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SOLVABILITY AND STABILITY OF
MULTI-TERM FRACTIONAL DELAY
Q-DIFFERENCE EQUATION

Zhiyuan Liu' and Shurong Sun?{

Abstract The research of multi-term fractional differential equations has
attracted the attention of scholars and obtained abundant results in recent
years. However, there are few studies on the multi-term fractional g-difference
equations. In this paper, we investigate boundary value problems for multi-
term fractional delay g-difference equation. By virtue of Banach contraction
mapping principle and Leray-Schauder nonlinear alternative theorem, we ob-
tain the uniqueness and existence of the solution. In addition, we get four
different results for functional stability, including Ulam-Hyres stability, gen-
eralized Ulam-Hyres stability, Ulam-Hyres Rassias stability and generalized
Ulam-Hyres Rassias stability. Finally, give relevant examples to demonstrate
the main results.
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1. Introduction

Fractional calculus has more advantages than integer calculus in describing and
modeling aspects of natural science and engineering technology. Especially with
the development of science and technology, the demand for complex engineering
modeling is increasing gradually. Fractional model has been used to model different
systems. For example, Dabiri [8] simulated several fractional viscoelastic impact
models by using fractional Chebyshev allocation method and instantaneous mem-
ory principle. Abdullah [1] established a simulation model of cell invasion using
fractional differential equations of two basic cell functions. Fractional derivatives
are widely used in dynamic systems and the theory of fractional calculus has been
further developed.

The g-difference is an important branch of discrete mathematics, which was first
proposed by Jackson [14] in 1910 and is a bridge between mathematics and physics.
Later, Al-Salam [3] and Agarwal [2] proposed the basic concept and properties of
fractional g-difference. Since fractional g-difference theory combined the advantages
of discrete mathematics and fractional calculus, scholars introduced equation theory
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into fractional ¢-difference and obtained abundant theoretical results [12,15-18]. In
recent years, g-difference has been applied more and more, especially in quantum
physics, economics and dynamical systems [5,20]. For example, in financial mar-
kets, economists use the theoretical knowledge of g-difference to derive the density
function of the corresponding g-statistical distribution

+oo
folx) =(1—q) Z q"exp,(=Aq"), A>0, 0<qg<1,
and mathematical expectations, variances, k-order matrices, etc., and apply them
to problems like stock returns [10].

The delay appears because certain processes (periods of infection) are not only
related to the current state, but also affected by past state [22]. The delay has appli-
cations in various fields of life sciences, such as epidemiology, population dynamics
and immunology [13,19,27]. Yan et al. [29] proposed a fractional delay differential
model for HIV transmission and discussed its stability:

DT (t) = s — purT(t) — rT(t) (1 - w) TV,
DI(t) =k\Tt—7)V(t—1)— pI(t),
DV (t) = NupI(t) — k1T (t)V (t) — poV ().

Therefore, fractional models with delay can better describe practical problems in
some cases. According to the different delay parameters involved, it can be divided
into continuous delay, discrete delay and proportional delay. Proportional delay
can be applied to automatic control systems, infectious diseases and transmission
lines [11,28]. In this paper, we can consider the effect of proportional delay on
fractional g-difference equation.

When establishing the mathematical model, we notice that not only a single
fractional operator is involved, but in some cases, multi-term fractional operators
are required. For example, the famous Basset equation [7] and Bagley-Torvik equa-
tion [25]. Rahman et al. [21] investigated the following multi-term fractional delay
differential equation

5SS ACD () = f(tu(t),u(rt), te [0,1],

1=1
; n—2
d?u
J:

Boutiara [6] obtained the existence and uniqueness of solution of the multi-term
fractional g-difference equation by using coincidence degree theory and Banach con-
traction principle,

“Dg[CDF(“Dya(t) — g(t,x(t))) — h(t,x(1)] = f(t, 2(1), t€[0,T],
“D7x(0) = x(0) = 0,ax(n) + bx(T) = Z Nildix(&i), 0<n,& <T,w; >0.

Inspired by the work above, we consider the following multi-term fractional delay
g-difference equation:

5o ACDgu(t) = f(t,u(t),u(rt), ¢ € 0,1],

7

(1.1)

& u(0) n=2
U(O) =0, dgu = O,U(].) = Zl nju(fj)v
j:
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where n —1 < a3 <n,n>3,0< <1, i=2--n X\ ER 0< 7T <1,
n €R,0<E <L, j=1,--- ,n—2, CD? is fractional g-derivative of Caputo type,
f:]0,1] x R x R — R is continuous.

For the study of boundary value problem (1.1), besides the existence and unique-
ness of solution, we also investigate the stability of solution, stability is an important
performance index for the safe operation of the system. Under the premise of exis-
tence of the solution, using mathematical methods to study the conditions to ensure
the stable operation of the system can provide theoretical guarantee for the safe and
stable operation of the actual system. Rizwan et al. [23] by using generalized Diaz-
Margolis’s fixed point obtained the Ulam-Hyers and Ulam-Hyers-Rassias stability
of the following equation

CDY(EDY + Nw(s) = F(s,w(s)), 0<w,pu<L

Waheed et al. [26] investigated different types of Hyers-Ulam stability for a coupled
system of the following equation

€ DG (Ly(C Ditw(p))) = Ai(p)w(p) + 2(p,w(p).C Dt (Ly(C Dytw(p))),
CDG (Ly(C Dz v(p))) = Az(p)v(p) + ¥(p,S D (Ly(C Dgze(p))), v(p)),

Therefore, in this paper, we consider four different functional stability results, in-
cluding Ulam-Hyres stability, generalized Ulam-Hyres stability, Ulam-Hyres Rassias
stability and generalized Ulam-Hyres Rassias stability.

The structure of this paper is as follows. In section 2, we give the definitions
and lemmas of fractional g-derivative and g-integral and some basic theorems. In
section 3, we investigate the uniqueness and existence of solution by using Banach
contraction mapping principle and Leray-Schauder nonlinear alternative theorem.
In Section 4, we obtain four different results for functional stability. In Section 5,
relevant examples are used to prove the main results.

2. Preliminaries

Let ¢ € (0,1) and define

a

a € R.

1—g¢q
[a]q* 1_q’

The g-analogue of the power function is given by

n—1
(a_b)(O):la (a—b)(”):H(a—bqk), n€N+7
k=0
a — bgk
(a — )@ = q* Ha—bqo“rk’ acR

If b =0, then a(® = a®. We can also get the following properties

[a(t — 8)]@ = a®(t — s)(@,
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eDy(t — )\ = [a]g(t —5)* 7Y,
5Dyt = 5)1*) = —la]y(t — g5) 7Y,

| eputterit = £0) - fia).

a
The ¢g-Gamma function is given by

(1—¢g)@ b

Fq($):W7 Z‘ER\{O,—l,—Q,},

and satisfies I'y(x + 1) = [z],T¢(x).
The ¢-Beta function is given by

1
By(z,y) = /O T 1= qt) v Vdgt, @,y € RY,

Lq(@)lq(y)

and satisfies By(x,y) = T oty) -

Definition 2.1. [4] The fractional g-integral of Riemann-Liouville type of order
a > 0 of a function u : (0,400) — R is given by

bt gs)@—1)
Ig‘u(t):/o (tI‘(i()a)u(S)qu'

Definition 2.2. [4] The fractional g-derivative of Caputo type of order a > 0 of a
function w : (0, +00) — R is given by

c —a(C
Dgu(t) = 1;~* (Y Dyu)(t),
where n is the smallest integer greater than or equal to a.

Lemma 2.1. [4] Let a > 0. If u € L}[0,1] such that I?~*u € AC}(0,1]. Then
Ichg‘u(t) =u(t) —cy —cpt — - —cpt™ L,

where ¢; € Ryi=1,--- ,n and n is the smallest integer greater than or equal to a.

Lemma 2.2. [4] Let a > 0. If u € L}[0,1]. Then
C nara _
DgITu(t) = u(t).

Theorem 2.1. [24] Let X be a Banach space and W C X be a nonempty closed
subset, the mapping T : W — W is a contraction,

Yu,v € W, ||[Tu—Tv| <klu—v], 0<k<1.

Then there is a unique point u* € W, such that Tu* = u*, that is, T has a unique
fixed point on W.

Theorem 2.2. [9] Let X be a Banach space and 2 C X be a nonempty convex
subset. Let W C Q be a nonempty open subset with 0 € W and T : W — Q be a
completely continuous operator. Then either there exists u € OW and A € (0,1),
such that w = AT (u), or T has at least a fixed point on W.
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Definition 2.3. The solution is Ulam-Hyers (UH) stable, if there exist M; > 0
and e > 0, for each solution u € C([0,1],R),

‘ SO ACDgut) - St ulb) u(rh)| < e te(0,1], (2.1)

and a unique solution v* € C([0,1],R), such that |u — u*| < Mje. The solution
is generalised Ulam-Hyers (GUH) stable, if there exists a positive function 1) :
(0, +00) = (0,4+00) with ¥(0) = 0, such that |u — u*| < Miy(e).

Definition 2.4. The solution is Ulam-Hyers Rassias (U H R) stable, function ¢ € X
is continuous and constant p > 0, if there exist Ms > 0 and € > 0, for each solution
u e C([0,1],R),

| S NCDg ) — St u),u(r))| < (o) +p)e tE0,1], (22)
i=1
and a unique solution u* € C([0,1],R), such that |u — u*| < Ma(p(t) + p)e.
Definition 2.5. The solution is generalised Ulam-Hyers Rassias (GU HR) stable,

function ¢ € X is continuous and constant p > 0, if there exists My > 0, for each
solution u € C(]0, 1], R),

| S NCDgeut) — it ut), ulrt)| < @) +p, te (0,1, (2:3)
i=1
and a unique solution u* € C([0,1],R), such that |u — u*| < Ma(p(t) + p).
Lemma 2.3. Function v € C([0,1],R) is the solution of (2.1), iff there ezists a
function ¢ € C([0,1],R) depends on u, such that
(i) C(t) < e, t€[0,1].
(i) ; A€ Dgru(t) — f(t,u(t), u(tt)) — ¢(t) = 0.
Proof. If (i) and (i7) hold, we obtain,
| S ACDg () - ftut), u(rt)| = (1) <<
i=1
If u € C([0,1],R) is the solution of (2.1), we get,
—e <Y NIDYu(t) — ftult),u(rt) <e.
i=1
Hence, there exists ((t) € [—¢, ], such that

Z)\icDg‘iu(t) — f(t,ut), u(rt) = C(¢).

This completes the proof. O
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Lemma 2.4. Function v € C([0,1],R) is the solution of (2.2), iff there ezists a
function ¢ € C([0,1],R) depends on u, such that

(1) C(0) < p(0)e and (t)e < pe, L€ [0,1]
(i) 3= ACDgu(t) = Fltu(t). u(rt)) (1) = .

Proof. If (i) and (ii) hold, we obtain,

‘ Zn: XD u(t) = f(tult), u(rt))| = ¢(1) < p(t)e < (p(t) + pe.
Ifue 0([0,:11], R) is the solution of (2.2), we get,

—((t) + p)e < i XD u(t) — f(t,ult), u(rt)) < (p(t) + pe.

Hence, there exists ((t) € [—(¢(t) + p)e, (¢(t) + p)e], such that

n

SN u(t) = f(tult). ulrt)) = C(0).

This completes the proof. O

Lemma 2.5. Function v € C([0,1],R) is the solution of (2.3), iff there ezists a
function ¢ € C([0,1],R) depends on u, such that

(4) C(ﬁ) < () and p(t) < p, t €[0,1].
(41) ; )\iCDg‘iu(t) — f(t,u(t),u(rt)) — ¢(t) = 0.

Proof. If (i) and (i7) hold, we obtain,
| S NEDg () = F(t (), u(rh)| = ¢ < olt) < () + p.
i=1
If u € C([0,1],R) is the solution of (2.3), we get,

B+ ) < SONCDZ () — F(t,ult), u(rt) < o(t) + p.

=1

Hence, there exists ((t) € [—(¢(t) + p), p(t) + p], such that

n

D oNCDgu(t) = [t u(t), u(rt)) = (2).
i=1

This completes the proof. O

3. The solvability of fractional ¢-difference equation

Lemma 3.1. Ify € C([0,1],R). Then the unique solution of problem

n
> NCDyiu(t) = y(t), telo,1],
= dju(O) n—2 (31)
U(O) =Y ;quf = O,U(].) = Zl nju(gj)v

Jj=
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=1 =2 )\1 Fq(Otl — Oéi)
n=2 g - (o1 —1) n _ (1 —a;—1)
j / (& —as) Ai [P (1—gs)
+ - == y(s)d,s + - u(s)dys
= Mo Ig(ar) () ; Ao Tolan —ai) (5)da

L[ (1—gs)lm & Az—/ (t —gs)lor—i—V
_ _— S d S| — _— uls d S
Y Ao e (LS D b vl B v reperw mt (OLY

1" (t—gs)aD
+—/O ( - ()al) y(s)dys,
q

n—2
where B=1— 3" 17]-5;“1 £ 0.
j=1

Proof. (i) We show that if u(¢) is the solution of (3.1), then it can be expressed as
(3.2). By Lemma 2.1, we obtain,

. t _ qs (a1 —a;—1)
R e = e
1 [t (t—gs)>—D
AJoo Tylon)
From the boundary condition «(0) = 0, we get ¢; = 0. Therefore,

d (t—
u( ) =Co+ -t cpn — 1 "2 Z)\ / 95)
1

Iyl —a; — 1)

y(s)dys.

(al—ai—Q)

u(s)dys

&.

1 (t — gs)(@=2)

— —_— dgs.
+ )\1 Fq(al _ 1) y(S) qS
By d"%go) = 0, we have ¢ = 0. Hence,
d2u( ) (t —qs) (041*011'73)

t
s =c3[2 nln = 1g[n — 2]¢t" 7 § /
dgu? c3[2q 4+ ealn — 1gn — 2gt )\1 (a1 —a; — 2) u(s)dgs

[t (= gs)lea=d)
+7/ %y(s)dqs.

)\1 Fq(al —2)
2 ]u
From dd:?EO) = 0, we obtain c¢3 = 0. By ddqif) =0,7=3,...,n— 2, we get,
cy =+ = cp_1 = 0. Therefore,
(t — qs Yl —ai—1) 1 [ (t—gs)aD
) =cat" T — / dgs+— 7sds.
ut) = en Z A1 (a1 —ay) uls) A1 Ly(ar) y(s)dy

n—2
From u(1) = > n;u(¢;), we have,
j=1

(1 — gs)(@ =D 1 /1 (1—gs){or”V
u(s)d,s + — — 2 y(s)d,s
ZAJ T B W A e A
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n—2 _ qs (quai*l)

= Z ur {cngn 1 Z / oD u(s)dqs

EJ(ﬁ-—qS)("” Y
+T1 0 j T y(s)dqs]

By simple calculation, we obtain,
n—2 n — qS (al_ai_l)

1 mj u(s)dgs
=g / (),

j=1i=2

Eife. (a1 —1)
n (& —as)
+;Aﬂ; C I

1

) — gs)(1—ai—1) 1 — gs)(er—1)
e [ s - - [y,

s )\1 0 Fq(Oél - OLIL') )\1 Fq(Oél)
n—2
where 8 =1~ 3 7;¢""* #0. Then
j=1

_ qS (01—0ti—1)

u(t) = 3 [ EZ: mﬂ/ ' T (o — ) u(s)dgs

n—2 _ o 1) o (a1 a;—1)
S / (& —gs) >~ Z / (1 qs

-+ - —_— d s + u(s)d,s
= )\1 0 Fq(al) )\1 al — Ozl) ( ) 4

1 1 (1 _ qs)(a1 1) / t _ QS (a1 a;—1)
- — —————y(s)dyq s u(s)dys
)\1 ~/O Fq(al) Z /\1 041 — 0&1) ( ) 4

L [P (t—gs)aD
)\1 /0 Fq(Oél) y( ) q

(ii) We present that if u(t) can be expressed as (3.2), then it is the solution of
(3.1). In fact,

e t—qs y(er—ai—1) 1 [t (t—gs)la—D
u(t) = e t"t Z/\l/ u(s)dgs + — (7)y(8)dqs

Oll — CVZ) )\1 I‘q(al)
_ ntn 1 Ial iy, 7[(11
=c Z N 5l ),
where
n—2 n
L 2m/@ «wswﬁm4>
Cn =— u(s)dys
'8 Jj= 1; 041 - ) !
n=20 0 rEie. _ gs)(—1)
m/ (& —as)
+ — ———YI(S d S
;)\1 0 Fq(al) y( ) q

A [t (1 —gs)lmeD 1 /1 (1 —gs)(—V
+ — u(s)dys — — —————y(s)d,s]|.
g /\1 0 Fq(a1 - Oéi) ( ) 1 )\1 0 Fq(al) y( ) 4 }



Multi-term fractional delay g-difference equation 1185

From Lemma 2.2, we get,

1
C na ’LC a;
Dgtu Dgiu —y(t).
E oW )+ v
Therefore,

E )\iCD;“u(t) = y(t).

i=1

This completes the proof. O
Let X = C([0,1],R) with ||z|| = sup |x(¢)|]. Then X is a Banach space. From
te[0,1]

Lemma 3.1, the problem (1.1) can be converted into the following fixed point prob-
lem. Define an operator T : C([0,1],R) — C([0,1],R),

Tu(t)
tn—l n—2 n )\lnj /fg (5] _ qs)(al_ai_l)
= — u(s)dgs
ﬂ |: ]; s )\1 0 Fq(Oél - Oéi) ( ) 1
n=2  e&j (e _ (1 —1)
j (& —as)

+ — == f(s,u(s),u(rs))dys

2k Ty G,

(1= gs)m (1—gs)(=D
et / (1 gs) dys / qs e (s;u(s)u(Ts))dys
— 1o A

Fq(al — OLZ‘)

N\ t(t - (]3)(0‘1*0‘1'*1 / qs (a1 1)
Ly, 8)dgs+~— s,u(s)u(1s))dys.
2)\1/0 Fq(al — ai) f( ( ) ( )) q

In this paper, we give the following assumptions:

(A1) f:]0,1] x R x R — R is continuous.

(Ag) |f(t, uq, ’LLQ)—f(t7 V1, ’02)| < kq |’LL1—'U1 |+I€2|U2—’02|, t e [0, 1]7 ui, Uz, V1,02 €
R, k1, ke > 0.

(As) [ f(t,ur,uz)| < |s(t) [0,1], u1,us € R, ¢4(t) € C([0,1],R).

(A4) For any non-decreasing function ¢ € C([0,1],R), there exists a constant
M >0, such that I3 ¢(t) = M((t), t € [0,1].

Theorem 3.1. If (41) and (As) hold and

A .
5T 1+
Z:; =2 |ﬂ‘|>\1|1—‘q(a1—ai+1) (|77]|£] |ﬂ‘)
n—2
kl+k‘2 o
Z |81 A1 [T a1+1)(|nj|€j +1+18]) <1.

Then boundary value problem (1.1) has a unique solution.
Proof. For any uy,us € C([0,1],R), in virtue of (A3), we obtain,
HTUlfT’LLQH
g1 n—2 n )\ ||77 _qs al—ai—l)
< su [ J / u(s)—us(s)|d,s
AT S S B ey -k

t€[0,1] J=1 i=2
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nsl (& = gs)( 7 -
+Z|)\1| 0 L,(aq) | f(sur(shur(7s)) = f(s,u2(s)us(Ts))|dgs

|>\ | 1 (1 — qS)(O‘I*aifl)
— )\d
+ZIAll T (a; — ;) |u1(s) = ua(s)|dgs

S (a1 1)
|)\1/ q | f(s,u1(shui(rs)) — f(s,uQ(s),uz(Tsmdqs}

Al t—qs)(o‘l_ai—l)
+Z|)\1| Lyl — o) |1 (s) = ua(s)|dgs

_ S (a1—1)
|)\1| / ‘ q |f(s,ur(s), ur(7s)) = f(57u2(5)au2(7'8))‘dq5}

t‘l 3~ Wil & ( —qs(m‘“i_l)
<fur - s sup{m N A T

t€[0,1] o

Sa _ (oq 1)
|77J (& qs & a8 4 ks

|/\1|
|)\| 1—(]3)(&1 m—l) / l—qs (ap—1)
k1 + ko)d,
+Z|/\1| Fy(on —a) |,\1| (k1 + k2) qs}
Al t*QS)(‘“ “ / qs (ai-1) }
k1 + ko)d
+Z|)\1| Ty — ) |)\1| (k1 + k2)dys
n—=2 n a1—a;
[ Ail[n;] & |77J k1—|—k2)§
<flun = + TR
o U2H{|B|[ZZ Ml Tglar —ai + Z [A1] Tylar +1)
|\l 1 ki+k
+Z|)\1|F 0617061+1)+|>\| (a1+1)}

|Adl 1 ki +ke }
+ +
Z|/\1|F 041—0414—1) M| Ty(ar +1)

n—2 n
Al N
_HU1 qu[ZZ \5||)\1|1“ a _ai+1)(\77j|§j + 1+ \ﬁ|)

j=11=2

kl"‘kg o
+Z|ﬁ||A1|F a1+1)(|nj‘§j +1+|5|)].

Hence,
[~ Tua]| < ks — ]|
From Theorem 2.1, boundary value problem (1.1) has a unique solution. This

completes the proof. O

Theorem 3.2. If (A1) and (A3) hold. Then boundary value problem (1.1) has at
least a solution.
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Proof. Denote Q = {u € C([0,1],R) : |lu]| < r} where

n—2
llosl a
Z et (mil€5 +1+181)

T > .
- n—2 n
‘)‘ | Q1 —Q
- Jg1 ; [BIIA1[Tq (o1 —ai+1) (|77j|£j +1+ |ﬁ|)

(i) We present that T is uniformly bounded. For any u € Q, by (As), we have

S Dl [ 6 v
Tul| < su u(s)|d,s
7] opl]{ LR ey el
n—2
In 9 —qs )
\)\31| / |f(s,u(s),u(rs))|dqs
I/\ | [ A- qs )il
‘)\1 al—a) | 8)|dq8
(a1 1)
qs
i / BT (s, u(s), u(rs))|dgs]
|/\ | t—qs (0‘1 a;=1)
‘)\1 T, (a1 — o) ’ s)‘dqs
(041 1)
o / T (o)t s
n— n— 2 n (o1 —avi—
< sup {t 1[ |)\|nj|/£J j—as) 1)rds
“reoy U 1Bl L _2 |A1] Ly(ar — i) !
In -—qs
» ;1 & a0 s
$- 0 . / 5)(ea-
rd s+ — d,s
w X o A=a) ™0 e, ]
|>\ ‘ tiqs)(alfaifl) / (a1 —1)
+ rdgs + — —————||¢slldgs
Z Ml Jo Tylar —ay) | A1 !
n—2 n Q] —oy
Nillngl & ;]
5[1212 | A1 an1—az+1 Z|)\|F a+1)||¢f||

B 1 1
+Zmr (@ —at D) | Tyl +1)”¢f”}

i“‘ R
— |F Oél—Oél—f—l) |)\1|Fq(041+1)

o]l

n—2 n I/\1|7”

_Z — [Bl[A1[lg (1 — o + 1)(

j=11

€5 +1418])
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n—2
[ osll o
i Z ‘B||)\1|Fq(a1 + 1) (‘77]|£j +1+ |ﬁ|)

(ii) We show that T is equicontinuous. For any u € , t1,t2 € [0,1], t1 < to,
from (As), we get

|TU tl (t2)|
t’ﬂ 1_ tn 1 n—2 n |A ||,'7]‘ fg _ qs (al—()éi—l)
|:_] 1LZQ | A / g(a1 — ) ‘u(s)’dqs
‘77 & (€ _qs (al 1)
|AJ1\ S f s ), )| dys
\)\ | (1— qs J(ar—ai—1)
d
|>\1‘ Tylon — ) ‘ S)’ qas
1 - qs (a1-1)
|)\1| / |f(87u(8),u(7'8))|dq5:|
‘)\ | t2 — gs)(@—ai=) _ (¢) — gg)(a—ai=1)
, [u(s)|dqs
|>\1 Fq(al al)
‘)\ | t2 — qs al aq— 1)
|)\1 (a1 — o) |u(s)|dys
" (al_l) — — (a1—-1)
t2 qs (tl qs)
IMI/ T, (1) |£(s,u(s), u(rs))|dgs
q
t2 _ (al 1)
(t2 —gs)\V
|A1| T( | £ (s, u(s), u(rs))|dys
t ql
- 1 — " 1 _n—2 n )\ ||n ‘ 51 . _qs alfaifl)
<271{ j / L
= 18] ]Zl — [\ Tolar—ay) s
\77 (5
Nl\ =g s
|>‘|/ 1—qs(a1 oi— / (o1—1)
* rd s+ dos
Z' g(ar —a) | 17 l1dg
‘/\ | (ta —gs)( =7V — (s — QS)(O“‘O‘F” rd,s
|>\1\ Ty(ar — o) .
Al (ta — qs)(al—ai—l)
+ rdys
Z Al T (a1 —o) ¢
t1 _ (a1 —1) _ . (a1—1)
to — qs) (t, — qs)
! m/ e I dps
q

N / Gl PR
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tn_lftn_l n—2 n é_al a;

il & 2]
ST[ZZ |)\1j alj—oz +1) +Z|)\j|p (a1 +1)|‘¢ H

Jj=14i=2

[Adl 1
+ - o
Zw ety ]

+ Z |Ai | (t2 — qt2)(a1 @i) 4 (t1 — qtl)(o‘l @) 4 o1 o )
A1 I‘q(al —a;+1)

1 7(t2 — qt)( V) + (ty — gt1) ™) + 157 — 1

[l T,(ar + 1) 1.

Then we can see that |Tu(ty) — Tu(t2)| — 0 as t1 — ta.
(iil) We prove that T is continuous. Assume {u,} C Q and |ju,, — u| — 0(n —
00). Then,

HTun —TuH
tn—1 n—2 n )\ ||77 | 51 R qs (alfai—l)
= su ’ / Un(8) —u(s)|dys
te[Opl { ‘ﬁ| [jz:lz 2 |)\1 al —Oé) | ( ) ( )| q
£J _ O(l 1)
||Zj1|/ & —gs)' " qs | f(8,un(8)un(Ts)) — f(s,u(s)u(rs))|dgs
|>\ | 1 — qs)(o‘l a;—1)
+ Un(8) —u(s)|dys
Z|>\1| Lyl — o) [un(s) = w(s)|dg

_ S (al 1)
|>\1|/ (1 q ’f(S,Un(S)7un(TS))_f(S,'U/(S)7’U,(T8))|qu:|

kY (t— qg)(al a;—1)
" Z M| Jo Tylar — ) |un(s) — u(s)|dgs
(1 —1)
IMI/ [ (5 un(s), un(7s)) - f(S7U(8),U(Ts))|qu}.

From f is continuous on [O, 1] x R x R and |lu, — u|| = 0(n — +00), we obtain
HTun—TuH —0asn— +oo.

(iiii) We demonstrate that there exists an open subset W C C([0,1],R), for
any u € OW and A € (0,1), such that u # AT (u). We suppose that there exist
u e C([0,1],R) and A € (0,1), such that u = AT'(u). For any t € [0, 1], from (As),
we get

[[ull =[[ATul]
tn— 1 .n—2 n |)\ HU | fJ R qs 0117041-71)
o (T[S M [t d
_tgé}?l] { iz ; [A1] (a1 — o) ‘“(5)| qs

— (Dtl 1)
77 qs
™| =L [ f(s,us), u(s))|dgs

|u(s) |dq5

haf
j=1

+i / 1*(]5(0[1 a;—1)
1=2

al - az)
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|/\1| / (1- qs Yl =1) ‘f(57u(3),u(TS))‘dqs}

IM
‘)\1 041—04)

DY / t_qs - ‘f(57“(5)’u(7'8))|dqs}

t—qs (al a;—1)

|u(s) |dqs

tn— 1.n—2 n |>\ H"?]l 5] _ QS alfozifl)
< sup [ / rdys
teOl]{ 18] 2; Al Lg(ar — o) !
In - qs
‘;1 T s
|A ‘ 1 _ qs (al—ai—l / (al 1)
rdys + —— d s]
‘)\1 al — 041) ‘)\1| qufH
I e, )
rd s+ — d,s
‘)\1 041 _ Olz) |/\1| ||¢f|| q
n—2 n o] —ay
[ZZMH% &' ZWJ o7l
M| Tglar —a; + M| Ty(og +1) +1) !
[\l 1 1

*Z

+
\)\1|F (o1 —ai+1) " h|Tq(on +1)”¢f”}

n
1
+ E —7”+ =
= al — o + 1) |)\1| T ( )||¢f||

n—2

- [ Ailr
Pt |ﬁ||)\1|F a1 — o + )

j=1i=
-2

1] o
+j;1‘5||)\1|f‘ a1+1)(‘77;|§j +1+18])

=m.

(Imgleg = + 1+ 8])

Let W = {u € C([0,1],R) :

|lu]l < m+1}, there is no u € OW, such that u = A\T'(u).

From Theorem 2.2, boundary value problem (1.1) has at least a solution on W. This

completes the proof.

O

4. The stability of fractional ¢-difference equation

Lemma 4.1. If u € C([0,1],R) is solution of

1,2::1 )\Z-CDgiu(t) = f(t,u(t),u(rt)) + C(t), tel0,1],
d?u(0) n—2
u(0) =0, doui = 0,u(l) = Zl nju(€;).
j:

(4.1)
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Then, u satisfies the following inequality
lu(t) — Tu(t)| < mae,

where

n—2
1
my = ey .
= BT G D) 2 I + 1+ 161)
Proof. If u € C([0,1],R) is the solution of (4.1), then
5’ J— (al 1)
qs
/ C(S)dqs

Y- qs)("‘lfl) 1 (t —gs)(@r=1)
ST e g(s)dqs} + AT/O a6

u(t) =Tu(t) -|-

In view of Lemma 2.3, we obtain

(al 1)
2 ————((8)dgs

’ (t) ‘ ‘77| g] (& —qs
B \ﬁ\ I/\1\

(1- qs Y= 1) (t— qs yler=1)
)\1|/ ds )\1|/ —————((s)dys
o 2|n| fJ <5~—qs><a1-l>
<e = T dos
{ 18 [Z A1l Jo Iy(on) !
(al 1) (t— (al 1)
/ / qs dqs}
\)\1| \A1|

Im &t 1 1 1}
{Iﬁ [Z M| Tg(ar +1) MY Fq(a1+1)} DN M| Tg(ar +1)

1 o
“ BT g(ar + 1) (Z myle 1+ 181)

=mjéE.

This completes the proof. O
Theorem 4.1. If (A1) and (As) hold and

n—2 [Ai o
;Z|ﬁ”>\l|r (a1 —a; + 1) (Ingl&5 = +1+18])

n—2
kl +I€2 o
+z:: |ﬁ‘|/\1|1—‘ (a _|_1) (|77j|£j + 1+ ‘BD

<1.

Then boundary value problem (1.1) is UH stable and GUH stable.
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Proof. For each solution u € C([0,1],R) of (4.1) and the unique solution u* of
(1.1), by Theorem 3.1 and Lemma 4.1, we get

Tu+Tu—

< 7] + 17 -

Therefore,

my
= Mie.
— kE 1€

Then boundary value problem (1.1) is UH stable. For ¢(¢) = ¢, boundary value
problem (1.1) is GUH stable. This completes the proof. O

Lemma 4.2. If (A4) holds and u € C(]0,1],R) is solution of

Z XCDgru(t) = f(t u(t), u(tt)) + (1), te€[0,1],

y & u(0) n=2 (4.2)

u(0) =0, =57 = 0,u(1) = ;1 15 u(&;)-

Then, u satisfies the following inequality

[ult) — Tu(t)| < male(t) + p)e,

where
n—2

1 a1 M
mo = max{|ﬁ||>\1|rq(a1 1) (j21|77j|5j Jrl)’m}.

Proof. If u € C([0, 1], R) is the solution of (4.2), then

e R (96 e
) =Tute) + 5= [ [ S s
e L[ (a9
)\1 F(al) ((s)dqs}Jr)\—l/o TS

By virtue of Lemma 2.4 and (A4,4), we obtain

()~ )] < [ ) 2|Z]1|/ ot T 1)<(8)qu
|A1|/ 1_q8 e I)C |A1|/ t_qs in 1)“%8
= [z ;gl" —@‘ ;j;;j‘;“” 5V
|/\1|/ 1_qs = 1) dS |>\1|/ t_qs e 1)(p(8)dqs}

n—2

i 5 '
{m [Z ||21|| e e T IAA{IW)}
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LﬁMﬂF ar+1(§:“m6 1)+ e (ﬂ

<ma(p(t) + p)e,

} This completes the proof.
O

_ 1 @
where mg—max{m( Z n;1€5 1+1)

Theorem 4.2. If (A1), (A2) and (A4) hold and

n—2 n
|>‘2| ar—ay
k= JETTH L1 4+
JZ::l i=2 1Bl[A1|Tq(a1 — ai +1) (|77J|EJ w‘)

n—2
kl +k2
’ &5 +1+(8]) < 1.

; 1BI[A1|Tq(ar + 1) (Ins1€; 181)

Then boundary value problem (1.1) is UHR stable and GUHR stable.

Proof. For each solution v € C([0,1],R) of (4.2) and the unique solution u* of
(1.1), by Theorem 3.1 and Lemma 4.2, we get

| Tu+Tu—
< Hu — TuH + HTu —
< ma(e(t)
Therefore,
t) +
o)) < "2EOED o gy (o) 4 e
Then boundary value problem (1.1) is UHR stable. For e = 1, boundary value
problem (1.1) is GUHR stable. This completes the proof. O
5. Example
Example 5.1. Consider the following boundary value problem:
, 10(—1)¢+? 23 Alult 3lu(t)] .
200D3%8 u(t) + Z N cD;u(t) = 5 <2t-!r|7(1()tl)| — D smt),
dju(O) 2. )
u(0) =0, 4— = 0,u(1) = > 3ju(0.15), te[0,1],
q =1
(5.1)
_ _ : (=110 _ 1 _ 9
Wherea1—3.8,ai—z+272—234>\1—20)\ S, T = 3, N = 37,

& =0.14, j = 1,2. Hence,
£t un(8),wa (7)) = £t ua(t), ua(rt)|

< |M|<§]u1(t) —uy(t)] + 3|“1(é) - w(é)‘)

2
< 1] (5 s = s | + 8[ler — )
< 3[M|[[ur — uall,
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where
n—2 2
B=1-> &l "= 3j(0.15)* = 0.949 # 0.
j=1 j=1

Therefore, if M < 24.6086, we can get k < 1. From Theorem 3.1, boundary value
problem (5.1) has a unique solution.
Let ¢(t) =t*>+ 1 and p =3, t € [0,1]. We can obtain

2t°-8 N 38 t?+1

I38¢(t) =

Then, in view of Theorem 4.2, boundary value problem (5.1) is UHR stable and
GUHR stable. Moreover, by using Theorem 4.1, boundary value problem (5.1) is
UH stable and GU H stable, which can be seen in Figure 1.

u(t)

values of u(t)

20 25 30

Figure 1. Illustration of proof.

Example 5.2. Consider the following boundary value problem:

9 1 5
C 8.9 1-iC i _ 3t° ¢
D U(t)+i;2 1077 D%“(t) = (e*tt4+5\u(t)\+sint|u(§)\
_ et —t
e T e e (D) (L] + cose t), (5.2)
d?u(0) T
’LL(O) =0, dgud Ovu(l) = 2 37“(27)7 te [Oa 1]7

=1

_ 1 _ _qinl—i 1 _ 1 1
where a1 =89, a; = 7,i=2,---,9, M =1, A\ =100"" 7=g,n; = 37, & = 57,

j=1,---,7. Then,

| F(t,u(), u(rt))]
ﬁ( t et
et \e~tt* +5lu(t)| 4+ sintlu(§)]  3e=2tt + et t4u(t)] + [u(L)]

+ cos e*tt>‘
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3t5 t et
<= ] ‘tt)
< (= T Bu(t)] s tu(L)]  3e 2t et tfu()] 1 Ju(D)] | °
<§ (L + 6775 + e—t)
et \e it 3e2t
<3t% + ttet + 365 = ¢y (1),
where
n—2 7 1 1
B=1-m&t=>" g(g)g =0.9987 #0 and 7 > 0.0003.
j=1 j=1

Therefore, by Theorem 3.2, boundary value problem (5.2) has at least a solution.

0.06

0.04 4

0.03 7

values of u(t)

0.02

0.01 g

time t

Figure 2. Illustration of proof.

6. Conclusion

In this paper, we study multi-term fractional delay g-difference equation, where the
delay is proportional delay. In view of Banach contraction mapping principle and
Leray-Schauder nonlinear alternative theorem, we obtain the existence and unique-
ness of solutions. In addition, we give four different functional stability results,
including U H stability, GUH stability, UH R stability and GU HR stability. The
results of existence, uniqueness and stability of solutions obtained in this paper can
also be applied to other types of delays, such as continuous delay and discrete delay.
Moreover, we can obtain different equations by assigning different values to param-
eters, for example, when A\ = 1 and \; =0, ¢ = 2,--- ,n, it is a single operator
fractional delay g-difference equation.
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