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Abstract Using quaternionic analysis and Schauder’s fixed point theorem,
we establish sufficient conditions for the existence of solutions for some non-
linear Riemann-Hilbert boundary value problems for Dirac operator with gra-
dient potential.
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1. Introduction

In [4, 5, 8, 13–15, 17, 28, 32] and [29, 30] several results on Riemann-Hilbert bound-
ary value problems in the complex plane and its applications are presented. The
Riemann-Hilbert boundary value problems have also become a very important and
useful area of mathematics over the last few decades and are used by Deift, Its and
Zhou solve some problems in random matrix theory. This method is called Riemann-
Hilbert approach which plays important role in the long-time behavior of solutions
of KdV equations, mathematical physics, inverse problems for partial differential
equations and engineering, etc. We refer to [10,11]. A natural and interesting ques-
tion is nonlinear Riemann-Hilbert problem in higher dimension (Rn, n ≥ 3). The
quaternionic and Clifford analysis approaches that may be considered as a general-
ization to higher dimension for the theory of holomorphic functions in the complex
plane are powerful mathematical tools for the treatment of linear boundary value
problems in higher dimensions, see [1–3,6,7,9,18,19,21–24,33,35]. In this paper we
consider the Riemann-Hilbert problem for Dirac operator with gradient potential
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about boundary value condition of nonlinearity:Db(x)[f ] = 0, in R3 \ ∂Ω,

f+(x) = f−(x)A(x) + λG(x, f+, f−), x ∈ ∂Ω,

where f(x) : R3 → H is the unknown quaternion value function with vanishing at
infinity.

This article is organized as follows: In Sect.2, we recall some basic facts about
quaternionic analysis which will be needed in the article and Dirac operators with
gradient potentials. In Sect. 3, we prove a compact embedding theorem related
to Hölder space and continuous function space in quaternion analysis, which is
necessary to study nonlinear boundary value problems. Finally, we mainly consider
that a kind of nonlinear Riemann-Hilbert boundary value problem.

2. Preliminaries

Let H denote the set of real quaternions. Then, each x ∈ H can be represented as

x =
3∑
k=0

ekxk, where e0ek = eke0, e2
k = −e0, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1,

e3e1 = e1e3 = e2, {x0, x1, x2, x3} ⊂ R. With the natural addition from R4 and the
multiplication based on the above mentioned rules H is non-commutative associative
skew field. The quaternionic conjugation is defined by

e0 = e0 := 1, ek = −ek, k ∈ {1, 2, 3}

and it extends onto H as an R-linear mapping: if x ∈ H then

x :=

3∑
k=0

xkek =

3∑
k=0

xkek = x0 −
3∑
k=1

xkek := x0 − x.

Sc(x) := x0 is called scalar part and V ec(x) := x is the vector part of the quater-
nion x. Furthermore x = x0 − x is called conjugated quaternion. For arbitrary
quaternions x and y we have xy = y x and

xx = xx =

3∑
k=0

x2
k =: ‖x‖2 ∈ R.

This norm of a quaternion coincides with the usual Euclidean norm in R4. It follows
that for any x ∈ H \ {0} has a multiplicative inverse

x−1 :=
x

‖x‖2
.

Suppose Ω is an open bounded non-empty subset of R3. We introduce the Dirac

operator D =
3∑
k=1

ek
∂
∂xk

. In particular, we obtain that DD = −∆ where ∆ is the

Laplacian over R3.
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In this article, assume that B : R3 → R is a bounded continuous differentiable

function, i.e., C1-function and b :=
3∑
k=1

ek
∂B
∂xk

. We now consider the following

inhomogeneous Dirac operator:

Db(x)[f ](x) = D[f ](x) + b(x)f(x).

Definition 2.1. A C1-function f : Ω→ H is said to be (left) regular with respect
to the potential B if Db(x)[f ](x) = 0 for all x ∈ Ω.

Definition 2.2. A compact surface ∂Ω in R3 is called Lyapunov surface, if the
following conditions are satisfied:

1. At each point x ∈ ∂Ω there is the tangential space.

2. There exists a number r, that for any point x ∈ ∂Ω the set ∂Ω
⋂
Br(x) (Lya-

punov ball) is connected and parallel lines to the outer normal n(x) intersect
with ∂Ω at not more than one point.

3. The normal n(x) is Hölder continuous on ∂Ω i.e., there are constants C > 0
and 0 < δ ≤ 1 such that for x,y ∈ ∂Ω

|n(x)− n(y)| ≤ C‖x− y‖δ.

Remark 2.1. A Lyapunov surface is necessarily C1 surface, and on the other hand
a compact surface of class C2 is a Lyapunov surface. Throughout this work, suppose
Ω is a bounded, open set of R3 with a Lyapunov boundary ∂Ω. For more information
about the theory of surface, we refer to [23]. For reasons of simplicity, we will only
consider δ = 1 in this article.

Denote the fundamental solution of Db(x) by

KB(y,x) =
1

4π

y − x

‖y − x‖3
eB(y)−B(x), (2.1)

where y =
3∑
k=1

ykek, x =
3∑
k=1

xkek.

Lemma 2.1. [20] If f(x) ∈ C1(Ω,H)
⋂
C(Ω,H) and Db(x)[f ](x) = 0 in Ω, then

∫
∂Ω

KB(y,x)dσyf(y) =

 f(x), x ∈ Ω,

0, x ∈ R3 \ Ω,

where KB(y,x) is as in (2.1), dσy =
3∑
i=1

(−1)i−1eidŷi and dŷi = dy1 ∧ · · · ∧ dyi−1 ∧

dyi+1 ∧ · · · ∧ dy3.

Let Ω be an open nonempty subset of R3 with a Lyapunov boundary, f(x) =
3∑
k=0

ekfk(x), where fk(x) are real functions. f(x) is called a Hölder continuous

functions on Ω if the following condition is satisfied,

‖f(x1)− f(x2)‖ = [

3∑
k=0

‖fk(x1)− fk(x2)‖] 1
2 ≤ C‖x1 − x2‖α,
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where for any x1, x2 ∈ Ω, x1 6= x2, 0 < α ≤ 1, C is a positive constant independent
of x1, x2.

The space Hα(∂Ω,H) consists of all Hölder continuous functions with values in
H on ∂Ω (the Hölder exponent is α, 0 < α ≤ 1), which the norm

‖f‖(α,∂Ω) = ‖f‖∞ + ‖f‖α (2.2)

is finite, where ‖f‖∞ := sup
x∈∂Ω

‖f(x)‖, ‖f‖α := sup
x1,x2∈∂Ω

x1 6=x2

‖f(x1)−f(x2)‖
‖x1−x2‖α .

Lemma 2.2. [21] The Hölder space Hα(∂Ω,H) is a Banach space with norm (2.2).

Remark 2.2. It is clear that the space C(∂Ω,H) of quaternion valued continuous
functions defined on the ∂Ω equipped with the norm ‖u‖∞ := sup

x∈∂Ω
‖u(x)‖ is a

Banach space.

Next, we introduce the following integral operators:

F∂Ω[f ](x) :=

∫
∂Ω

KB(y,x)dσyf(y),x ∈ R3 \ ∂Ω, (2.3)

S∂Ω[f ](x) :=

∫
∂Ω

KB(y,x)dσyf(y),x ∈ ∂Ω, (2.4)

where KB(y,x) is as in (2.1).
Due to the universal quaternion generalized the complex number to higher di-

mension, we naturally have the following results by the weak singularity of kernel
function KB(y,x) in quaternion analysis and the same proof technique in [20,34].

Lemma 2.3. Let Ω be a bounded, convex domain in R3 with a Lyapunov boundary
∂Ω. Then the integral transform S∂Ω : Hα(∂Ω,H)→ Hα(∂Ω,H) defined by (2.4) is
bounded, i.e.,

‖S∂Ω[f ]‖(α,∂Ω) ≤ Ĉ‖f‖(α,∂Ω),

where Ĉ is a nonnegative constant.

Lemma 2.4. [Plemelj-Sokhotski] Suppose that Ω is an open nonempty bounded
subset of R3 with oriented Lyapunov boundary ∂Ω, and f ∈ Hα(∂Ω,H), 0 < α ≤ 1.
Then

lim
x→x0∈∂Ω

x∈Ω

F∂Ω[f ](x) =
f(x0)

2
+ S∂Ω[f ](x0),

lim
x→x0∈∂Ω

x∈Rn\Ω

F∂Ω[f ](x) = −f(x0)

2
+ S∂Ω[f ](x0).

For simplicity, we denote

f±(x) = lim
y→x∈∂Ω

y∈Ω±

f(y),

where Ω+ = Ω and Ω− = R3 \ Ω.
Elementary properties of the Dirac operators, regular functions in quaternion

analysis and Dirac operators with gradient potentials in Clifford analysis can be
found in References [20,31].
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3. A nonlinear Riemann-Hilbert problem in quater-
nion analysis

Theorem 3.1. If ∂Ω is a Lyapunov boundary in R3, then the imbedding operator

Iα : Hα(∂Ω,H)→ C(∂Ω,H) (3.1)

is compact.

Proof. Let M be a bounded set in Hα(∂Ω,H) i.e., ‖u‖(α,∂Ω) ≤ C for all u ∈M.
It is obvious that

‖u(x)‖ ≤ C
for all x ∈ ∂Ω and

‖u(x)− u(y)‖ ≤ C‖x− y‖α

for all x,y ∈ Ω and u ∈ M, whence M is relatively compact in C(∂Ω,H) by the
Arzela-Ascoli Theorem, which means that the imbedding operators

Iα : Hα(∂Ω,H)→ C(∂Ω,H)

is compact. The proof is done.

Corollary 3.2. Let M be a bounded and closed set in C(∂Ω,H) which satisfies the
following condition:

‖u(x1)− u(x2)‖ ≤ C‖x1 − x2‖α, x1, x2 ∈ ∂Ω, ∀u ∈M.

Then the set M is compact in C(∂Ω,H).

Remark 3.1. The above results demonstrate that Hα(∂Ω,H) is in fact compactly
embedded in C(∂Ω,H). The compactness is fundamental for our research of the
nonlinear Riemann-Hilbert problem in this article.

The following lemmas are fundamental in the proof of existence of solutions for
the nonlinear problem.

Lemma 3.1. [16](Schauder’s Fixed Point Theorem) Suppose X is a Banach space
and K is a compact and convex subset of X, and assume also

T : K → K

is continuous. Then T has a fixed point in K.

Lemma 3.2. Let Ω be an open bounded non-empty subset of R3 with a Lyapunov
boundary ∂Ω, f ∈ C1(Ω,H)

⋂
C(Ω,H). Then

Db(x)[F∂Ω[f ](x)] = 0.

Proof. Using Lemma 3.2 in [12], the results can be directly proved.
Let Ω be a bounded convex domain of R3 with Lyapunov boundary ∂Ω, we

consider the following nonlinear Riemann-Hilbert problem:
Db(x)[f ] = 0, in R3 \ ∂Ω,

f+(x) = f−(x)A(x) + λG(x, f+, f−), x ∈ ∂Ω,

‖f(∞)‖ = 0,

(3.2)
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where A(x) ∈ Hα(∂Ω,H), 0 < α < 1 and λ is a real parameter with a certain
condition, see (3.5). We assume the following conditions to be fulfilled:

1) For each f1, f2 in Hα(∂Ω,H) the function

G(x, f1, f2) = G(x, f1(x), f2(x))

is in Hα(∂Ω,H) as a function of x and G(x, 0, 0) = 0. Moreover there exists a

nonnegative constant N such that for all f1, f̃1, f2, f̃2 in Hα(∂Ω,H) we have

‖G(x, f1, f2)−G(x, f̃1, f̃2)‖(α,∂Ω)

≤N [‖f1 − f̃1‖+ ‖f2 − f̃2‖], 0 < α < 1.
(3.3)

2) The quaternion value function A(x) is in Hα(∂Ω,H) and A(x) 6= 0 on ∂Ω.

We establish solvability conditions of the Riemann-Hilbert problem (3.2).

Theorem 3.3. Suppose the function G(x, f1, f2) satisfies the condition (3.3), A(x)
satisfies the following condition

µ:=‖A− 1‖(α,∂Ω)(Ĉ + 1) < 1, (3.4)

where Ĉ is the positive constant mentioned in Lemma 2.3 and λ satisfies

|λ| ≤ 2(1− µ)

N(1 + 2Ĉ)
. (3.5)

Then (3.2) there admits at least one solution.

Proof. In view of Lemma 3.2, the solution to this Riemann-Hilbert problem (3.2)
can be written in the form

f(x) =

∫
∂Ω

KB(x,y)dσyu(y), x ∈ R3 \ ∂Ω, (3.6)

where u(y) ∈ Hα(∂Ω,H). By Lemma 2.4, it follows that

f+(x) =
u(x)

2
+ S∂Ω[u](x), (3.7)

and

f−(x) = −u(x)

2
+ S∂Ω[u](x). (3.8)

We then combine (3.7), (3.8) and the boundary value condition in (3.2) to reduce the
Riemann-Hilbert problem (3.2) to an equivalent nonlinear singular integral equation

u(x) =[
u(x)

2
− S∂Ω[u](x)](A(x)− 1)

+ λG(x, f+(x), f−(x)), x ∈ ∂Ω.
(3.9)

Let F denote an integral operator defined by the right side of (3.9), i.e.

(Fu)(x) =[
u(x)

2
− S∂Ω[u](x)](A(x)− 1)

+ λG(x, f+(x), f−(x)), x ∈ ∂Ω.
(3.10)
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The quaternion valued continuous function space is denoted by C(∂Ω,H) which the
norm is defined as

‖u‖∞ = max
x∈∂Ω

‖u(x)‖

and C(∂Ω,H) is a Banach space. Denote

M = {u(x)|u(x) ∈ Hα(∂Ω,H), ‖u‖(α,∂Ω) ≤ r},

here r is a positive constant and 0 < r < 1, by using Theorem 3.1, then M is a
compact and convex closed set in C(∂Ω,H). Thus, for any u ∈M, in view of (3.4)
and (3.5), we have

‖Fu‖(α,∂Ω)

≤(
1

2
+ Ĉ)‖A− 1‖(α,∂Ω)‖u‖(α,∂Ω) + |λ|‖G(x, f+(x), f−(x))‖(α,∂Ω)

=(
1

2
+ Ĉ)‖A− 1‖(α,∂Ω)‖u‖(α,∂Ω) + |λ|

[
‖G(x, f+(x), f−(x))−G(x, 0, 0)‖(α,∂Ω)

]
≤(

1

2
+ Ĉ)‖A− 1‖(α,∂Ω)‖u‖(α,∂Ω) + |λ|N

[
‖f+(x)‖+ ‖f−(x)‖

]
≤(

1

2
+ Ĉ)‖A− 1‖(α,∂Ω)‖u‖(α,∂Ω) + |λ|N

[
1

2
‖u‖(α,∂Ω) + Ĉ‖u‖(α,∂Ω)

]
≤‖u‖(α,∂Ω)

≤r,

(3.11)

hence the operator F maps M into itself.

Now we assert that F : M → M is continuous. Indeed, let un be a sequence
in M such that {un(x)}+∞n=1 ⊂ M is uniformly convergent to a function u(x) i.e.,
un → u in C(∂Ω,H). By (3.10), we then have

‖(Fun)(x)− (Fu)(x)‖

≤‖S∂Ω[un − u](x)(A(x)− 1)‖

+
1

2
‖(un(x)− u(x))(A(x)− 1)‖

+ |λ|‖G(x,
un(x)

2
+ S∂Ω[un](x),−un(x)

2
+ S∂Ω[un](x))

−G(x,
u(x)

2
+ S∂Ω[u](x),−u(x)

2
+ S∂Ω[u](x))‖

≤(‖S∂Ω[un](x)− S∂Ω[u](x)‖+
1

2
‖un(x)− u(x)‖)‖A− 1‖∞

+ |λ|N(‖un(x)− u(x)‖+ ‖S∂Ω[un](x)− S∂Ω[u](x)‖).

(3.12)

In the following, we only need to prove that S[un](x) converges uniformly to S[u](x).
Since ∂Ω is Lyapunov boundary, the normal vector n is continuous on ∂Ω, we can
choose d (0 < d ≤ 1) small enough such that for the scalar product (n(x),n(y)) > 1

2
for all x,y ∈ ∂Ω with ‖x − y‖ < d. Furthermore, we can assume that d is small
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enough such that the set ∂L , {y ∈ ∂Ω : ‖y − x‖ < d} is connected for each
x ∈ ∂Ω, we have

‖S∂Ω[un](x)− S∂Ω[u](x)‖ ≤‖
∫
∂Ω\∂L

KB(x,y)dσy(un(y)− u(y))‖

+ ‖
∫
∂L

KB(x,y)dσy(un(y)− u(y))‖.
(3.13)

Denote

I1 := ‖
∫
∂Ω\∂L

KB(x,y)dσy(un(y)− u(y))‖

and

I2 := ‖
∫
∂L

KB(x,y)dσy(un(y)− u(y))‖.

Now we have

I1 ≤
b̃

4π

∫
∂Ω\∂L

1

d
dS‖un − u‖∞ ≤

b̃|∂Ω|
4πd

‖un − u‖∞.

We continue to estimate I2. The condition (n(x),n(y)) > 1
2 implies that ∂L can be

projected bijectively onto the tangent plane to ∂Ω at the point x. With the help of
polar coordinates (r, θ) in the tangent plane with origin x and the surface element
dSy = rdrdθ

(n(x),n(y)) , we have

I2 ≤ b̃eM̃d‖un − u‖∞,

where M̃ = max
x∈Ω
|B(x)| and b̃ = max

x∈Ω
‖b(x)‖.

In view of I1 and I2, it follows that

‖S∂Ω[un](x)− S∂Ω[u](x)‖ ≤ b̃( |∂Ω|
4πd

+ eM̃d)‖un − u‖∞. (3.14)

By (3.14) and (3.12), we obtain that

‖(Fun)(x)− (Fu)(x)‖ ≤ C̃‖un − u‖∞
→ 0 (n→ +∞),

where C̃ = b̃( |∂Ω|
4πd + eM̃d)(‖A− 1‖∞ + 1) + |λ|N + ‖A−1‖∞

2 .
Then F is a continuous mapping from M into itself. Based on Lemma 3.1, this

problem is solvable. The proof is finished.

Example 3.1.

Consider the following boundary value problem of Riemann-Hilbert type:
Db(x)[f ] = 0, in R3 \ ∂Ω,

f+(x) = f−(x) + λG(x, f+, f−), x ∈ ∂Ω,

‖f(∞)‖ = 0,

(3.15)

here G(x, f1, f2) satisfies two conditions in the above nonlinear Riemann-Hilbert
problem (3.2) and |λ| ≤ 2

N(1+2Ĉ)
.

Since A(x) = 1, it is clear that the problem (3.15) has at least one solution by
Theorem 3.3.
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[8] M. Černe, Nonlinear Riemann-Hilbert problem for bordered Riemann surfaces,
Amer. J. Math., 2004, 126, 65–87.

[9] P. Dang, J. Du and T. Qian, Riemann boundary value problems for monogenic
functions on the hyperplane, Adv. Appl. Clifford Algebr., 2022, 32(29), 1–60.

[10] P. Deift, A. Its and X. Zhou, A Riemann-Hilbert approach to asymptotic prob-
lems arising in the theory of random matrix models, and also in the theory of
integrable statistical mechanics, Ann. of Math., 1997, 146, 149–235.

[11] P. Deift, S. Venakides and X. Zhou, The collisionless shock region for the long-
time behavior of solutions of the KdV equation, Comm. Pure and Appl. Math.,
1994, 47, 199–206.

[12] J. Du, N. Xu and Z. Zhang, Boundary behavior of Cauchy-type integrals in
Clifford analysis, Acta Math. Sci. Ser. B Engl. Ed., 2009, 29(1), 210–224.

[13] M. A. Efendiev and W. L. Wendland, Nonlinear Riemann-Hilbert problems for
multiply connected domains, Nonlinear Anal., 1996, 27, 37–58.

[14] M. A. Efendiev and W. L. Wendland, Nonlinear Riemann-Hilbert problems
without transversality, Math. Nachr., 1997, 183, 73–89.

[15] M. A. Efendiev and W. L. Wendland, On nonlinear Riemann-Hilbert problems
with discontinuous boundary condition, Math. Nachr., 2007, 280, 1035–1047.

[16] L. Evans, Partial Differential Equations, Graduate Studies in Mathematics,
American Mathematical Society, Providence, RI, 1998.

[17] C. Glader and E. Wegert, Nonlinear Riemann-Hilbert problems with circular
target curves, Math. Nachr., 2008, 281, 1221–1239.

[18] Y. Gong and J. Du, A kind of Riemann and Hilbert boundary value problem
for left monogenic functions in Rm(m ≥ 2), Complex Var. Elliptic Equ., 2004,
49, 303–318.



Solvability of some Riemann-Hilbert problems 985

[19] L. Gu, J. Du and D. Cai, A kind of Riemann boundary value problems for
pseudo-harmonic functions in Clifford analysis, Complex Var. Elliptic Equ.,
2014, 59, 412–426.

[20] L. Gu and D. Ma, Dirac operators with gradient potentials and related mono-
genic functions, Complex Anal. Oper. Theory, 2020. DOI: 10.1007/s11785-020-
01010-5.

[21] L. Gu and Z. Zhang, Riemann boundary value problem for harmonic functions
in Clifford analysis, Math. Nachr., 2014, 287, 1001–1012.
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