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ANALYTICAL INTEGRABILITY OF
PERTURBATIONS OF DEGENERATE
QUADRATIC SYSTEMS*

Antonio Algaba!, Cristébal Garcial, Manuel Reyes! and

Jaume Giné>f

Abstract We consider analytic perturbations of quadratic homogeneous dif-
ferential systems having an isolated singularity at the origin. Here we char-
acterize the analytically integrable perturbations of quadratic homogeneous
systems of the form (&,9)T = fi(P1,Q1)" with fi(x,y) a non-zero linear
homogeneous polynomial and Pi(z,y), @1(z,y) non-zero linear homogeneous
polynomials without common factors. We prove that all systems are orbitally
equivalent to their quasi-homogeneous leading terms with respect to a cer-
tain type but not necessarily to the homogeneous leading terms. This result
completes the previous results for the analytic perturbations of irreducible
quadratic systems with analytic first integral which are orbitally equivalent to
the homogeneous leading term, i.e. all are homogenizable.

Keywords Analytic integrability, quadratic differential systems, degenerate
singular points, orbitally equivalence.
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1. Introduction

One of the main problems in qualitative theory of differential systems in the plane
is the integrability problem which consists in determine when a differential system
has a first integral of certain functional class defined in a neighborhood of a singular
point. In [22] was proved the existence of a map that transforms any integrable sys-
tem into a linear one. This result was generalized in [27] to n-dimensional systems.
In both cases the differential system is orbitally equivalent to the linear differen-
tial system in a full Lebesgue measure subset of the domain of definition of the
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differential system, which implies that the orbital equivalence is not defined at the
singular point. Here we study when the integrable system is orbitally equivalent to
the linear part or leading part of the differential system in a neighborhood of the
singular point.

The main goal of this paper is to solve the problem for differential systems which
are perturbations of quadratic systems. Hence, in general, we consider the problem
of having a homogeneous polynomial planar differential system

(i:7y)T = Fn(gjvy) = (Pn(xvy)in(xay))Tv (11>

with P, and @, homogeneous polynomials of degree n, and we are interested to
know whether an analytic perturbation of F,

(¢,9)7 = F:=F, +ho.t. (1.2)

has an analytic first integral at the origin, which is a singular point of the sys-
tem. Indeed if the origin is not singular point, F(0) # 0, from flow box theo-
rem [15, Cauchy-Arnold Theorem], the vector field is locally analytically integrable.
Therefore, we will assume that the origin is an isolated singular point of system
(1.2).

We say that an analytic vector field is homogenizable if it is orbitally equivalent to
a homogeneous polynomial vector field, i.e. the system x = dx/dt = F,,(x) 4+ h.o.t.
by means of a near-identity change of variable x = ¢(y) and a formal repa-
rameterization of the time d¢/dr = n(x), with 7(0) = 1, it is transformed into
y' =dy/dr = F,(y). We recall that the polynomial integrability of F,, # 0 is a
necessary condition of analytical integrability of system (1.2).

For n = 1, assuming that the origin is an isolated singular point of Fq, from
[24,29,32] we have that F1+h.o.t. nondegenerate monodromic points and saddles are
analytically integrable at the origin if, and only if, they are homogenizable (in this
case, linearizable). A unified method to compute necessary and sufficient conditions
of analytic integrability for such singular points using the blow-up method is given
in [20,21]. The most studied systems whose origin is a resonant saddle are the
Lotka-Volterra systems, see [16, 17,19, 23,25, 26, 31] and references therein. We
recall that if the origin is an isolated singular point, then the nodes and saddle-nodes
points are not analytically integrable. Recently in [5] it is proved that an isolated
nilpotent singular point is analytically integrable if, and only if, its lowest-degree
quasi-homogeneous term is integrable and the complete vector field is orbitally
equivalent to its lowest-degree quasi-homogeneous term.

For n = 2, that is, F; is zero and F5 is non-zero, assuming that the origin is an
isolated singular point of Fa, in [7] has been proved that system (1.2) is analytically
integrable if, and only if, it is homogenizable.

Finally, for n = 3, F; = F3 = 0 and F3 is non-zero, assuming that the origin is
an isolated singular point of F3, in [8,9] was proved a similar result.

However, in general, not any analytically integrable vector field with zero linear
part (a degenerate singular point) is orbitally equivalent to its first homogeneous
term. Indeed the result for n > 4 is not satisfied. For example, the Hamiltonian
system

i =4y’ —2® = 32%%), g =y’ -y’ + 3277,

it is analytically integrable, and it is non-orbitally equivalent to its leading term
i = x(4y® —123),9 = y(423 —y?3), see Theorem 3.20 of [9]. We note that although the
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leading term is irreducible, the system is non-orbitally equivalent to its homogeneous
leading term. Other families of systems non-orbitally equivalent to their leading
term can be seen in [1,4,10], see also references therein. In fact in [4] it is proved
the existence of analytically integrable vector fields that are non-orbitally equivalent
to their quasi-homogeneous leading terms.

If we assume that the origin of F,, is a not isolated singular point, there are
few results about the analytical integrability of the vector fields F,, + ---. Only
the case n = 1 has been solved. If the origin of F; is a saddle-node point, the
perturbations of a saddle-node point are analytically integrable if, and only if, the
vector field is reducible, i.e. the system has a curve of singular points, see [18]. If the
origin is a non isolated nilpotent singular point of F,,, in [2] has been proved that
the analytically integrable perturbations of a nilpotent singular point are orbitally
equivalent to a polynomially integrable quasi-homogeneous vector field.

We focus our study on the analytic integrability of the following system whose
origin is an isolated singular point,

(&9)" = [L(PLQ)T + () aga'y!, Y bya'y)T, (1.3)

i+j>3 i+5>3

with fi(x,y) a non-zero homogeneous polynomial of degree one, P;(x,y), Q1(z,y)
non-zero homogeneous polynomials of degree one without common factors and
aij,bi;; € R. Note that the quadratic part of the vector field is degenerate.

Here, we solve the analytic integrability problem of system (1.3). We prove that
for some cases, the vector field has an analytic first integral if, and only if, it is
homogenizable, i.e. it is orbitally equivalent to fi(P;,Q1). Nevertheless, for other
cases, the vector field is analytically integrable if, and only if, there exists a certain
type t = (t1,t2) € N2, with t # (1,1) (the case t = (1,1) is the homogeneous
expansion of the vector field) such that the vector field (1.3) is orbitally equivalent
to its quasi-homogeneous leading vector field with respect to the type t.

1.1. Invariant curves and first integrals of vector fields

We deal with a vector field F = (P,Q)T where P, Q are analytic functions at the
origin with P(0) = Q(0) = 0. Throughout the paper, we denote the differential
operator associated to the vector field F by F', that is, F' := P9, + Q0,. We recall
the concept of invariant curve and its associated cofactor.

Definition 1.1. A function C € C[[z,y]] (algebra of formal power series in (z,y)
over C), with C(0) = 0, is an invariant curve at the origin of the vector field F,
if there exists K € Cl[z,y]], cofactor of C, such that F(C) = KC. Moreover, if
K =0, then the vector field F is formally integrable and C' is a first integral of F'.
If K = div(F) (divergence of F), then C is an inverse integrating factor of F.

We remark that if Cq,...,C,, are invariant curves of a vector field F, then
C{'---CI'™ is also an invariant curve of F whose cofactor is n1 K7 + - -+ + ny K,
where K is the cofactor of Cj.

It is worth pointing out that for analytic vector fields, by [28, Theorem A], the
existence of a formal first integral is equivalent to the existence of an analytic one.
For this reason, when we use Taylor expansions of functions and vector fields, we
do not consider convergence problems.
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We introduce some notation and concepts. Given t = (t1,t2) with ¢; and to
natural numbers without common factors, a scalar function f of two variables
is a quasi-homogeneous function of type or weight exponent t and degree j if
f(ehrz,et2y) = &7 f(z,y). The vector space of quasi-homogeneous polynomials of
type t and degree j is denoted by Pf. A vector field F = (P, Q)" is a quasi-
homogeneous vector field of type t and degree j if P € P;JFtl and @ € 73;+t2.
We denote the vector space of the quasi-homogeneous polynomial vector fields of
type t and degree j by Q;. An analytic vector field can be expanded into quasi-
homogeneous terms of type t of successive degrees. Thus, the vector field F # 0
can be written in the form F = Y. F; where F; = (Pj14,,Qj44,)" € Q% and
F. #0.

Throughout the paper, we write Df = (t12,t2y)T € Qf (dissipative quasi-
homogeneous vector field) and X, = (—0h/dy, dh/0x)T (Hamiltonian vector field
associated to the polynomial h). The following splitting of a quasi-homogeneous
vector field plays a main role in our study.

jzr

Proposition 1.1. [3, Prop. 2.7] Every F,. € Qb can be uniquely written as F, =
Xy, + pD§ with h = ﬁ(Dg AF.) € Pryyy (product wedge of both vector fields)

and p = f‘tldiv(F,«) € Pt (divergence of F,.).

The following results give an expression of the invariant curves at the origin of
a quasi-homogeneous vector field.

Proposition 1.2. Every quasi-homogeneous polynomial invariant curve at the ori-
gin of a quasi-homogeneous vector field F,. is given by g7*g3* ...gnm each g; being

an irreducible polynomial invariant curve at the origin of F,.

Proof. We suppose that g = giu, (91 an irreducible quasi-homogeneous polyno-
mial and u a suitable quasi-homogeneous polynomial), it is an invariant curve at
the origin of F,. with K. cofactor of g. We have that F,.(gi1u) = g1 F,(u) +uF,.(g1) =
K, g1u, that is, g1 (uK, — F.(u)) = uF,.(g1). From the irreducibility of g;, it has two
situations: either g; is an irreducible invariant curve at the origin of F,., in such a
case, u is also an invariant curve at the origin of F, and we repeat the process for
u. Or u = gyv with v a quasi-homogeneous polynomial, i.e. g = g?v. We now have
that F,.(gv) = ¢?F-(v) + 2091 F-(g1) = K,g}v. Thus, g1 (vK, — F.(v)) = 20F,(g1).
Taking into account that the process is a finite process, reasoning in a similar way,
the proof is completed. O

Proposition 1.3. Consider F,. € Q. Any factor of D§AF,. € P:-Htl s an tnvariant
curve at the origin of F,.. Conversely, any irreducible quasi-homogeneous polynomial
invariant curve at the origin of F,. is a factor of D§ AF,.

Moreover, if I is a polynomial first integral of F,. with I1(0) = 0 and F, is
irreducible, then I = g¢y"gy?---ghm where g1, ...,gm are all irreducible quasi-
homogeneous factors of Dy A F,. and n; > 0.

Proof. From Proposition 1.1, we know that F,. = X, + uD§ with h = ﬁ(DB A
F,) and p = —1-div(F,). We prove that any factor of h is an invariant curve of

r+]t]
F,.
If h is irreducible, the result follows since it is an invariant curve of F,.. Otherwise,
let f € P! a factor of h, that is, h = fg with g a suitable homogeneous polynomial

and F.(f) = Xyo(f) + pDg(f) = fXo(f) + suf = (X4(f) + sp)f. Therefore, f is
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an invariant curve at the origin of F,..

We see that any irreducible quasi-homogeneous polynomial invariant curve of
F, is also a factor of h. Indeed, if f € P! is an irreducible invariant curve at the
origin of F,. with cofactor K, then K, f = F,.(f) = Xp(f)+uD§(f) = Xn(f) +suf.
Thus, Xp(f) = (K, — su)f and f is an invariant curve at the origin of X, and
irreducible. So, f divides h.

Last on, if I is a first integral of F,. with I(0) = 0, it is an invariant curve at the
origin of F,., from Proposition 1.2, a factorization of I is formed by the irreducible
factors of h. On the other hand, any first integral satisfying I(0) = 0, is zero on
every invariant curve (if F, is irreducible, the curves are not curves of singular
points). So, n; > 0. O

1.2. Necessary condition of analytical integrability for pertur-
bations of a class of quadratic systems

The following result provides a necessary condition of integrability for an analytic
vector field.

Proposition 1.4. [Necessary condition of analytical integrability] For a type t
fized, we consider F = F,. + - with F,. € Q. If F is formally integrable at the
origin, then F,. is polynomially integrable.

Proof. Let C =3 ,. Cj, C; € P} a formal invariant curve of F with cofactor
K = ijr K;, K; € 73;. By the lowest-degree quasi-homogeneous term of the
equation F(C) — KC = 0, it has that Cs is a polynomial invariant curve at the
origin of the polynomial vector field F,. with cofactor K. So, if C is a first integral
of F, then K = (0 and C is a first integral of F,.. O

Remark 1.1. We note that the vector fields (P,,Q,)" € H, = {homogeneous
vector fields of degree n} are quasi-homogeneous vector fields of degree n — 1 with
respect to the type (1,1), i.e. H, = Q% | with t = (1,1). So, following the quasi-
homogeneous notation, we emphasize that the quadratic vector fields (P, Q2)7 €
Ot with t = (1,1).

Now we proceed with the study of the analytic integrability of irreducible system
(1.3), that is the irreducible vector field whose first homogeneous component is
(Py,Q2)" = f1(P1,Q1)T with f; linear homogeneous polynomial and Py, Q; linear
polynomials without common factors. The following result provides the expression
of the lowest-degree component in the case of polynomial integrability of this class
of vector fields.

Proposition 1.5. If system (1.3) is formally integrable then there exist a quasi-
homogeneous change of variables and a linear reparameterization of the time such
that the wvector field is transformed into one of the following vector fields whose
quasi-homogeneous expansion with respect to the type t = (t1,t2) is given by

(a) F=F1+---, witht = (1,1) and

Fi=(y+x)(—qz,py)", p,g €N (1.4)
O)F=F;+---, witht =(1,1) and

Fi = 2(—qy,px)", pgeN. (1.5)
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(c1))F=F,+ -, witht =(1,n) and
F, = (a(=(¢+7)y — (g —r)a"),py* —nlg —r)a"y = (p+ nlg+7))a*")". (16)

(c2) F=F, + - witht =(1,n) and
F, = (—qay,py* + o(p+ng)z®")". (1.7)

(¢.3) F=Fopy1+ -+ witht=(2,2n+1) and

Fonir = (~goy,pu + 5 (20 + (20 + D)+ )T (1.8)

(c.4) F=F, +--- witht=(1,n) and
F, = (—qzy — qnaAz™*" py? + [(p + ng)ns + pno Az"y)". (1.9)

(c.5) F=F,+ - witht=(1,n) and
F, = (y + Bz")(—qz,py)’. (1.10)

Proof. We first fix the type t = (1,1). Let [ = Ij;+--- aformal first integral of F.
Equation F(I) = 0 for degree M +1is Fy(Ip;) = 0, i.e. F; is polynomially integrable
and Iy is a first integral of F;. We seek the vector fields F; satisfying the condition
Fi(Ips) = 0 (necessary condition of analytical integrability). By Proposition 1.1,
F; is F; = X}, + pDg with Dy = (z,y)T, h € P¢ (cubic homogeneous polynomial)
and p € PY (linear homogeneous polynomial).

If the polynomial & is identically zero, we have that F; = puDg and it is non-
formally integrable. Otherwise, h has always a linear factor, a1z + b1y with aq
and b; constants, since h is a cubic homogeneous polynomial. We can assume that
h = xps with ps a homogeneous polynomial of degree two, since if a; = 0 we do the
change (z,y) — (y,x). Otherwise, we do (z,y) = (a12 + b1y, y). We distinguish
the following cases according to the factors of the polynomial po:

Case (a). Assume h = ax(z + by)(x + cy) with bc # 0 and b # ¢, with a,b,c
constants.

The linear change of variables (z,y) — ((¢ — b)z,c(z + by)) and the linear
reparameterization of the time at = be(c — b)7, transform Fy into Fy = X; + iiDg
with h = 2y(y —x). We write the linear polynomial i = Az + By. From Proposition
1.3, if it exists a first integral of Fy, it would have the expression Iy, = 2Pyl(z—y)"
with p,q,r non-negative integers. Note that p,q,r are zero if, and only if, x =
0, y=0, y—x =0, are curves of singular points of Fy, respectively. By imposing
Fi(In) = 0, we arrive to

1 1

A=rp—=2¢+r).B=1:(a=2p+7),
with M = p + q + r. We distinguish the following cases:
e If x = 0 is a curve of singular points, that is p = 0, by means of the change
(z,y) = (z — y,y) and the reparameterization of the time 3t = M7 and renaming
7 by p, the vector field F; turns on (1.4).
e If y = 0 is a curve of singular points, that is ¢ = 0, by performing 3t = —(p+r)7
and changing r by ¢, we arrive to (1.4).
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o If y —x = 0 is a curve of singular points, that is = 0, by means of the change
(z,y) = (x,—y) and the reparemeterization of the time 3¢t = (p + ¢)7, F; turns on
(1.4).

Case (b). Assume h = ax((z + by)? + 22) with b # 0.

The linear change (x,y) — (z,z + by) and the scaling at = 7, transform F; into
F, = Xj, + iiDg with h= z(2? 4+ y?). We write fi = Ax + By. Now, by Proposition
1.3, the expression of a first integral of F; would be Iy, = 2?(z? 4 32)? with p, q
non-negative integers. By imposing F} (Ip) = 0, we have that A=0,B = %(p—q),
with M = p+2q. If x = 0 is a curve of singular points, that is p = 0, by performing
the reparemeterization of the time 3t = M7, F; turns on (1.5).

Case (c). Assume h = az(z + by)? with a,b # 0.

The linear change of variables (z,y) — (x,z+ by) and the scaled of time at = 7,
transform F; into F; = X, + Do with h = xzy?. We write i = Az + By. From
Proposition 1.3, if it exists a first integral of Fy, it would have the expression
Iy = 2Py? with p, ¢ non-negative integers. By imposing Fy (Ip) = 0, we arrive to
A=0,B=1(2p—q), with M = p+gq. So, F, = %y(—q;&py). By performing the
reparameterization of the time 3t = M7, we have that F = y(—qz, py)T + -+ . Let
note that the quadratic terms of the vector fields F do not determine its Newton
diagram. For that, we need to provide terms of higher degree.

The analytic perturbations of x = y(—qx,py)”, p,q € N, can be written as

T =x(—qy+ fo(x) + yfi(z,y)) + A(y),
v = y(py + g2(x) + yg1(=,y)) + B(x).

If fo =0 and go = 0, then B # 0 since the vector field is irreducible (the origin
is an isolated singular point). We write B(x) = by—12™ + -+, with b,,—1 # 0. In
this case, the quasi-homogeneous expansion of the vector field respect to the type
t= (25 m) isF = (_quapyZ + bmflmﬂl)T +ee

We first assume that m = 2n. Performing the change (z,y) — (z,,/ l{)’;’j‘fly)

and the reparemeterization ¢ — “;fj;; l t, the vector field is transformed into (1.7).

It is easy to check that z?P(y? + sign(ba,_1)2*")? is a first integral.

For m = 2n+1, the change (z,y) — (Ax,y) with A2n*1 = 2;J+(l)227;f+1)q’ transforms

the vector field into (1.8). It is easy to check that 2P (y?+22"+1)4. is a first integral.

Otherwise, we write fo(2) = c,@" 4 -+, ga() = dpa"+- - withn = min{j, 5+
d? # 0}.

If B = 0, then the quasi-homogeneous expansion of the vector field respect to
the typet = (1,n) is F = F,, +--- with F,, = (z(—qy +c,z"),py* +dpz™y)T +---.
From [6], if F,, is polynomially integrable then it can be transformed into (1.9) or
(1.10).

If B(z) = bp_12™ + -+, with b,,_1 # 0, we distinguish three cases:

If m > 2n — 1, then the quasi-homogeneous expansion of the vector field respect
to the type t = (1,n) is F = (z(—qy + c,z™), py?® + dpzy)T +- - . So, we arrive to
(1.9) or (1.10).

If m = 2n — 1, then the quasi-homogeneous expansion of the vector field respect
to the type t = (1,n) is F = F,, + -+ with F,, = (z(—qy + c,2™),py? + dpz"y +
b2n_1m2n)T.
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If F,, is reducible, then —qy + c¢,z™ is a common factor of both components
of F,. In such a case, F,, = (—qy + cp2™)(z, —q%(pqy + (pen + qdy)z™))T. The

pcn+qdn
(p+nq)q

vector field into (y + Bx")(—qz,py)T with B = ¢, + C;’%Tfj", that is, the vector
field is (1.10).

We now assume that F,, is irreducible. Consider A := (d,, — ncy)? — 4(p +
nq)ba,—1. If A = 0, the vector field is not polynomially integrable since the origin is
an isolated singular point and the polynomial h = (x,ny)T A F,, = 2((p + nq)y® +
(d,, — ncp)yx™ + by, _12%™) has multiple factors.

Otherwise, we perform the quasi-homogeneous change of variables (x,y) —

(z,y + g&;:ﬁ;) x™). Next, by means of a scaled and a reparamterization of the

time-variable, according the sign of A, h can be transformed into h = z(y? + o2?")
with o0 = +1. So, F,, = X}, + (42" + By)(z,ny)?.

For o = 1, a first integral is of the form I, = 2™ (y* + x?")"2, with n; and
ng natural numbers. Imposing the equation of integrability, we have that A = 0
therefore by,_1 = 0.

For o = —1, a first integral is of the form I, = a™ (y — z™)"2(y + z™)"3, witrh
n1,ns and ng natural numbers. Imposing the equation of integrability, we have that

quasi-homogeneous change of variables (z,y) — (z,y + x™), transforms the

(2n+1)(n3 — n2) 2Ny — ng — N3

ny +n(ng +n3z) ’ ny +n(ng +n3)’

Rescaling the time-variable ¢ — g:i‘llt and renaming nq, = p, Ny = ¢,N3 = r, We
have that F,, is of the form (1.6) and a first integral is 2P (y — z™)%(y + 2™)".

If m < 2n —1, then the quasi-homogeneous expansion of the vector field respect
to the type t = (2,m) is F = (—qay, py? + bp_12™)T + - - - and therefore, it can be
transformed into (1.7) or (1.8). O

2. Orbital normal form and analytic integrability

We do not consider questions of convergence in the normal forms because, as we
mention before, the formal integrability is equivalent to the analytical integrability
for the vector fields analyzed, see [28, Theorem A]. Several orbital normal forms of
vector fields, whose leader homogeneous term is quadratic, have been provided by
several authors, see for example [11-14, 30].

The following orbital normal form of the perturbations of quasi-homogeneous
vector fields has been provided in [5].

Proposition 2.1. Given F =F,+3 ;o Fryj withF,y; € Qt. ;. IfKer (€§+J’+It\)
= {0} for all j € N then F is orbitally equivalent to

G=F,+Y Gy, withG,j =X, +n+Db €k,

Jj=1

where 6,44 € Cor <€i+j+\t|) and 1y € Cor (bry;), where €.\ is the linear

operator (Lie operator of F, moved)

G Djie) — Doyt (2.1)
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div(F,
gj+|t| - PrOyAr+j+\t\ (FT B r+j(+|t)\ DO)<gj+‘t|)7

the subspaces Njyy satisfy Pipi) = Ajipg @ hPj—r with h = D§ A F,. (such
subspaces must be considered as fized) and U,y ; is the Lie-derivative operator of Fy.,
i.e.

by : P} — PL (2.2)
p; — Fr(p;)-
We give the following results on formal integrability of the orbital normal forms.

Proposition 2.2. Consider the irreducible and formal vector field F = F, + uD},
with Fr. = fG € QY = pyy1 + -+ and assume that f € Pt is not an invariant
curve of G. Then, F is not formally integrable.

Proof. The curve f(z,y) = 0 is not a curve of singular points of F since F is
an irreducible vector field. Moreover, the quasi-homogeneous polynomial f is an
invariant curve of F since

F(f) = (fG +pDy)(f) = fG(f) + sfu= F(G(f) + sp).

Thus, a primitive first integral of F, if it exists, it would be of the form I = f"g,
with n a natural number and g a formal function g = g,,+- - - . So, from F(f™g) =0
it has that F.(f"gm) = fG(f"gm) = 0, then G(f"g,) = 0 for all (z,y) € R? such
that f(z,y) # 0. As G(f"gm) is a polynomial and it is null except in a measure-zero
set, it has that G(f™g,,) = 0 that is, f™g,, is a polynomial first integral of G and
f(0) = 0, therefore f would be an invariant curve of G. This fact contradicts the
initial hypothesis. O

Proposition 2.3. Consider the irreducible and formal vector field F = F, 4+ uD§,
with F, € QF irreducible vector field and Ins € P, a first integral of F,. and assume
that = 1 + -+ with prqj € Cor (br45) and Cor (bryjrar) = IngCor (r45) , for
all j. Then, F is formally integrable if, and only if, u = 0.

Proof. We see the necessary condition. Assume that F is formally integrable and
not all the u; are zero. Let N be defined by N = min{j > 1: pu; #0}. A formal
first integral of F is of the form I = I}, + Zj>Ml I; with I; € P;. Imposing the
integrability condition we have

0= (F(I))nsa = (unDo)(Iy) + Fr(Innen—1)
= MilunI + e N (Inniyn—1) s

i.e. punIl; € Range ({ar4n). But, by hypothesis, unI4, € Cor ((as4n) it which
is a contradiction. Thus, F is not formally integrable.
The sufficient condition is trivial since if 4 = 0, then F = F,. and I, is a first
integral of F. O
We recall that an inverse integrating factor of a system is an invariant curve
whose cofactor is the divergence of the vector field.

Proposition 2.4. Consider the irreducible and formal vector field F = F, 4+ uD§,
with F, € QF irreducible vector field and In; € P, a first integral of F,. and assume
that pt = pir41 + -+ with pir4; € Cor (bryj) and Cor (rqjrar) = I Cor (bry ;) , for
all j. Then, F is formally integrable if, and only if, DS AF, is an inverse integrating
factor of F.
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Proof. We prove that the condition is necessary. We assume that F = F, 4 - --
is formally integrable. From Proposition 2.3, it has that F = F,., which has the
inverse integrating factor D§ A F,..

Now we see the sufficiency of the condition. Let V' = V;+--- be a formal inverse
integrating factor of F, i.e. F(V) = div(F)V. Expanding above equation, we have
that F.(V;) = div(F,)Vj, thus V; is a polynomial inverse integrating factor of F,.
Therefore V =V, 4 4 -+ with V4 = Df AF,.

Also, the unique invariant curves at the origin of F are the factors of h :
D§ A F,. So, we have that V = hu with u a formal function with «(0) =
Equation F(V) — Vdiv(F) =0 is

1.

0 =uF(h)+ hF(u) — hudiv(F).

Since F'(h) = hdiv(F;)+3_, ., (r+[t])hy; and div(F) = div(F,)+3_,.,.(1+2) 1y,

we have that
0= h(F() —uS (i +2 - [t - ). (2.3)

j>r

We see that ;=0 for all j >r. Indeed, otherwise, let jo=min{j € N : p1;,, # 0}.
As pjo—k+r = 0 for 1 < k < jo, and expanding v = 1 + ZiZl u;, equation (2.3)
to degree jo + r + [t| + 1 we get F(uj,) = Joljo+rs 1-€. fjo4r € Cor (£j,4+r) and
tjo+r € Range (¢;,4r) . Hence we arrive to pj 4, = 0. Therefore, F = F, and I is
a first integral of F. O

3. Main results

Our purpose is to find a link between orbital equivalence and the analytic integra-
bility of the perturbations of a quadratic system (1.3), (z,y) = fi(P1,Q1) + -,
for each case given in Proposition 1.5.

3.1. Case (a)

We first give an orbital normal form for this class of systems.

Proposition 3.1. A formal orbital normal form for the system (&,y) = (y +
z)(—qz,py) + - -, with p,q natural numbers is

B o) e (1), (3.1)
Y py(z +y) Y

where ;1(0,0) =0 and p(z,y) does not have any linear terms.

Proof. We fix the type t = (1,1). In this case, we consider Taylor expansions,
F=F;+ - with F; = (—qay,pz?)T € Qt (let note us that the quasi-homogeneous
degree does not coincide with the homogeneous degree), h := D§AF; = (p+q)zy(z+
y) and div(F1) = (—¢ + 2p)y + (p — 2¢)=-

Consider the translated vector field ng) =F - %%div(Fl)Dg. A comple-

mentary subspace to hPx_1 and hPy are Agio = span{xk+2,xk+1y} and Agi3 =
span{xFt3 zF+2y}
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The transformed of the basis are

FP(@+?) = 52 (p 4 (k + 1)g) + Azb+?
ﬂm@“W)=i;@+mk*@+Axh
FP(42) = BE2((k 1 1)p + q)yh+D + a2y + Agaht

So, the matrix associated to the operator E ) 13 is also not singular, therefore, we
have that Ker(€k+3) {0} and Cor(¢ k+3) = {0}. O

We give the following result on analytic integrability of the vector fields consid-
ered.

Theorem 3.1. The irreducible vector field F = (—qz(z+y), py(x+y))T +-- -, with
P, q natural numbers is not analytically integrable.

Proof. From Proposition 3.1, the vector field F is orbitally equivalent to a formal
vector field of the form F* = (—qx(x + y), py(z + )T + uD§, with t = (1,1). On
the other hand, (—qz(z + y),py(z + y)T = (z + y)(—qz,py)” and z + y is not an
invariant curve of (—qx,py)?, therefore from Proposition 2.2, F* is not formally
integrable and thus F is not analytically integrable. O

3.2. Case (b)

Proposition 3.2. A formal orbital normal form for the system (&,9y) = z(—qy, px)
+ - -+ with p, q natural numbers is

x —qxy x

] = , | ) ; (32)
] pT y

where ;1(0,0) = 0 and p(z,y) does not have any linear terms.

Proof. We fix the type t = (1,1). Therefore, h := D A F; = 2(pz? + qy?) and
div(Fy) = —qy.

We prove that the kerf of the operator £ , defined in (2.1) is a trivial set, i.e.
Ker (¢5, 4) = {0} for all k € N.

We denote ng) =F, — mle(Fl)( )T = %—i-?) (k+Dqry . Con-

(k + 3)px? + qu?

sider the following bases for departure and arrival spaces of the operator ff, ;:
Ao = span{zk*t2 pFtly yk+2Y and Ay 3 = span{zk*3 xF+2y yk+3). Taking into
account that ziy/h = pa'+3y? + qxT1y7 12, we have that

k k 2
Fl( )(]jk:+2) _ q(k+32) xk+2y’

and Fl(k) (y*+2) is
elfk=20+1,

k X
F (yh+2) = SRRy t8 4 3 ()b (=1)1 ( + 2) Br a3,
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with i (z,y) = (k+2)h ZIH( )g+1p g2y k=244,
oIf k=20+2,

F (yhr2) = G20 k48 4 3o () (= 1)1 (k + 2) Err k¥ 2y,

with Aa(x,y) = (k +2)h ZZH( )”“’ 229~ 1yF=2i+4 S0, the determinant of the

2 5
matrix associated to the operator Ek 13 18 %;)23), i.e. the matrix is not singular,

therefore Ker(ékH) = {0} and Cor(ﬁgﬁ?,) = {0}. From Proposition 2.1, the result
follows. &

Theorem 3.2. The irreducible vector field F = (—qzy, px?)T +- - -, with p, ¢ natural
numbers is not analytically integrable.

Proof. From Proposition 3.2, the vector field F is orbitally equivalent to a formal
vector field of the form F* = (—qzy,pr?)T + uD§, with t = (1,1). On the other
hand, (—qzy,pz?)T = x(—qy,pz)T and z is not an invariant curve of (—qy, pz)7,
therefore from Proposition 2.2, F* is not formally integrable and thus F is not
analytically integrable. O

3.3. Case (c.1)

First we give some auxiliary results. The first one is [5, Lemma 3.22].

Lemma 3.1. Let f € Pt an irreducible quasi-homogeneous polynomial invariant
curve of F,., K, € Pt its cofactor and k,m € N. Assume that the vector fields of
t (k—js)F,. +jK,D§, 0<j<m-—1, are irreducible. Then, if F,(px) € (f™)

with p, € PE, it satisfies that py, € (f™).

Lemma 3.2. We consider the vector field F,, = (z(—(q+ )y — (¢ — r)z™), py® —
n(qg—r)z"y— (p+n(g+r))z?)T € QF witht = (1,n) and denote M := p-+ng+nr,
degree of the quasi-homogeneous polynomial first integral Iy = «P(y—a™)2(y+a™)".
Given m a natural number, assume that for every k > m, it satisfies that

k k k
M#p;7 M#q}’ M#T;7 jzlaam_l

If pr. € PE such that F,(pg) € (f), where fi =z, fo =y —a", f3 =y + a", are
invariant curves at the origin of Fy,, then py € (fI"), i =1,2,3.

Proof. We prove the case i =1, (f1 = ), the cases i = 2,3 are analogous.

The cofactor of x € Pt is K,, = (r — q)(y — ™). From Lemma 3.1, it is enough
to prove that for any j with 0 < j < m — 1, the vector field (k — j)F,, + j K, D} is
irreducible, i.e.

—k(g+r)zy — k(g —r)a"*,
(kp — jM)y? — nk(q — r)a"y + (=k + j) Mz>",
are coprime. Analyzing the different factorization of both polynomials, one has that
both polynomials are coprime if and only if M # p?, j=1,...,m—1
For fo =y — 2™ (and for f3 =y + z™, respectively) it is easy to prove that the

vector fields (k — js)F,, + jK,D§, 0 < j <m— 1, with K,,, cofactor of f5 (and f3,
respectively), are irreducible if M # q? and M # r?. O
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The following result provides an orbitally equivalent normal form of the systems
(c.1).
Proposition 3.3. A formal orbital normal form for the system x =F,, +--- with
F, = (x(—=(g+ 1)y — (¢ —r)z"),py* = n(qg - r)a"y — (p +n(g + )z’ is

T T
| =Fntplzy) : (3.3)
Y ny

with p =<, t, p € Cor(ly), a complementary subspace to Range({y). More-
over, it is always possible to choose Cor({xyprr), a complementary subspace to
Range(¢i1ar), such that Cor(Li4pr) = IpyCor(€y) with Ing = 2P (y — ™) (y + «™)"
and M =p+ (q+ r)n.

Proof. We fix the type t = (1,n). In this case, h :== D§AF,, = (p+nqg+nr)z(y—
™) (y + 2™) and div(F,) = 2p+ ¢ — 1)y + n(r — ¢)z™.

Consider the translated vector field B = F,, — mdiv(Fn)Dg. We distin-
guish two cases according to the values of k > n :

If £+ 1 is not multiple of n, a complementary subspace to hPy_,, and hPj
are Agipp1 = span{z* " kit and Ay yo,1 = span{zh+2nHl ghtntlyl We
have that

k n n n n
Fy (ahtntt) = el (k(r — q)a™ 274 — ((k + 2n)(q + 1) + 2p)at*n1y),

FiP (@ ly) = Bl (< (k + 2n)(q + 1) — 2p)a* T2 4 k(r — )zt ly)

+Az*h.
The determinant of the matrix associated to the operator f,(fl% 4118

2
— e (p+ ng + (4 k)r)(p + (n+ K)g + ),

therefore the matrix is non-singular, Ker(ﬁfj_QnH) = {0} and Cor(ﬁ,ﬁznﬂ) = {0}.

If k+ 1 = sn with s natural number, A1), = span{z*TV" 2y ys+1} and
A(soyn = span{z(s+2n glstbny ys+2} The transformed of the basis are

FP (@40 = £5((ns = 1)(r = @0+
~((s(n +2) = 1)(q + 1) +2p)a"y),
F(@my) = S5 ((=((s + 2 = Dlg+7) = 20)2°0+) 4 (sn. = 1)(r = )" +Dy)

+>\1$ns_1h,

FP (1) = :i; (ps + q +r)yt2 + Xoz(stDngy 4 \gz(s+2)n,

The determinant of the matrix associated to the operator Egz)ﬁ)n is

3
—4((:;1))3 (p+ng+(s+nr)(p+ (s+1)ng+nr)(sp+q+r).
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It is not zero, i.e. the matrix associated to the operator Egz)ﬁ)n is also not singular,

therefore Ker(féilz)n) = {0} and COI(KEZ)H)H) = {0}. Applying Proposition 2.1,
we have that a normal form orbitally equivalent is x = F,, + u(z,ny)” and p =
D ks Mk, pr € Cor(fy), a complementary subspace to Range({y).

Let prove the second part. First, we see that both subspaces, Cor(¢xtas) and
InrCor(4y), have the same dimension. Indeed, Ker(¢)) = span{I},} if k —n = IM.
Otherwise, Ker(¢;) = {0}. Thus, dim(Cor(¢)) = 2 if k = IM and dim(Cor(¢y)) =
1, otherwise; i.e. dim(Cor({y)) = dim(Cor(¢x+nr)).

The proof is completed by showing that I;Cor(¢y) C Cor(fxtasr) or equivalently
that InsCor(¢;) NRange(lxyar) = {0} by reductio ad absurdum. Let py, € Cor (£x) \
{0} such that prIn; € Range (lr4nr), then there exists prinr—n € Prirr—n \ {0}
such that g4 (Pk+ri—n) = Prlnr, that is, i (Prtar—rn) is multiple of Ips. As
pw > p% > M, 5 =1,...,p— 1, by applying Lemma 3.2 we have that

J
Pk+M—n € <$p> n <(y — an)q> N ((y + xn)r% thus Pk+M—n = Pr—ndpr with Pk—n €
Pr—n \ {0} and consequently

Pl = Fro(0ievi—n) = Fo(Or—ndnr) = Ine Fp(Pi—n)-

Hence pr = F(pr—n), i-e., pr € Range (£x) N Cor (¢) which gives a contradiction.
O

Theorem 3.3. Consider the system X =F :=F, +--- where F,, = (z(—(¢+71)y—
(g—r)x™),py* —n(qg—r)z"y — (p+n(qg+r))z*)T € Q8 with t = (1,n) and assume
that the origin is an isolated singular point of F. Then it is analytically integrable
if, and only if, it is orbitally equivalent to x = F,.

Moreover, in such a case, an analytic first integral is of the form

(o Py =" o)l + 2"+

where the dots mean quasi-homogeneous terms of higher degree than n with respect
to the type t = (1,n).

r

Proof. We see the sufficiency. The polynomial Iy = zP(y — 2™)%(y + z™)" is a
first integral of F,, which is transformed into a formal first integral I = I; +--- of
F and from [28, Theorem A], F is analytically integrable.

We see the necessity of the condition. Applying Proposition 3.3, we can assert
that F is orbital equivalent to G = F,, + 3., p1;Df with p1; € Cor (¢;).

Let note that F has an analytic first integral equivalents to G has a formal first
integral. By Proposition 3.3 and Proposition 2.3, G is formally integrable if and
only if G = F,,, i.e. F is orbitally equivalent to F,,. O

It has the following result.

Theorem 3.4. Consider system x =F =F,, +--- where F), = (z(—(¢+7)y— (¢ —
r)z™),py® —n(qg—r)z"y — (p+nlg+r))z*)T € QF witht = (1,n) and assume that
the origin is an isolated singular point of F. It is analytically integrable if, and only
if, it has a formal inverse integrating factor of the form V = x(y? — z?") + - --

Proof. We prove that the condition is necessary. We assume that F =F, + - --
is analytically integrable. From Theorem 3.3, it is orbitally equivalent to system
x = F,,, it which has the inverse integrating factor h := z(y* — 22"). Undoing the
change, F has a formal inverse integrating factor V.=h+---.
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Now we see the sufficiency of the condition. Let V = h + --- a formal inverse
integrating factor of F. By Proposition 3.3, we can assert that F is orbital equiv-
alent to G = F, + 3., ;D with p; € Cor (¢;). Therefore, F has a formal
inverse integrating factor if, and only if, G has it too. Moreover, the formal in-
verse integrating factor W of G has also the form W = h + ---. By Proposition
3.3, we can choose Cor({,1pr), a complementary subspace to Range({r4ar), such
that Cor(€g+ar) = InCor({y). From Proposition 2.4, G = F,,. So, by applying
Proposition 2.3, F is analytically integrable since it is orbitally equivalent to F,,.

O

3.4. Case (c.2)

Lemma 3.3. We consider the vector field F,, = (—qxy, py? +o(p+nq)z*)T € QY
with o = £1, t = (1,n) and denote M := 2p+2nq, degree of the quasi-homogeneous
polynomial first integral Iy = 2P (y? + ox®)4. Given m a natural number, assume
that for every k > m, it satisfies that

k k
M#2p—, M#*q—, j=1,....m— 1.
J J

If p € Pf such that F,(px) € (f"), where fi =z, fo = y? + 02", are invariant
curves at the origin of ¥, then pr, € (f™), i =1,2.

Proof. We assume that o = 1. We prove the case i = 1, (f1 = z).

The cofactor of & € P¥ is K,, = —qy. From Lemma 3.1, it is enough to prove
that for any j with 0 < j < m—1, the vector field (k— j)F,, +j K, D is irreducible,
ie.

~kqzy, (kp—j(p+nq)y* — (k = 5)(p + ng)a®",

are coprime. Both polynomials are coprime if and only if M # 2p§, j=1,...,m—1

For fo = y? + 2", it is easy to prove that the vector fields (k — 2nj)F, +
JK,D§, 0 <j <m—1, with K,, = 2py, cofactor of fy are irreducible if, and only
if, M;Aqg, j=1,...,m—1.

We assume that o = —1. The case i = 1, (fi1 = ) is similar.

For fo = y—a™, (for f3 = y+a™, analogously) the cofactor is K,, = py—+(p+nq)a™
and the vector field (k — j)F,, + jK, D} is

(j(p+ nq) — kq)zy + j(p + ng)a"1,

kpy? +nj(p +nq)x™y + (p +ng)(k — nj)z*".

The vector fields (k — 2nj)F, + jK,D§, 0 < j <m — 1, with K,, = 2py, cofactor
of fo, are irreducible if, and only if, M # q%, j=1,...,m—1. O

Proposition 3.4. A formal orbital normal form for the system x =F,, + -+ with
F, = (—qzy, py? + o(p + nq)x®*)T with o = £1 is

T T
Yy ny
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with = Y, . bk, pe € Cor(ly), a complementary subspace to
Range(¢r). Moreover, it is always possible to choose Cor({r4pr), a complemen-
tary subspace to Range(fiinr), such that Cor({pypr) = InCor(dy) with Iy =
2% (y? + ox?)? and M = 2p + 2ngq.

Proof. We fix the type t = (1,n). In this case, h = (ng + p)x(y? + o2*") and
div(Fn) = (2p — ¢)y.

Consider the translated vector field B = F,, — mdiv(Fn)Dg. We distin-
guish two cases according to the values of k > n :

If £+ 1 is not multiple of n, a complementary subspace to hPy_,, and hPj
are Aginp1 = span{z* " gkl and Ay yo,41 = span{zh+2nHl ghntlyl We
have that

FT(Lk)(xk+n+1) _ _kk-:-r;:;-r&-ll (2]7 + (k + 2n)q)$k+n+1y,

F,(Lk)(askJrly) = kk_:g;‘:_ll (2p + (k + 2n)q)oxr 27+ 4 \aFh.

The determinant of the matrix associated to the operator E,(fl% 4118

(k+n+1)2

Therefore the matrix is non-singular and Ker(ﬁ,i?_Qn +1) = {0}. Moreover, we have

that Cor(¢\7),,,,) = {0}
If k + 1 = sn with s natural number, A1y, = span{z(sTD7 gy 4st11 and
A(spoyn = span{z(s+n glstbny 452} The transformed of the basis are

F{P (g(s+Dn) = —(2p+ (5 + 2)n — 1)q)z(T1ny,

ja (z"y) == (2p+ ((s+2)n — 1)q)ox(st2m 4 \gns—1p,
FP(ye ) = St (g + sp)y®t? + Apa STy 4 Agz(sDm,
The determinant of the matrix associated to the operator gé?ﬁ)n is

s 3
2+ (s +2)n — 1)g)*(sp + g)o

(e)
(s+2)n

) = {0}. Applying Proposition

It is not zero, i.e., the matrix associated to the operator ¢ is also not sin-

gular, therefore Ker(fgz)ﬁ)n) = {0} and Cor(fg?_w)n

2.1, we have that a normal form orbitally equivalent is x = F,, + u(z,ny)? and
= pon Mk, Hr € Cor({y), a complementary subspace to Range(y).

Let prove the second part. Both subspaces, Cor(fi4ar) and Ip;Cor(¢y), have
the same dimension. So, the proof is completed by showing that Ip;Cor(¢y) C
Cor(¢x4ar) or equivalently that InsCor(¢x) NRange({r1ar) = {0} by reductio ad ab-
surdum. Let pp € Cor (¢) \ {0} such that pyIy € Range (€x4ar), then there exists
PhtM—n € Pryar—n \{0} such that £py nr(Pryrr—n) = Prlas, that is, €y nr(Prsar—n)
is multiple of Iy;. As 2pUHM=m) > 9pM o ap g =1 9p — 1y UM

q% >M; j=1,...,q—1, by applying Lemma 3.3 we have that for 0 =1, ppyar—n
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€ (@®)N{(y+2*")?) and for o0 = =1, prip—n € (@?)N{((y—2™)?) N ((y+z")7).
Thus pryar—n = Pk—nIar with pr_,, € Pr_, \ {0} and consequently

Pelvr = Fn(Preni—n) = Fo(Pr—ndnr) = I Fr(Pi—n)-

Hence p = Fy,(pk—n), that is, pr € Range (¢) N Cor (¢;) which is a contradiction.
O

Theorem 3.5. Consider system x = F =F,, +--- where F,, = (—qzy, py*> + o(p+
nq)z*)T € QY with o = +1 and t = (1,n) and assume that the origin is an isolated
singular point of F. Then it is analytically integrable if, and only if, it is orbitally
equivalent to x = F,,.

Moreover, in such a case, an analytic first integral is of the form

(@4 )P + o2 4,

where the dots mean quasi-homogeneous terms of higher degree than n with respect
to the type t = (1,n).

Proof. We see the sufficiency. The polynomial Ip; = 22P(y? + o2?")9. is a first
integral of F,, which is transformed into a formal first integral I = I; + --- of F
and from [28, Theorem A], F is analytically integrable.

We see the necessity of the condition. Applying Proposition 3.4, we can assert
that F is orbital equivalent to G = F,, + 3., p1;Df with p1; € Cor (¢;).

Let note that F has an analytic first integral equivalents to G has a formal first
integral. By Proposition 3.4 and Proposition 2.3, G is formally integrable if and
only if G = F,, i.e. F is orbitally equivalent to F,,. O

Theorem 3.6. Consider system x = F =F,, +--- where F,, = (—qzy, py®> +o(p+
nq)z*)T € QY with o = £1 and t = (1,n) and assume that the origin is an isolated
singular point. It is analytically integrable if, and only if, it has a formal inverse
integrating factor of the form V = x(y* + ox®") + - -

Proof. The proof is analogous to the proof of Theorem 3.4, it is enough to apply
Theorem 3.5, Proposition 3.4 and Proposition 2.4. [

3.5. Case (c.3)

Lemma 3.4. Consider the vector field Fa, 1= (—qzy, py*+1 (2p+(2n+1)g)x® )T
€ Q% .1, t =(2,2n+1) with p, q natural numbers and denote M := 4dp+2(2n+1)q,
degree of the quasi-homogeneous polynomial first integral Iny = x?P(y? + x?+1)4,
Given m a natural number, assume that for every k > m, it satisfies that

k k
M#2p—, M#qg—, j=1,...,m— 1.
J J
If pr, € P§ such that F,(pr) € (f™), where f1 =z, fo = y* + 2?1, are invariant

curves at the origin of Fo,y1, then pr € (fI™), i =1,2.

Proof. We prove the case i =1, (f1 = x).

The cofactor of z € P} is Ko, 11 = —qy. From Lemma 3.1, it is enough to prove
that for any j with 0 < j < m — 1, the vector field (k — 2j)Fa,+1 + jK2,+1D} is
irreducible, i.e.

. JM 1 o
—q(k = j)zy,  (kp = )y* = 5 (b = 2) Mz,
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are coprime. Both polynomials are coprime if and only if M # Qp?, j=1,...,m—1.

For fy = y? + 2?"*!, The cofactor of fo € Ptoio is Kopt1 = —2py. From
Lemma 3.1, it is enough to prove that for any j with 0 < j < m — 1, the vector field
(k—2(4n + 2)j)Fapt1 + jKon11 D} is irreducible, i.e.

—(kq— Mj)zy,  kpy* — ;(k — 2j — 4nj) Mz,

are coprime. Both polynomials are coprime if, and only if, M satisfies M q%, for
j=1...,m—1. O
We give the following normal form of the vector fields considered.

Proposition 3.5. A formal orbital normal form for the system X = Fo,p1 + - -+,
with Fop, 1 = (—qxy, py? + %(2}7 + (2n + 1)q)2*>" T with p, q natural numbers is

T 2z
=Fopt1 + p(z,y) ) (3.5)
U (2n+ 1)y

with =3 o ony1 Mk, Mk € Cor(ly), a complementary subspace to Range((y).

Moreover, it is always possible to choose Cor({xy ), the complementary subspace
to Range({yyar), such that Cor({yyar) = InyCor(fy) with Iy = x?P(y? + x?n+1)e
and M = 4p + 2(2n + 1)gq.

Proof. We fix the type t = (2,2n + 1). In this case, h = (2p + (2n + 1)q)z(y? +
22"t and div(Fa,y1) = (20 — Q)y.
Consider the translated vector field Fg;)ﬂ =Foni1 — mdiv(anH)DB.
The sets Pf non-trivial are

span{asklJr(2n+1)(k3‘ﬂ')ykﬁ%7 ki <2n+1, ko <2, j=0,...,ks}.

We distinguish two cases according to the values of £ > 2n +1:

If k+[t| = (2n+1)ka+2(2n+1)ks with ke € {0, 1}, then we obtain that Ay =
span{am ks ykz k2 2K} and A o) 42041 =span{arTDEs ke =l yhatake iy,
We have that

6] 420y 2) = gy Do),
U] a(F27250) = aybat2ioe,

with
a; = %((ZH + 1)q(ko + 2k3) + 2gn + 4p — q),

@2 = %((lﬁz +2ks — D)p+q).

Since ayas # 0, the matrix associated to the operator K,(ci) 4nt4 18 non-singular and
Ker(ﬁ,(€24n+4) = {0}. Moreover, COT(£§¢2471+4) = {0}.

If k+t] = 2k1 + (2n+ 1)k +2(2n+ 1)k3 with ko € {0,1} and k; < 2n+1, then
Apgpe] = span{zF1+EntDksyka} and Appit)4ons1 = span{ghi+Entl)(katl)yka =13
We have that

e(c)

bt Anta (a:kl +(2n+1)k3 ko
n

y ) — algxk1+(2n+l)(k3+l)yk‘2—l’
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with

 (2n41)(ka+2ks)+2k
as = 2((2n+1)(k22+2k3::-1)+21k1) ((2n + 1)q(k2 + 2k3) + 2k1q + 2gn + 4p — q).

Since ag # 0, we have that Ker(ﬁ,ﬁMM) = {0}. Moreover, Cor(€§€24n+4) = {0}.
Applying Proposition 2.1, we have that a normal form orbitally equivalent is x =
Foni1 + p(22,(2n+ 1)y)" and g = Yoo, #k, s € Cor(fg), a complementary
subspace to Range({y).

Let prove the second part. Both subspaces, Cor(£4s) and IpsCor(£y), have the
same dimension. The proof is completed by showing that Ip;Cor(¢y) C Cor(€x+nr)
or equivalently that IysCor(¢;) NRange(€x+ar) = {0} by reductio ad absurdum. Let
pr € Cor (L) \ {0} such that piIn; € Range (¢4 ar), then there exists pgirr—on—1 €
Pryrr—2n—1 \ {0} such that €xiar(Pryar—2n—1) = Prlar, that is, Ly nr(Prtar—2n—1)
is multiple of Iy, As2pUHM=2n=l) 5 9pM o 6y =1 9p—1; gUHME0D
q% >M; j=1,...,q — 1, by applying Lemma 3.4 we have that prypr—2n—1 €

(2?PyN((y+2*"+1)9), thus prgar—2n-1 = Pr—2n—11n With pp_o,—1 € Pr_2s—1\{0}
and consequently

PrIn = Fong1(Prtm—2n—1) = Fong1(Pr—2n—1101) = Ine Fong1 (Pr—2n—1)-

Hence pr, = Fony1(Pk—2n—1), that is, pr € Range (¢x) N Cor (£) which gives a
contradiction. O

Theorem 3.7. Consider systemx =F = Fo, 11+ where Fo,41 = (—qzy,py2—|—
1(2p+ 2n+1)q)z? )T with p, ¢ natural numbers and t = (2,2n+1) and assume
that the origin is an isolated singular point of F. Then it is analytically integrable
if, and only if, it is orbitally equivalent to x = Fop,11.

Moreover, in such a case, an analytic first integral is of the form

@+ )P+ ),

where the dots mean quasi-homogeneous terms of higher degree than 2n + 1 with
respect to the type t = (2,2n + 1).

Proof. We see the sufficiency. The polynomial Iy = 22P(y? 4+ 22" T1) is a first

integral of Fy, 1 which is transformed into a formal first integral I = Ip; + --- of
F and from [28, Theorem A], F is analytically integrable.
We see the necessity of the condition. Applying Proposition 3.5, we can assert
that F is orbital equivalent to G = Fapi1 + 3,09, 43D with p; € Cor (¢).
Let note that F has an analytic first integral equivalents to G has a formal first
integral. By Proposition 3.5 and Proposition 2.3, G = Fa,41, i.e. F is orbitally
equivalent to Fg, 1. O

Theorem 3.8. Consider system X = F = Fo, 11+ where Fo, 11 = (—qxy, py>+
%(Qp +(2n+1)q)2* )T with p, ¢ natural numbers and t = (2,2n+ 1) and assume
that the origin is an isolated singular point of ¥. It is analytically integrable if, and
only if, it has a formal inverse integrating factor of the form V = z(y+z?"+1)+. ..

Proof. The proof is analogous to the proof of Theorem 3.4, it is enough to apply
Theorem 3.7, Proposition 3.5 and Proposition 2.4. O
The analytic integrability of the systems (c.4) and (c.5) has been studied in [6].
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