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Abstract This article mainly studies univalence condition, the radius prob-
lem of fully starlike (fully convex) and uniformly starlike (uniformly convex)
for the harmonic mapping differential operator under specific coefficient con-
ditions. Firstly, several criteria for the univalence of harmonic differential
operator terms are obtained, followed by the fully starlike and fully convex ra-
dius of the harmonic differential operator D[f ] ∈ K2

H(λ). Next, the radius of
uniformly starlike and uniformly convex of the harmonic differential operator
is obtained. Finally, the radius of uniformly starlike and uniformly convex of
the harmonic mapping convolution differential operator is obtained.
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1. Introduction

A complex-valued function f = u+iv defined on the unit disk D = {z ∈ C : |z| < 1}
is harmonic if both u and v are real-valued harmonic functions in D. The canonical
decomposition of f is given by f = h + g, where h and g are analytic functions
defined on D, and they are respectively called as the analytic and co-analytic parts
of f . Denote by H the class of all complex-valued harmonic functions f in D
normalized f(0) = fz(0) − 1 = 0. Let SH denote the subclass of univalent and
sense-preserving harmonic mappings f = h+ g in H. Moreover, let S0H denote the
subclass of functions f ∈ SH with fz(0) = 0, where

h(z) = z +

∞∑
n=2

anz
n and g(z) =

∞∑
n=2

bnz
n. (1.1)

Lewy [15] proved that a harmonic mapping f = h + g is locally univalent and
sense-preserving in D if and only if Jf (z) = |h′(z)|2 − |g′(z)|2 > 0 for z ∈ D.
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This is equivalent to the condition that |ω(z)| = |g′(z)/h′(z)| < 1. The mapping
ω(z) = g′(z)/h′(z) is known as the dilatation of f = h + g. The subclasses of
SH are represented by the symbols S∗H , KH and CH , which consist of starlike,
convex and close-to-convex harmonic mappings, respectively just as S∗, K and C
are subclasses of S mapping D onto their respective domains. Define S∗0H = S∗H∩S0H ,
K0
H = KH ∩ S0H and C0H = CH ∩ S0H .

According to Clunie and Sheil-Small [8], it was conjectured that if f = h+ g ∈
S0H , then the Taylor coefficients of the series of h and g satisfy the inequalities

|an| ≤
(2n+ 1)(n+ 1)

6
and |bn| ≤

(2n− 1)(n− 1)

6
(b1 = 0, n ≥ 2). (1.2)

This coefficient conjecture remains an open problem for the full class S0H . However,
previous research has validated it for some subclasses of S0H , such as typically real
harmonic mappings [8], convex in one direction harmonic mappings [23], starlike
harmonic mappings [23] and close-to-convex harmonic mappings [24]. The equalities
occur if and only if harmonic Koebe mapping K(z) = H(z) +G(z), where

H(z) =
z − 1

2z
2 + 1

6z
3

(1− z)3
and G(z) =

1
2z

2 + 1
6z

3

(1− z)3
(z ∈ D).

Moreover, they demonstrated that if f = h+ g ∈ K0
H , then

|an| ≤
n+ 1

2
and |bn| ≤

n− 1

2
(b1 = 0, n ≥ 2). (1.3)

Equality occurs for the half-plane harmonic mapping L(z) = M(z) +N(z) given by

M(z) =
z − 1

2z
2

(1− z)2
and N(z) =

− 1
2z

2

(1− z)2
(z ∈ D). (1.4)

The field of complex analysis has shown significant interest in the question of
univalence for certain classes of complex mappings. In previous studies, a novel set
of analytic univalent mappings was introduced by employing a generalized Sălăgean
operator [3], leading to some notable findings regarding univalence and convexity.
Recent research, including a survey conducted by Reddy [22], has established suf-
ficient conditions for the univalence of analytic functions utilizing the differential
operator.

Abdulhadi [1] generalized the differential operator of harmonic mapping f(z) =
h(z) + g(z) ∈ S0H , by defining

D[f ](z) = zfz(z)− zfz(z) = h1(z) + g1(z), (1.5)

and with the dilatation

ω1(z) =
g′1(z)

h′1(z)
.

Similar to the role played by the analytic differential operator zf ′(z), the opera-
tors D[f ] also hold significant importance in harmonic mappings. In 1915, Alexan-
der [2] proved that if f ∈ S, then f(z) ∈ C if and only if zf ′(z) ∈ S∗. An application
of it to harmonic mappings was presented by Sheil-Small [23] in 1990, as mentioned
below.
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Theorem 1.1. If f = h + g ∈ H is univalent, and has a starlike range and if H
and G are the analytic functions on D defined by

zH ′(z) = h(z), zG′(z) = −g(z), H(0) = G(0) = 0,

then F = H +G is univalent and has a convex range.

Theorem 1.2. (Theorem 3, [18]) Let f = h+g be a harmonic mapping in D, where
h ∈ S∗(β) for some β ∈ (−1/2, 0], g(0) = 0 and g′(z) = ω(z)h′(z) in D for some
ω : D → D satisfying the condition |ω(z)| < cos(βπ) for z ∈ D. If H and G are
related by

zH ′(z) = h(z), zG′(z) = −g(z), H(0) = G(0) = 0, (1.6)

then for each |λ| = 1, the harmonic function Fλ = H + λG is sense-preserving and
close-to-convex mapping in D.

Theorem 1.3. (Theorem 4, [20]) Suppose that f = h + g is a sense-preserving
normalized convex mapping, and Df is sense-preserving in D. If the functions H
and G are related by the relations (1.6), then the harmonic function F = H +G is
univalent sense-preserving and starlike in D.

As stated in Theorem 1.1, considers the case of a harmonic mapping in D given
by f = h + g. It provides the insight that F has a convex range under certain
conditions. On the other hand, Theorem 1.2 and 1.3 explored similar setting but
focused on close-to-convex and starlike range. The comparison of Theorem 1.1 with
Theorem 1.2 and Theorem 1.3 illuminates the unique contributions of our study,
offering a comprehensive understanding of convex mapping and starlike mapping.

Convexity and starlikeness are the main research objects in geometric function
theory of complex variable that every starlike (convex) function maps each disk
{z : |z| = r < 1} onto a starlike (convex) domain. In [14], David Kalaj et al.
discussed the univalent and starlikeness radius of harmonic functions when the
coefficients of the series satisfy conditions (1.2) and (1.3). It was discussed in [7] that
the failure of the hereditary properties of starlike and convex harmonic mappings
gave rise to the concepts of fully starlike of order α and fully convex of order α.

Definition 1.1. A harmonic mapping f of the unit disk D, with f(0) = 0 is said
to be fully starlike of order α (0 ≤ α < 1) if it maps every circle |z| = r < 1 in a
one-to-one manner onto a curve that bounds a domain starlike with respect to the
origin satisfying

∂

∂θ

(
arg f(reiθ)

)
> α, 0 ≤ θ < 2π, 0 < r < 1. (1.7)

If α = 0, then f is fully starlike.

Definition 1.2. A harmonic mapping f of the unit disk D, with f(0) = 0 is said
to be fully convex of order α (0 ≤ α < 1) if it maps every circle |z| = r < 1 in a
one-to-one manner onto a curve that bounds a domain convex with respect to the
origin satisfying

∂

∂θ

(
arg

{
∂

∂θ
f(reiθ)

})
> α, 0 ≤ θ < 2π, 0 < r < 1. (1.8)

If α = 0, then f is fully convex.
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Let FS∗H(α) denote the subclass of S∗H consisting of fully starlike of order α
(0 ≤ α < 1), with FS∗H := FS∗H(0). Let FKH(α) denote the subclass of KH
consisting of fully convex of order α (0 ≤ α < 1), with FKH := FKH(0). In 1999,
Jahangiri [13] obtained the sufficient conditions that f ∈ FS∗H(α) as follows.

Theorem 1.4. (Theorem 1, [13]) Let f = h+g be given by (1.1). Furthermore, let

∞∑
n=1

(
n− α
1− α

|an|+
n+ α

1− α
|bn|
)
≤ 2,

where a1 = 1, b1 = 0, 0 ≤ α < 1. Then f is harmonic univalent in D and f ∈
FS∗H(α).

In the original research presented in [21], the following function denoted as

C1
H = {f = h+ g ∈ SH : Re fz(z) > |fz(z)| in D}

was extensively studied. In [17], the authors obtained new results by varying the pa-
rameter values, expanding upon the initial work presented in [21]. Specifically, they
derived novel results concerning the following two subclasses of harmonic mappings.

K1
H(λ) = {f = h+ g ∈ H,Re(h′λ(z)) > |g′λ(z)|, z ∈ D},

where hλ(z)=(h ∗ φλ)(z), gλ(z)=(g ∗ φλ)(z), and

φλ(z) = (1− λ)
z

1− z
+ λ

z

(1− z)2
=

∞∑
n=1

(1− λ+ nλ)zn.

Similarly, they defined

K2
H(λ) = {f = h+ g ∈ H, |h′λ(z)− 1| < 1− |g′λ(z)|, z ∈ D}.

The authors abtained the sufficient condition of f ∈ K2
H(λ) as follows.

Theorem 1.5. (Theorem 3.1, [17]) Let f = h + g be given by (1.1) with Jf (0) =
1− |b1|2 > 0. If

∞∑
n=2

(1− λ+ λn)n(|an|+ |bn|) ≤ 1− |b1| (λ ≥ 0) (1.9)

holds, then f ∈ K2
H(λ).

However, Brown [6] indicated that it is not always correct that f ∈ S∗ maps
each disk |z − z0| < ρ < 1 − |z0| onto a domain with respect to f(z0). He did
clearly reveal that the result is accurate for each f ∈ S and for all sufficiently small
disks in D. This stimulates the definition of uniformly starlike mappings, though
it was irrelevant to the work of Brown [6]. Section 4 is concerned with the radius
problem of uniformly starlikeness and uniformly convexity of D[f ]. The concepts of
uniformly convex mapping class and uniformly starlike mapping class are introduced
in [12], as defined below.

Definition 1.3. A locally univalent function f = h + g is said to be uniformly
starlike in the unit disk D, if f is fully starlike in D, and maps every circular arc γ
contained in D with center ζ also in D, to the arc f(γ) which is starlike with respect
to f(ζ).
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Definition 1.4. A locally univalent function f = h + g is said to be uniformly
convex in the unit disk D, if f is fully convex in D, and maps every circular arc γ
contained in D with center ζ also in D, to the arc f(γ) which is convex with respect
to f(ζ).

Let US∗H (respectively US∗0H ) denote the class of all such functions in f ∈ SH
(respectively f ∈ S0H). Clearly US∗H ⊂ FS

∗
H . Let UKH (respectively UK0

H) denote
the class of all such mappings in f ∈ KH (respectively f ∈ K0

H). Some sufficient
conditions for mappings in H belong to US∗0H and UK0

H are respectively established
in the following two lemmas.

Lemma 1.1. (Lemma 1.3, [10]) Let f = h + g, where h and g are given by (1.1),
and coefficients satisfy the condition:

∞∑
n=2

n(|an|+ |bn|) ≤
1

2
.

Then f ∈ US∗0H .

Lemma 1.2. (Lemma 1.4, [10]) Let f = h + g, where h and g are given by (1.1),
and coefficients satisfy the condition:

∞∑
n=2

n(2n− 1)(|an|+ |bn|) ≤ 1.

Then f ∈ UK0
H .

The convolution of harmonic mappings is a generalized form of convolution of
analytic functions. For two harmonic mappings

f = h+ g = z +

∞∑
n=2

anz
n +

∞∑
n=1

bnzn,

and

F = H +G = z +

∞∑
n=2

Anz
n +

∞∑
n=1

Bnzn,

their convolution in a simply connected domain is defined as

f ∗ F = h ∗H + g ∗G = z +

∞∑
n=2

anAnz
n +

∞∑
n=1

bnBnzn.

Harmonic convolutions was studied in [5,9,11,16]. In fact, the convolution of two
harmonic mappings may not keep their original properties, such as univalence and
convexity, which make the convolution of harmonic mappings widely studied. In
2012, Dorff [9] considered the half-plane mapping L in K0

H ⊂ KH as given by (1.4).
However, the coefficients of the product L∗L turn out to be too large for the product
to be in KH . The image of the unit disk D under L ∗ L is C \ (−∞,−1/4], which
is not a convex domain. Nevertheless, (Theorem 3, [9]) shows that L ∗ L ∈ S∗0H .
In [19], the starlikeness radius of the family

G =

{
f = h+ g ∈ H : |an| ≤

(n+ 1)2

4
and |bn| ≤

(n− 1)2

4
for n ≥ 1

}
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is determined, and it is shown to be r0 ≈ 0.129831, which is also the radius of
starlikeness of G. Furthermore, the radius of convexity of G is s0 ≈ 0.0712543.
This result demonstrates that if f, g ∈ K0

H , then f ∗ g is univalent and convex for
|z| < s0 ≈ 0.0712543.

The remainder of this paper is organized as follows. Section 2 establishes differ-
ent types of sufficient conditions for univalence of harmonic differential operator. In
Section 3, we investigate the fully starlike radius and fully convex radius of differ-
ential operators for a family of harmonic mappings K2

H(λ), where λ ≥ 0. Section 4
delves into the radius of uniformly starlikeness and uniformly convexity for harmonic
mappings involving the differential operator. Finally, in Section 5, we explore the
radius of uniformly starlikeness and uniformly convexity for differential operators
after harmonic convolutions.

2. Univalent criterion

In this section, we establish different types of sufficient conditions for univalence
of harmonic mappings involving the differential operator. We need the following
lemmas before solving the problems related to univalence of harmonic mappings
defined by differential operator D[f ]. Avkhadiev [4] et al. obtained Becker type
univalence conditions for locally univalent harmonic mappings defined in the unit
disk.

Lemma 2.1. (Theorem 1, [4]) Let h and g be mappings holomorphic in the unit
disc D and satisfying the following restrictions: h′(z) 6= 0 and |ω(z)| < 1 at any
point z ∈ D, where ω(z) = g′(z)/h′(z). If

|ω(z)|+ (1− |z|2)

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ < 1, ∀z ∈ D,

then the mapping f = h+ g is univalent on D.

For the class of univalent mappings f : D→ C, the following Becker’s condition
holds: (

1− |z|2
) ∣∣∣∣∣f

′′
(z)

f ′(z)

∣∣∣∣∣ ≤ 6, ∀z ∈ D.

This well-known inequality is a consequence of the classical result by L. Bieberbach
for f ∈ S. Next, F. G. Avkhadiev [4] considered a generalization of Becker’s
condition to the case of harmonic mappings defined in a half-plane.

Lemma 2.2. (Theorem 2, [4]) Suppose that the mappings h and g are holomorphic
in the half-plane Ω+ = {z ∈ C : x = Re(z) > 0} and satisfy the conditions:
h′(z) 6= 0 and |ω(z)| < 1 at any point z ∈ Ω+, where ω(z) := g′(z)/h′(z). If

|ω(z)|+ 2x

∣∣∣∣h′′(z)h′(z)

∣∣∣∣ ≤ 1, ∀z = x+ iy ∈ Ω+,

then the mapping f = h+ g is univalent on D.

Lemma 2.3. (Theorem 5, [4]) Let h and g be mappings holomorphic in the unit
disc D. Suppose that q,m and M are positive constants satisfying the inequalities:
0 ≤ q < 1, 1 < M/m ≤ exp{π(1− q)/2}. If

m ≤ |h′(z)| ≤M, |g′(z)/h′(z)| ≤ q
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at any point z ∈ D, then the mapping f = h+ g is univalent on the domain D.

Now, we obtain the conditions on the coefficients of the harmonic mapping
f = h+ g ∈ S0H such that D[f ] is univalent and D[f ] ∈ FS∗H(α).

By the representation of f , the function F = D[f ] is harmonic in D. So, we may
apply Theorem 1.4 with the function F in place of f and this observation gives the
desired result.

Theorem 2.1. Let f = h+ g be given by (1.1). Furthermore, let

∞∑
n=1

(
n2 − α
1− α

|an|+
n2 + α

1− α
|bn|
)
≤ 2 (2.1)

and 0 ≤ α < 1. Then D[f ] is harmonic univalent in D and D[f ] ∈ FS∗H(α).

Theorem 2.2. Let D[f ] = h1 + g1 be given by (1.5), and satisfy the following
restrictions:

∑∞
n=2 n

2|an| < 1, h′1(z) 6= 0, and |ω1(z)| < 1 at any point z ∈ D,
where ω1(z) = g′1(z)/h′1(z). If

∞∑
n=2

n2(2n− 1)|an|+
∞∑
n=1

n2|bn| ≤ 1, (2.2)

then D[f ](z) is univalent on D.

Theorem 2.3. Let D[f ] = h1 + g1 be given by (1.5), h1 and g1 are holomorphic
in the half-plane Ω+ = {z ∈ C : x = Re(z) > 0} and satisfy the conditions:∑∞
n=2 n

2|an| < 1, h′1(z) 6= 0 and |ω1(z)| < 1 at any point z ∈ Ω+, where ω1(z) =
g′1(z)/h′1(z). If

∞∑
n=1

n2|bn|+
∞∑
n=2

n2 (2x(n− 1) + 1) |an| ≤ 1, (2.3)

then D[f ] = h1 + g1 is univalent on D.

Proof. In order to show that D[f ] is univalent on D, by Lemma 2.2, it is sufficient
to show that

|ω1(z)|+ 2x

∣∣∣∣h′′1(z)

h′1(z)

∣∣∣∣ ≤ 1, ∀z = x+ iy ∈ Ω+, (2.4)

substituting ω1(z), h′1(z), h′′1(z) into (2.4), we have∣∣∣∣ −∑∞n=1 n
2bnz

n−1

1 +
∑∞
n=2 n

2anzn−1

∣∣∣∣+ 2x

∣∣∣∣∑∞n=2 n
2(n− 1)anz

n−2

1 +
∑∞
n=2 n

2anzn−1

∣∣∣∣
≤
∑∞
n=1 n

2|bn|+ 2x
∑∞
n=2 n

2(n− 1)|an|
1−

∑∞
n=2 n

2|an|
≤ 1.

The last inequality holds if the assertion (2.3) is hold. Thus in view of Lemma 2.2,
D[f ] is univalent on D.

Theorem 2.4. Let D[f ] = h1 +g1 be given by (1.5), h1 and g1 be are holomorphic
in the unit disc D. Suppose that q, m, and M are positive constants satisfying the
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inequalities: 0 ≤ q < 1, 1 < M/m ≤ exp{π(1− q)/2}. If

∞∑
n=2

n2|an| ≤ min{M − 1, 1−m}, q

∞∑
n=2

n2|an|+
∞∑
n=1

n2|bn| ≤ q (2.5)

at any point z ∈ D, then the mapping D[f ] = h1 + g1 is univalent on the domain D.

Proof. In order to show that D[f ] is univalent on D, by Lemma 2.3 , it is sufficient
to show that

m ≤ |h′1(z)| ≤M, |g′1(z)/h′1(z)| ≤ q.

Substituting h′1(z), g′1(z) into the above inequality, we have

m ≤

∣∣∣∣∣1 +

∞∑
n=2

n2anz
n−1

∣∣∣∣∣ ≤M,

∣∣∣∣ −∑∞n=1 n
2bnz

n−1

1 +
∑∞
n=2 n

2anzn−1

∣∣∣∣ ≤ q. (2.6)

If the conditions (2.5) are satisfied, then the inequalities (2.6) are also satisfied.
Therefore, based on Lemma 2.3, it can be concluded that D[f ] is univalent on the
unit disk D.

3. Radius of fully starlikeness and fully convexity

The aim of this section is to examine the fully starlikeness and fully convexity radius
of differential operator for a subclass of harmonic mappings denoted by K2

H(λ),
where λ ≥ 0.

Theorem 3.1. Let f = h + g be given by (1.1), and the coefficients satisfy the
conditions

|an| ≤
(2n+ 1)(n+ 1)

6
and |bn| ≤

(2n− 1)(n− 1)

6
(3.1)

for n ≥ 2. Then D[f ] ∈ K2
H(λ) and is fully starlike in |z| < rs, where rs is the

unique positive root of Pλ(r) = 0 in (0, 1) with

Pλ(r) = 1−6(3+2λ)r+6(5−7λ)r2−2(17+12λ)r3+(31−2λ)r4−12r5+2r6. (3.2)

Proof. According to the condition (3.1) and the harmonic-preserving property of
the differential operator D[f ], D[f ] is harmonic in D. Let 0 < r < 1. Then it suffices
to show that the coefficient of D[f ]r(z) = r−1D[f ](rz) satisfies an inequality (1.9),
where

D[f ]r(z) =
D[f ](rz)

r
= z +

∞∑
n=2

nanr
n−1zn −

∞∑
n=1

nbnrn−1zn.
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By hypotheses, |an|+ |bn| ≤
2n2 + 1

3
and thus, we have

S =

∞∑
n=2

(1− λ+ λn)n2(|an|+ |bn|)rn−1

≤
∞∑
n=2

(1− λ+ λn)
2n4 + n2

3
rn−1

=
1

3

∞∑
n=2

(2λn3 + 2(1− λ)n2 + λn+ (1− λ))n2rn−1

=
−r6 + 6r5 + 2(λ− 8)r4 + (24λ+ 14)r3 + (42λ− 15)r2 + 12(λ+ 1)r

(r − 1)6

:= T1,

which is bounded above by 1 if T1 ≤ 1, which is equivalent to

1− 6(3 + 2λ)r + 6(5− 7λ)r2 − 2(17 + 12λ)r3 + (31− 2λ)r4 − 12r5 + 2r6 ≥ 0.

Now we shall show that the polynomial Pλ(r) defined by (3.2) has exactly one zero
in the interval (0, 1) for every λ > 0. A straightforward calculation shows that

P
′

λ(r) = −6(3 + 2λ) + 12(5− 7λ)r − 6(17 + 12λ)r2 + 4(31− 2λ)r3 − 60r4 + 12r5

= −18 + 60r − 102r2 + 124r3 − 60r4 + 12r5 − 4λ
(
3 + 21r + 18r2 + 2r3

)
.

The derivative P ′λ(r) decreases in the interval (0, 1) as λ increases. Thus, when
λ = 0, P ′λ(r) achieves its maximum value. Our analysis begins by examining the
range (0, 0.2), assuming λ = 0. In this instance, we have P ′0(r) = −18+60r−102r2+
124r3−60r4+12r5. A straightforward computation reveals that P ′′0 (r) = 60−204r+
372r2 − 240r3 + 60r4 > 0, demonstrating that P ′0(r) monotonically increases over
the interval (0, 0.2). Furthermore, P ′0(0) = −18 < 0, and P ′0(0.2) = −9.18016 < 0,
implying that P ′0(r) < 0 in the interval (0, 0.2). This trend persists for all λ > 0,
indicating that Pλ(r) monotonically decreases in (0, 0.2). As Pλ(0) = 1 > 0 and
Pλ(0.2) = −1.62611− 4.2752λ < 0, we conclude that Pλ(r) has exactly one zero in
the interval (0, 0.2) for every λ > 0.

Furthermore, it can be observed that Pλ(r) decreases as λ increases in (0, 1). To
analyze this function, we begin by examining the special case when λ = 0. In this
scenario, we solve P ′0(r) = −18+60r−102r2+124r3−60r4+12r5 = 0 to obtain the
root r0 = 0.554275 within the interval (0, 1). Thus, when r < 0.554275, P ′0(r) < 0.
Consequently, Pλ(r) is monotonically decreasing in the interval [0.2, 0.554275) and
monotonically increasing on the interval [0.554275, 1). Specifically, when λ = 0,
P0(r) has a local minimum value of Pλ(0.554275) = −3.19387. Additionally, since
Pλ(0.2) = −1.62611 < 0 and Pλ(1) = 0, Pλ(r) is negative throughout the interval
[0.2, 1). Therefore, we can conclude that Pλ(r) has exactly one root in (0, 1) for
every λ > 0 (See Figure 1(b)).

Therefore, it can be seen from Theorem 1.5 that for all 0 < r ≤ rs, D[f ]r(z) =
r−1D[f ](rz) is close-to-convex (univalent) and fully starlike in D, where rs is the
unique positive root of the equation (3.2) in interval (0,1). In particular, D[f ] is
close-to-convex (univalent) and fully starlike in |z| < rs. Which completes the proof.
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(a) λ = 0 (b) λ = 0.3

Figure 1. The root of Pλ(r).

Remark 3.1. The root of Pλ(r) for λ ≥ 0 is shown in Figure 1. In Theorem 3.1,
if λ = 0 is taken, the equation (3.2) is simplified as

(1− r)(1− 17r + 13r2 − 21r3 + 10r4 − 2r5) ≥ 0.

Consequently, for r ≤ rs ≈ 0.0614313, D[f ]r(z) ∈ FS∗H ∩K2
H(0), where rs is the

unique root of the following equation within the interval (0, 1) (See Figure 1(a)).

1− 17r + 13r2 − 21r3 + 10r4 − 2r5 = 0.

This is consistent with the results in (Theorem 2.2, [17]).

Theorem 3.2. Let f = h + g be given by (1.1), and the coefficients satisfy the
conditions

|an| ≤
n+ 1

2
and |bn| ≤

n− 1

2

for n ≥ 2. Then D[f ] ∈ K2
H(λ) and is fully convex in |z| < rc, where rc is the

unique positive root of Qλ(r) = 0 in (0, 1) with

Qλ(r) = 1− (13 + 8λ)r + (23− 14λ)r2 − (19 + 2λ)r3 + 10r4 − 2r5. (3.3)

Proof. Obviously, by (3.3), it is easy to observe that

n2(|an|+ |bn|) ≤ n3

and thus we have

S =

∞∑
n=2

(1− λ+ λn)n2(|an|+ |bn|)rn−1

≤
∞∑
n=2

(1− λ+ λn)n3rn−1

=
−r5 + 5r4 − (2λ+ 9)r3 − (14λ− 13)r2 − 8(λ+ 1)r

(r − 1)5

:= T2,

which is bounded above by 1 if T2 ≤ 1, which is equivalent to

1− (13 + 8λ)r + (23− 14λ)r2 − (19 + 2λ)r3 + 10r4 − 2r5 ≥ 0.
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Therefore, it can be seen from Theorem 1.5 that for all 0 < r ≤ rc, D[f ]r(z) =
r−1D[f ](rz) is fully convex in D, where rc is the unique positive root of the equation
(3.3) in the interval (0, 1). In particular, D[f ] is fully convex in |z| < rc.

Remark 3.2. When setting λ = 0 in Equation (3.3), Theorem 3.2 yields a simpli-
fied form as

1− 13r + 23r2 − 19r3 + 10r4 − 2r5 = 0. (3.4)

Consequently, for r ≤ rc ≈ 0.0903331, D[f ]r(z) ∈ FKH ∩ K2
H(0), where rc is

the unique root of equation (3.4) in the interval (0, 1).

4. Radius of uniformly starlikeness and uniformly
convexity

In this section, we investigate the radius of uniformly starlikeness and uniformly
convexity for harmonic differential operator.

Theorem 4.1. Let f = h + g ∈ S0H be given by (1.1), and the coefficients satisfy
the conditions

|an| ≤
(2n+ 1)(n+ 1)

6
and |bn| ≤

(2n− 1)(n− 1)

6
(4.1)

for n ≥ 2. Then D[f ] ∈ US∗0H on the disk |z| < rus, where rus ≈ 0.035116 is the
unique positive root of Pus(r) = 0 in (0, 1), where

Pus(r) = −3r5 + 15r4 − 32r3 + 16r2 − 29r + 1. (4.2)

Proof. Let f = h + g ∈ S0H be given by (1.1), and the coefficients satisfy the
conditions (4.1) for n ≥ 2. For 0 < r < 1, let

D[f ]r(z) =
D[f ](rz)

r
= z +

∞∑
n=2

nanr
n−1zn −

∞∑
n=1

nbnrn−1zn, (z ∈ D).

Consider the sum

S =

∞∑
n=2

n2(|an|+ |bn|)rn−1

≤
∞∑
n=2

(2n2 + 1)n2

3
rn−1

=
r(12− 3r + 11r2 − 5r3 + r4)

(1− r)5
:= S1.

From Lemma 1.1, it suffices to show that S1 ≤ 1/2, which implies that

24r − 6r2 + 22r3 − 10r4 + 2r5 ≤ 1− 5r + 10r2 − 10r3 + 5r4 − r5.

It is equivalent to

−3r5 + 15r4 − 32r3 + 16r2 − 29r + 1 ≥ 0.
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Therefore S1 ≤ 1/2 which holds whenever Pus(r) ≥ 0. It is easy to see that
Pus(0) = 1 > 0 and Pus(1) = −32 < 0, and hence Pus has at least one real root
in (0, 1). To show that Pus(r) has exactly one real root in (0, 1), it is sufficient to
prove that Pus(r) is monotonic on (0, 1). A simple calculation shows that

P
′

us(r) = −29 + 32r − 96r2 + 60r3 − 15r4,

and

P
′′

us(r) = 32− 192r + 180r2 − 60r3.

We note that P
′′

us(r) is positive in (0, 0.2025) and is negative in (0.2025,1). Hence,
P

′

us(r) < P
′

us(0.2025) ≈ −25.98 < 0. This shows that Pus(r) is strictly mono-
tonically decreasing in (0, 1), and hence Pus(r) has exactly one real root (say
rus ≈ 0.035116) in (0, 1).

Obviously, if f = h+g ∈ S∗0H , its coefficient estimate satisfies the equation (4.1).
Therefore, Theorem 4.1 readily gives the following corollary.

Corollary 4.1. Let f = h + g ∈ S∗0H . Then D[f ] ∈ US∗0H in at least |z| < rus,
where rus is the real root of (4.2) in (0, 1).

Using a method similar to Theorem 4.1 and using Lemma 1.2 instead of Lemma
1.1, we can obtain the following results.

Theorem 4.2. Let f = h + g ∈ S0H be given by (1.1), and the coefficients satisfy
the conditions

|an| ≤
(2n+ 1)(n+ 1)

6
and |bn| ≤

(2n− 1)(n− 1)

6

for n ≥ 2. Then D[f ] is univalent and D[f ] ∈ UK0
H on the disk |z| < ruc, where

|z| < ruc ≈ 0.0230996 is the unique positive real root of Puc(r) = 0 in (0, 1), and
where

Puc(r) = 1− 42r − 54r2 − 82r3 + 27r4 − 12r5 + 2r6. (4.3)

Proof. Let f = h + g ∈ S0H be given by (1.1), and the coefficients satisfy the
conditions (4.1) for n ≥ 2. For 0<r<1, let

D[f ]r(z) =
D[f ](rz)

r
= z +

∞∑
n=2

nanr
n−1zn −

∞∑
n=1

nbnrn−1zn, z ∈ D.

Consider the sum

S =

∞∑
n=2

n2(2n− 1)(|an|+ |bn|)rn−1.

Using (4.1) in the above equation, we obtain

S ≤
∞∑
n=2

4n5 − 2n4 + 2n3 − n2

3
rn−1

=
r(36 + 69r + 62r2 − 12r3 + 6r4 − r5)

(1− r)6
:= S2.
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From Lemma 1.2, we note that D[f ]r(z) ∈ UK0
H on D if S2 ≤ 1, which implies that

36r + 69r2 + 62r3 − 12r4 + 6r5 − r6 ≤ 1− 6r + 15r2 − 20r3 + 15r4 − 6r5 + r6,

which is equivalent to

2r6 − 12r5 + 27r4 − 82r3 − 54r2 − 42r + 1 ≥ 0.

Therefore S2 ≤ 1, when Puc(r) ≥ 0. It is easy to see that Puc(0) = 1 > 0 and
Puc(1) = −160 < 0, and hence Puc(r) has at least one real root in (0, 1). To show
that Puc(r) has exactly one zero in (0, 1), it is sufficient to prove that Puc(r) is
monotonic on (0, 1). A simple calculation shows that

P
′

uc(r) = −42 + r(−108− 246r + 108r2 − 60r3 + 12r4).

Let
ξ(r) = −108− 246r + 108r2 − 60r3 + 12r4.

Then
ξ
′′
(r) = 216− 360r + 144r2.

We note that ξ
′′
(r) attains its minimum value at r = 1, and ξ

′′
(r) > ξ

′′
(1) = 0 for

all r ∈ (0, 1). Thus ξ
′
(r) ≤ ξ

′
(1) = −162 < 0, and ξ(r) is strictly monotonically

decreasing in (0, 1). Thus ξ(r) < ξ(0) = −108 < 0. This shows that P
′

uc(r) < 0,
and hence Puc(r) has exactly one real root (say ruc ≈ 0.0230996) in (0, 1).

Corollary 4.2. Let f ∈ S∗0H . Then D[f ] ∈ UK0
H in at least |z| < ruc, where ruc is

the real root of (4.3) in (0, 1).

Similar to Theorems 4.1 and 2.2, the next two theorems provide a sufficient
condition which guarantees a sense-preserving harmonic differential operator to be
uniformly starlike(uniformly convex). A slight change in the proof of Theorem 4.1
with the help of Lemma 1.2 yields the radius of uniformly starlike(uniformly convex)
for D[f ]. So the proof is omitted here.

Theorem 4.3. Let f = h+ g ∈ S0H be given by (1.1) with b1 = g′(0) = 0, and the
coeffcients of the series satisfy the conditions

|an| ≤
n+ 1

2
and |bn| ≤

n− 1

2
.

Then D[f ] ∈ US∗0H on the disk |z| < rus, where rus ≈ 0.0520867 is the unique
positive real root of Qus(r) = 0 in (0, 1), where

Qus(r) = 1− 20r + 16r2 − 12r3 + 3r4. (4.4)

Corollary 4.3. Let f ∈ K0
H . Then D[f ] ∈ US∗0H in at least |z| < rus, where rus is

the real root of (4.4) in (0, 1).

Theorem 4.4. Let f = h+ g ∈ S0H be given by (1.1) with b1 = g
′
(0) = 0, and the

coefficients of the series satisfy the conditions

|an| ≤
n+ 1

2
and |bn| ≤

n− 1

2
.

Then D[f ] ∈ UK0
H on the disk |z| < ruc, where ruc ≈ 0.034249 is the unique positive

real root of Quc(r) = 0 in (0, 1), where

Quc(r) = 1− 29r − 5r2 − 23r3 + 10r4 − 2r5. (4.5)
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Corollary 4.4. Let f ∈ K0
H . Then D[f ] ∈ UK0

H at least |z| < ruc, where ruc is the
real root of (4.5) in (0, 1).

5. Radius of harmonic convolution

In this section, we investigate the radius of uniformly starlikeness and uniformly
convexity for differential operator after harmonic convolutions.

Theorem 5.1. Let f = h + g ∈ S0H be given by (1.1), and the coefficients of the
series satisfy the conditions

|an| ≤
(n+ 1)2

4
and |bn| ≤

(n− 1)2

4
. (5.1)

Then D[f ] ∈ US∗0H on the disk |z| < rus, where rus ≈ 0.0412746 is the unique
positive real root of Pus(r) = 0 in (0, 1), where

Pus(r) = 1− 25r + 20r2 − 32r3 + 15r4 − 3r5. (5.2)

Proof. For r ∈ (0, 1), it is only necessary to prove that D[f ]r(z) ∈ US∗0H , where

D[f ]r(z) =
D[f ](rz)

r
= z +

∞∑
n=2

nanr
n−1zn −

∞∑
n=2

nbnrn−1zn.

Consider the sum

S =

∞∑
n=2

n2(|an|+ |bn|)rn−1.

By using (5.1), we obtain

S ≤
∞∑
n=2

(n2 + 1)n2

2
rn−1 =

r(10− 5r + 11r2 − 5r3 + r4)

(1− r)5
:= C1.

From Lemma 1.1, we note that D[f ]r(z) ∈ US∗0H on D if C1 ≤ 1/2, which implies
that

1− 25r + 20r2 − 32r3 + 15r4 − 3r5 ≥ 0.

Therefore C1 ≤
1

2
, when Pus(r) ≥ 0. A simple calculation shows that Pus(r) has

exactly one real root (say rus ≈ 0.0412746) in (0, 1).

Corollary 5.1. Let f1, f2 ∈ K0
H . Then D[f1 ∗ f2] ∈ US∗0H in at least |z| < rus,

where rus is the real root of (5.2) in (0, 1).

Using Lemma 1.2 instead of Lemma 1.1 and using the same proof method as
Theorem 5.1, we obtain the following results. So the proof is omitted here.

Theorem 5.2. Let h and g have the form (1.1), and the coefficients of the series
satisfy the conditions

|an| ≤
(n+ 1)2

4
, |bn| ≤

(n− 1)2

4
.

Then D[f ] ∈ UK0
H on the disk |z| < ruc, where ruc ≈ 0.02712512 is the unique

positive real root of Puc(r) = 0 in (0, 1), where

Puc(r) = 1− 36r − 30r2 − 72r3 + 27r4 − 12r5 + 2r6. (5.3)
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Corollary 5.2. Let f1, f2 ∈ K0
H . Then D[f1 ∗ f2] ∈ UK0

H in at least |z| < ruc,
where ruc is the real root of (5.3) in (0, 1).

The next theorem comes from a simple modification to the proof of Theorem
5.1.

Theorem 5.3. Let f = h+ g have the form (1.1), and the coefficients of the series
satisfy the conditions

|an| ≤
(n+ 1)2(2n+ 1)

12
and |bn| ≤

(n− 1)2(2n− 1)

12
.

Then D[f ] ∈ US∗0H on the disk |z| < rus, where rus ≈ 0.026443019 is the unique
positive real root of qus(r) = 0 in (0, 1), where

qus(r) = 1− 38r + 9r2 − 80r3 + 43r4 − 18r5 + 3r6. (5.4)

Corollary 5.3. Let f1 ∈ S∗0H , f2 ∈ K0
H , then D[f1∗f2] ∈ US∗0H in at least |z| < rus,

where rus is the real root of (5.4) in (0, 1).

Theorem 5.4. Let f = h+ g have the form (1.1), and the coefficients of the series
satisfy the conditions

|an| ≤
(n+ 1)2(2n+ 1)

12
and |bn| ≤

(n− 1)2(2n− 1)

12
.

Then D[f ] ∈ UK0
H on the disk |z| < ruc, where ruc ≈ 0.017396982 is the unique

positive real root of Quc(r) = 0 in (0, 1), where

Quc(r) = −1 + 55r + 138r2 + 266r3 − 11r4 + 45r5 − 14r6 + 2r7. (5.5)

Corollary 5.4. Let f1 ∈ S∗0H , f2 ∈ K0
H , then D[f1∗f2] ∈ UK0

H in at least |z| < ruc,
where ruc is the real root of (5.5) in (0, 1).
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