
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com

Volume 14, Number 2, April 2024, 847–863 DOI:10.11948/20230178

NUMERICAL SIMULATION FOR THE
FRACTIONAL-ORDER SMOKING MODEL

USING A SPECTRAL COLLOCATION
METHOD BASED ON THE GEGENBAUER

WAVELET POLYNOMIALS

Mohamed M. Khader1,2,† and Ali H. Tedjani1

Abstract Smoking is a social trend that is prevalent around the world, par-
ticularly in places of learning and at some significant events. The World Health
Organization (WHO) defines smoking as the most important preventable cause
of disease and the third major cause of death in humans. So, in this pa-
per, we present an effective simulation to study the solution behavior of the
Liouville-Caputo fractional-order smoking model by using a presumably new
approximation technique that is based on the Gegenbauer wavelet polynomials
(GWPs). We use the spectral collocation method based on the properties of
GWPs. This procedure converts the given model into a system of algebraic
equations. We satisfy the efficiency and accuracy of the given procedure by
evaluating the residual error function. The results obtained are then compared
with the results obtained by using the fourth-order Runge-Kutta method. Our
results show that the implemented technique provides an easy and efficient tool
to simulate the solution of such smoking models.

Keywords Smoking model, Liouville-Caputo fractional derivative, Gegen-
bauer wavelet polynomials, spectral collocation method, fourth-order Runge-
Kutta method.
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1. Introduction

Nowadays, smoking is one of the foremost health problems in the world. According
to the WHO’s report on the smoking epidemic [34], smoking kills numerous people
in their most active life. More than 5 million deaths in the world are caused due to
the effect of smoking on different organs of the human body, which may increase to
up to 8 million people per year by 2030 [33]. The chance of heart attack is 70% more
in smokers than that among persons who do not smoke. Smokers have a 10% higher
incidence rate of lung cancer than nonsmokers. The lifespan of smokers is 10 to 13
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years shorter than that of non-smokers. Researchers tried to help control smoking
by securing the life expectancy of an individual. To give the best illustration of
the cigarette smoking phenomena, several researchers have tried to study many
different effective smoking models. Presumably, for the first time in the year 1997,
a mathematical model was outlined for smoking by dividing the total population
into three different classes: potential smokers, chain smokers, and permanently quit
smokers [8]. More recently, in the year 2007, Ham [11] documented the different
stages and procedures of smoking among students through a survey in different
vocational-technical schools in Korea. In 2008, Liu et al. [20] improved Ham’s model
in [11] in order to represent a new temporarily quit smokers class. An extension of
the model by presenting a new occasional smokers class and offering a dynamical
interaction in an integer-order model was presented in [11]. Several other authors,
too, have presented the smoking models in integer and fractional orders [2, 7, 35].

Fractional calculus (FC) is considered a branch of mathematical analysis, which
is capable of dealing with the modelings and analyzing many real-life situations
[14–16, 19]. FC analysis has drawn increasing attention in the study of biological
models, where the scaling power law of fractional order appears universally as an
empirical description of such complex phenomena [12,23]. One of these mathemat-
ical equations is used in the smoking model, which is one of the most fundamental
equations that study a social trend that is prevalent around the world. A mod-
ification, which was added to the smoking model, was introduced to give us the
fractional-order smoking model. Many research papers studied studied this biolog-
ical model, see for example, [3].

Gegenbauer wavelet polynomials (GWPs) have been used to solve the time-
fractional derivative system of the Burger’s equations [21], nonlinear fractional-
order delay differential equations [13], fractional-order initial and boundary value
problems [22], Fisher-Kolmogorov equation [4], generalized Kuramoto-Sivashinsky
equation [5], time-fractional KdV-Burger-Kuramoto equation [25], variable-order
fractional differential equations [32]. To the best of our knowledge, this article
presents the first application of the spectral collocation approach based on GWPs
for solving the fractional-order smoking model ( [10,17,30,31] for some recent devel-
opments based upon the collocation approach). When the method is applied, the
system of differential equations is converted into a system of algebraic equations.
The unknown coefficients of the series solution are then obtained by solving the
system and thereby the approximate solution of the original equation is found.

The spectral collocation method (SCM) has some advantages for handling this
class of problems in which the Gegenbauer coefficients for the solution can exist
very easily after using the numerical programs. For this reason, this method is
much faster than the other methods. They are widely used because of their good
properties in the approximation of functions. Also, this method is a numerical
technique with high accuracy and fast convergence and it is easy to use in finite
and infinite domains for different problems. In addition, the domain discretization
and approximation of the nonlinear terms are not necessary for this method, which
is an important advantage [1, 18].

The reader may find it helpful to understand the mathematical modeling pro-
cess by reading through several significant studies, such as an efficient operation
matrix method for solving fractal-fractional differential equations (FFDEs) with
generalized Caputo-type fractional-fractal derivative [29]; a highly accurate arti-
ficial neural networks scheme for solving higher multi-order FFDEs based on the
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generalized Caputo derivative [27]; solving FFDEs by using an operational matrix
of derivatives via Hilfer fractal-fractional derivative sense [28]; and a detailed study
of a fractal-fractional transmission dynamical model of viral infectious disease with
vaccination [26].

The rest of the paper is organized as follows: In Section 2, we present some
definitions and concepts concerning fractional derivatives, the Gegenbauer wavelet
polynomials, and other related ideas. Through Section 3, we give the implementa-
tion of the proposed method. In Section 4, we present a numerical simulation of
the proposed model under study. Finally, the conclusions are in Section 5.

2. Preliminaries

We choose to divide this section into the following subsections.

2.1. Fractional integration and fractional derivative

Many definitions for the fractional-order integration and fractional-order differenti-
ation are available in the literature [30]. The most important ones are those that are
utilized in the development of fractional calculus theory are the Riemann-Liouville
and Liouville-Caputo fractional derivatives, which are defined as follows.

Definition 2.1. The Riemann-Liouville fractional integral Iν of order ν for a given
function ψ(t) is defined as follows [30]:

Iνψ(t) =
1

Γ(ν)

∫ t

0

(t− τ)ν−1ψ(τ) dτ, t > 0; ν ∈ R+, (2.1)

where Γ(·) is the gamma function.

The operator Iν possesses the following properties:

IνIγψ(t) = Iν+γ ψ(t), ν, γ > 0, (2.2)

and

Iνtm =
Γ(m+ 1)

Γ(m+ ν + 1)
tm+ν . (2.3)

This operator is linear, that is,

Iν(c1 f1(t) + c2 f2(t)) = c1 I
ν (f1(t)) + c2 I

ν (f2(t)), (2.4)

for some constants c1 and c2.

Definition 2.2. The Riemann-Liouville fractional derivative RLDν of order ν for
a given function ψ(t) is defined as follows [24]:

RLDνψ(t) =
dm

dtm
(
Im−νψ(t)

)
, m− 1 < ν 5 m; m ∈ N, (2.5)

where, as usual, N denotes the set of natural numbers.

When modeling some real-world issues, the Riemann-Liouville definition has
some drawbacks [24, 30]. However, the Liouville-Caputo definition was meant to
address such issues. We utilize it as described in the following definition.
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Definition 2.3. [30] In the Liouville-Caputo sense, the fractional derivative LCDν

of a function ψ(t) is defined as follows:

LCDνψ(t) =
1

Γ(n− ν)

∫ t

0

ψ(n)(τ)

(t− τ)ν−n+1
dτ, n− 1 < ν < n; n ∈ N. (2.6)

The Liouville-Caputo fractional derivative LCDν possesses the following prop-
erties:

LCDνC = 0, C is a constant,

and
LCDνtθ =

Γ(θ + 1)

Γ(θ + 1− ν)
tθ−ν , θ ∈ N ∪ {0}; θ = dνe, (2.7)

where dνe denotes the ceil function. Also, this operator is linear:

LCDν(c1 f1(t) + c2 f2(t)) = c1
LCDν (f1(t)) + c2

LCDν (f2(t)), (2.8)

for some constants c1 and c2.

2.2. The Gegenbauer wavelet polynomials

The wavelets are created by translation and dilation of the mother wavelet φ(t). If
the translation parameter τ and dilation parameter γ change continuously in R, we
get the continuous wavelets of the following form [5]:

φγ,τ (t) = |γ|−1/2 φ

(
t− τ
γ

)
, γ, τ ∈ R; γ 6= 0.

If we take the limit of these two parameters as γ → γ−`0 and τ → ε τ0 γ
−`
0 , where

γ0 > 1, τ0 > 0, ` > 0 and ε > 0, we get the discrete wavelets of the form given
below [22]:

φ`,ε(t) = γ
`/2
0 φ(γ`0 t− ε τ0),

which provides a basis in L2(R). If γ0 = 2 and τ0 = 1, then we get the orthonormal
basis as follows [4]:

φ`,ε(t) = 2`/2φ(2` t− ε).

2.3. Properties of Gegenbauer polynomials

The nth-order Gegenbauer polynomials, Gκn(t), are obtained by using the for-
mula [32]:

Gκn+1(t) =
1

n+ 1

(
2(n+ κ) tGκn(t)− (n+ 2κ− 1)Gκn−1(t)

)
, n ∈ N,

where Gκ0 (t) = 1 and Gκ1 (t) = 2κ t, κ > −0.5 being the known ultraspherical
parameter. Different values of κ yield different wavelets. When κ = 1/2, κ = 0
and κ = 1, we have Legendre wavelets, and the first and second kinds of Chebyshev
wavelets, respectively. These polynomials are orthogonal on [−1, 1]:∫ 1

−1

w̃(t)Gκi (t)Gκj (t) dt = Lκi δij ,
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where w̃(t) = 1
(1−t2)0.5−κ is the weight function, and δ is the Kronecker delta func-

tion. We use the following for normalization:

Lκi =
π 21−2κ Γ(i+ 2κ)

i! (i+ κ)(Γ(κ))2
.

2.4. Formulation of the Gegenbauer wavelets

The Gegenbauer wavelets are defined on [0, 1] as follows [25]:

φκε,n(t) =


1√
Lκn

2`/2Gκn(2`t− 2 ε+ 1), 2 ε−2
2`

5 t 5 2 ε
2`
,

0, otherwise,

where ε = 1, 2, · · · , 2`−1, n = 0, 1, · · · , N − 1 for N = 1, and ` ∈ N is the level of
resolution.

The first functions of the GWPs calculated by taking ` = 1, N = 4 and κ = 30
are given below:

φ30
1,0(t) = 2.49122, φ30

1,1(t) = 39.2318 t− 19.6159,

φ30
1,2(t) = 447.481 t2 − 447.481 t+ 110.066,

φ30
1,3(t) = 4264.91 t3 − 6397.36 t2 + 3148.7 t− 508.124.

The unknown function θ(t) can be expanded by the Gegenbauer wavelets as follows:

θ(t) =

∞∑
i=1

∞∑
j=0

cij φij(t),

where cij are Gegenbauer wavelet coefficients in the form cij =< θ(t), φij(t) > such
that < ., . > refers the inner product. Then we can approximate θ(t) by truncating
this series as follows:

θ(t) ∼=
2`−1∑
i=1

N−1∑
j=0

cij φij(t). (2.9)

3. Numerical implementation

In this section, we give an outline of the implementation of the proposed method
to solve the smoking model in its fractional form. We can utilize mathematical
modeling to prevent the spread of tobacco smoking because it has been used as a
significant tool for pandemic grasp in recent decades [9]. The susceptible-exposed-
infected-recovered (SEIR) model is a general model. In the present study, to obtain
a better understanding of the qualitative analysis as well as the numerical analysis
of the proposed model, the revised form of the smoking model in the sense of
Liouville-Caputo fractional derivative is considered, and described as follows [3]:

LCDνψ1(t) = σ − `1 ψ1(t)ψ2(t) + γ ψ4(t)− β ψ1(t), (3.1)
LCDνψ2(t) = `1 ψ1(t)ψ2(t)− `2 ψ2(t)ψ3(t)− (σ1 + β)ψ2(t), (3.2)
LCDνψ3(t) = `2 ψ2(t)ψ3(t)− (θ + σ2 + β)ψ3(t), (3.3)
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LCDνψ4(t) = θ ψ3(t)− (α+ β + γ)ψ4(t), (3.4)
LCDνψ5(t) = αψ4(t)− β ψ5(t), (3.5)

with the following initial conditions:

ψk(0) = ψ0
k, k = 1, 2, 3, 4, 5. (3.6)

In this model, the total population is divided into five classes, where ψ1, ψ2, ψ3,
ψ4, and ψ5 are the susceptible smokers, the snuffing (ingestion) class, irregular
smokers, regular smokers, and quit smokers, respectively, at a given time t. Also,
the parameters used in the model (3.1)-(3.6) are described as follows:

1. σ is the frequency of recruitment (birth or migration);

2. `1 is the rate of the vulnerable population transitions to the snuffing class;

3. `2 is the rate of snuffing becomes an irregular smokers;

4. θ is the rate of irregular smokers turning to a regular smoker;

5. α, β, γ are the rates of the departing, natural death, and recovery, respectively;

6. σ1, σ2 are the rates of the snuffing class deaths because of smoking, and the
death due to smoking, respectively.

Let us approximate the unknown functions ψp(t) in terms of the GWPs, by
ψp,ij(t), p = 1, 2, 3, 4, 5, as follows:

ψp,ij(t) =

2`−1∑
i=1

m−1∑
j=0

cpij φij(t). (3.7)

Next, by using the property that:

LCDν = LCDsIs−ν ,

for s−1 < ν < s, the double sum in (3.7) can be differentiated and integrated term
by term along the interval of convergence for fixed ` and m. We can thus obtain
the following approximation of the fractional derivative LCDν ψp,ij(t):

LCDνψp,ij(t) =

2`−1∑
i=1

2`−1∑
j=0

cpij D
sIs−ν [φij(t)], p = 1, 2, · · · , 5. (3.8)

Upon substituting from (3.7) and (3.8) into the system (3.1)-(3.5), we get:

2`−1∑
i=1

m−1∑
j=0

c1ij D
sIs−ν [φij(t)] (3.9)

=σ − `1

2`−1∑
i=1

m−1∑
j=0

c1ij φij(t)

2`−1∑
i=1

m−1∑
j=0

c2ij φij(t)


+ γ

2`−1∑
i=1

m−1∑
j=0

c4ij φij(t)

− β
2`−1∑
i=1

m−1∑
j=0

c4ij φij(t)

 ,
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2`−1∑
i=1

m−1∑
j=0

c2ij D
sIs−ν [φij(t)] (3.10)

=`1

2`−1∑
i=1

m−1∑
j=0

c1ij φij(t)

2`−1∑
i=1

m−1∑
j=0

c2ij φij(t)


− `2

2`−1∑
i=1

m−1∑
j=0

c2ij φij(t)

2`−1∑
i=1

m−1∑
j=0

c3ij φij(t)


− (σ1 + β)

2`−1∑
i=1

m−1∑
j=0

c2ij φij(t)

 ,

2`−1∑
i=1

m−1∑
j=0

c3ij D
sIs−ν [φij(t)] (3.11)

=`2

2`−1∑
i=1

m−1∑
j=0

c2ij φij(t)

2`−1∑
i=1

m−1∑
j=0

c3ij φij(t)


− (θ + σ2 + β)

2`−1∑
i=1

m−1∑
j=0

c3ij φij(t)

 ,

2`−1∑
i=1

m−1∑
j=0

c4ij D
sIs−ν [φij(t)] (3.12)

=θ

2`−1∑
i=1

m−1∑
j=0

c3ij φij(t)

− (α+ β + γ)

2`−1∑
i=1

m−1∑
j=0

c4ij φij(t)

 ,

2`−1∑
i=1

m−1∑
j=0

c5ij D
sIs−ν [φij(t)] (3.13)

=α

2`−1∑
i=1

m−1∑
j=0

c4ij φij(t)

− β
2`−1∑
i=1

m−1∑
j=0

c5ij φij(t)

 .

By the collocation of these last equations (3.9)-(3.13) at

tr =
(2r − 1)h

2`N
,

where r = 1, 2, · · · , 2`−1m and 0 5 ti 5 h, we are led to a system of alge-
braic equations in the Gegenbauer wavelet coefficients cpij , p = 1, 2, 3, 4, 5, i =

0, 2, · · · , 2`−1m, j = 0, 1, · · · , m − 1. Also, upon substituting Eq.(3.7) into (3.6),
the initial conditions (3.6) will be converted to the following algebraic equations:

2`−1∑
i=1

m−1∑
j=0

cpij φij(0) = ψ0
p, p = 1, 2, 3, 4, 5. (3.14)

We now use the Newton iteration method for solving the nonlinear system con-
sisting of the equations (3.9)-(3.14) for the unknowns cpij , p = 1, 2, . . . , 5, i =
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0, 2, · · · , 2`−1m, j = 0, 1, · · · , m − 1. This, in turn, leads us to formulate the ap-
proximate solution by substitution in the form (3.7).

4. Numerical simulation

In this section, we proceed to verify the accuracy and quality of the given scheme by
presenting a numerical simulation on a test example in the interval [0, 50], where we
address the system (3.1)-(3.6) with different values of ν, m, β and different values
of the initial solutions. But, in all figures, we take the same values of the following
parameters:

σ = 0.1, `1 = γ = σ1 = σ2 = 0.003, `2 = β = 0.002, θ = α = 0.05.

We consider the following two cases of the initial conditions:

1. Case 1: ψ0
1 = 40, ψ0

2 = 30, ψ0
3 = 20, ψ0

4 = 10, ψ0
5 = 5;

2. Case 2: ψ0
1 = 75, ψ0

2 = 60, ψ0
3 = 45, ψ0

4 = 30, ψ0
5 = 15.

We present a comparison between the results obtained by the proposed method
with those results that are obtained by using the fourth-order Runge-Kutta method
(RK4). We also evaluate the residual error function (REF) [6] to estimate the
accuracy and quality of the proposed scheme.

The obtained numerical results for the studied model by applying the proposed
technique are illustrated in Figures 1-6.

1. In Figure 1, we give the behavior of the approximate solution via distinct
values of ν = 1.0, 0.95, 0.85, 0.75, with m = 6, and the initial conditions in
Case 1.

2. In Figure 2, we give the behavior of the approximate solution via distinct
values of ν = 0.95, 0.85, 0.75, 0.65, with m = 6, and the initial conditions in
Case 2.

3. In Figures 3 and 4, we present a comparison between the results obtained by
the proposed method with those results obtained by using the RK4 at (ν = 1)
with m = 6 and the initial conditions in Case 1, and Case 2 respectively.

4. In Figure 5, we compute and plot the REF of the approximate solution at
ν = 0.97, with different values of m = 5, 9, and the initial conditions in Case
1.

5. In Figure 6, we study the effect of the rate of natural death on the system,
with different values of β = 0.002, 0.003, 0.004, 0.005; at ν = 0.93, m = 6,
and the initial conditions in Case 2.

Through these results, we note that the behavior of the numerical solution result-
ing from the application of the proposed method depends on the values of ν, m and
β, and this confirms that the proposed method is suitable for solving the proposed
model in its fractional-order form with the Liouville-Caputo fractional derivative.
From Figure 5, we can regulate the precision of the error and lower it by adding
more terms from the approximation solution series, or by raising m. In addition,
the proposed approach remarkably improves the results as well as the efficiency of
the method.
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Figure 1. The approximate solution ψi(t), i = 1(1)5 against distinct values of ν with small initial
values.

5. Conclusions

The main goal of this work is to investigate the dynamical behavior of the smok-
ing mathematical model with the help of the Liouville-Caputo fractional derivative
operator by using of the tools and techniques of fractional calculus. Through this
work, the numerical solutions of the mathematical model under study were com-
puted with different values of the fractional-order ν, approximation-order m, and
residual error function, and initial conditions. And then we have confirmed that
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Figure 2. The approximate solution ψi(t), i = 1(1)5 against distinct values of ν with large initial
values.

the proposed technique is remarkably suitable to study this mathematical model
effectively. In addition, we can control the accuracy of the error and reduce it by
including additional terms from the approximate solution series, that is, by increas-
ing m. Finally, we also concluded that the Liouville-Caputo fractional derivative
operator is better suited for numerical simulations for the mathematical model un-
der study in this article. The results obtained in graphical form are comparable
to the results obtained by using the RK4 method. Our results also show that the
proposed technique is accurate as well as computationally efficient. In our future
investigation, we plan to deal with the same model, but with another type of frac-
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Figure 3. The solution ψi(t), i = 1(1)5 by GWPs and RK4 methods ν = 1 with small initial values.

tional derivative or another type of polynomials as a generalization of our present
study.
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Figure 4. The solution ψi(t), i = 1(1)5 by GWPs and RK4 methods ν = 1 with large initial values.
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Figure 5. The REF of ψi(t), i = 1(1)5 against distinct values of m.
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Figure 6. The effect of β on the approximate solution ψi(t), i = 1(1)5.
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