
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com

Volume 14, Number 2, April 2024, 864–885 DOI:10.11948/20230188

ANALYTICAL INTEGRABILITY OF
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Abstract We consider analytic perturbations of quadratic homogeneous dif-
ferential systems having an isolated singularity at the origin. Here we char-
acterize the analytically integrable perturbations of quadratic homogeneous
systems of the form (ẋ, ẏ)T = f1(P1, Q1)T with f1(x, y) a non-zero linear
homogeneous polynomial and P1(x, y), Q1(x, y) non-zero linear homogeneous
polynomials without common factors. We prove that all systems are orbitally
equivalent to their quasi-homogeneous leading terms with respect to a cer-
tain type but not necessarily to the homogeneous leading terms. This result
completes the previous results for the analytic perturbations of irreducible
quadratic systems with analytic first integral which are orbitally equivalent to
the homogeneous leading term, i.e. all are homogenizable.
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singular points, orbitally equivalence.
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1. Introduction

One of the main problems in qualitative theory of differential systems in the plane
is the integrability problem which consists in determine when a differential system
has a first integral of certain functional class defined in a neighborhood of a singular
point. In [22] was proved the existence of a map that transforms any integrable sys-
tem into a linear one. This result was generalized in [27] to n-dimensional systems.
In both cases the differential system is orbitally equivalent to the linear differen-
tial system in a full Lebesgue measure subset of the domain of definition of the
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(projects FQM-276, UHU-1260150 and P12-FQM-1658). The fourth author
is partially supported by the Agencia Estatal de Investigación grant PID2020-
113758GB-I00 and an AGAUR (Generalitat de Catalunya) grant number
2021SGR 01678.
Email: algaba@uhu.es(A. Algaba), cristoba@uhu.es(C. Garćıa),
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differential system, which implies that the orbital equivalence is not defined at the
singular point. Here we study when the integrable system is orbitally equivalent to
the linear part or leading part of the differential system in a neighborhood of the
singular point.

The main goal of this paper is to solve the problem for differential systems which
are perturbations of quadratic systems. Hence, in general, we consider the problem
of having a homogeneous polynomial planar differential system

(ẋ, ẏ)T = Fn(x, y) = (Pn(x, y), Qn(x, y))T , (1.1)

with Pn and Qn homogeneous polynomials of degree n, and we are interested to
know whether an analytic perturbation of Fn

(ẋ, ẏ)T = F := Fn + h.o.t. (1.2)

has an analytic first integral at the origin, which is a singular point of the sys-
tem. Indeed if the origin is not singular point, F(0) 6= 0, from flow box theo-
rem [15, Cauchy-Arnold Theorem], the vector field is locally analytically integrable.
Therefore, we will assume that the origin is an isolated singular point of system
(1.2).

We say that an analytic vector field is homogenizable if it is orbitally equivalent to
a homogeneous polynomial vector field, i.e. the system ẋ = dx/dt = Fn(x) + h.o.t.
by means of a near-identity change of variable x = φ(y) and a formal repa-
rameterization of the time dt/dτ = η(x), with η(0) = 1, it is transformed into
y′ = dy/dτ = Fn(y). We recall that the polynomial integrability of Fn 6≡ 0 is a
necessary condition of analytical integrability of system (1.2).

For n = 1, assuming that the origin is an isolated singular point of F1, from
[24,29,32] we have that F1+h.o.t. nondegenerate monodromic points and saddles are
analytically integrable at the origin if, and only if, they are homogenizable (in this
case, linearizable). A unified method to compute necessary and sufficient conditions
of analytic integrability for such singular points using the blow-up method is given
in [20, 21]. The most studied systems whose origin is a resonant saddle are the
Lotka-Volterra systems, see [16, 17, 19, 23, 25, 26, 31] and references therein. We
recall that if the origin is an isolated singular point, then the nodes and saddle-nodes
points are not analytically integrable. Recently in [5] it is proved that an isolated
nilpotent singular point is analytically integrable if, and only if, its lowest-degree
quasi-homogeneous term is integrable and the complete vector field is orbitally
equivalent to its lowest-degree quasi-homogeneous term.

For n = 2, that is, F1 is zero and F2 is non-zero, assuming that the origin is an
isolated singular point of F2, in [7] has been proved that system (1.2) is analytically
integrable if, and only if, it is homogenizable.

Finally, for n = 3, F1 = F2 = 0 and F3 is non-zero, assuming that the origin is
an isolated singular point of F3, in [8, 9] was proved a similar result.

However, in general, not any analytically integrable vector field with zero linear
part (a degenerate singular point) is orbitally equivalent to its first homogeneous
term. Indeed the result for n ≥ 4 is not satisfied. For example, the Hamiltonian
system

ẋ = x(4y3 − x3 − 3x2y2), ẏ = y(4x3 − y3 + 3x2y2),

it is analytically integrable, and it is non-orbitally equivalent to its leading term
ẋ = x(4y3−x3), ẏ = y(4x3−y3), see Theorem 3.20 of [9]. We note that although the



866 A. Algaba, C. Garćıa, M. Reyes & J. Giné

leading term is irreducible, the system is non-orbitally equivalent to its homogeneous
leading term. Other families of systems non-orbitally equivalent to their leading
term can be seen in [1, 4, 10], see also references therein. In fact in [4] it is proved
the existence of analytically integrable vector fields that are non-orbitally equivalent
to their quasi-homogeneous leading terms.

If we assume that the origin of Fn is a not isolated singular point, there are
few results about the analytical integrability of the vector fields Fn + · · · . Only
the case n = 1 has been solved. If the origin of F1 is a saddle-node point, the
perturbations of a saddle-node point are analytically integrable if, and only if, the
vector field is reducible, i.e. the system has a curve of singular points, see [18]. If the
origin is a non isolated nilpotent singular point of Fn, in [2] has been proved that
the analytically integrable perturbations of a nilpotent singular point are orbitally
equivalent to a polynomially integrable quasi-homogeneous vector field.

We focus our study on the analytic integrability of the following system whose
origin is an isolated singular point,

(ẋ, ẏ)T = f1(P1, Q1)T + (
∑
i+j≥3

aijx
iyj ,

∑
i+j≥3

bijx
iyj)T , (1.3)

with f1(x, y) a non-zero homogeneous polynomial of degree one, P1(x, y), Q1(x, y)
non-zero homogeneous polynomials of degree one without common factors and
aij , bij ∈ R. Note that the quadratic part of the vector field is degenerate.

Here, we solve the analytic integrability problem of system (1.3). We prove that
for some cases, the vector field has an analytic first integral if, and only if, it is
homogenizable, i.e. it is orbitally equivalent to f1(P1, Q1). Nevertheless, for other
cases, the vector field is analytically integrable if, and only if, there exists a certain
type t = (t1, t2) ∈ N2, with t 6= (1, 1) (the case t = (1, 1) is the homogeneous
expansion of the vector field) such that the vector field (1.3) is orbitally equivalent
to its quasi-homogeneous leading vector field with respect to the type t.

1.1. Invariant curves and first integrals of vector fields

We deal with a vector field F = (P,Q)T where P,Q are analytic functions at the
origin with P (0) = Q(0) = 0. Throughout the paper, we denote the differential
operator associated to the vector field F by F , that is, F := P∂x +Q∂y. We recall
the concept of invariant curve and its associated cofactor.

Definition 1.1. A function C ∈ C[[x, y]] (algebra of formal power series in (x, y)
over C), with C(0) = 0, is an invariant curve at the origin of the vector field F,
if there exists K ∈ C[[x, y]], cofactor of C, such that F (C) = KC. Moreover, if
K ≡ 0, then the vector field F is formally integrable and C is a first integral of F.
If K = div(F) (divergence of F), then C is an inverse integrating factor of F.

We remark that if C1, . . . , Cm are invariant curves of a vector field F, then
Cn1

1 · · ·Cnm
m is also an invariant curve of F whose cofactor is n1K1 + · · ·+ nmKm,

where Kj is the cofactor of Cj .

It is worth pointing out that for analytic vector fields, by [28, Theorem A], the
existence of a formal first integral is equivalent to the existence of an analytic one.
For this reason, when we use Taylor expansions of functions and vector fields, we
do not consider convergence problems.
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We introduce some notation and concepts. Given t = (t1, t2) with t1 and t2
natural numbers without common factors, a scalar function f of two variables
is a quasi-homogeneous function of type or weight exponent t and degree j if
f(εt1x, εt2y) = εjf(x, y). The vector space of quasi-homogeneous polynomials of
type t and degree j is denoted by Pt

j . A vector field F = (P,Q)T is a quasi-

homogeneous vector field of type t and degree j if P ∈ Pt
j+t1

and Q ∈ Pt
j+t2

.
We denote the vector space of the quasi-homogeneous polynomial vector fields of
type t and degree j by Qt

j . An analytic vector field can be expanded into quasi-
homogeneous terms of type t of successive degrees. Thus, the vector field F 6≡ 0
can be written in the form F =

∑
j≥r Fj where Fj = (Pj+t1 , Qj+t2)T ∈ Qt

j and
Fr 6≡ 0.

Throughout the paper, we write Dt
0 = (t1x, t2y)T ∈ Qt

0 (dissipative quasi-
homogeneous vector field) and Xh = (−∂h/∂y, ∂h/∂x)T (Hamiltonian vector field
associated to the polynomial h). The following splitting of a quasi-homogeneous
vector field plays a main role in our study.

Proposition 1.1. [3, Prop. 2.7] Every Fr ∈ Qt
r can be uniquely written as Fr =

Xh + µDt
0 with h := 1

r+|t| (D
t
0 ∧ Fr) ∈ Pt

r+|t| (product wedge of both vector fields)

and µ := 1
r+|t|div(Fr) ∈ Pt

r (divergence of Fr).

The following results give an expression of the invariant curves at the origin of
a quasi-homogeneous vector field.

Proposition 1.2. Every quasi-homogeneous polynomial invariant curve at the ori-
gin of a quasi-homogeneous vector field Fr is given by gn1

1 gn2
2 . . . gnm

m each gj being
an irreducible polynomial invariant curve at the origin of Fr.

Proof. We suppose that g = g1u, (g1 an irreducible quasi-homogeneous polyno-
mial and u a suitable quasi-homogeneous polynomial), it is an invariant curve at
the origin of Fr with Kr cofactor of g. We have that Fr(g1u) = g1Fr(u)+uFr(g1) =
Krg1u, that is, g1(uKr−Fr(u)) = uFr(g1). From the irreducibility of g1, it has two
situations: either g1 is an irreducible invariant curve at the origin of Fr, in such a
case, u is also an invariant curve at the origin of Fr and we repeat the process for
u. Or u = g1v with v a quasi-homogeneous polynomial, i.e. g = g2

1v. We now have
that Fr(g

2
1v) = g2

1Fr(v) + 2vg1Fr(g1) = Krg
2
1v. Thus, g1(vKr − Fr(v)) = 2vFr(g1).

Taking into account that the process is a finite process, reasoning in a similar way,
the proof is completed.

Proposition 1.3. Consider Fr ∈ Qt
r. Any factor of Dt

0∧Fr ∈ Pt
r+|t| is an invariant

curve at the origin of Fr. Conversely, any irreducible quasi-homogeneous polynomial
invariant curve at the origin of Fr is a factor of Dt

0 ∧ Fr.

Moreover, if I is a polynomial first integral of Fr with I(0) = 0 and Fr is
irreducible, then I = gn1

1 gn2
2 · · · gnm

m where g1, . . . , gm are all irreducible quasi-
homogeneous factors of Dt

0 ∧ Fr and ni > 0.

Proof. From Proposition 1.1, we know that Fr = Xh +µDt
0 with h = 1

r+|t| (D
t
0 ∧

Fr) and µ = 1
r+|t|div(Fr). We prove that any factor of h is an invariant curve of

Fr.

If h is irreducible, the result follows since it is an invariant curve of Fr.Otherwise,
let f ∈ Pt

s a factor of h, that is, h = fg with g a suitable homogeneous polynomial
and Fr(f) = Xfg(f) + µDt

0(f) = fXg(f) + sµf = (Xg(f) + sµ)f. Therefore, f is
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an invariant curve at the origin of Fr.
We see that any irreducible quasi-homogeneous polynomial invariant curve of

Fr is also a factor of h. Indeed, if f ∈ Pt
s is an irreducible invariant curve at the

origin of Fr with cofactor Kr then Krf = Fr(f) = Xh(f)+µDt
0(f) = Xh(f)+sµf.

Thus, Xh(f) = (Kr − sµ)f and f is an invariant curve at the origin of Xh and
irreducible. So, f divides h.

Last on, if I is a first integral of Fr with I(0) = 0, it is an invariant curve at the
origin of Fr, from Proposition 1.2, a factorization of I is formed by the irreducible
factors of h. On the other hand, any first integral satisfying I(0) = 0, is zero on
every invariant curve (if Fr is irreducible, the curves are not curves of singular
points). So, ni > 0.

1.2. Necessary condition of analytical integrability for pertur-
bations of a class of quadratic systems

The following result provides a necessary condition of integrability for an analytic
vector field.

Proposition 1.4. [Necessary condition of analytical integrability] For a type t
fixed, we consider F = Fr + · · · with Fr ∈ Qt

r. If F is formally integrable at the
origin, then Fr is polynomially integrable.

Proof. Let C =
∑
j≥s Cj , Cj ∈ Pt

j a formal invariant curve of F with cofactor

K =
∑
j≥rKj , Kj ∈ Pt

j . By the lowest-degree quasi-homogeneous term of the
equation F (C) − KC = 0, it has that Cs is a polynomial invariant curve at the
origin of the polynomial vector field Fr with cofactor Kr. So, if C is a first integral
of F, then K = 0 and Cs is a first integral of Fr.

Remark 1.1. We note that the vector fields (Pn, Qn)T ∈ Hn = { homogeneous
vector fields of degree n} are quasi-homogeneous vector fields of degree n− 1 with
respect to the type (1, 1), i.e. Hn = Qt

n−1 with t = (1, 1). So, following the quasi-
homogeneous notation, we emphasize that the quadratic vector fields (P2, Q2)T ∈
Qt

1 with t = (1, 1).

Now we proceed with the study of the analytic integrability of irreducible system
(1.3), that is the irreducible vector field whose first homogeneous component is
(P2, Q2)T = f1(P1, Q1)T with f1 linear homogeneous polynomial and P1, Q1 linear
polynomials without common factors. The following result provides the expression
of the lowest-degree component in the case of polynomial integrability of this class
of vector fields.

Proposition 1.5. If system (1.3) is formally integrable then there exist a quasi-
homogeneous change of variables and a linear reparameterization of the time such
that the vector field is transformed into one of the following vector fields whose
quasi-homogeneous expansion with respect to the type t = (t1, t2) is given by
(a) F = F1 + · · · , with t = (1, 1) and

F1 = (y + x)(−qx, py))T , p, q ∈ N. (1.4)

(b) F = F1 + · · · , with t = (1, 1) and

F1 = x(−qy, px)T , p, q ∈ N. (1.5)
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(c.1) F = Fn + · · · , with t = (1, n) and

Fn = (x(−(q + r)y − (q − r)xn), py2 − n(q − r)xny − (p+ n(q + r))x2n)T . (1.6)

(c.2) F = Fn + · · · with t = (1, n) and

Fn = (−qxy, py2 + σ(p+ nq)x2n)T . (1.7)

(c.3) F = F2n+1 + · · · with t = (2, 2n+ 1) and

F2n+1 = (−qxy, py2 +
1

2
(2p+ (2n+ 1)q)x2n+1)T . (1.8)

(c.4) F = Fn + · · · with t = (1, n) and

Fn = (−qxy − qn2Ax
n+1, py2 + [(p+ nq)n3 + pn2]Axny)T . (1.9)

(c.5) F = Fn + · · · with t = (1, n) and

Fn = (y +Bxn)(−qx, py)T . (1.10)

Proof. We first fix the type t = (1, 1). Let I = IM+· · · a formal first integral of F.
Equation F (I) = 0 for degree M+1 is F1(IM ) = 0, i.e. F1 is polynomially integrable
and IM is a first integral of F1. We seek the vector fields F1 satisfying the condition
F1(IM ) = 0 (necessary condition of analytical integrability). By Proposition 1.1,
F1 is F1 = Xh + µD0 with D0 = (x, y)T , h ∈ Pt

3 (cubic homogeneous polynomial)
and µ ∈ Pt

1 (linear homogeneous polynomial).
If the polynomial h is identically zero, we have that F1 = µD0 and it is non-

formally integrable. Otherwise, h has always a linear factor, a1x + b1y with a1

and b1 constants, since h is a cubic homogeneous polynomial. We can assume that
h = xp2 with p2 a homogeneous polynomial of degree two, since if a1 = 0 we do the
change (x, y) → (y, x). Otherwise, we do (x, y) → (a1x + b1y, y). We distinguish
the following cases according to the factors of the polynomial p2:

Case (a). Assume h = ax(x + by)(x + cy) with bc 6= 0 and b 6= c, with a, b, c
constants.

The linear change of variables (x, y) → ((c − b)x, c(x + by)) and the linear
reparameterization of the time at = bc(c− b)τ, transform F1 into F̃1 = Xh̃ + µ̃D0

with h̃ = xy(y−x). We write the linear polynomial µ̃ = Ax+By. From Proposition
1.3, if it exists a first integral of F̃1, it would have the expression IM = xpyq(x−y)r

with p, q, r non-negative integers. Note that p, q, r are zero if, and only if, x =
0, y = 0, y − x = 0, are curves of singular points of F̃1, respectively. By imposing
F̃1(IM ) = 0, we arrive to

A =
1

M
(p− 2q + r), B =

1

M
(q − 2p+ r),

with M = p+ q + r. We distinguish the following cases:
• If x = 0 is a curve of singular points, that is p = 0, by means of the change
(x, y) → (x − y, y) and the reparameterization of the time 3t = Mτ and renaming
r by p, the vector field F̃1 turns on (1.4).
• If y = 0 is a curve of singular points, that is q = 0, by performing 3t = −(p+ r)τ
and changing r by q, we arrive to (1.4).
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• If y − x = 0 is a curve of singular points, that is r = 0, by means of the change
(x, y)→ (x,−y) and the reparemeterization of the time 3t = (p+ q)τ, F̃1 turns on
(1.4).

Case (b). Assume h = ax((x+ by)2 + x2) with b 6= 0.
The linear change (x, y)→ (x, x+ by) and the scaling at = τ, transform F1 into

F̃1 = Xh̃ + µ̃D0 with h̃ = x(x2 + y2). We write µ̃ = Ax+By. Now, by Proposition

1.3, the expression of a first integral of F̃1 would be IM = xp(x2 + y2)q with p, q
non-negative integers. By imposing F̃1(IM ) = 0, we have that A = 0, B = 2

M (p−q),
with M = p+ 2q. If x = 0 is a curve of singular points, that is p = 0, by performing
the reparemeterization of the time 3t = Mτ, F̃1 turns on (1.5).

Case (c). Assume h = ax(x+ by)2 with a, b 6= 0.
The linear change of variables (x, y)→ (x, x+ by) and the scaled of time at = τ,

transform F1 into F̃1 = Xh̃ + µ̃D0 with h̃ = xy2. We write µ̃ = Ax + By. From

Proposition 1.3, if it exists a first integral of F̃1, it would have the expression
IM = xpyq with p, q non-negative integers. By imposing F̃1(IM ) = 0, we arrive to
A = 0, B = 1

M (2p−q), with M = p+q. So, F̃1 = 3
p+qy(−qx, py). By performing the

reparameterization of the time 3t = Mτ, we have that F = y(−qx, py)T + · · · . Let
note that the quadratic terms of the vector fields F do not determine its Newton
diagram. For that, we need to provide terms of higher degree.

The analytic perturbations of ẋ = y(−qx, py)T , p, q ∈ N, can be written as

ẋ = x(−qy + f2(x) + yf1(x, y)) +A(y),

ẏ = y(py + g2(x) + yg1(x, y)) +B(x).

If f2 ≡ 0 and g2 ≡ 0, then B 6≡ 0 since the vector field is irreducible (the origin
is an isolated singular point). We write B(x) = bm−1x

m + · · · , with bm−1 6= 0. In
this case, the quasi-homogeneous expansion of the vector field respect to the type
t = (2,m) is F = (−qxy, py2 + bm−1x

m)T + · · · .

We first assume that m = 2n. Performing the change (x, y) → (x,
√

p+nq
|b2n−1|y)

and the reparemeterization t→
√
|b2n−1|
p+nq t, the vector field is transformed into (1.7).

It is easy to check that x2p(y2 + sign(b2n−1)x2n)q is a first integral.
For m = 2n+1, the change (x, y)→ (λx, y) with λ2n+1 = b2n

2p+(2n+1)q , transforms

the vector field into (1.8). It is easy to check that x2p(y2+x2n+1)q. is a first integral.
Otherwise, we write f2(x) = cnx

n+· · · , g2(x) = dnx
n+· · · with n = min{j, c2j+

d2
j 6= 0}.

If B ≡ 0, then the quasi-homogeneous expansion of the vector field respect to
the type t = (1, n) is F = Fn+ · · · with Fn = (x(−qy+ cnx

n), py2 +dnx
ny)T + · · · .

From [6], if Fn is polynomially integrable then it can be transformed into (1.9) or
(1.10).

If B(x) = bm−1x
m + · · · , with bm−1 6= 0, we distinguish three cases:

If m > 2n− 1, then the quasi-homogeneous expansion of the vector field respect
to the type t = (1, n) is F = (x(−qy+ cnx

n), py2 + dnx
ny)T + · · · . So, we arrive to

(1.9) or (1.10).
If m = 2n− 1, then the quasi-homogeneous expansion of the vector field respect

to the type t = (1, n) is F = Fn + · · · with Fn = (x(−qy + cnx
n), py2 + dnx

ny +
b2n−1x

2n)T .
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If Fn is reducible, then −qy + cnx
n is a common factor of both components

of Fn. In such a case, Fn = (−qy + cnx
n)(x,− 1

q2 (pqy + (pcn + qdn)xn))T . The

quasi-homogeneous change of variables (x, y)→ (x, y + pcn+qdn
(p+nq)q x

n), transforms the

vector field into (y + Bxn)(−qx, py)T with B = cn + pcn+qdn
p+nq , that is, the vector

field is (1.10).
We now assume that Fn is irreducible. Consider ∆ := (dn − ncn)2 − 4(p +

nq)b2n−1. If ∆ = 0, the vector field is not polynomially integrable since the origin is
an isolated singular point and the polynomial h = (x, ny)T ∧ Fn = x((p+ nq)y2 +
(dn − ncn)yxn + b2n−1x

2n) has multiple factors.
Otherwise, we perform the quasi-homogeneous change of variables (x, y) →

(x, y + dn−ncn
2(p+nq)x

n). Next, by means of a scaled and a reparamterization of the

time-variable, according the sign of ∆, h can be transformed into h = x(y2 + σx2n)
with σ = ±1. So, Fn = Xh + (Axn +By)(x, ny)T .

For σ = 1, a first integral is of the form Ip = xn1(y2 + x2n)n2 , with n1 and
n2 natural numbers. Imposing the equation of integrability, we have that A = 0
therefore b2n−1 = 0.

For σ = −1, a first integral is of the form Ip = xn1(y − xn)n2(y + xn)n3 , witrh
n1, n2 and n3 natural numbers. Imposing the equation of integrability, we have that

A =
(2n+ 1)(n3 − n2)

n1 + n(n2 + n3)
, B =

2n1 − n2 − n3

n1 + n(n2 + n3)
.

Rescaling the time-variable t → p+nq
2n+1 t and renaming n1 = p, n2 = q, n3 = r, we

have that Fn is of the form (1.6) and a first integral is xp(y − xn)q(y + xn)r.
If m < 2n− 1, then the quasi-homogeneous expansion of the vector field respect

to the type t = (2,m) is F = (−qxy, py2 + bm−1x
m)T + · · · and therefore, it can be

transformed into (1.7) or (1.8).

2. Orbital normal form and analytic integrability

We do not consider questions of convergence in the normal forms because, as we
mention before, the formal integrability is equivalent to the analytical integrability
for the vector fields analyzed, see [28, Theorem A]. Several orbital normal forms of
vector fields, whose leader homogeneous term is quadratic, have been provided by
several authors, see for example [11–14,30].

The following orbital normal form of the perturbations of quasi-homogeneous
vector fields has been provided in [5].

Proposition 2.1. Given F = Fr+
∑
j≥1 Fr+j with Fr+j ∈ Qt

r+j. If Ker
(
`cr+j+|t|

)
= {0} for all j ∈ N then F is orbitally equivalent to

G = Fr +
∑
j≥1

Gr+j , with Gr+j = Xδr+j+|t| + ηr+jD
t
0 ∈ Qt

r+j ,

where δr+j+|t| ∈ Cor
(
`cr+j+|t|

)
and ηr+j ∈ Cor (`r+j), where `cr+j+|t| is the linear

operator (Lie operator of Fr moved)

`cr+j+|t| : ∆j+|t| −→ ∆r+j+|t|, (2.1)
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gj+|t| → Proy∆r+j+|t|
(Fr − div(Fr)

r+j+|t|D0)(gj+|t|),

the subspaces ∆j+|t| satisfy Pj+|t| = ∆j+|t|
⊕
hPj−r with h = Dt

0 ∧ Fr (such
subspaces must be considered as fixed) and `r+j is the Lie-derivative operator of Fr,
i.e.

`r+j : Pt
j −→ Pt

r+j , (2.2)

pj → Fr(pj).

We give the following results on formal integrability of the orbital normal forms.

Proposition 2.2. Consider the irreducible and formal vector field F = Fr + µDt
0,

with Fr = fG ∈ Qt
r, µ = µr+1 + · · · and assume that f ∈ Pt

s is not an invariant
curve of G. Then, F is not formally integrable.

Proof. The curve f(x, y) = 0 is not a curve of singular points of F since F is
an irreducible vector field. Moreover, the quasi-homogeneous polynomial f is an
invariant curve of F since

F (f) = (fG+ µDt
0)(f) = fG(f) + sfµ = f(G(f) + sµ).

Thus, a primitive first integral of F, if it exists, it would be of the form I = fng,
with n a natural number and g a formal function g = gm+· · · . So, from F (fng) = 0,
it has that Fr(f

ngm) = fG(fngm) = 0, then G(fngm) = 0 for all (x, y) ∈ R2 such
that f(x, y) 6= 0. As G(fngm) is a polynomial and it is null except in a measure-zero
set, it has that G(fngm) ≡ 0 that is, fngm is a polynomial first integral of G and
f(0) = 0, therefore f would be an invariant curve of G. This fact contradicts the
initial hypothesis.

Proposition 2.3. Consider the irreducible and formal vector field F = Fr + µDt
0,

with Fr ∈ Qt
r irreducible vector field and IM ∈ Pt

M a first integral of Fr and assume
that µ = µr+1 + · · · with µr+j ∈ Cor (`r+j) and Cor (`r+j+M ) = IMCor (`r+j) , for
all j. Then, F is formally integrable if, and only if, µ ≡ 0.

Proof. We see the necessary condition. Assume that F is formally integrable and
not all the µj are zero. Let N be defined by N = min {j > 1 : µj 6≡ 0}. A formal
first integral of F is of the form I = I lM +

∑
j>Ml Ij with Ij ∈ Pj . Imposing the

integrability condition we have

0 = (F (I))N+Ml = (µND0)(I lM ) + Fr(IMl+N−1)

= MlµNI
l
M + `Ml+N (IMl+N−1) ,

i.e. µNI
l
M ∈ Range (`Ml+N ) . But, by hypothesis, µNI

l
M ∈ Cor (`Ml+N ) it which

is a contradiction. Thus, F is not formally integrable.
The sufficient condition is trivial since if µ = 0, then F = Fr and IM is a first

integral of F.
We recall that an inverse integrating factor of a system is an invariant curve

whose cofactor is the divergence of the vector field.

Proposition 2.4. Consider the irreducible and formal vector field F = Fr + µDt
0,

with Fr ∈ Qt
r irreducible vector field and IM ∈ Pt

M a first integral of Fr and assume
that µ = µr+1 + · · · with µr+j ∈ Cor (`r+j) and Cor (`r+j+M ) = IMCor (`r+j) , for
all j. Then, F is formally integrable if, and only if, Dt

0∧Fr is an inverse integrating
factor of F.
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Proof. We prove that the condition is necessary. We assume that F = Fr + · · ·
is formally integrable. From Proposition 2.3, it has that F = Fr, which has the
inverse integrating factor Dt

0 ∧ Fr.
Now we see the sufficiency of the condition. Let V = Vj+ · · · be a formal inverse

integrating factor of F, i.e. F (V ) = div(F)V. Expanding above equation, we have
that Fr(Vj) = div(Fr)Vj , thus Vj is a polynomial inverse integrating factor of Fr.
Therefore V = Vr+|t| + · · · with Vr+|t| = Dt

0 ∧ Fr.
Also, the unique invariant curves at the origin of F are the factors of h :=

Dt
0 ∧ Fr. So, we have that V = hu with u a formal function with u(0) = 1.

Equation F (V )− V div(F) = 0 is

0 = uF (h) + hF (u)− hudiv(F).

Since F (h) = hdiv(Fr)+
∑
j>r(r+|t|)hµj and div(F) = div(Fr)+

∑
j>r(j+2)µj ,

we have that

0 = h(F (u)− u
∑
j>r

(j + 2− |t| − r)µj). (2.3)

We see that µj=0 for all j>r. Indeed, otherwise, let j0 =min {j ∈ N : µj+r 6≡ 0}.
As µj0−k+r = 0 for 1 ≤ k ≤ j0, and expanding u = 1 +

∑
i≥1 ui, equation (2.3)

to degree j0 + r + |t| + 1 we get Fr(uj0) = j0µj0+r, i.e. µj0+r ∈ Cor (`j0+r) and
µj0+r ∈ Range (`j0+r) . Hence we arrive to µj0+r = 0. Therefore, F = Fr and IM is
a first integral of F.

3. Main results

Our purpose is to find a link between orbital equivalence and the analytic integra-
bility of the perturbations of a quadratic system (1.3), (ẋ, ẏ) = f1(P1, Q1) + · · · ,
for each case given in Proposition 1.5.

3.1. Case (a)

We first give an orbital normal form for this class of systems.

Proposition 3.1. A formal orbital normal form for the system (ẋ, ẏ) = (y +
x)(−qx, py) + · · · , with p, q natural numbers is ẋ

ẏ

 =

−qx(x+ y)

py(x+ y)

+ µ(x, y)

x

y

 , (3.1)

where µ(0, 0) = 0 and µ(x, y) does not have any linear terms.

Proof. We fix the type t = (1, 1). In this case, we consider Taylor expansions,
F = F1+· · · with F1 = (−qxy, px2)T ∈ Qt

1 (let note us that the quasi-homogeneous
degree does not coincide with the homogeneous degree), h := Dt

0∧F1 = (p+q)xy(x+
y) and div(F1) = (−q + 2p)y + (p− 2q)x.

Consider the translated vector field F̃
(k)
1 = F1 − 1

k+3div(F1)Dt
0. A comple-

mentary subspace to hPk−1 and hPk are ∆k+2 = span{xk+2, xk+1y} and ∆k+3 =
span{xk+3, xk+2y}.
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The transformed of the basis are

F
(k)
1 (xk+2) = −k+2

k+3 (p+ (k + 1)q) + λ1x
k+2y,

F
(k)
1 (xk+1y) = k+2

k+3 (p+ q)xk+1y + λ2x
kh,

F
(k)
1 (yk+2) = k+2

k+3 ((k + 1)p+ q)yk+3 + λ3x
k+2y + λ4x

k+3.

So, the matrix associated to the operator `
(c)
k+3 is also not singular, therefore, we

have that Ker(`
(c)
k+3) = {0} and Cor(`

(c)
k+3) = {0} .

We give the following result on analytic integrability of the vector fields consid-
ered.

Theorem 3.1. The irreducible vector field F = (−qx(x+y), py(x+y))T + · · · , with
p, q natural numbers is not analytically integrable.

Proof. From Proposition 3.1, the vector field F is orbitally equivalent to a formal
vector field of the form F∗ = (−qx(x + y), py(x + y)T + µDt

0, with t = (1, 1). On
the other hand, (−qx(x + y), py(x + y)T = (x + y)(−qx, py)T and x + y is not an
invariant curve of (−qx, py)T , therefore from Proposition 2.2, F∗ is not formally
integrable and thus F is not analytically integrable.

3.2. Case (b)

Proposition 3.2. A formal orbital normal form for the system (ẋ, ẏ) = x(−qy, px)
+ · · · with p, q natural numbers is ẋ

ẏ

 =

−qxy
px2

+ µ(x, y)

x

y

 , (3.2)

where µ(0, 0) = 0 and µ(x, y) does not have any linear terms.

Proof. We fix the type t = (1, 1). Therefore, h := Dt
0 ∧ F1 = x(px2 + qy2) and

div(F1) = −qy.
We prove that the kerf of the operator `ck+3 defined in (2.1) is a trivial set, i.e.

Ker
(
`ck+3

)
= {0} for all k ∈ N.

We denote F
(k)
1 = F1 − 1

k+3div(F1)(x, y)T = 1
k+3

 −(k + 2)qxy

(k + 3)px2 + qy2

 . Con-

sider the following bases for departure and arrival spaces of the operator `ck+3:

∆k+2 = span{xk+2, xk+1y, yk+2} and ∆k+3 = span{xk+3, xk+2y, yk+3}. Taking into
account that xiyjh = pxi+3yj + qxi+1yj+2, we have that

F
(k)
1 (xk+2) = − q(k+2)2

k+3 xk+2y,

F
(k)
1 (xk+1y) = p(k+2)2

k+3 xk+3 − (k2+3k+1)
k+3 xkh,

and F
(k)
1 (yk+2) is

• If k = 2l + 1,

F
(k)
1 (yk+2) = q(k+2)

k+3 yk+3 + λ1(x, y)h+ (−1)l+1(k + 2)p
l+2

ql+1 x
k+3,
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with λ1(x, y) = (k + 2)h
∑l+1
j=1(−1)j+1 p

j

qj x
2j−1yk−2j+4.

• If k = 2l + 2,

F
(k)
1 (yk+2) = q(k+2)

k+3 yk+3 + λ2(x, y)h+ (−1)l+1(k + 2)p
l+2

ql+1 x
k+2y,

with λ2(x, y) = (k + 2)h
∑l+1
j=1(−1)j+1 p

j

qj x
2j−1yk−2j+4. So, the determinant of the

matrix associated to the operator `
(c)
k+3 is pq2(k+2)5

(k+3)3 , i.e. the matrix is not singular,

therefore Ker(`
(c)
k+3) = {0} and Cor(`

(c)
k+3) = {0} . From Proposition 2.1, the result

follows.

Theorem 3.2. The irreducible vector field F = (−qxy, px2)T+· · · , with p, q natural
numbers is not analytically integrable.

Proof. From Proposition 3.2, the vector field F is orbitally equivalent to a formal
vector field of the form F∗ = (−qxy, px2)T + µDt

0, with t = (1, 1). On the other
hand, (−qxy, px2)T = x(−qy, px)T and x is not an invariant curve of (−qy, px)T ,
therefore from Proposition 2.2, F∗ is not formally integrable and thus F is not
analytically integrable.

3.3. Case (c.1)

First we give some auxiliary results. The first one is [5, Lemma 3.22].

Lemma 3.1. Let f ∈ Pt
s an irreducible quasi-homogeneous polynomial invariant

curve of Fr, Kr ∈ Pt
r its cofactor and k,m ∈ N. Assume that the vector fields of

Qt
r, (k − js)Fr + jKrD

t
0, 0 ≤ j ≤ m − 1, are irreducible. Then, if Fr(pk) ∈ 〈fm〉

with pk ∈ Pt
k, it satisfies that pk ∈ 〈fm〉.

Lemma 3.2. We consider the vector field Fn = (x(−(q + r)y − (q − r)xn), py2 −
n(q−r)xny−(p+n(q+r))x2n)T ∈ Qt

n with t = (1, n) and denote M := p+nq+nr,
degree of the quasi-homogeneous polynomial first integral IM = xp(y−xn)q(y+xn)r.
Given m a natural number, assume that for every k ≥ m, it satisfies that

M 6= p
k

j
, M 6= q

k

j
, M 6= r

k

j
, j = 1, . . . ,m− 1.

If pk ∈ Pt
k such that Fn(pk) ∈ 〈fmi 〉 , where f1 = x, f2 = y − xn, f3 = y + xn, are

invariant curves at the origin of Fn, then pk ∈ 〈fmi 〉 , i = 1, 2, 3.

Proof. We prove the case i = 1, (f1 = x), the cases i = 2, 3 are analogous.
The cofactor of x ∈ Pt

1 is Kn = (r − q)(y − xn). From Lemma 3.1, it is enough
to prove that for any j with 0 ≤ j ≤ m− 1, the vector field (k − j)Fn + jKnDt

0 is
irreducible, i.e.

−k(q + r)xy − k(q − r)xn+1,

(kp− jM)y2 − nk(q − r)xny + (−k + j)Mx2n,

are coprime. Analyzing the different factorization of both polynomials, one has that
both polynomials are coprime if and only if M 6= pkj , j = 1, . . . ,m− 1.

For f2 = y − xn (and for f3 = y + xn, respectively) it is easy to prove that the
vector fields (k− js)Fn + jKnDt

0, 0 ≤ j ≤ m− 1, with Kn, cofactor of f2 (and f3,
respectively), are irreducible if M 6= q kj and M 6= r kj .
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The following result provides an orbitally equivalent normal form of the systems
(c.1).

Proposition 3.3. A formal orbital normal form for the system ẋ = Fn + · · · with
Fn = (x(−(q + r)y − (q − r)xn), py2 − n(q − r)xny − (p+ n(q + r))x2n)T is ẋ

ẏ

 = Fn + µ(x, y)

 x

ny

 , (3.3)

with µ =
∑
k>n µk, µk ∈ Cor(`k), a complementary subspace to Range(`k). More-

over, it is always possible to choose Cor(`k+M ), a complementary subspace to
Range(`k+M ), such that Cor(`k+M ) = IMCor(`k) with IM = xp(y − xn)q(y + xn)r

and M = p+ (q + r)n.

Proof. We fix the type t = (1, n). In this case, h := Dt
0∧Fn = (p+nq+nr)x(y−

xn)(y + xn) and div(Fn) = (2p+ q − r)y + n(r − q)xn.
Consider the translated vector field F̃

(k)
n = Fn − 1

k+2n+1div(Fn)Dt
0. We distin-

guish two cases according to the values of k > n :
If k + 1 is not multiple of n, a complementary subspace to hPk−n and hPk

are ∆k+n+1 = span{xk+n+1, xk+1y} and ∆k+2n+1 = span{xk+2n+1, xk+n+1y}. We
have that

F
(k)
n (xk+n+1) = k+n+1

k+2n+1 (k(r − q)xk+2n+1 − ((k + 2n)(q + r) + 2p)xk+n+1y),

F
(k)
n (xk+1y) = k+n+1

k+2n+1 ((−(k + 2n)(q + r)− 2p)xk+2n+1 + k(r − q)xk+n+1y)

+λxkh.

The determinant of the matrix associated to the operator `
(c)
k+2n+1 is

− 4(k+n+1)2

(k+2n+1)2 (p+ nq + (n+ k)r)(p+ (n+ k)q + nr),

therefore the matrix is non-singular, Ker(`
(c)
k+2n+1) = {0} and Cor(`

(c)
k+2n+1) = {0} .

If k + 1 = sn with s natural number, ∆(s+1)n = span{x(s+1)n, xsny, ys+1} and

∆(s+2)n = span{x(s+2)n, x(s+1)ny, ys+2}. The transformed of the basis are

F
(k)
n (x(s+1)n) = s+1

s+2 ((ns− 1)(r − q)xs(n+2)

−((s(n+ 2)− 1)(q + r) + 2p)xn(s+1)y),

F
(k)
n (xsny) = s+1

s+2 ((−((s+ 2)n− 1)(q + r)− 2p)xs(n+2) + (sn− 1)(r − q)xn(s+1)y)

+λ1x
ns−1h,

F
(k)
n (ys+1) = s+1

s+2 (ps+ q + r)ys+2 + λ2x
(s+1)ny + λ3x

(s+2)n.

The determinant of the matrix associated to the operator `
(c)
(s+2)n is

− 4(s+1)3

(s+2)3 (p+ nq + (s+ 1)nr)(p+ (s+ 1)nq + nr)(sp+ q + r).
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It is not zero, i.e. the matrix associated to the operator `
(c)
(s+2)n is also not singular,

therefore Ker(`
(c)
(s+2)n) = {0} and Cor(`

(c)
(s+2)n) = {0} . Applying Proposition 2.1,

we have that a normal form orbitally equivalent is ẋ = Fn + µ(x, ny)T and µ =∑
k>n µk, µk ∈ Cor(`k), a complementary subspace to Range(`k).
Let prove the second part. First, we see that both subspaces, Cor(`k+M ) and

IMCor(`k), have the same dimension. Indeed, Ker(`k) = span{I lM} if k− n = lM .
Otherwise, Ker(`k) = {0}. Thus, dim(Cor(`k)) = 2 if k = lM and dim(Cor(`k)) =
1, otherwise; i.e. dim(Cor(`k)) = dim(Cor(`k+M )).

The proof is completed by showing that IMCor(`k) ⊂ Cor(`k+M ) or equivalently
that IMCor(`k)∩Range(`k+M ) = {0} by reductio ad absurdum. Let pk ∈ Cor (`k)\
{0} such that pkIM ∈ Range (`k+M ), then there exists pk+M−n ∈ Pk+M−n \ {0}
such that `k+M (pk+M−n) = pkIM , that is, `k+M (pk+M−n) is multiple of IM . As

p (k+M−n)
j > pMj > M, j = 1, . . . , p − 1, by applying Lemma 3.2 we have that

pk+M−n ∈ 〈xp〉 ∩ 〈(y − xn)q〉 ∩ 〈(y + xn)r〉, thus pk+M−n = pk−nIM with pk−n ∈
Pk−n \ {0} and consequently

pkIM = Fn(pk+M−n) = Fn(pk−nIM ) = IMFn(pk−n).

Hence pk = Fn(pk−n), i.e., pk ∈ Range (`k) ∩ Cor (`k) which gives a contradiction.

Theorem 3.3. Consider the system ẋ = F := Fn+ · · · where Fn = (x(−(q+r)y−
(q− r)xn), py2−n(q− r)xny− (p+n(q+ r))x2n)T ∈ Qt

n with t = (1, n) and assume
that the origin is an isolated singular point of F. Then it is analytically integrable
if, and only if, it is orbitally equivalent to ẋ = Fn.

Moreover, in such a case, an analytic first integral is of the form

(x+ · · · )p(y − xn + · · · )q(y + xn + · · · )r,

where the dots mean quasi-homogeneous terms of higher degree than n with respect
to the type t = (1, n).

Proof. We see the sufficiency. The polynomial IM = xp(y − xn)q(y + xn)r is a
first integral of Fn which is transformed into a formal first integral I = IM + · · · of
F and from [28, Theorem A], F is analytically integrable.

We see the necessity of the condition. Applying Proposition 3.3, we can assert
that F is orbital equivalent to G = Fn +

∑
j>n µjD

t
0 with µj ∈ Cor (`j).

Let note that F has an analytic first integral equivalents to G has a formal first
integral. By Proposition 3.3 and Proposition 2.3, G is formally integrable if and
only if G = Fn, i.e. F is orbitally equivalent to Fn.

It has the following result.

Theorem 3.4. Consider system ẋ = F = Fn+ · · · where Fn = (x(−(q+r)y− (q−
r)xn), py2−n(q−r)xny− (p+n(q+r))x2n)T ∈ Qt

n with t = (1, n) and assume that
the origin is an isolated singular point of F. It is analytically integrable if, and only
if, it has a formal inverse integrating factor of the form V = x(y2 − x2n) + · · · .

Proof. We prove that the condition is necessary. We assume that F = Fn + · · ·
is analytically integrable. From Theorem 3.3, it is orbitally equivalent to system
ẋ = Fn, it which has the inverse integrating factor h := x(y2 − x2n). Undoing the
change, F has a formal inverse integrating factor V = h+ · · · .
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Now we see the sufficiency of the condition. Let V = h + · · · a formal inverse
integrating factor of F. By Proposition 3.3, we can assert that F is orbital equiv-
alent to G = Fn +

∑
j>n µjD

t
0 with µj ∈ Cor (`j) . Therefore, F has a formal

inverse integrating factor if, and only if, G has it too. Moreover, the formal in-
verse integrating factor W of G has also the form W = h + · · · . By Proposition
3.3, we can choose Cor(`k+M ), a complementary subspace to Range(`k+M ), such
that Cor(`k+M ) = IMCor(`k). From Proposition 2.4, G = Fn. So, by applying
Proposition 2.3, F is analytically integrable since it is orbitally equivalent to Fn.

3.4. Case (c.2)

Lemma 3.3. We consider the vector field Fn = (−qxy, py2 +σ(p+nq)x2n)T ∈ Qt
n

with σ = ±1, t = (1, n) and denote M := 2p+2nq, degree of the quasi-homogeneous
polynomial first integral IM = x2p(y2 + σx2n)q. Given m a natural number, assume
that for every k ≥ m, it satisfies that

M 6= 2p
k

j
, M 6= q

k

j
, j = 1, . . . ,m− 1.

If pk ∈ Pt
k such that Fn(pk) ∈ 〈fmi 〉 , where f1 = x, f2 = y2 + σx2n, are invariant

curves at the origin of Fn, then pk ∈ 〈fmi 〉 , i = 1, 2.

Proof. We assume that σ = 1. We prove the case i = 1, (f1 = x).

The cofactor of x ∈ Pt
1 is Kn = −qy. From Lemma 3.1, it is enough to prove

that for any j with 0 ≤ j ≤ m−1, the vector field (k−j)Fn+jKnDt
0 is irreducible,

i.e.

−kqxy, (kp− j(p+ nq))y2 − (k − j)(p+ nq)x2n,

are coprime. Both polynomials are coprime if and only ifM 6= 2pkj , j = 1, . . . ,m−1.

For f2 = y2 + x2n, it is easy to prove that the vector fields (k − 2nj)Fn +
jKnDt

0, 0 ≤ j ≤ m− 1, with Kn = 2py, cofactor of f2 are irreducible if, and only
if, M 6= q kj , j = 1, . . . ,m− 1.

We assume that σ = −1. The case i = 1, (f1 = x) is similar.

For f2 = y−xn, (for f3 = y+xn, analogously) the cofactor isKn = py+(p+nq)xn

and the vector field (k − j)Fn + jKnDt
0 is

(j(p+ nq)− kq)xy + j(p+ nq)xn+1,

kpy2 + nj(p+ nq)xny + (p+ nq)(k − nj)x2n.

The vector fields (k − 2nj)Fn + jKnDt
0, 0 ≤ j ≤ m − 1, with Kn = 2py, cofactor

of f2, are irreducible if, and only if, M 6= q kj , j = 1, . . . ,m− 1.

Proposition 3.4. A formal orbital normal form for the system ẋ = Fn + · · · with
Fn = (−qxy, py2 + σ(p+ nq)x2n)T with σ = ±1 is ẋ

ẏ

 = Fn + µ(x, y)

 x

ny

 , (3.4)
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with µ =
∑
k>n µk, µk ∈ Cor(`k), a complementary subspace to

Range(`k). Moreover, it is always possible to choose Cor(`k+M ), a complemen-
tary subspace to Range(`k+M ), such that Cor(`k+M ) = IMCor(`k) with IM =
x2p(y2 + σx2n)q and M = 2p+ 2nq.

Proof. We fix the type t = (1, n). In this case, h = (nq + p)x(y2 + σx2n) and
div(Fn) = (2p− q)y.

Consider the translated vector field F̃
(k)
n = Fn − 1

k+2n+1div(Fn)Dt
0. We distin-

guish two cases according to the values of k > n :
If k + 1 is not multiple of n, a complementary subspace to hPk−n and hPk

are ∆k+n+1 = span{xk+n+1, xk+1y} and ∆k+2n+1 = span{xk+2n+1, xk+n+1y}. We
have that

F
(k)
n (xk+n+1) = − k+n+1

k+2n+1 (2p+ (k + 2n)q)xk+n+1y,

F
(k)
n (xk+1y) = k+n+1

k+2n+1 (2p+ (k + 2n)q)σxk+2n+1 + λxkh.

The determinant of the matrix associated to the operator `
(c)
k+2n+1 is

(k+n+1)2

(k+2n+1)2 (2p+ (k + 2n)q)2σ.

Therefore the matrix is non-singular and Ker(`
(c)
k+2n+1) = {0}. Moreover, we have

that Cor(`
(c)
k+2n+1) = {0} .

If k + 1 = sn with s natural number, ∆(s+1)n = span{x(s+1)n, xsny, ys+1} and

∆(s+2)n = span{x(s+2)n, x(s+1)ny, ys+2}. The transformed of the basis are

F
(k)
n (x(s+1)n) = − s+1

s+2 (2p+ ((s+ 2)n− 1)q)x(s+1)ny,

F
(k)
n (xsny) = s+1

s+2 (2p+ ((s+ 2)n− 1)q)σx(s+2)n + λxns−1h,

F
(k)
n (ys+1) = s+1

s+2 (q + sp)ys+2 + λ2x
(s+1)ny + λ3x

(s+2)n.

The determinant of the matrix associated to the operator `
(c)
(s+2)n is

(s+1)3

(s+2)3 (2p+ ((s+ 2)n− 1)q)2(sp+ q)σ.

It is not zero, i.e., the matrix associated to the operator `
(c)
(s+2)n is also not sin-

gular, therefore Ker(`
(c)
(s+2)n) = {0} and Cor(`

(c)
(s+2)n) = {0} . Applying Proposition

2.1, we have that a normal form orbitally equivalent is ẋ = Fn + µ(x, ny)T and
µ =

∑
k>n µk, µk ∈ Cor(`k), a complementary subspace to Range(`k).

Let prove the second part. Both subspaces, Cor(`k+M ) and IMCor(`k), have
the same dimension. So, the proof is completed by showing that IMCor(`k) ⊂
Cor(`k+M ) or equivalently that IMCor(`k)∩Range(`k+M ) = {0} by reductio ad ab-
surdum. Let pk ∈ Cor (`k) \ {0} such that pkIM ∈ Range (`k+M ), then there exists
pk+M−n ∈ Pk+M−n\{0} such that `k+M (pk+M−n) = pkIM , that is, `k+M (pk+M−n)

is multiple of IM . As 2p (k+M−n)
j > 2pMj > M, j = 1, . . . , 2p − 1; q (k+M−n)

j >

qMj > M ; j = 1, . . . , q−1, by applying Lemma 3.3 we have that for σ = 1, pk+M−n
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∈ 〈x2p〉∩ 〈(y+x2n)q〉 and for σ = −1, pk+M−n ∈ 〈x2p〉∩ 〈(y−xn)q〉∩ 〈(y+xn)q〉.
Thus pk+M−n = pk−nIM with pk−n ∈ Pk−n \ {0} and consequently

pkIM = Fn(pk+M−n) = Fn(pk−nIM ) = IMFn(pk−n).

Hence pk = Fn(pk−n), that is, pk ∈ Range (`k) ∩ Cor (`k) which is a contradiction.

Theorem 3.5. Consider system ẋ = F = Fn+ · · · where Fn = (−qxy, py2 +σ(p+
nq)x2n)T ∈ Qt

n with σ = ±1 and t = (1, n) and assume that the origin is an isolated
singular point of F. Then it is analytically integrable if, and only if, it is orbitally
equivalent to ẋ = Fn.

Moreover, in such a case, an analytic first integral is of the form

(x+ · · · )2p(y2 + σx2n + · · · )q,

where the dots mean quasi-homogeneous terms of higher degree than n with respect
to the type t = (1, n).

Proof. We see the sufficiency. The polynomial IM = x2p(y2 + σx2n)q. is a first
integral of Fn which is transformed into a formal first integral I = IM + · · · of F
and from [28, Theorem A], F is analytically integrable.

We see the necessity of the condition. Applying Proposition 3.4, we can assert
that F is orbital equivalent to G = Fn +

∑
j>n µjD

t
0 with µj ∈ Cor (`j).

Let note that F has an analytic first integral equivalents to G has a formal first
integral. By Proposition 3.4 and Proposition 2.3, G is formally integrable if and
only if G = Fn, i.e. F is orbitally equivalent to Fn.

Theorem 3.6. Consider system ẋ = F = Fn+ · · · where Fn = (−qxy, py2 +σ(p+
nq)x2n)T ∈ Qt

n with σ = ±1 and t = (1, n) and assume that the origin is an isolated
singular point. It is analytically integrable if, and only if, it has a formal inverse
integrating factor of the form V = x(y2 + σx2n) + · · · .

Proof. The proof is analogous to the proof of Theorem 3.4, it is enough to apply
Theorem 3.5, Proposition 3.4 and Proposition 2.4.

3.5. Case (c.3)

Lemma 3.4. Consider the vector field F2n+1=(−qxy, py2+ 1
2 (2p+(2n+1)q)x2n+1)T

∈ Qt
2n+1, t = (2, 2n+1) with p, q natural numbers and denote M := 4p+2(2n+1)q,

degree of the quasi-homogeneous polynomial first integral IM = x2p(y2 + x2n+1)q.
Given m a natural number, assume that for every k ≥ m, it satisfies that

M 6= 2p
k

j
, M 6= q

k

j
, j = 1, . . . ,m− 1.

If pk ∈ Pt
k such that Fn(pk) ∈ 〈fmi 〉 , where f1 = x, f2 = y2 + x2n+1, are invariant

curves at the origin of F2n+1, then pk ∈ 〈fmi 〉 , i = 1, 2.

Proof. We prove the case i = 1, (f1 = x).
The cofactor of x ∈ Pt

1 is K2n+1 = −qy. From Lemma 3.1, it is enough to prove
that for any j with 0 ≤ j ≤ m − 1, the vector field (k − 2j)F2n+1 + jK2n+1D

t
0 is

irreducible, i.e.

−q(k − j)xy, (kp− jM

2
)y2 − 1

4
(k − 2j)Mx2n+1,
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are coprime. Both polynomials are coprime if and only ifM 6= 2pkj , j = 1, . . . ,m−1.

For f2 = y2 + x2n+1, The cofactor of f2 ∈ Pt
4n+2 is K2n+1 = −2py. From

Lemma 3.1, it is enough to prove that for any j with 0 ≤ j ≤ m−1, the vector field
(k − 2(4n+ 2)j)F2n+1 + jK2n+1D

t
0 is irreducible, i.e.

−(kq −Mj)xy, kpy2 − 1
4 (k − 2j − 4nj)Mx2n+1,

are coprime. Both polynomials are coprime if, and only if, M satisfies M 6= q kj , for
j = 1, . . . ,m− 1.

We give the following normal form of the vector fields considered.

Proposition 3.5. A formal orbital normal form for the system ẋ = F2n+1 + · · · ,
with F2n+1 = (−qxy, py2 + 1

2 (2p+ (2n+ 1)q)x2n+1)T , with p, q natural numbers is ẋ

ẏ

 = F2n+1 + µ(x, y)

 2x

(2n+ 1)y

 , (3.5)

with µ =
∑
k>2n+1 µk, µk ∈ Cor(`k), a complementary subspace to Range(`k).

Moreover, it is always possible to choose Cor(`k+M ), the complementary subspace
to Range(`k+M ), such that Cor(`k+M ) = IMCor(`k) with IM = x2p(y2 + x2n+1)q

and M = 4p+ 2(2n+ 1)q.

Proof. We fix the type t = (2, 2n + 1). In this case, h = (2p + (2n + 1)q)x(y2 +
x2n+1) and div(F2n+1) = (2p− q)y.

Consider the translated vector field F̃
(k)
2n+1 = F2n+1 − 1

k+4n+4div(F2n+1)Dt
0.

The sets Pt
k non-trivial are

span{xk1+(2n+1)(k3−j)yk2+2j , k1 < 2n+ 1, k2 < 2, j = 0, . . . , k3}.

We distinguish two cases according to the values of k > 2n+ 1 :
If k+|t| = (2n+1)k2+2(2n+1)k3 with k2 ∈ {0, 1}, then we obtain that ∆k+|t| =

span{x(2n+1)k3yk2 , yk2+2k3} and ∆k+|t|+2n+1 =span{x(2n+1)(k3+1)yk2−1, yk2+2k3+1}.
We have that

`
(c)
k+4n+4(x(2n+1)k3yk2) = a1x

(2n+1)(k3+1)yk2−1,

`
(c)
k+4n+4(yk2+2k3) = a2y

k2+2k3+1,

with

a1 = k2+2k3
2(k2+2k3+1) ((2n+ 1)q(k2 + 2k3) + 2qn+ 4p− q),

a2 = k2+2k3
(k2+2k3+1) ((k2 + 2k3 − 1)p+ q).

Since a1a2 6= 0, the matrix associated to the operator `
(c)
k+4n+4 is non-singular and

Ker(`
(c)
k+4n+4) = {0}. Moreover, Cor(`

(c)
k+4n+4) = {0} .

If k+ |t| = 2k1 + (2n+ 1)k2 + 2(2n+ 1)k3 with k2 ∈ {0, 1} and k1 < 2n+ 1, then
∆k+|t| = span{xk1+(2n+1)k3yk2} and ∆k+|t|+2n+1 = span{xk1+(2n+1)(k3+1)yk2−1}.
We have that

`
(c)
k+4n+4(xk1+(2n+1)k3yk2) = a3x

k1+(2n+1)(k3+1)yk2−1,
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with

a3 = (2n+1)(k2+2k3)+2k1
2((2n+1)(k2+2k3+1)+2k1) ((2n+ 1)q(k2 + 2k3) + 2k1q + 2qn+ 4p− q).

Since a3 6= 0, we have that Ker(`
(c)
k+4n+4) = {0}. Moreover, Cor(`

(c)
k+4n+4) = {0} .

Applying Proposition 2.1, we have that a normal form orbitally equivalent is ẋ =
F2n+1 + µ(2x, (2n + 1)y)T and µ =

∑
k>2n+1 µk, µk ∈ Cor(`k), a complementary

subspace to Range(`k).
Let prove the second part. Both subspaces, Cor(`k+M ) and IMCor(`k), have the

same dimension. The proof is completed by showing that IMCor(`k) ⊂ Cor(`k+M )
or equivalently that IMCor(`k)∩Range(`k+M ) = {0} by reductio ad absurdum. Let
pk ∈ Cor (`k)\{0} such that pkIM ∈ Range (`k+M ), then there exists pk+M−2n−1 ∈
Pk+M−2n−1 \ {0} such that `k+M (pk+M−2n−1) = pkIM , that is, `k+M (pk+M−2n−1)

is multiple of IM . As 2p (k+M−2n−1)
j > 2pMj > M, j = 1, . . . , 2p−1; q (k+M−2n−1)

j >

qMj > M ; j = 1, . . . , q − 1, by applying Lemma 3.4 we have that pk+M−2n−1 ∈
〈x2p〉∩〈(y+x2n+1)q〉, thus pk+M−2n−1 = pk−2n−1IM with pk−2n−1 ∈ Pk−2n−1\{0}
and consequently

pkIM = F2n+1(pk+M−2n−1) = F2n+1(pk−2n−1IM ) = IMF2n+1(pk−2n−1).

Hence pk = F2n+1(pk−2n−1), that is, pk ∈ Range (`k) ∩ Cor (`k) which gives a
contradiction.

Theorem 3.7. Consider system ẋ = F = F2n+1 + · · · where F2n+1 = (−qxy, py2 +
1
2 (2p+ (2n+ 1)q)x2n+1)T with p, q natural numbers and t = (2, 2n+ 1) and assume
that the origin is an isolated singular point of F. Then it is analytically integrable
if, and only if, it is orbitally equivalent to ẋ = F2n+1.

Moreover, in such a case, an analytic first integral is of the form

(x+ · · · )2p(y + x2n+1 + · · · )q,

where the dots mean quasi-homogeneous terms of higher degree than 2n + 1 with
respect to the type t = (2, 2n+ 1).

Proof. We see the sufficiency. The polynomial IM = x2p(y2 + x2n+1)q is a first
integral of F2n+1 which is transformed into a formal first integral I = IM + · · · of
F and from [28, Theorem A], F is analytically integrable.

We see the necessity of the condition. Applying Proposition 3.5, we can assert
that F is orbital equivalent to G = F2n+1 +

∑
j>2n+1 µjD

t
0 with µj ∈ Cor (`j).

Let note that F has an analytic first integral equivalents to G has a formal first
integral. By Proposition 3.5 and Proposition 2.3, G = F2n+1, i.e. F is orbitally
equivalent to F2n+1.

Theorem 3.8. Consider system ẋ = F = F2n+1 + · · · where F2n+1 = (−qxy, py2 +
1
2 (2p+ (2n+ 1)q)x2n+1)T with p, q natural numbers and t = (2, 2n+ 1) and assume
that the origin is an isolated singular point of F. It is analytically integrable if, and
only if, it has a formal inverse integrating factor of the form V = x(y+x2n+1)+· · · .

Proof. The proof is analogous to the proof of Theorem 3.4, it is enough to apply
Theorem 3.7, Proposition 3.5 and Proposition 2.4.

The analytic integrability of the systems (c.4) and (c.5) has been studied in [6].
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nilpotent singularity: The non-generic case. Commun. Pure Appl. Anal., 2020,
19(1), 407–423.
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[20] B. Ferčec and J. Giné, A blow-up method to prove formal integrability for some
planar differential systems, J. Appl. Anal. Comput., 2018, 8(6), 1833–1850.
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