function L(z, t) defined on U × [0,∞) is said to be the subordination chain
(or Löwner chain) if L(·, t) is analytic and univalent in U for all t ∈ [0,∞), L(z, ·)
is continuously differentiable on [0,∞) for all z ∈ U and

L(z, s) ≺ L(z, t) (z ∈ U; 0 ≤ s < t).
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Lemma 1.3. [32] The function

L(z, t) = a1(t)z + · · ·

with
a1(t) 6= 0 and lim

t→∞
|a1(t)| =∞.

Suppose that L(·, t) ia analytic in U for all t ≥ 0, L(z, ·) is continuously differentiable
on [0,∞) for all z ∈ U. If L(z, t) satisfies

R

{
z∂L(z,t)

∂z
∂L(z,t)
∂t

}
> 0 (z ∈ U; 0 ≤ t <∞)

and
|L(z, t)| ≤ K0|a1(t)| (|z| < r0 < 1; 0 ≥ t <∞))

for some positive constants K0 and r0, then L(z, t) is a subordination chain.

2. Main results

Firstly, we begin by proving the following subordination theorem involving the
multiplier transformation Iκ,µλ,p defined by (1.1).

Theorem 2.1. Let f, g ∈ Ap with

R

{
(λ+ p)γ

Iκ,µλ,p g(z)

Iκ+1,µ
λ,p g(z)

}
> 0 (γ ∈ C; z ∈ U), (2.1)

and suppose also that k ∈M∗β. Then the following subordination relation:

[(
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

)γ]1−β Iκ,µλ,p f(z)

Iκ,µλ,p g(z)

(
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

)γ−1β ≺ k(z), (2.2)

(γ ∈ C; 0 ≤ β ≤ 1; z ∈ U)

implies that (
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

)γ
≺ k(z) (z ∈ U).

Proof. Let us define the function q by

q(z) :=

(
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

)γ
, (2.3)

(f, g ∈ Ap; γ ∈ C; z ∈ U).

By using the equation (1.5) to (2.3) and also, by a simple calculation, we have

Iκ,µλ,p f(z)

Iκ,µλ,p g(z)

(
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

)γ−1
= q(z) +

zq′(z)

(λ+ p)γH(z)
, (2.4)



782 S. H. An & N. E. Cho

where

H(z) =
Iκ,µλ,p g(z)

Iκ+1,µ
λ,p g(z)

(z ∈ U).

We note that the assumption (2.1) implies that

H(z) 6= 0 (z ∈ U).

Hence, combining (2.3) and (2.4), we obtain

[(
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

)γ]1−β Iκ,µλ,p f(z)

Iκ,µλ,p g(z)

(
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

)γ−1β (2.5)

=q(z)

(
1 +

zq′(z)

q(z)

1

(λ+ p)γH(z)

)β
.

Thus, from (2.5), we need to prove the following subordination implication:

q(z)

(
1 +

zq′(z)

q(z)

1

(λ+ p)γH(z)

)β
≺ k(z) (z ∈ U) =⇒ q(z) ≺ k(z) (z ∈ U).

(2.6)

For the particular case β = 1, the implication (2.6) becomes

q(z) +
1

(λ+ p)γH(z)
zq′(z) ≺ k(z) (z ∈ U) =⇒ q(z) ≺ k(z) (z ∈ U). (2.7)

According to Lemma 1,2 for A = 0 and D = 0 and by using the inequality (2.1),
we deduce that the above implication (2.7) holds true.

Now we will prove that our result for the case β 6= 1. Without loss of generality,
we can assume that k satisfies the conditions of Theorem 2.1 on the closed disk U
and

k′(ζ) 6= 0 (ζ ∈ ∂U).

If it does not hold the generality stated above, then we replace f, g, k and H by

fr(z) = f(rz), gr(z) = g(rz), kr(z) = k(rz) and Hr(z) = H(rz),

respectively, where 0 < r < 1 and then kr is univalent on U. Since

qr(z)

(
1 +

zq′r(z)

qr(z)

1

(λ+ p)γHr(z)

)β
≺ kr(z) (z ∈ U),

where
qr(z) = q(rz) (0 < r < 1; z ∈ U),

we would then prove that

qr(z) ≺ kr(z) (0 < r < 1; z ∈ U),

and by letting r → 1−, we obtain

q(z) ≺ k(z) (z ∈ U).
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If we suppose that the implication (2.6) is not true, that is,

q(z) 6≺ k(z) (z ∈ U),

then, from Lemma 1.1, there exist points

z0 ∈ U and ζ0 ∈ ∂U

such that

q(z0) = k(ζ0) and z0q
′(z0) = mζ0k

′(ζ0) (m ≥ 1). (2.8)

To prove the implication (2.6), we define the function

L : U× [0,∞) −→ C

by

L(z, t) = k(z)

[
1 + t

zk′(z)

k(z)

1

(λ+ p)γH(z0)

]β
= a1(t)z + · · · ,

and we will show that L(z, t) is a subordination chain. At first, we note that L(z, t)
is analytic in |z| < r < 1, for sufficient small r > 0 and for all t ≥ 0. We also have
that L(z, t) is continuously differentiable on [0,∞) for each |z| < r < 1. A simple
calculation shows that

a1(t) =
∂L(0, t)

∂z
= k′(0)

[
1 +

tβ

(λ+ p)γH(z0)

]
.

From the assumptions k′(0) 6= 0 and (2.1) with 0 < β ≤ 1, we deduce

R

{
1 +

tβ

(λ+ p)γH(z0)

}
≥ 1 > 0 (t ≥ 0). (2.9)

Hence we obtain
a1(t) 6= 0 (t ≥ 0)

and also we can see that
lim
t→∞

|a1(t)| =∞.

While, by a direct computation of L(z, t), we have

R

{
z∂L(z,t)

∂z
∂L(z,t)
∂t

}
=
t

β
R

[
(1− β)

zk′(z)

k(z)
+ β

(
1 +

zk′′(z)

k′(z)

)]
+

1

β
R{(λ+ p)γH(z0)}.

(2.10)

By using the fact that k ∈M∗β and the assumption (2.1) to (2.10), we obtain

R

{
z∂L(z,t)

∂z
∂L(z,t)
∂t

}
> 0 (z ∈ U; 0 ≤ t <∞),
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which completes the proof of the first condition of Lemma 1.2. Moreover, we have∣∣∣∣L(z, t)

a1(t)

∣∣∣∣1/β

=

∣∣∣∣ k(z)

k′(0)

∣∣∣∣1/β
∣∣∣1 + t zk

′(z)
k(z)

1
(λ+p)γH(z0)

∣∣∣∣∣∣1 + tβ
(λ+p)γH(z0)

∣∣∣1/β
≤ 1

β

∣∣∣∣ k(z)

k′(0)

∣∣∣∣1/β
∣∣∣∣zk′(z)k(z)

∣∣∣∣+

∣∣∣β − zk′(z)
k(z)

∣∣∣∣∣∣1 + βt
(λ+p)γH(z0)

∣∣∣
 1∣∣∣1 + βt

(λ+p)γH(z0)

∣∣∣1/β−1
≤ 1

βk′(0)

∣∣∣∣ k(z)

k′(0)

∣∣∣∣1/β−1
|zk′(z)|+ β|k(z)|+ |zk′(z)|∣∣∣1 + βt

(λ+p)γH(z0)

∣∣∣
 1∣∣∣1 + βt

(λ+p)γH(z0)

∣∣∣1/β−1 .
(2.11)

Since k ∈M∗β , the function k may be written by

k(z) = k(0) + k′(0)K(z) (z ∈ U), (2.12)

where K is a normalized univalent function in U. We also note that for function
K, we have the following sharp growth and distortion results (cf. [16] and [32])

r

(1 + r)2
≤ |K(z)| ≤ r

(1− r)2
(|z| = r < 1) (2.13)

and

1− r
(1 + r)3

≤ |K ′(z)| ≤ 1 + r

(1− r)3
(|z| = r < 1). (2.14)

Hence, by applying the equations (2.9), (2.12), (2.13) and (2.14) to (2.11), we can
find easily an upper bound for the right-hand side of (2.11). Thus the function
L(z, t) satisfies the second condition of Lemma 1.2, which proves that L(z, t) is a
subordination chain. In particular, we note from the definition of subordination
chain that

k(z) = L(z, 0) ≺ L(z, t) (z ∈ U; t ≥ 0). (2.15)

Now, by using the equality (2.5) and the relation (2.8), we obtain

[(
Iκ+1,µ
λ,p f(z0)

Iκ+1,µ
λ,p g(z0)

)µ]1−β Iκ,µλ,p f(z0)

Iκ,µλ,p g(z0)

(
Iκ+1,µ
λ,p f(z0)

Iκ+1,µ
λ,p g(z0)

)µ−1β

=q(z0)

(
1 +

zq′(z0)

q(z0)

1

(λ+ p)γH(z0)

)β
=k(ζ0)

(
1 +m

ζ0k
′(ζ0)

q(ζ0)

1

(λ+ p)γH(z0)

)β
=L(ζ0,m) (m ≥ 1).
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Then, according to (2.15), we deduce that[(
Iκ+1,µ
λ,p f(z0)

Iκ+1,µ
λ,p g(z0)

)γ]1−β Iκ,µλ,p f(z0)

Iκ,µλ,p g(z0)

(
Iκ+1,µ
λ,p f(z0)

Iκ+1,µ
λ,p g(z0)

)γ−1β
=L(ζ0,m) 6∈ k(U).

(2.16)

But, the last relation (2.16) contradicts the assumption (2.2), and hence we finally
conclude that

q(z) ≺ k(z) (z ∈ U).

Therefore we complete the proof of Theorem 2.1.
If we take g(z) = zp in Theorem 2.1, we have the following result.

Corollary 2.1. Let f ∈ Ap and k ∈ M∗β. Then the following subordination rela-
tion: [(

Iκ+1,µ
λ,p f(z)

zp

)γ]1−β Iκ,µλ,p f(z)

zp

(
Iκ+1,µ
λ,p f(z)

zp

)γ−1β ≺ k(z),

(γ ∈ C; R{(λ+ p)γ} > 0; 0 ≤ β ≤ 1; z ∈ U)

implies that (
Iκ+1,µ
λ,p f(z)

zp

)γ
≺ k(z) (z ∈ U).

If we let γ = 1 and β = 1 in Theorem 2.1, we have the following result.

Corollary 2.2. Let f, g ∈ Ap

R

{
(λ+ p)

Iκ,µλ,p g(z)

Iκ+1,µ
λ,p g(z)

}
> 0 (z ∈ U).

Suppose also that k ∈M∗1. Then the following subordination relation:

Iκ,µλ,p f(z)

Iκ,µλ,p g(z)
≺ k(z) (z ∈ U)

implies that
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

≺ k(z) (z ∈ U).

By using (1.6) and a similar method given in the proof of Theorem 2.1, we have
the following theorem below.

Theorem 2.2. Let f, g ∈ Ap with

R

{
(µ+ p)γ

Iκ,µ+1
λ,p g(z)

Iκ,µλ,p g(z)

}
> 0 (γ ∈ C; z ∈ U). (2.17)

Suppose also that k ∈M∗β. Then the following subordination relation:[(
Iκ,µλ,p f(z)

Iκ,µλ,p g(z)

)γ]1−β Iκ,µ+1
λ,p f(z)

Iκ,µ+1
λ,p g(z)

(
Iκ,µλ,p f(z)

Iκ,µλ,p g(z)

)γ−1β ≺ k(z), (2.18)
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(γ ∈ C; 0 ≤ β ≤ 1; z ∈ U)

implies that (
Iκ,µλ,p f(z)

Iκ,µλ,p g(z)

)γ
≺ k(z) (z ∈ U).

Theorem 2.3. Let f, g ∈ Ap

R

{
(λ+ p)γ

Iκ,µλ,p g(z)

Iκ+1,µ
λ,p g(z)

}
> 0 (γ ∈ C; z ∈ U).

Suppose also that k ∈M∗1. Then the following subordination relation:

(1− β)

(
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

)γ
+ β

Iκ,µλ,p f(z)

Iκ,µλ,p g(z)

(
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

)γ−1
≺ k(z),

(γ ∈ C; β ≥ 0; z ∈ U)

implies that (
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

)γ
≺ k(z) (z ∈ U).

Proof. Let us define the function q as in the proof of Theorem 2.1 by

q(z) :=

(
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

)γ
(f, g ∈ Ap; γ ∈ C; z ∈ U).

Then, by using the equations (2.3) and (2.4), we obtain

(1− β)

(
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

)γ
+ β

Iκ,µλ,p f(z)

Iκ,µλ,p g(z)

(
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

)γ−1
=q(z)

(
1 +

zq′(z)

q(z)

β

(λ+ p)γH0(z)

)
.

The remaining part of the proof in Theorem 2.3 is similar to that of Theorem 2.1
and so we omit the detailed proof.

If we take γ = 1 in Theorem 2.3, we have the following result.

Corollary 2.3. Let f, g ∈ Ap

R

{
(λ+ p)

Iκ,µλ,p g(z)

Iκ+1,µ
λ,p g(z)

}
> 0 (z ∈ U).

Suppose also that k ∈M∗1. Then the following subordination relation:

(1− β)

(
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

)
+ β

Iκ,µλ,p f(z)

Iκ+1,µ
λ,p g(z)

≺ k(z) (β ≥ 0; z ∈ U)

implies that
Iκ+1,µ
λ,p f(z)

Iκ+1,µ
λ,p g(z)

≺ k(z) (z ∈ U).
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Also, by using (1.3) and a similar method given in the proof of Theorem 2.3, we
have the following Theorem below.

Theorem 2.4. Let f, g ∈ Ap

R

{
(µ+ p)γ

Iκ,µ+1
λ,p g(z)

Iκ,µλ,p g(z)

}
> 0 (γ ∈ C; z ∈ U).

Suppose also that k ∈M∗1. Then the following subordination relation:

(1− β)

(
Iκ,µλ,p f(z)

Iκ,µλ,p g(z)

)γ
+ β

Iκ,µ+1
λ,p f(z)

Iκ,µ+1
λ,p g(z)

(
Iκ,µλ,p f(z)

Iκ,µλ,p g(z)

)γ−1
≺ k(z),

(γ ∈ C; β ≥ 0; z ∈ U)

implies that (
Iκ,µλ,p f(z)

Iκ,µ+1
λ,p g(z)

)γ
≺ k(z) (z ∈ U).

Next, we consider the integral operator Fν (R{ν} > −p) defined by (cf. [5], [15]
and [19])

Fν(f)(z) :=
ν + p

zν

∫ z

0

tν−1f(t)dt (f ∈ Ap; R{ν} > −p). (2.19)

Now, we obtain the following subordination property involving the integral op-
erator defined by (2.19).

Theorem 2.5. Let f, g ∈ Ap

R

{
(ν + p)γ

Iκ,µλ,p g(z)

Iκ,µλ,p Fν(g)(z)

}
> 0 (R{ν} > −p; γ ∈ C; z ∈ U),

where Fν is the integral operator defined by (2.16). Suppose also that k ∈ M∗β.
Then the following subordination relation:

[(
Iκ,µλ,p Fν(f)(z)

Iκ,µλ,p Fν(g)(z)

)γ]1−β Iκ,µλ,p f(z)

Iκ,µλ,p g(z)

(
Iκ,µλ,p Fν(f)(z)

Iκ,µλ,p Fν(g)(z)

)γ−1β ≺ k(z),

(γ ∈ C; 0 ≤ β ≤ 1; z ∈ U)

implies that (
Iκ,µλ,p Fν(f)(z)

Iκ,µλ,p Fν(g)(z)

)γ
≺ k(z) (z ∈ U).

Proof. Let us define the function q by

q(z) :=

(
Iκ,µλ,p Fν(f)(z)

Iκ,µλ,p Fν(g)(z)

)µ
(f, g ∈ Ap; µ ∈ C; z ∈ U). (2.20)
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From the definition of the integral operator Fν defined by (2.19), we obtain

z(Iκ,µλ,p Fν(f)(z))′ = (ν + p)Iκ,µλ,p f(z)− νIκ,µλ,p Fν(f)(z). (2.21)

By using the equation (2.21) and also, by a simple calculation, we have

Iκ,µλ,p f(z)

Iκ,µλ,p g(z)

(
Iκ,µλ,p Fν(f)(z)

Iκ,µλ,p Fν(g)(z)

)γ−1
= q(z) +

zq′(z)

(ν + p)γH(z)
, (2.22)

where

H(z) =
Iκ,µλ,p g(z)

Iκ,µλ,p Fν(g)(z)
(z ∈ U).

We also note that from the assumption,

H(z) 6= 0 (z ∈ U).

Hence, combining (2.20) and (2.22), we obtain

[(
Iκ,µλ,p Fν(f)(z)

Iκ,µλ,p Fν(g)(z)

)γ]1−β Iκ,µλ,p f(z)

Iκ,µλ,p g(z)

(
Iκ,µλ,p Fν(f)(z)

Iκ,µλ,p Fν(g)(z)

)γ−1β

=q(z)

(
1 +

zq′(z)

q(z)

1

(ν + p)γH(z)

)β
.

The remaining part of the proof is similar to that of Theorem 2.1 and so we may
omit for the proof involved.

If we let γ = 1 and β = 1 in Theorem 2.5, we have the following result.

Corollary 2.4. Let f, g ∈ Ap

R

{
(ν + p)

Iκ,µλ,p g(z)

Iκ,µλ,p Fν(g)(z)

}
> 0 (R{ν} > −p; z ∈ U),

where Fν is the integral operator defined by (2.19). Suppose also that k ∈ M∗1.
Then the following subordination relation:

Iκ,µλ,p f(z)

Iκ,µλ,p g(z)
≺ k(z) (z ∈ U)

implies that
Iκ,µλ,p Fν(f)(z)

Iκ,µλ,p Fν(g)(z)
≺ k(z) (z ∈ U).

The proof of Theorem 2.6 below is much akin to that of Theorem 2.3 and so the
details may be omitted.

Theorem 2.6. Let f, g ∈ Ap

R

{
(ν + p)γ

Iκ,µλ,p g(z)

Iκ,µλ,p Fν(g)(z)

}
> 0 (R{ν} > −p; γ ∈ C; z ∈ U).
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Suppose also that k ∈M∗1. Then the following subordination relation:

(1− β)

(
Iκ,µλ,p Fν(f)(z)

Iκ,µλ,p Fν(g)(z)

)γ
+ β

Iκ,µλ,p f(z)

Iκ,µλ,p g(z)

(
Iκ,µλ,p Fν(f)(z)

Iκ,µλ,p Fν(g)(z)

)γ−1
≺ k(z),

(R{ν} > −p; γ ∈ C; β ≥ 0; z ∈ U)

implies that (
Iκ,µλ,p Fν(f)(z)

Iκ,µλ,p Fν(g)(z)

)γ
≺ k(z) (z ∈ U).

If we take γ = 1 in Theorem 2.6, we have the following result.

Corollary 2.5. Let f, g ∈ Ap

R

{
(ν + p)

Iκ,µλ,p g(z)

Iκ,µλ,p Fνg(z)

}
> 0 (R{ν} > −p; z ∈ U).

Suppose also that k ∈M∗1. Then the following subordination relation:

(1− β)

(
Iκ,µλ,p Fν(f)(z)

Iκ,µλ,p Fν(g)(z)

)
+ β

Iκ,µλ,p f(z)

Iκ,µλ,p g(z)
≺ k(z) (β ≥ 0; z ∈ U)

implies that
Iκ,µλ,p Fν(f)(z)

Iκ,µλ,p Fν(g)(z)
≺ k(z) (z ∈ U).
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[6] T. Bulboacă, Integral operators that preserve the subordination, Bull. Korean
Math. Soc., 1997, 32, 627–636.
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