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EXISTENCE AND STABILITY OF SOLUTIONS
FOR A COUPLED HADAMARD TYPE
SEQUENCE FRACTIONAL DIFFERENTIAL
SYSTEM ON GLUCOSE GRAPHS*

Junping Nan'?, Weimin Hu?%', You-Hui Su®' and Yongzhen Yun!

Abstract Chemical graph theory is an interdisciplinary mathematics and
chemistry discipline that obtains mathematical information about the struc-
ture of target compounds and is an important research branch in theoretical
pharmacology and nanomedicine. This paper study a coupled Hadamard type
sequential fractional differential system on glucose graphs and establishes the
Ulam’s stability and existence of the system solutions. Furthermore, we ex-
amine examples against different background graphs and provide approximate
graphs of the solutions. The novelty of this paper is that the origin of each
edge is not fixed in modeling the glucose graphs, and one of the two vertices of
the corresponding edge can be arbitrarily chosen as the origin to build the sys-
tem and give the approximate graphs of the solutions using iterative methods
and numerical simulation.
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1. Introduction

Fractional calculus has been developed as an extension of integer order calculus for
more than three hundred years. As detailed in [4,12,13,19], fractional derivative
can more accurately describe the real processes associated with the memory and
genetic properties of various materials. Due to this, fractional differential equations
are used in a wide range of disciplines, such as fluid flow, control theory of dynamical
systems, biology, physics, and more [5,6,8,32].

Coupled systems of fractional differential equations have also been investigated
by many authors. Such system appear naturally in many real words situations, for
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examplem, the research investigated coupled implicit fractional integral-differential
equations with Riemann-Liouville derivative in the literature [23], the existence and
uniqueness of the projection model are investigated using the immovable point the-
orem. In [36], the authors study the stochastic resonance of two coupled fractional
harmonic oscillators with a dichotomous variable mass. The average behaviors of
the two oscillators are completely synchronized, and the analytical formulation of
the output amplitude gain is determined. The literature [7,14, 15, 35, 38, 39] and
citations contain recent research results on fractional differential equations.

Graph theory is a mathematical discipline that investigates graphs and networks.
It is frequently regarded as a branch of combinatorial mathematics. It started in
1736 with Euler’s first paper on graph theory, which solved the famous “the Seven
Bridges of Konigsberg Problem”, establishing Euler as the father of graph theory.

A network is a graph, such as transportation route maps, telephone line net-
works, computer network extensions, molecular bodies in medicine and biology,
and so on [1,21]. Building mathematical models on graphs is also appealing and
since mathematical models can be represented graphically. In fact, the boundary
value problems on a graph is defined as a problem consisting of a set of differential
equations on a given graph and certain node boundary conditions. The origin of
differential equations on metric graphs is related to Lumer [16], who pioneered the
application of differential equations to graph theory in the 1980s by exploring solu-
tion of evolutionary equations on ramification spaces and under different operator
rules. Nicaise [20] studied the propagation of nerve impulses. In 1989, Zavgorod-
nii and Pokornyi [37] considered linear differential equations on geometric graphs
where the solution of the differential equations are coordinated internally. In 2008,
Gordeziani et al [9] solved the differential equations on graphs by the double-sweep
method and proposed a numerical method. We can refer to [11,17,33] for more ap-
plications of differential equations on metric graphs to flexible structures composed
of strings, beams and plates, quantum graphs.

Star graph G = (V, E) consists of a finite set of nodes or vertices V(G) =
{vo,v1,...,v} and a set of edges E(G) = {e; = D0, 62 = VaUG, oy € = "LTUS}
connecting these nodes, where vy is the joint point and e; is the length of [; the
edge connecting the nodes v; and vg, i.e. [; = |1Tvo>|

Graph theory, which lies at the intersection of mathematics and chemistry, is
also applied in chemistry to study molecules. Chemical graph theory represents
a compound’s molecular structure as a graph, with each atom represented by a
vertex and the chemical bonds between the atoms represented by edges between
the vertices. Informed by the aforementioned research and related literature, we
consider investigating the existence and stability of solution of nonlinearly coupled
Hadamard-type sequence of fractional differential systems on glucose graphs Figure
1. Glucose is the primary energy donor of living organisms and the energy source
and metabolic intermediate of living cells.

The carbon, oxygen, and hydroxyl atoms are used as the graph’s vertices, and
the chemical bonds forming their edges, to model the molecular structure of glucose.
To facilitate the study, the vertices of the glucose graph are labeled as 0 or 1, and
the length of each edge is fixed at e (|e;| = e, i = 1,2,...,19) Figure 2. As a
consequence, the orientation of each vertex is determined by the orientation of its
corresponding edge. The labels of the beginning and ending vertices are taken into
account as values 0 and 1, respectively, as we move along any edge. In contrast
to the method used to analyze star graphs, the origin of each edge is not fixed
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and changes when the direction of movement along the edge is changed. Therefore,
our study does not require a specific transformation to regulate the length of each
edge, and it is also possible to arbitrarily choose one of the two vertices of the
corresponding edge as the origin for the construction of the system.

Figure 1. Molecular structure of glucose. Figure 2. Glucose graphs with vertices 0 or 1.

In order to better explore the application of the fractional differential system on
star graphs, here we briefly review some related results in the existing literature.
Graef et al [10] studied the fractional differential system on star graphs as follows:

—D8‘+ui = wifi(x,ui), O<a< li, i =1,2,
u1(0) = u(0), ui(l1) = ua(la),

Dg+u1 (ll) + D€+u2(l2) = 07

where Déﬁ,Dg . are the Riemann-Liouville fractional derivative operator, 1 < a <
2, 0< B <a w e C[0,1], ¢ = 1,2 with w;(z) # 0 on [0,/;] and f; € C([0,1] x
R,R), i = 1,2. The authors proved that the existence and uniqueness results by
using Banach contraction principle and Schauder fixed point theorem.

There is very little research on fractional differential equations on graphs, to
the best of our knowledge, for example, in reference [18], the authors investigate
the nonlinear Caputo fractional boundary value problem on the star graphs, and
obtain the existence and uniqueness of the solutions to the boundary value problem
by using the fixed point theory. Zhang et al [40] studied the fractional boundary
value problem on star graphs, and obtained the existence and uniqueness results of
solutions to boundary value problem by fixed piont theory. In addition, different
types of Ulam type stability results of the proposed problems are also discussed.
Note that in the literature [2,3,24,25,31,34], attention was mainly focused on the
existence of solutions to the fractional differential equations. Naturally, it is inter-
esting and necessary to study the existence and stability of solutions to fractional
differential equations on graphs. And our modeling of differential equations on each
glucose edge may be used in a variety of domains. For example, in organic chem-
istry, each set of solutions funcitions (u;, v;) on any edge might represent parameters
such as bounded energy, binding strength, bound power, and the like.

Motivated by the references [2,3, 10,18, 22,24-26, 31, 34,40], in this paper, we
consider the existence and stability of solutions to the following nonlinear boundary
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value problem on graphs of the form

(DT + EF DI 1) u(t) = fi (¢, ualt), vi(t), Dvi(t)),
1<¢<2,0<a<l k>0,te][le,

(FDP + EFDP=1) vy(t) = gi (¢, vi(t), wi(t),” DOus(t))

1<p<2 0<68<1, (1.1)
u;(1) =0, v (1) =0,

Muie) = Ao [ U9 ds = Ky, K, K > 0,

S

prvi(e) — pa [ 4 ds = Ky, i =1,2,...,19,

where D) denote the Hadamard fractional derivative, f;, g; : [1,¢] x R® = R
are given continuous functions and A;, u; (¢ = 1,2) are real constants. The Ulam’s
stability and existence of the system solutions to fractional differential system (1.1)
are established. Furthermore, we examine examples against various background
graphs and provide approximate graphs of the solutions. The interesting of this
paper is that the origin of each edge is nor fixed in modeling the glucose graphs,
and one of the two vertices of the corresponding edges can be arbitrarily chosen as
the origin to build the system and given the approximate graphs of the solutions
using iterative methods and numerical simulation.

The outline of the paper is as follows, in Section 2, some basic definitions and
related lemmas are given. The existence of uniqueness of solutions to the system of
fractional differential system (1.1) under some assumptions are proved in Section 3.
In Section 4 suitable conditions are constructed so that Ulam’s stability is satisfied
in system (1.1). Some examples and perform numerical simulations on the examples
are given in the last section.

2. Preliminaries

We introduce notations and definitions of fractional calculus.

Definition 2.1 ( [3,13]). The Hadamard fractional integral of order ¢ € C, R(q) >
0, for a function g € LP[a,b], 0 < a <t < b < oo, is defined as

I1,9(t) = ﬁ /at (log E)H@ds,
b a—1 (s
Il g(t) = ﬁ/t (log z) %ds

Definition 2.2 ( [3,13]). Let [¢,b] C R, § = t4 and ACP[a,b] = {g: [a,b] = R:
§"~Y(g(t)) € ACla,b]}. The Hadamard derivative of fractional order ¢ for a function
g € ACYla,b] is defined as

DL g(0) =000 = s (1) [ (o ) 2
[P 19(s
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where n—1 < g < n, n = [q]+ 1 and [g] denotes the integer part of the real number
q and log(-) = log.(").

Theorem 2.1. [14] Let M be a closed convex and nonempty subset of a Banach
space X. Let A, B be the operators such that

(i) Az + By € M whenever z,y € M;
(i) B is contraction mapping;

(iii) A is compact and continuous.
Then there exist z € M such that z = Az + Bz.

Lemma 2.1. Let h;(t),z;(t) € AC([1,e],R),i = 1,2,...,19, then the solution of
sequential fractional differential equations:

(FD9 + KH DI 1) w;(t) = hi(t), te[l,e],

(HDP + K DP=1) v(t) = 2(t),

ui(1) =0, v;(1)=0, (2.1)
/\1ui(e) /\2 © U7§s) ds = Kl,

pvi(e) — po [¢ ul(s)ds =Ky, 1=1,2,...,19,

S

is given by

i (t) :i(t—k/lt L(log s)1~ st {32 {Kl (2.2)
+F(;21)/1€s—’€ 1(/1 k= 1(/1m(1og7;1)p_2@dr)dm)ds

_F?;e__kl)/lesk—l(/: (1ogj)“hi£”dr)ds}

el [ ey sk,

F(q“il)/les“(/lsmk1(/1m(1ogT)“hi7(f)dr>dm)ds”

+ F((tl_k ) /j skl(/ls (log ;)q_Q hly) dr)dsy

v (t) :i(t—k/j Y(log s)P~ st {Al[ (2.3)
ot [ () (o) )
_ r%fi)/l Sk—l(/ls <logi>p2zi7(f)dr)ds}
e[y o () r)asm
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_ Fi(p/\i ) /15 s_k_l(/ls mk_l(/lm (10g T)pQZiy)dr)dm)ds] }
- F(;_k ) /t sk_1</s (log ;)p_Q@dOds,
- 1 1

where
A= A1By — Ay By #0, (2.4)
e
A = Ale_k/ s¥~1(log 5)92ds, (2.5)
1
Ay = —)\2/ s_k_l(/ rk_l(logr)p_%lr)ds7 (2.6)
1 1
B, = 7”2/ s*k*(/ rkfl(logr)qudr)ds, (2.7)
1 1
B = ule’k/ s*71(log s)P~2ds. (2.8)
1

Proof. As argued in [12], the general solution of the system (2.1) can be written
as

‘ ‘ ¢ ¢
ui(t) = aél)t*]C + agl)tfk/ ¥ (log s)9%ds + tik/ sE=HH 9= (5)ds,
1 1
. ) t t
v (t) = bél)t_k + bgl)t_k / s*"1(log s)P~2ds + t_k/ sPHH P=15(s)ds.
1 1

Where aéi), béi), agi), bgi)(i =1,2,...,19) are unknown arbitrary constants. Using
the initial conditions u;(1) = 0 and v;(1) = 0 implies that

o =4 — o,

which leads to
, ¢ t
u;(t) = agl)t_k / s*"1(logs)9 2ds +t* / sFIH 197 h(s)ds,
1 1
‘ t t
v (t) = bgl)t*k/ s* "1 (log 5)P~2ds + tik/ sk H =1, (s)ds.
1 1

Using the nonlocal integral boundary conditions

Aru;(e) — /\2/ Mdé‘ =K1, mvi(e)— M2/ L(S)ds = Ko,
1S 1 S
we obtain ' ' ' , 4 '
Ard? + 40 = N9 Bral? + Byl = N, (2.9)

where A; and B;(i = 1,2) are respectively given by (2.5)-(2.8), and
(i) A2 AN AT m\P=2z(r)
N” =K) + ———— log —
1 1+F(p71)/18 (/1m (/1 (Ogr> r dr)dm)ds
Ae ke [° $\42h;(r)
_Ae log 2 i)
I'(g—1) /1 § (/1 ( ©8 r) T dr)ds,
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S o ) Ry )

Ny =Ko+

_ /‘le_k) /16 sk—l(/ls (log ;)pd@dr)ds.

I(p—1
Solving the system (2.9), we find that
sy [ ([ ([ () o
_ I‘)(\;e_kl)/l 8k—1</18 (108 j)wh”y)dr)ds}
a1 [ ([ (10 2) 2 s -k,
o [ (ot (o) )]

s
and
o =y 2 [t ([t (7 (o) M s
ek s s\P—2 2. (r
e [ () e
+ B {F?;e__kl)/lesk—l(/ls (logE)q_Q%r)dr)ds—Kl

AﬁfwwfwwfwwaMWW%

'p-1
n (2.9), we get the desired solution
O

Substituting the values of a1 and b(

(2.2)-(2.3). The proof is complete.
The following lemma contains certain estimates that we need in the sequel

Lemma 2.2. For F € C([1,¢],R) with |F|| = sup |F(t)|, we have
te(l,e]

(i) ‘t_kf " 1(log s)97%ds| < A4,
— t 2 P(r

(ii) ‘t kf h 1<f1 (log )q ()dr)ds‘ < q(q—1)"

1

Proof. Note that .
/ (log s)9~ 21 ds < —
1 ].

q—
Since that s <k for 1 < s <t < e, then
t S

‘t_k/ sk_l(/ (log§>

1 1 r
t s s
t*k/ skfl(/ (log f)
1 1 r

q—1

t
t*k/ skilwds‘
1 q—1

! (r) dr) ds‘
r

2 E(r) dr) ds
r

< sup
te(l,e]

<||F[| sup
te(l,e]
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3. Main results

Let
X; = {u; s u; € C([1,€],R), #D%u; € C([1,€],R)},

and
Y, ={v; :v; € C([1,€], R), Hpey, e C([1,e],R)},

then (X, - ||x,) and (Yi, | - |lv;) (¢ = 1,2,...,19) are Banach space respectively
endowed with the norms

i

x;: = will + " D°ui|l = sup |ui(t)| + sup |7 Dus(t)],
te(l,e] te(l,e]

and
[oilly, = l[oill + I Dvil| = sup |vi(t)] + sup |7 D%v;(t)].
te(l,e] te(l,e]
Take X = (X1, Xs,...,X19) and Y = (Y7,Y5,...,Y19) denote the spaces respec-
tively equipped with the norms

19
ullx = [I(ur, w2, -y w10)x =D lJuillx,s (w1, ua, ..., u19) € X,

i=1

19
[vlly = [[(v1,v2, ... v10) [y = Z [villy:s (v1,02,...,v19) €Y.
i=1

According to the basic theory of functional analysis, we obtain that (X, | - |x)
and (Y, - |ly) are Banach space. In turn, the product space (X; x Yy, || - |lx,xv;)
is a Banach space endowed with the norms |[(u;, v;)||x,xvy, = [|uillx, + ||villy; for
(ui,v;) € X; x Y;. Similarly, let (X x Y, - ||xxy) also be a Bannach space with
norm [, 0)llxy = 212, 1(us, )1, v

Define operators T': X xY — X xY and T; : X; xY; = X; XY, are respectively
represented as follows:

T(u,v)(t) = (Ty(u,v)(t), Ta(u, v)(t), ..., Tig(u, v)(t)),
T (u,0) (8) = (T (s, v3) (0, T (wiy 0) (1)), i = 1,2, ..., 19,

K2

where

T (s, 1) (1)
e [l [ (o
‘ (/1 (log %)Hgi (ryvi(r), ui(r), D2us(r)) %dr) dm) ds

- [ ([ (02 ) D) )|
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+A4, |:F/(L;e__kl) /1e S’c—l(/ls (log2)1’*292.(707%(7”)7%(7,)7H Déui(r))%dr>ds

gy [

and

N tk—l p—2 2 /e —k—1 /s k—1
_X(t /15 (log s) ds) Ay K2+m : s ( ! m

([ (108 22 ) ). D) ) )i
et /16 Sk1</15 (logi)p_Qgi(T’ v (r), wa (), 2 D‘sui(r))idr)ds}

I'(p—1)
—k e s
th {F)(\;en/l Sk_l(/l (log;)q_in(’"vui(r),vi(T%H D“vi(r))%dr>ds

e (] e

1

X gi (T, v (1), us (r), D‘sui(r)) fdr) dm) ds} }
r

—|-7t7]C /t skil(/s (log f)p_zg-(r vi (1), u; (1) HD‘;u‘(r))ldr>ds

F(p_ 1) 1 1 r 7 » Y biad2 ’ (3 r .
Assume that the following conditions hold:
(Hy) fi,9i:[1,e] xRxRxR — R,i=1,2,...,19 be continuous functions and there
exist nonnegative functions ;(t), ¢;(t) € C[1, e] such that

Ifi(t,z1,y1, 21) — fi(t, w2, y2, 22)| < Li(E)(Jz1 — @2| + |y1 — y2| + |21 — 22]),

lgi(t, 21,91, 21) — gi(t, 22, Y2, 22)| < Gi(1) (|21 — w2| + |y1 — y2| + |21 — 22]),
where t € [1,€],z;,y; € R;
(H2) Let ||l;|| = sup |l;(t)] and ||gi]| = sup |q:(t)],i =1,2,...,19;
t

€[1,e] te(l,e]

(H3) a; = sup |fi(¢,0,0,0)] < oo, by = sup |gi(¢,0,0,0)| < 00,i=1,2,...,19.
te(l,e] te(l,e]

For computational convenience, we also set the following quantities:

1 M[Ba| | pa|As Al

G = [Al(g—1) (F(q+ 1) T(¢+2) * qT'(q — 1)>’
1l

G == T2 Tt D)
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1 oAl M|Bi
Gs = :
° |A|<p—1>(r<q+2> r<q+1>)
1 mlAil | Xe|Bi A
G = + 9
! |A|<p—1>(r<p+1> T(p+2) pF(p—n)
g 1 ( )\1|Bz| Mz‘Azl )
FTAlg-D\T(g+1) T T(g+2)/)
g, — 1 (H1|A1| >\2|B1| )
T -D\Tp+1) " Tp+2))
1
M17|A|(q 1)(K1|B2}+K2|A2f),
1
My=———(Ky|A{| + K{|By]).
= [ (el +al)

In the following, the main results on the existence of solution to the fractional
differential system which we studied are listed.

Theorem 3.1. Assume that (H1) hold, then system (1.1) has a unique solution on
[1,¢], if

19
> A<, (3.1)
i=1
where
A = AHTA=0) (LG + [la:]|G2) N 1+ =) (il Gs + lg:l| Ga)

r'(1-9) I'(l-a)

Proof. Define
2((1 = 0) +1) (Jai|G1 + [bs| G2 + M)
T =06 -2 -6 +1) (LG + lallG2)’
2(T(1 — a) + 1) (Ja;|G3 + |bs| G4 + Mo) }
A =a)=2T'Q =)+ 1)) (1l1Gs + [la:|G1)

¢; > max {

and
19
c> Zci.
i=1
Let T'B, C B, be a cone define by
B, ={(u,v) € X x Y : |[(u,v)[|xxy < c},

where (u,v) = ((ul,vl), (u2,v2), ..., (ulg,vlg)) cXxY.
Let
B, = {(ui,vi) € Xi x Y ¢ [[(us, v3)[| x; xv; < i}y

for (u;,v;) € By, we have

| fi (£ wi(t), vi(t)," Dvs(t))]
| fi (8, wi(t), vi(£)," D0;(t)) — £i(t,0,0,0)| + | £i(2,0,0,0)]
Li(t) (Jus(®)] + v ()] + |7 D¥0i (8)]) + |ai]

» Vi

< y Ui
<
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<L) (ui, vi)ll x, xv; + |ail
<|lillei + |ail.

Similarly, we obtain
|gi (£, vi(t), wi (), DOui ()| < qi (0] (wis vi) |, xv; + [bi] < llgille + bil.
Then

K2

t
< |A1|<tk/ skl(logs)qzds){|Bz| [Kl
1

+F(;\i1)/leskl(/lsmk1</lm(log7:)p2

(i, v3(r), wa(r), ™ Doue(r) | ) dm) s

7O (u, vi)(t)‘

ey [ ([ 0o ) ) )
—k e s
+|A2!{F’{;e_ 5 [ 082 o i) ). D) ) s

+Ks + F(qﬂil)/j s_k_l(/lsmk_l(/lm (log %)qu

x| fi(ry wi(r), 0i(r), " D%, (r)) ’%dr) dm) ds} }

+F(2_k y /j sk—1(/18 (1og ;)q—2‘fi(7“, ui(r),vi(r)’H D“vi(r))’%dr)ds

1 ( M[Bo| | pelAe| A ))’fi(t,ui(t)’vi(t),H Do)

STAQ-D\T(gr1) T2 Falg-1
1 )\2‘32‘ u1|A2| . ‘ ' |
1
Al =) BB + Kol Az

< Gy(|lilles + las]) + G2 (llgillei + [bi]) + My
= (IL1G1 + l4:l|G2) ¢i + las| Gy + 65| G2 + My,

and
H
| DT (i, i) 1)

1 dy [! ty s [T (wg, 09) (s)]
< iy ) || (o) T

- (IL1IG1 + lg:ll G2) es + [ail Gy + |bs|Ga + My
= T(1—9) '

Hence

1T (i, 00) (2) Ix,
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<[ uz,vl 8 + I DT (i, 02) (2)]

< (FEr) (U6 + alGz)es + al6n + G+ )
C;

<

-2

In the same way, we have,

T (g, ) ()] < (11]1Gs + a:l|Ga) i + il Gs + [b:]Ga + Mo,

and
| DT (i 0) (1))
(Hl G5 + l|g:l|Ga)ci + |ai|Gs + [bs| Ga + My
I'(l—a)
Next, we get
1782 (i, 0 (1)),
< |72 (uis o) ()| + || DT (wi, 00) (1))
I'l—a)+1
< ((mf‘)a)) (NG + | Ga) i + [ai]Gs + [bi] G + M)
C;
< —.
- 2
Hence
17w 0) 0|, o, = [T sy o) O, + T2 (s o) D)y, < e

which implies T'B,, C B,.,. Thus

1T Oy = ST )0y, < i <

this show that T'B,. C B,..
Now we prove that the operator T is a contraction. For (u;,w,), (v;,v;) € By,
and for each ¢ € [1, €] we have

1
T (g, 03) () — T (g, 07) (£)

|

< 1 t* t Ylog s)?~2d
W( /1 ogs S)
(r) —

k1(/15mk1(/1m (log%)pﬂ

xlgi (r,vi(r), u ( (T)vH Déu;(r)”%dr)dm) ds
+’??(}]/\_1€1_)/1 Skl(/ls (Ing)qiz‘fi(r,ui(r),vi(r),H Dv;(r))

’ , , A —k e s B
_fi(r,ui(r),vi(r))HDavi(r))‘idr)ds+|FZL”_161)/1 Sk—l(/l (1Og§)p 2

X fgi (7", vi(r),ui(r)7H D‘Sui(r)) — i (7", v;(r)7u;(r)7H D6u;(r))|%dr) ds
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+I!Ez2}_,ui) /1@ S—k—1(/15 mk—l(/lm (10g %)Q—Q‘fi (7"7 ui(T)yvi(T%H DQ’UZ'(T))

—ilr i), i) D“v%@))lidr)dm)dsbr(;_k ) /j S“(/ls (log )"
X)), D)) = (), ), D% ()| ) s

LBl mlal , ,
< l; i — Ul X i — Uilly;
< e =T (Tt T ot + g =) Vel (s — il + o = o)
1 )\2|B2’ Ml’AQ‘ . ) ’ ‘ ’
=T Tz * e el = wllx o+ lle = vill)

= (IE1G1 + llaillG2) (lus — wllx, + lloi = villv.),

1" DT (g, v3) (8) =7 DT (g, 07) (1)

27 71

g () [ g DT ) TG 0 s

(111G + llail|Gz) (lus — willx, + llvi — villy, )
r(1-9) ’

IA

IN

It can be obtained from the above inequalities
T (s, 0i) (1) = T (g, 0

1 1
= |17 (s, o) (0) = T (u

1
= (1 g —gy) (116G + llilGz) (s = il + o = oo

],
;Z )+ 17 DT (i, vi) (1) = DT (i, ) (1)

Similarly one can find that

T (g, 03) () — T2 (g, 07) (8)|

17 71

< (111G + llgi|Ga) (lui — willx, + llvi — v;llv:),
and
1" DT (ug, v3) (8) = DT (g, 0)) (1)

1 4 ’
a))(llliHGa +lgillGa) (lus — willx, + llvi — villy;)-

SR )

Hence

|72 (i i) (1) = T2 (g o) (),

= |12 (s, vi) (1) = T (g 0)) (1) || + || DT (s, 00) (1) =1 DT (1, 07) (8)]

) Z 1 71

1 /
= (1+ gy (001G il Ga) (s = willx =+ 1o = wilv,)

Therefore, we get the following formula:

’

I, 0)(8) = T, 0 ) ()] oy
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’ ’

19
= Z | T (s, w3 (8) — Ty (g, 05) (2]

Xi X}/i

& (14T =) (G +alGe) (1410~ ) (hl1Gs + 1:]Ga)
= 2 [ T(L—9) i Tl —a)
x(lu = lx + o = olly)
19 , ,
= > A= llx + o = v'lly)-
i=1

As Zil A; < 1, we obtain that T is contraction operator. It follows from the
Banach contraction principle that operator T" has a unique fixed point in B,., so the
system (1.1) exist a unique solution on [1,e]. The proof is complete. O

Our next existence result is based on the krasnoselskii fixed-point theorem.

Theorem 3.2. Assume that fi,g; : [1,e] x RxR xR — R;i = 1,2,...,19 are
continues functions satisfying assumption (Hy). In addition we suppose that there
exist two positive constants L; and Q;, such that

|fz (t7ui(t)7vi(t)7H Davi(t)) | < Lj, |gi (tavi(t)aui(t)aH Déul(t)) | < Qi

where t € [1,e], (u;,v;) € X; xY;,0=1,2,...,19.

If
19
Z@l <1,
i=1
where
0, - L@ =0)+1) (ILlS1 + llg:lG2) . (L1 =) +1) (I[l:]|G3 + [li]| S2) <1

INGIE) I'l-—a) ’
then the system (1.1) has at least one solution on [1,e].

Proof.
B. = {(u,v) € X XY : |(u,v)||xxy < e},

where (u,v) = ((u1,v1), (u2,v2), ..., (19, v19)) € X X Y and € is

19

B (T(1=96)+1) (L;iG1 + Q;G2 + M)
- ; { o 715) 2 1
n (M1 —a)+1) (LG3 + QiGy + Ma) }
Tl —a) :

It is know that B. is closed, bounded, convex and nonempty suset of product
Banach space X x Y = (X3 x Y7, Xs X Y, ..., X19 X Y79).
Now we define some operators as follows

T (wi, 0:)()

B R L a-2 A2 /e —k—1 /s k—1
_K(t /15 (log s) ds) By Kl—l—m : 5 ( ' m
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and

x (/lm (log %)p72gi (r,vi(r), us (r), 2 Déui(T))%dT) dm) ds

F)(\;e_kl) /16 Skl(/ls (Ing)q*Qﬁ (7”7 ui(r)vvi(?"),H Do‘vi(r)):dr>ds}

+ Ay [I‘l&e_kl) /16 Sk—1</13 (log ;)P—Qgi (7“, Ui(r),ui(T),H DéUj(T))%d?“)ds

o [ [

x f; (r, ug (1), vi(r), " DO‘UZ-(T)) %dr) dm) ds] },

Ti(,12) (ui,vi)(t)

F((t]_k ; /1t k1 ( /13 (log ;)q_2fi (’I“, u; (1), ’Ui(r)’H D(X’Ui<7‘))%dr) ds,

T3 (ui, i) (¢)

| L p—2 2 /e —k—1 /s k=1
X(t /ls (log s) ds) Ay K2+m : s ( 1 m

([ 02 i) s )

_F/(L;B_kl) /15 3k1</15 (1og§)p—29i(r7 vi(r),ui(r),H Dauz‘(?“))idr)ds}

+B; [F)(‘;e_kl) /16 Sk—1</13 (logg)q_in (13 ui(T‘),Ui(T)>H Davi(r))%ch)ds

e (e

X gi (T, v (1), u (r), D‘sui(r)) %dr) dm) ds} },

2
T3 (ui, v:)(t)
t—k

= T /j Sk—1(/15 (log ;)9—2% (r, i (1), ui (1), 2 D‘sui(T))ldT)d&

for all t € [1, €], (u,v) = ((u1,v1), (uz,v2), ..., (w19, v19)) € Be.
Let

T(u,v)(t) = (T (u,0)(£), T® (u, v)(t))

T (u,0)(t) = (T (uw,0) (1), TV (u, 0)(1)),

T (u,0)(t) = (T (u,0) (1), T5? (u, v) (1)),

T (u,0)(8) = (T (ur, v0) (8), 53 (2, 02) (2), ., Tig ) (w0, v10) (1)),
T5Y (u,0) (1) = (T (ur, v1) (8), T53 (2, 02) (2), ., Ty (a0, v10) (1)),
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2 2 2 2
T (u,0)(8) = (T2 (wr,00) (8), ToZ) (uz, 02) (£), ooy Tigh (urg, v19) (1)),
and
2 2 2 2
T3 (u, 0)(8) = (T3 (wr, 01) (£), To % (uz, 02)(£), ooy Tig (ung, v19) (1))
Setting x = (:1: z, ) y= (y;,y;/) € B.,i=1,2,...,19, we then have

i) ?

T (g, 2 ) (8) + T3 (37 ) (1)
< i (7 [ o aogoyrras) {1
e e (] ey

g} (), 23(r). 7 DO ()| ) dm) ds
by —k e s B ) ) ) )
=D / (/ (tog )| fu(r, i), ] (), D" <r>>|rd”)ds]
—k e s
[y [ ([ 0ot i) D) s

g [
x| fi(r, z,(r),z, (r),” Dz, ()| %dr) dm) ds} }

tfkr t 3 s S\q—2 , . o 1
Jrr(q_l)/l st 1(/1 (log ;) | fi(ryyi(r), i (), Dy, () ;dr)ds
L; ( M| By piz| As| |A| )
T Al(g—-1)\I(g+1)  T(¢g+2) ql'(g—1)
Qi A2|Ba| fi1| Az |
NINCED <F(p+2) F(p+1))
1
+m(K1|Bz| +K2|A2|>

= L;G1 + Q;G2 + My,

1 1 ’ 1"
DT (@}, 7))+ DTS (v, (0]

grulaei)/%bg) | (@ (0 |“

! d 1)
FO—@@%)A<bg)!T (i 7 )( ]@
(LiGr + Q.G + M),

+

—I(1-9)
We can also get
|7 (i )(0) + T3 (0w ) ()] < LiGa + QiGa + Mo,

1" DT (2,2 ) () +7 DT (! ) ()] < (LiGs + QiGa + M) .

1
I'l-a)
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Hence
1T, 1) + (T3 1) | oy = Z (1@ 1) + (@8 T v, ) <&

which implies (Tl(l), Tl(z)) (T(l) T(Q))y € B.. Therefore, condition (i) of Theorem
2.1 is satisfied. For (ug,v;), (u;,v;) € Bz, we have

T3 (it we) (8) = T3 (03 (1)
1 ( )\1’B2’ /,LQ’AQ‘

< , AT ol
1 )\2|Bz| ,[L1|A2| ) ) _ ’
=T Tz * T 2y el (s = willx, + s = ille)
= (1151 + lla:llG2) (Jlus — —vllv.),

’

" DT (i i) (8) =1 D‘STZS? (us, v;) <t>\
- (s + ||ql||G2) (s =

Moreover, by the similar way we obtain

T3 (g, 00) (1) — T3 (u, 07)(8)

-

< (1L:)1G5 + llgallSa) (JJus — wy] —villvi),
1" DT (i, 1) (1) =2 D“Tﬁ) (us, ;) (8)]
(111G + l1a:1S2) ,

> F(l— ) (” Ui —u lvi —v; Yl)~

Hence
||(T“> T w,0) (@) + (T, T @0 ) O oy

’

- Z (II¢ A’J@?) (wir ) (0) + (T, TD) (] 00) (1)

)

_ + D ([I5)1S1 + gl G2) | (T =) + 1)(1LIIGs + [lg:llS2)
Z{ T(1—0) M T(1—a) }

’
x (llws = willx, + o = villv;)
19
’ !’
<> 0(llus — willx, + llos = villv.)-
i=1

According to Zil ©; < 1, we obtain operator (Tl(l),Tl(Q)) is a contraction on
B.. Then the condition (i) of Theorem 2.1 is satisfied. Finally, we show that
the operator (T2(1),T2(2)) satisfied the condition (iii) of Theorem 2.1. For each

(u,v) = ((ul,vl), (u2,v2), ..., (ulg,vlg)) € B., one has

|3 (uiy 03) (1)
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—k t s
: ﬁ / Y / (1og )" i (ry i), vi(r). " Dwr))y;dr)ds
L;
S T(g+1)
T3 (ui, v Li O _Q
" Dot (uz,vl)(t)|Sm_é)r(qﬂ), 7,5 (uz,vz)(t)‘gr(p+l)7
and 0
am(2) i
S ]
Then

T, T8 (u,

1

—~

HX><Y

©

(T 7E) (i, v 1)

1 )

9
) QIT1-a)+1)
{ 5 q+1)+F(1—a)F(p+l)}’

7

Ju

i=1

which implies that (T§1)7T2(2))

show that the operator (Tz(l), T2(2)) are equi-continuous. Let t € [1,e] with t; < to.
Then we have

are uniformly bounded on the subset B.. Next we

T3 (s, 03) (t2) = T3 (i, 00) (1))

L; o
STe-1* /1 ’

7F(qL— l)tl_k /1)51 sk_1</1S (log;)q_Q%dr>ds

- sz;bif 1);1:5!]5 1t1 Sk_1(/1$ (log r)q 21 )ds
et J, (] o e

Hence |TZ-(’12)(ui,vi)(t2) — Ti(é)(ui,vi)(tl)‘ — 0 as ta — t1. On the other hand,
since we have

—
/
»—\

w
—
—
o
09
.
_Q
|
U
3
N——
QU
VA

lim ‘ DéT(l)(uZ,UZ)(tQ) HD(STZ-(’IQ)(ui,Ui)(tl)’ — 0,

to—t
@ (4 v
tz}l—rgl |Tz 2 uﬂvl)(t?) Ti,Q (u“v%)(tl)‘ — 0,
dim |7 DOTE) (i, i) (82) = DTS (i, vi) (1) = 0,
2—t1 ’

thus

(T, T52) (u,0) (t2) — (T3, T52) (w,0) (1) || o

= >3 (512 (i i) (t2) = (TE, T3 (w0 (1) v, )
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— O(tg — tl).

Above all the operator (Tz(l), T2(2)) is equicontinuous. By applying the continuity of
functions f; and g; on [1,e] x R x R x R, we can conclude that operator (Tél), T2(2))

is continuous. The Arzela-Ascoli Theorem implies that operator (Tz(l),TQ(Q)) is
compact on B.. According to the Theorem 2.1, there exist z = (21, 22) € B, such

that z = (Tl(l),Tl(Q))z + (Tg(l),TQQ))z. Therefore, problem (1.1) has at least one
solution on [1,e]. This completes the proof. O

4. Ulam-Hyers stability

Let &,¢ >0, fi, i : [1,e] xRXRxR — RY, (z = 1,2, ..., 19) be continuous functions
and ¢;(t),;(t) : [1,e] = R are nondecreasing continuous functions, consider the
following inequalities:

| (FD? 4+ EF DIV u(t) — fi (tuilt), vi(t),” Dv;(t)) | < &,

| (FDP + K DP=Y) v;(t) — gi (¢, 0i(t), us(8), Dous(t)) | < G, (4.1)
tele], i=1,2,..,19,

| (7D + KT DY) ui(t) — fi (8 us(t), vi(t),” Dvs(t)) | < i),

| (FDP + KT DP=1) vi(t) — gi (t,vi(t), us(t),” DOus(1)) | < ()G, (4.2)
telel,i=1,2,..,19,

| (D9 + KDY wi(t) — fi (t,ui(t), vi(t),” D;(t)) | < @i(t),

| (FDP + KT DP=1) 05(t) — gi (¢, i), us(t),7 DOus(t)) | < (), (4.3)
telel,i=1,2..19.

Definition 4.1. Couple system (1.1) is called Ulam-Hyers stable, if there are con-
stants dy, ¢, 1o > 0 and pg, g,....go > O that make each § = £(&1,62,...,&19) > 0
and ¢ = ¢(¢1,¢2, -+, C19) > 0, each solution (u,v) = ((uhvl)7 (u2,v2), ..., (ulg,vlg))
€ X x Y of the inequality (4.1), there exists a solution (u*,v*) = ((uf,v}), (u3,v}),
oo (U9, v]9)) € X x Y of (1.1) with

”(uvv) - (U*vv*)”XxY < df17f2 »m,fwf +p91,92,~-»’919C7 le [176]'

Definition 4.2. Couple system (1.1) is called generalized Ulam-Hyers stable if
there exist functions wy, .., € C(RT,R") and wy, g,....90 € C(RT,RT) that
satisfy with wy, ¢, £,(0) = 0 and @y, g,,...,9,0(0) = 0, such that for each { =
&(&1,&2,...,&19) > 0and ¢ = ¢(¢1, (o, ..., C19) > 0, for each solution (u,v) = ((ul,vl),
(u2,v2), ..., (u19,v19)) € X x Y of the inequality (4.1), there exists a solution

(u*ﬂ]*) = ((u”{,vf), (uavvg)? ) (UT97UT9)) € X xY of (11) with

||(u,v) - (U*’U*)HXXY < wf17f27-~,f19(5) + wgthv-":ng(C)’ te [1’8}'

Definition 4.3. Couple system (1.1) is called Ulam-Hyers-Rassias stable with
respect to Y = 30(901’9027"'7§019) S C([17e]aR+) and ¢ = ¢(T/)1a¢2’-~-a¢19) S
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C([1,e],RT), if there exist constants dy, 7, 10,0 > 0 and pg, g, g0, > 0, such
that for every £ = £(&1,&a,...,&19) > 0 and ¢ = ((¢1, (2, ..., C19) > 0, for each solu-
tion (u,v) = ((ul,vl), (u2,v2), ..., (U19,U19>) € X x Y of the inequality (4.2), there
exists a solution (u*,v*) = ((uf,v}), (u3, v3), ..., (ufg, vi)) € X x Yof (1.1) with

||(’LL,’U) - (u*av*)HXxY < df1,f2,---,f197s0€90(t) + Pgi,g2,..,919, 1/14.1[)( ) te [1’6]'

Definition 4.4. Couple system (1.1) is called generalized Ulam-Hyers-Rassias sta-
ble with respect to ¢ = (1, P2, ..., p19) € C([1, €], R") and ¢ = (1)1, s, ..., P19)
€ C([1,e],RT), if there exist constants dy, 7, 100 > 0 and pg, gs... 10,0 > 0,
such that for each solution (u,v) = ((u1,v1), (uz,v2), ..., (U19,v19)) € X X Y of the
inequality (4.3), there exists a solution (u*,v*) = ((uf, v}), (u3,v3), ..., (ufg, viy)) €
X xY of (1.1) with

||(u’v) - (u*7v*)||X><Y < df17f2,~~7f197s0<p(t) +p91,927-~7919,¢¢(t)7 te [176]'

Remark 4.1. Let function (u,v) = ((u1,v1), (u2,v2), ..., (u19,v19)) € X x Y sat-
isfies inequality (4.1) if and only if there exist functions ¢;,0; € C([1,e],R)(i =
1,2,...,19) such that

1) lga(®)] <&, 16:()] < sz tele], i=1,2,.,19;

(i) (¥D?+ kDY) wy(t) = f; (£ wi(t), v ()HD“vz(t))wL@(t),
(1 DP + kM DP=1) y( —gi (t,vi(t), us (), D2u;(t)) + 0;(t),
tellel, i=1,2.., 19

Remark 4.2. Let function (u,v) = ((u1,v1), (u2,v2), ..., (u19,v19)) € X x Y sat-
isfies inequality (4.2) if and only if there exist functions ¢;,0; € C([1,¢e],R)(i =
1,2,...,19) such that

(i) |d:(t)] < @i(B)&, 10:(t)] < ¥i(t)Ci, t € [Lye], i=1,2,...,19;
(ii) (DT + k"D Y u;(t) = f; (twilt), vi(t),” Dv;(t)) + ¢4(t),
(ADP + EHDP=1) v;(t) = g; (£, vi(t), us (), Douy(t)) + 6;(2),
€l,e], i=1,2,...,19.

Remark 4.3. Let function (u,v) = ((u1,v1), (uz,v2), ..., (w19,v19)) € X X Y sat-
isfies inequality (4.3) if and only if there exist functions ¢;,0; € C([1,¢|,R)(i =
1,2,...,19) such that

(1) [ < @i(t), 10:(t)] <vu(t), t € [1,€]
(ii) (D9 + k" DI=1) wu;(t) = f; (t,us(t), vi(£),” Dv;(t)) + ¢i(2),

(HD;D + k,HDp—l) vi(t) = g; (t,Ui(t)7Ui(t),H D‘suz(t)) + 6;(¢),
tellye], i=12,..,19.

~
\
—
J‘\D
—
©

Lemma 4.1. Assume that (u,v) = ((ul,vl), (ug,v2), ..., (ulg,mg)) € X xY is the
solution of the inequalities (4.1). Then, the following inequalities hold:

lui(t) — wi(t)] < G1&i + GG,
lvi(t) — 0i(t)| < G3& + GuG,

~ G1& + Gag
Hpne, _H 5~ < 1 2
‘ Du,(t) D ul(t)| < 7”1 —3)
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and
G3& + GaG

[T D%v;(t) =" Doy (t)| < T(i—a)

as(t) = G /1 " log $)12ds ) {32 [Kl
g e e P
_F?;e_‘kl) /1esk—1(/ls(1og yo-2lulr dr)ds}
A [ )
R / ‘9“(/18 = /lm (tog )2 240y dm)dﬂ }

+ F((t}_’“ 0 /j skl(/ls (log ;)q%@dr)ds,

ui(?) :% ( / t s+ (log s)72ds) {A1 [Kz
i [ e ey
F*Z,)_U/(/U GECTE
olgg () <log§>q-2’“7““>dr)ds &
“rg (e ey ) am )

+ F(;__k 0 /j skt (/: (log;)pﬂ@dr)ds,

hi(t) = fi (t,ui (1), vi(),F D*v;(1)), i =1,2,...,19,

zi(t) = g; (t,vi(t),wi(1),” DOuy(t)), i =1,2,...,19.
Proof. Since (u,v) is the solution of (4.1), then by Remark (4.1), (u;,v;) is the
solution of the following problem:

=

and here

(D9 + KH DI 1Y w;(t) = fi (t,ui(t), vi(t),”! DY;(t)) + ¢4(t), t € [L,¢],

(ADP + KFDP=Y) v;(t) = g; (t,vi(t), ui(t),T Douy(t)) + 0;(t),

ui(1) =0, v;(1) =0, (4.4)
Aui(e) = Ao [L U8 ds = Ky,

pvi(e) — po [ ds = Ky, i =1,2,...,19.
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For simplicity of presentation, we let

hi(t) = fi (8, ui(t), vi(t)," Dv;
z(t) = g (t,vi(t), wi(t),” Du;

N
—~
~
~—
~
<.
—_
[N
—_
e

(1), i=1,2,..,19.
Then, by Lemma (2.1), the solution of (4.4) can be given in the following form:
¢
u;(t) :%(t_k/ sk_l(logs)q_st){Bg [Kl
1
A2 © k1 /S k—1 /m myp—22i(r) + 0i(r)
log — ———2dr)dm)d
+F(p—l)/ls (1m (1 (Ogr) r r)m)s
Aem [ /s s\vq—2hi(r) + ¢i(r)
- log — ————2dr)d
F(q—l)/ls (1(0g7’> r T>S
—k e S
Hie k—1 syp—22i(r) + 0i(r)
Ay | =—— log = —————2dr)ds — K.
+ 2|:F(p_1)/18 (/1 (Ogr) - 7’)5 2
H2 < k1 /8 k—1 /m m\q—2
- s m log —
F(q_l)/l (1 (1 ( gr)
X 7}”(” + ¢i(r) dr) dm) ds] }
r

n I‘(;_—k 5 /j Sk—1(/18 (log ;)q—2 hy(r) J; ¢i(7")dr)d87

vi(t) :% (tik /1t s 1(log s)pfzds) {A1 [Kz
s [ O )
- FA(L;_?) /1 Skl(/ls (log j)p_zwclr)ds}
e R A OOt

o [ ([t ([ o Ty g

rip | (] ey

Then, we deduce that

|ui(t) — w(t)|
1 t

t=% [ " I(log s)q_st)
1

(
x {Bg[mﬁ 5 /js‘k 1 / /1m ) 295 )dr>dm)ds
ek ¢ s s r
R [ oty
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+A2[r’ff__i> /1 SH(/IS (log ;)pﬂ@dr)ds
s [ sl

* r(rtz_k 1) /j a ( /1 (1og é)qim%(r)dr) ds

LBl mlal Ny,
S rERISrrs e veEs Ry
L alBl el
+|A|<q—1><r<p+2> r<p+1>)<z
=G1& + GG,

1 DOus(t) =7 Douy(1)]

1 d t to s i .
§F(l—é)(tahs)/l (log =) " |ua(t) — s (1)| ds
STT(-0)

By the similar way we obtain

”Ui(t) - @i(t)’ < Gs& + Gag,

H s H 1o~ G3& + GaG

The proof is cmpleted. O

Lemma 4.2. Assume that (u,v) = ((u1,v1), (uz,v2), ..., (u19,v19)) € X X Y is the
solution of the inequalities (4.2). Then, the following inequalities hold:

|’U,1(t) — U, (t) |

el (AI‘B2‘(§£i)$ padal o B 0)e + Gt
[ D%u;(t) =" Doy (1))
ST - 11)F(1 —5) (A1|BQ|(12(Z i);; alda] ey 4 qF(Z\'_l)soi(t))&
+ féwi(fs)) G
And
|vi(t) — vi(2)]
: |A\<p1 —1) (MI‘A1’<§<;32+> 2Pl 0+ pp(pA'_Dw@))ci + Gspi(e)é,

‘HD(SUi(ﬂ _H Déﬂi(t) ’
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1 plA|+ D) +2[Br| AL
Wo-ora-wml Tery O g t0)s
Gspi(e)
T

Proof. Using the some argument as in the proof of Lemma 4.1 and Remark 4.2,
we can conclude that

|ui(t) — a;(t)]

_ U MBel(a+ ) +pslAs| Al N, e
_|A|(q—1)< F(q+2) 301( )+ qr(q_l)%(t)>fz+G2¢z( )Cz;
’HD‘Sui(t) _H Dé’ﬁi(t)’
1 Mi|Ba|(g+1) + pa|As| Al N,
“TAlG-1ra-s ( (g +2) #ile) + g - 1)%(0)&
Gati(e)
+ T(1—9) G
and
|vi(t) — vi(t)]
1 A+ +N|Bi AL o) s
< |A\(p — 1) ( F(p + 2) 1/%(6) + mdﬂ(ﬂ)g + G3(pz(e)£u
|HD51}1‘(LL) —H D(;T}i(t)’
1 /L1|A1|(p+1)+/\2|31| (e |A| ) .
STy ] G T aa G R S R
Gsypile)
T —a) i
This completes the proof of Lemma 4.2. O

For computational convenience, we set

I'(1—a)(T(1—6)+1)Gy +T(1—6) (D1 —a) + 1) Gs

B = T(1-6)I(l—a) ’
b _P1—a)(T(1-8) + 1) Gy + (1 =) (M1 —a) + 1) 4
> I(1—46)r(1-a) ’
By = (CA—4)+1) (A1\32|(Q+1)+N2 | Az|
[Al(g = DI'(1 = 4) I'(g+2)
Al [Al(g = DI =0)(T(1—a) +1)
+qf(q— 1) * T(1—a)(T(1—-0)+1) G3)’
B, = (C(—a)+1) (ﬂl [Az| (p+1) + A2 | By
Al(p - DI'(1 - ) L(p+2)
Al [Al(p = I(1 — ) (T(1 - 4) +1) )
pL(p—1) (C(1 —a) + 1)T(1 - 4) 2

Theorem 4.1. Assume that to condition (H1) and Theorem 3.1 hold. Then the
solution of the system (1.1) is Hyers-Ulam stable.
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Proof. Let (u,v) = ((u1,v1), (u2,v2), ..., (u19,v19)) € X X Y be solution of the
inequalities given by

| (D9 + KT DY) wi(t) — fi (8, us(t), vi(t), Dvs(1)) | < &,

te(le], i=12,..,19,

| (FDP + kT DP=1) vi(t) — g; (t,vi(t), wi(t),” Dous(t)) | < ¢,

te(le], i=12,..,19,

and (u*,v*) = ((uf,v}), (ub,v3), ..., (ufg,viy)) € X x Y be the solution of the
following system

(AD?+ KT DY) wp (t) = f; (¢, ul(t), v} (), D} (t)), t € [1,¢€],

(0P + kT DP=1) wi (8) = gi (807 (1), uf (1), Doui(t)),

ui (1) =0, vi(1)=0, (4.5)
Au(e) — Ag /1e %ds =K,

S

uw;-*(e)—uz/ ) g~ Ky i=1.2,..10.
1 S

Then by Lemma 2.1, Theorem 3.1 and system (4.5) has a unique solution that
can be written as

(t)

(t*k /j 5" (log s)q*st) {32 {Kl
p(;\il)/le‘skl(/lsmkl(/lm(log:?)pz

xgu(r, v (1), (), DO (1)) ) dm ) s

- [ ([ (o2 i 00 D) )|

*

£

+ ==

Ilg—1)
+As [If(;l)e_kl) /16 Skl(ﬁs (log ;)szgi(r, v;‘(r),uf(r),H D5Uf(7’))%d?")d5

oy [

x fi(ryuf(r), v} (r),” D (r)) %dr) dm) ds} }
v | oD 000, ) )

and

<

STy

()

(t‘k /1 t sk—l(logs)P—2ds) {A1 [KQ

=)=



936

J. Nan, W. Hu, Y. Su & Y. Yun

o e

% folr w3 (), 7 (1)1 D (1) ) dm ) ds
_ piek /le sk1</18 (10g 2)1’*291_@ vf(r),uz‘(r),H Déuf(r))idr)ds}

L(p—1)

+Bl [Ale: [ ([ 0w )2 At (0,000 Do ) )

I'(g—1

g [ e

xgi (02 (), ul (r),F DPu () dr dm) ds}

+t_k) /1tsk—1(/15(10g8)172gi(r,v§(r), wi(r), 2 Dol (r ))%dr)ds.

T'(p-1 r

For simplicity of presentation, here we let

hi(t) = fi (tui(t),vi(t)," D0;(t)) — fi (t,uf (t),vf (1), D} (1)),
zi(t) = gi (t,vi (1), wi(t)," Dousi(t)) — g (t, 07 (1), u; (), DOui (1)) .

Now, by Lemma 4.1, for ¢ € [L, e], we have

< ua(t) — wi(t)| + \az —uy ()]

< Gi&i+Gali+ (t"“/1 ‘l(logS)q‘QdS){|B2|
X [F(p)\i ) /16 S_k_1</18 mk_l(/lm (log %)”‘2 |Zi7(f)|dr>dm)ds
R ([
el [ oyl
g [ [
+r(2_—k1) [ sk—l(/ls(logi)q‘QWdr)ds

r) dr)dm) ds] }

1 M| B |
< Giéi + GoGi + [Al(g—1) (F(q +1)
/1/2’142‘ |A| . —N e
Tq+2) " ar(g- 1))||lz||(||uz ujllx, + lloi = illy.)

1 Xo| B p|A . "
. ( 2| Bo| 1] 4o )Hqu(Hui—ui||xi+||vi_vi||yi)

Al(g—=1)\I'(p+2) T(p+1)
= G1& + GoGi + (IL)1Gy + laillG2) (lus — uillx, + [lvi = vfly,),
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|7 Du;(t) = D (1)
< " D%u(t) =" DPwi(t)| + [ D°wi(t) = D°uj (1)

G1& + Gal; 1 dy [, t.—s|"Du(t) —H Dous(1)]
= TT(-9) F(l—é)(tdt)/ (log ) p

ds

Gi&i + GoGi | LG+ gl Gy B
= r'(1-9) + I(1-26) (H u; — ug || x, + [lvs UZHY)
Hence

[EHOREHOIP
ra-9+1, ., 4

< W(Gﬁz + G2¢;)

0)+1 . .

+M(Hli”G1 + gl G2) (llui = uillx, + llvi = o7 [Iv;)-

I'(1-9)
In a similar way, we have

[vi (t) — o7 ()] < |vi(t) — vi(t)] + [0:(t) — v} ()]
< Gs&i 4 Gali + (ILIIGs + laill Ga) (Jus — i llx, + llvi — o7 llv)

and
|HD61)1'(t) _H D% *( )‘

G3& + GuG | |GG + ||lgil|Ga
- I'l-w) 'l —a)

(Jwi = uillx; + [lvi = villvi) -

Then, we obtain

[[oi(t) — v ()lly,
< M

< Tl —a) (G3§i + G4C¢)
INQRE 1
CCTED (G + all62) (s~ v + s = 7).

Which gives

(i, v2) (8) = (7, ) ()|l x, v,
_ F(l—a)(F(1—5)+1)G1+F(1—6)(F(1—o¢)+1)G3§4
= I(1-6I(l-a) ‘
T(1—a)(D(1—38)+1)Gy+T(1—8) (T(1—a)+1)Gy
* r1—6)r(1-a) Gi
L[A LA = 0) (lllGr il G2) | A +TA =) (1llGs + lla:|Ga)
T(1-90) I'(l-a)

X (ui = il x; + [lvi = v7llv:) s

1, 0)(8) = (u*, v*) (Dl x v
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= ZH ug, v;)( (ui, v)) (Ol x, < v,

(1-a)(I(1=6)+1)G1 +T(1-0)(T(1—a)+1)G:
= Z ( r(1— 15)r(1 —a) &
F(l—a)( (1-6)+1)Go+T(1-08)(T(1—a)+1)Gy ..
+ I'(1-0)Ir(1l—a) G
+[(1+F(1—5))(IliG1+IIQi|G2) n (L+TQA—a)) ([LllGs + [lail|Ga)
T(1-90) (1—a)

x (s = w1, + llog = o} ly:) )

Hence
Z%l (E1§ + ExQ)
w,v)(t) — (u*,v*) (¢ < == ) 4.6
1w, 0)(8) = (u*, 0") (D) x ey Ty A (4.6)
Thus, we have derived that system (1.1) is Ulam-Hyers stable. O

n (4.6). We have wy, 7, f, (O) = 0 and f%j-hh ,,,,, #,(0) = 0. Then, by Definition
4.2, we deduce that the fractional differential system (1.1) is generalized Ulam-Hyers
stable.

Theorem 4.2. Assume that to (H1) and Theorem 3.1 hold. Then the solution of
the system (2.1) is Hyers-Ulam-Rassias stable.

Proof. Define o(t) = tren[?x]{@i(t)} and o(t) = tren[fll}é]{wi(t)}’ i=1,2,..,19.

(u,v) = ((ul, v1), (U2, v2), ..., (U19, 1119)) € X XY be any solution of the inequal-
ities (4.2) and (u*,v*) = ((u},v}), (u},v3), ..., (uiy,v:%)) € X x Y be the unique
solution of the system (1.1). Now, by using Lemma 4.2 and proceeding as in the
proof of Theorem 4.1, we have

ui(t) — u; (t)]

< uit) —ai ()] + [wi () — uf (t)]

1 |B2’ q+1)+u2]A2\ [A]

S Allg=1D) ( (g +2) eie) + m%(ﬂ)fz‘
+Gathi(e)Ci + ([LllGr + [laillG2) (lui — ufllx, + llvi — v]ly,)

1 >\1|B2}((J+1)+u2}A2| P R
|A|(q - 1)F( ) ( F(q + 2) 901( ) + qF(q — 1) Qpl(t))fz
Cou(e) . IlC + G )
+ (2 ) G+ le ) 2(H |X1-+||Ui—vi yi)’

|vi(t) — o7 (£)]
1 p1|Ar|(p+ 1) + 2| By
= A -1 ( T(p+2) vile) + mwi(t))ci
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+Gspi(e)& + (IL11Gs + lg:l|Ga) (lui — uillx; + [lvi = v7 ;) ,

|HDO‘UZ(t) = Dvr(t)|

1 pa|Ar|(p + 1) + Xe|By| |Al
S P (] S V) )+ Sy i)
Gspile) , | |ILlGs + |aillG . .
T ey T T ey (sl e = v ).
Then, we get
s () — i ()],
(CAL-4)+1) ()\1\32|(Q+1)+M2 |A2|@‘<e) Al
~ |Al(g - 1)r(1 -9) I(g+2) ' YCESOA

(D(1—=0)+1)
e

(T(1=6)+1)
WGﬂ/h‘(e)Ci,

(111G + llaillG2) (lus = uillx, + llvi = o] [Iv.)

and

[[0i(t) — o7 (B)]ly,

CA-a)+1) A (p+1)+X2|Bi] . Al
S PR (] G e e U R sy
W(Uims + 1l Ga) (lui — ufllx, + [lvi = v][|y;)

+WG3%(€)§.

Hence

[[(w, 0) () = (™, 07) ()| x sy

_Z” umvl ’LL“’UZ)( )||Xi><Yi

T(1=38)+1) (AilBa|(g+1) + 2| As|
‘Z(|A|<q—1>r<1— >( Tg12) pie)

Al [Allg =DI(A =) T - ) +1)

e 1)%“) B ¥ Gy ¥ G G3‘Pi(e))§i
(F(l—a)Jrl) w1 A1) (p+1) + A2 | By " \A|
+|A\(p— )F(l—a)( I(p +2) Vi )+pF(

Al(p — DI(A = ) (P(1 - 6) +1)
(T(1—a)+1)0(1 - )

Gatii(e) )G

vil) G
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Yi)),

S, (Bso(t)€ + Eso(t)C) '

+A; (Jlui — uf|

x, + [lvi —vf

u,v)(t) — (u*,v*) (¢ < 4.7

[, 0) () = (" 0") (D) x v —y" 4, (4.7)
Therefore, we arrive at the conclusion that the system (1.1) is stable for Ulam-
Hyers-Rassias. O

Remark 4.5. Taking { = ¢ =1 in (4.7), then by Definition 4.4, we conclude that
the system (1.1) is stable for generalized Ulam-Hyers-Rassias .

5. Numerical simulation

In this section, an example is provided to illustrate the flexibility of these criteria and
approximate graphs of the solution are given with iterative methods and numerical
simulations.

Example 5.1. The glucose graph we studied in the system (1.1) can be extended to
other types of graphs. For example, star graphs and chord bipartite graphs provide
a theoretical basis for physics, computer networks and other fields. Here we only
discuss the fractional differential system on the star graphs (i = 1,2) Figure 11. We
mainly study the existence of solutions of differential equations on each edge of the
star graphs and the stability of Ulam.

(#D% + 29D ) uy (1) = L (sin(us (1)) + sin(o; (1)) + ‘HD%ul(t)D 1244,

30t
] sin(ui (£)) + cos (HD%ul (t)) + oy ()]
(HD?+2HD§)U1(75)= RS + cos(t + 1),
("Dt 2D} us(t) = o, _TeoO_ g, D s (o)
(T4+)5 \ 1+ |ug(t)] 1+ [va(t)]
+1,
P z 1 vz ()| lua(t)] 1
HD 8 2HD7 — S ‘HD ’
(70 42708 ) att) = G (i * T gy "0
+t,
Ul(l) = Oa Ul(l) = Oa
u2(1) = Oa UQ(]') = Oa
duy(e) — 0.2/ ouls) g .
1 S
duy(e) — 0.2/ va(s) 4o 3,
1 S
e
21 (e) — 0.1/ ul®) 4o 5
1 S
2us(e) — 0.1/ “2£5)ds =5 i=1,2,..,19.
1

(5.1)
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()
() )

Figure 3. A sketch of the star graphs Figure 4. A sketch of the directed star graphs

Corresponding to the system (1.1), we obtain

15 3
p 87q 27 70{

AQZO.Q’ ,LL1=2,,LL2:O.1, K1 237 K2=5

We establish coordinate systems with v; and vy as coordinate origin respectively
on the star graphs with 2 edges Figure 12, where (uj,v1) is a set of coupled solution
of system (5.1) on n, t € [1,e]. By the same token, (ug,vs) is a set of coupled
solutions of system (5.1) on vavg, t € [1, €].

Let

ll = 12 = ‘61| = |62| = €.

For t € [1,e] and u,v, z,u1,v1,21 € R, it is clear that, we have

1
‘fl(t,Ul,’Uth) - fl(t,U,’U,Z)‘ < 7(|U1 _u‘ + |U1 _U| + |Z1 - Z|)’

30t
1
| falt,ur, 01, 21) = fit,u,v,2)| < 1 +t)5(|U1 —ul+ |v1 —v| + |21 — 2]),
1
lg1(t, u1,v1,21) — g1 (¢, u, v, 2)| < mﬂul —ul + [ = v| + |21 = 2]),
‘f?(t7u17v1721) - fl(t,u,'U?Z)‘ S (5 —|—t)2(|U1 - U’| + |U1 - U| + ‘Zl - Z|>7

so condition (H;) holds, we have

1 1 1 1
=z blt)=T—5 at) = 55—, @)=
s 20 = e @0 = ey 0= g

Ay = 2.56, Ay = —0.2306, B, = —0.1364, By = 0.9334,
Gy = 3.1403, Ay = 0.2496, By = 0.2363, By = 1.9651,

2
ZAZ- =0.6802 < 1.

i=1

It follows from Theorem 3.1 that system (5.1) has a unique solution on [1,e]. In
addition,we know that

S; = 2.3881, S, = 1.4057,
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we can get Z?:l 0; =0.5200 < 1.

It follows from Theorem 3.2 that system (5.1) has at least one solution on [1, e].
System 1.1 is not only Ulam-Hyers stable, but also generalized Ulam-Hyers stable,
since that satisfies condition (H;) and Theorem 3.1. Furthermore, the Ulam-Hyers-
Rassias and generalized Ulam-Hyers-Rassias stable are satisfied. Finally, the frac-
tional differential system (5.1) approximate solution and simulate iterative process
curve are provided using the iterative method and numerical simulation. Following
is our iteration sequence with initial value w10 =v;0=0,¢=1,2,

_ ¢
Uint1(t) = agl)t_k/ s*"1(log 5)92ds
1

t
e / SV (5 g (8), 01 (5), 5 D030 (5)) ds,
1

s

t

i () =W [ o o2

t
+tik/ SkilHIpilgi (s;vi,n(s)aui,n(s)aH Déui,n) dS,
1

1 dy [* ty—
H-Déui,n-‘rl(t) = m(t%) [ (log ;) 6fi
1

X (s,uim(s),vi,n(s),H Do‘vivn(s)) —ds,
s

H na,,. — ; i /t E g
D% i1 (t) = I'(l1-—a) (tdt) 1 (log 5) gi
X (S7Ui,n(s)7ui»n(s)’H Daui’n(s)) %ds

Figure 5 and Figure 7 show the iterative process of a group of coupled solution
(u1,v1) of system (5.1) on 104, and Figure 6 and Figure 8 are the approximate
graphs solved on 10 after 20 iterations. Figure 9 and Figure 11 show the iterative
process of a group of coupled solution (us,vs) of system (5.1) on 0204, and Figure
10 and Figure 12 are the approximate graphs solved on 0204 after 20 iterations.

/u
P

Figure 5. Iterative process of u; Figure 6. Approximate solution of uy
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Figure 8. Approximate solution of vy
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Figure

10. Approximate solution of usa
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