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ALLEN-CAHN EQUATION BASED ON AN
UNCONSTRAINED ORDER PARAMETER

WITH SOURCE TERM AND ITS
CAHN-HILLIARD LIMIT
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Abstract Our aim in this paper is to study an Allen-Cahn equation based on
a microforce balance and unconstrained order parameter, with the introduction
of a source term. We first consider the source term, g(s) = βs, and obtain the
existence, uniqueness and regularity of solutions. We prove that, on finite time
intervals, the solutions converge to those of the Cahn-Hilliard-Oono equation
as a small parameter goes to zero and then to those of the original Cahn-
Hilliard equation as β → 0+. Then, we consider another source term and
obtain similar results. In this case, we prove that the solutions converge to
those of a Cahn-Hilliard equation on finite time intervals as a small parameter
goes to zero. We finally give some numerical simulations which confirm the
theoretical results.
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1. Introduction

The original Cahn-Hilliard equation

∂ϕ

∂t
+ ∆2ϕ−∆f(ϕ) = 0,

was initially proposed in 1958 by John W. Cahn and John E. Hilliard. It is a time
evolution equation for the concentration of a material. It was proposed in order
to describe phase separation processes (also known as spinodal decomposition) in
binary alloy (see [5,6]). Spinodal decomposition is a process by which a mixture of
two materials can separate into distinct regions with different material concentration
[5].
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This equation has appeared in many other contexts such as: population dy-
namics (see [7]), thin films (see [23,25]), topology optimization (see [14,27]), image
processing (see [3, 10,22]) and tumor growth (see [8, 15,17]).

Here f is the derivative of a double-well potential F . A thermodynamically
relevant potential F is the following logarithmic function which follows from mean-
field model:

F (s) =
θ1

2
(1− s2) +

θ2

2

[
(1− s) ln

(1− s
2

)
+ (1 + s) ln

(1 + s

2

)]
,

s ∈ (−1, 1), 0 < θ2 < θ1,

i.e.,

f(s) = −θ1s+
θ2

2
ln

1 + s

1− s
, s ∈ (−1, 1).

Although, as this will be the case here, such a function is very often approximated
by regular ones, typically,

F (s) =
1

4
(s2 − 1),

leading to the following cubic nonlinear term

f(s) = s3 − s. (1.1)

In [20], the author studied the following model:

∂ϕ

∂t
+ ∆2ϕ−∆f(ϕ) + g(ϕ) = 0, (1.2)

where
g(s) = βs, β > 0,

and
f(s) = s3 − s.

Equation (1.2) is known as the Cahn–Hilliard–Oono equation and was introduced
to model long-ranged interactions in the phase separation process (see [20, 26]). In
fact, it was also introduced to simplify numerical simulations (see [24]).

Furthermore, the authors in [18] studied the following variant of the Cahn-
Hilliard equation:

∂ϕ

∂t
+ ∆2ϕ−∆f(ϕ) +

kϕ

k′ + |ϕ|
= 0, k, k′ > 0, (1.3)

that models some energy mechanisms (e.g., lactate) in glial cells. Here, a logarithmic
nonlinear term f is considered.

Another phase separation model is the Allen-Cahn equation which was initially
suggested in 1979 in [1] by Allen and Cahn to describe the ordering of atoms during
the process. This equation has been extensively used to study various physical
problems, such as crystal growth (see [9]), image segmentation (see [2]) and the
motion by mean curvature flows (see [4, 12]).

The original derivations of the Cahn-Hilliard and Allen-Cahn equations were
purely phenomenological; however, this purely phenomenological approach is some-
how unsatisfactory from a physical point of view. This led Gurtin, Duda, Sarmiento
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and Fried to propose an approach based on microforce balance (see [11, 16]). Both
derivations, in [11, 16], are based on the assumptions that the phase field coincides
with the constituent concentration. The essential difference lied in the treatment of
this coincidence, Gurtin [16] identifies the concentration with the phase field from
the beginning, while the authors in [11] propose a method to introduce internal reac-
tions to maintain the equality between concentration and phase field as an internal
constraint.

In [11], the authors formulated two continuum theories, one constrained and
the other unconstrained, for constituent migration in bodies with microstructure
described by a scalar phase field. The theories are based on the constituent content
balance, the microforce balance, and the free-energy imbalance. The Cahn-Hilliard
approach arises from the constrained theory, i.e., the concentration is constrained
to be equal to the order parameter, while the Allen-Cahn one is based on an un-
constrained theory.

More precisely, the authors in [11] derived the following generalized Allen-Cahn
system:

∂ϕ

∂t
= κ∆µ− ε∂µ

∂t
, κ > 0,

µ = −α∆ϕ+ f(ϕ), α > 0,

(1.4)

where ϕ characterizes the ordering of atoms, χ = 1
ε is a constant coupling energy

modulus (ε is a small positive parameter), f is the derivative of a double-well
potential F and µ is the chemical potential.

The author in [19], prove that if we let ε go to 0+ (i.e. χ go to +∞), then we
recover the original Cahn-Hilliard system,

∂ϕ

∂t
= κ∆µ,

µ = −α∆ϕ+ f(ϕ).

(1.5)

Here, ϕ and µ satisfy the homogeneous Dirichlet boundary conditions.

Our aim in this paper is to prove the above convergence of Allen-Cahn equation
with a source term.

This paper is organized as follows. In Section 2, we state our assumptions on
the mathematical problem and give some useful notation. Then, in Section 3, we
consider the source term g(s) = βs. We first prove the existence, uniqueness and
regularity of solutions to the Allen-Cahn system. We next prove that, on finite
time intervals, these solutions converge, as ε → 0+, to those of the Cahn-Hilliard-
Oono system and then, as β → 0+, to those of the original Cahn-Hilliard system.
Furthermore, we derive error estimates. In Section 4, we consider another source
term and obtain similar results. In this case, we prove that the solutions converge,
as ε → 0+, to those of a Cahn-Hilliard system on finite time intervals and derive
error estimates. Finally, in Section 5, we give some numerical simulations which
confirm these results.
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2. Setting of the problem and notation
We consider the following initial and boundary value problem in a bounded and
regular domain Ω ⊂ Rn, n = 1, 2 or 3, with boundary Γ:

∂ϕ

∂t
= ∆µ− ε∂µ

∂t
− g(ϕ), ε > 0, (2.1)

µ = −∆ϕ+ f(ϕ),

ϕ = µ = 0 on Γ,

ϕ|t=0 = ϕ0, µ|t=0 = µ0.

We take f as the usual cubic nonlinear term,

f(s) = s3 − s, s ∈ R,

and note that
f ′ ≥ −1.

We also set
F (s) =

∫ s

0

f(ξ)dξ,

and note that
F (s) =

1

4
s4 − 1

2
s2, s ∈ R.

In Section 3, we take
g(s) = βs, s ∈ R,

where β is a strictly positive constant. We assume that β ∈ (0, β0), where β0 > 0.
In Section 4,

g(s) =
ks

k′ + |s|
, k, k′ > 0, s ∈ R. (2.2)

Note that
− k ≤ g(s) ≤ k, s ∈ R, (2.3)

and
0 ≤ g′(s) =

kk′

(k′ + |s|)2
≤ k

k′
, s ∈ R. (2.4)

As far as the parameter ε is concerned, we assume that ε ∈ (0, ε0], where ε0 > 0
satisfies

ε0 < 1.

Setting
w = ϕ+ εµ,

we can rewrite (2.1) as
∂w

∂t
= ∆

w − ϕ
ε
− g(ϕ),

w − ϕ
ε

= −∆ϕ+ f(ϕ),

i.e.,

ε
∂w

∂t
−∆w = −∆ϕ− εg(ϕ),

w = −ε∆ϕ+ εf(ϕ) + ϕ.



1334 A. Miranville & Z. Taha

We thus consider the following initial and boundary value problem:

ε
∂w

∂t
−∆w = −∆ϕ− εg(ϕ), (2.5a)

w = −ε∆ϕ+ εf(ϕ) + ϕ, (2.5b)
w = ϕ = 0 on Γ, (2.5c)
w|t=0 = w0. (2.5d)

We have the following

Theorem 2.1. Let h ∈ L2(Ω). Then, the elliptic problem

−ε∆ϕ+ εf(ϕ) + ϕ = h,

ϕ = 0 on Γ,
(2.6)

possesses a unique weak solution ϕ ∈ H1
0 (Ω). Furthermore, the mapping A :

L2(Ω)→ H1
0 (Ω), h 7→ ϕ, is globally Lipschitz continuous.

Proof. See [19].
It follows that we can rewrite (2.5) in the following equivalent form:

ε
∂w

∂t
−∆w + ∆A(w) + εg(A(w)) = 0,

w = 0 on Γ,

w|t=0 = w0.

(2.7)

Furthermore, once w is known from (2.7), we obtain ϕ by setting ϕ = A(w) and

we will take ϕ0 = A(w0). We then recover µ by setting µ =
1

ε
(w − ϕ), with

µ0 =
1

ε
(w0 − ϕ0). We thus also (formally) recover (2.1).

Notation. We denote by (·, ·) the usual L2-scalar product, with associated norm
‖ · ‖. We also set ‖ · ‖−1 = ‖(−∆)−

1
2 · ‖, where (−∆)−1 denotes the inverse of

the minus Laplace operator associated with Dirichlet boundary conditions. More
generally, we denote by ‖ · ‖X the norm on the Banach space X.

We note that
v 7→ ‖∇v‖ = ‖(−∆)

1
2 v‖

and
v 7→ ‖v‖−1

are norms on H1
0 (Ω) and H−1(Ω) = H1

0 (Ω)′, respectively, which are equivalent to
the usual norms on these spaces.

Throughout this paper, the same letters c and c′ denote (nonnegative or positive)
constants which may vary from line to line, or even in a same line.

3. The Case g(s) = βs

3.1. Well-posedness and regularity results
We first derive a priori estimates for (2.5). These estimates are formal, but they
can be justified within a Galerkin scheme.
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We multiply (2.5a) by w, integrate over Ω and by parts and have

ε

2

d

dt
‖w‖2 + ‖∇w‖2 = (∇w,∇ϕ)− ε(g(ϕ), w).

Note that,

|ε(g(ϕ), w)| ≤ 1

ε
‖w‖2 + c‖∇ϕ‖2,

we obtain, employing the Cauchy-Schwarz inequality,

ε
d

dt
‖w‖2 + ‖∇w‖2 ≤ 1

ε
‖w‖2 + c‖∇ϕ‖2. (3.1)

Multiplying then (2.5b) by −∆ϕ, we obtain

ε‖∆ϕ‖2 + ε(f ′(ϕ)∇ϕ,∇ϕ) + ‖∇ϕ‖2 = −(w,∆ϕ).

Noting that
ε(f ′(ϕ)∇ϕ,∇ϕ) + ‖∇ϕ‖2 ≥ (1− ε0)‖∇ϕ‖2,

and employing the Cauchy-Schwarz inequality, we find

ε‖∆ϕ‖2 + 2k1‖∇ϕ‖2 ≤
1

ε
‖w‖2,

where k1 = 1− ε0, so that

‖∆ϕ‖2 ≤ 1

ε2
‖w‖2 and ‖∇ϕ‖2 ≤ 1

2k1ε
‖w‖2. (3.2)

In particular, it follows from (3.1) and (3.2) that

ε
d

dt
‖w‖2 + ‖∇w‖2 ≤ c

ε
‖w‖2.

Next, we multiply (2.5a) by (−∆)−1 ∂w

∂t
and have

1

2

d

dt
‖w‖2 + ε

∥∥∂w
∂t

∥∥2

−1
= (ϕ,

∂w

∂t
)− ε(g(ϕ), (−∆)−1 ∂w

∂t
).

Noting that

(ϕ,
∂w

∂t
) = ((−∆)

1
2ϕ, (−∆)−

1
2
∂w

∂t
)

≤ ε

4

∥∥∂w
∂t

∥∥2

−1
+

1

ε
‖∇ϕ‖2,

and
εβ(ϕ, (−∆)−1 ∂w

∂t
) ≤ ε

4

∥∥∂w
∂t

∥∥2

−1
+
c

ε
‖ϕ‖2

≤ ε

4

∥∥∂w
∂t

∥∥2

−1
+
c

ε
‖∇ϕ‖2,

we obtain
d

dt
‖w‖2 + ε

∥∥∂w
∂t

∥∥2

−1
≤ c

ε
‖∇ϕ‖2,
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so that, owing to (3.2),

d

dt
‖w‖2 + ε

∥∥∂w
∂t

∥∥2

−1
≤ c

ε2
‖w‖2. (3.3)

Differentiating now (2.5b) with respect to time, we obtain

∂w

∂t
= −ε∆∂ϕ

∂t
+ εf ′(ϕ)

∂ϕ

∂t
+
∂ϕ

∂t
, (3.4)

∂ϕ

∂t
= 0 on Γ. (3.5)

Multiplying (3.4) by
∂ϕ

∂t
, we find

ε‖∇∂ϕ
∂t
‖2 + ε(f ′(ϕ)

∂ϕ

∂t
,
∂ϕ

∂t
) + ‖∂ϕ

∂t
‖2 = (

∂w

∂t
,
∂ϕ

∂t
),

which yields, proceeding as above,

ε‖∇∂ϕ
∂t
‖2 + 2k1‖

∂ϕ

∂t
‖2 ≤ 1

ε
‖∂w
∂t
‖2−1.

We multiply (2.5a) by −∆w and have

ε

2

d

dt
‖∇w‖2 + ‖∆w‖2 = (∆w,∆ϕ) + εβ(ϕ,∆w),

which yields,

ε
d

dt
‖∇w‖2 + ‖∆w‖2 ≤ c

ε2
‖w‖2.

Multiplying (2.5b) by ∆2ϕ, we obtain

ε‖∇∆ϕ‖2 + ε(∆f(ϕ),∆ϕ) + ‖∆ϕ‖2 = −(∇w,∇∆ϕ). (3.6)

Note that
∆f(ϕ) = (3ϕ2 − 1)∆ϕ+ 6ϕ∇ϕ · ϕ,

so that
(∆f(ϕ),∆ϕ) ≥ −‖∆ϕ‖2 + 6

∫
Ω

ϕ∇ϕ · ∇ϕdx. (3.7)

Furthermore, we can see that, employing Hölder’s inequality, proper Sobolev em-
beddings and standard elliptic regularity results,

|
∫

Ω

ϕ∇ϕ · ∇ϕdx| ≤ ‖ϕ‖L6(Ω)‖∇ϕ‖‖∇ϕ‖L6(Ω)n‖∆ϕ‖L6(Ω)

≤ c‖∆ϕ‖3‖∇∆ϕ‖.
(3.8)

It thus follows from (3.6)-(3.8) that

ε‖∇∆ϕ‖2 + 2k1‖∆ϕ‖2 ≤
2

ε
‖∇w‖2 + cε‖∆ϕ‖6

and (3.2) yields

ε‖∇∆ϕ‖2 + 2k1‖∆ϕ‖2 ≤
2

ε
‖∇w‖2 +

c

ε5
‖w‖6. (3.9)
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Theorem 3.1. Let T > 0 be given.

1. We assume that w0 ∈ L2(Ω). Then, (2.5) possesses a unique weak solution
(w,ϕ) such that

w ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),

∂w

∂t
∈ L2(0, T ;H−1(Ω)),

ϕ ∈ C([0, T ];H2(Ω)w) ∩ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)),

and
∂ϕ

∂t
∈ L2(0, T ;H1

0 (Ω)),

where the index w denotes the weak topology.

2. If we further assume that w0 ∈ H1
0 (Ω), then,

w ∈ C([0, T ];H1
0 (Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0 (Ω)),

∂w

∂t
∈ L2(0, T ;L2(Ω)),

and
ϕ ∈ C([0, T ];H3(Ω)w) ∩ L∞(0, T ;H3(Ω) ∩H1

0 (Ω)).

Furthermore, the solution is strong.

Proof. Existence:
We can note that (2.1) is associated with the following weak formulation:
Find (w,ϕ) : [0, T ]→ H1

0 (Ω)2 such that

ε
d

dt
(w, v) + (∇w,∇v) = (∇ϕ,∇v)− ε(g(ϕ), v), ∀v ∈ H1

0 (Ω),

(w, v) = ε(∇ϕ,∇v) + ε(f(ϕ), v) + (ϕ, v), ∀v ∈ H1
0 (Ω),

w|t=0 = w0 ∈ L2(Ω).

(3.10)

Let 0 < λ1 ≤ λ2 ≤ · · · be the eigenvectors of the minus Laplace operator associated
with Dirichlet boundary conditions and v1, v2, · · · be associated eigenvectors such
that the vj ’s form an orthonormal in L2(Ω) and orthogonal in H1

0 (Ω) basis. We set

Vm = Span(v1, · · · , vm), m ∈ N,

and introduce the following approximated problem, for m ∈ N given:
Find (wm, ϕm) : [0, T ]→ V 2

m such that

ε
d

dt
(wm, v) + (∇wm,∇v) = (∇ϕm,∇v)− ε(g(ϕm), v), ∀v ∈ Vm,

(wm, v) = ε(∇ϕm,∇v) + ε(f(ϕm), v) + (ϕm, v), ∀v ∈ Vm,
wm|t=0 = w0,m,

(3.11)

where w0,m = Pmw0, Pm being the orthogonal projection from L2(Ω) into Vm.
As in Theorem (2.1), we can define the mapping Am : Vm → Vm as follows

ϕm = Am(h), h ∈ Vm, where

ε(∇ϕm,∇v) + ε(f(ϕm), v) + (ϕm, v) = (h, v), ∀v ∈ Vm.
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Furthermore, we can see that this mapping is globally Lipschitz continuous, in the
sense that

‖∇(Am(h1)−Am(h2))‖ ≤ c

ε
1
2

‖h1 − h2‖, h1, h2 ∈ Vm,

and
‖Am(h1)−Am(h2)‖ ≤ c

k
1
2
2

‖h1 − h2‖, h1, h2 ∈ Vm,

where k2 =
1− ε0

2
.

We can rewrite (3.11) in the equivalent form

ε
d

dt
(wm, v) + (∇wm,∇v) = (∇Am(wm),∇v)− ε(g(Am(wm)), v), ∀v ∈ Vm,

ϕm = Am(wm),

wm|t=0 = w0,m.
(3.12)

The existence of a local in time solution to (3.12) then follows from the Cauchy-
Lipschitz theorem. It follows, noting that the above a priori estimates hold at the
approximated level, that wm is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) and
∂wm
∂t

is bounded in L2(0, T ;H−1(Ω)), independently of m. Having this, we can
pass to the limit in a standard way, owing to Aubin-Lions campactness results, and
deduce the existence of solution.

Uniqueness:
Let (w1, ϕ1) and (w2, ϕ2) be two solution corresponding to the initial data w1,0

and w2,0 respectively, and set (w,ϕ) = (w1, ϕ1) − (w2, ϕ2) and w0 = w1,0 − w2,0.
Then,

ε
∂w

∂t
−∆w = −∆(A(w1)−A(w2))− ε(g(A(w1))− g(A(w2))), (3.13a)

w = 0 on Γ, (3.13b)
w|t=0 = w0. (3.13c)

Multiplying (3.13a) by w, we have

ε

2

d

dt
‖w‖2 + ‖∇w‖2

≤1

2
‖∇(A(w1)−A(w2))‖2 +

1

2
‖∇w‖2 + ε‖g(A(w1))− (A(w2))‖‖w‖,

which yields

ε
d

dt
‖w‖2 + ‖∇w‖2 ≤ c‖∇(A(w1)−A(w2))‖2 +

c

ε
‖w‖2

and, owing to ‖∇(A(w1)−A(w2))‖2 ≤ c

ε
‖w1 − w2‖2,

d

dt
‖w‖2 ≤ c

ε2
‖w‖2. (3.14)
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The uniqueness, as well as the continuous dependence with respect to the initial
data in the L2(Ω)-norm, for w follows from (3.14) and Gronwall’s lemma. We
then immediately deduce similar results for ϕ, recalling that A is globally Lipschitz
continuous.

Theorem 3.2. We assume that (ϕ0, µ0) ∈ (H3(Ω) ∩H1
0 (Ω)) ×H1

0 (Ω), with µ0 =
−∆ϕ0 + f(ϕ0). Furthermore, let T > 0 be given. Then, (2.1) possesses a unique
strong solution (ϕ, µ) such that

ϕ ∈ C([0, T ];H3(Ω)w) ∩ L∞(0, T ;H3(Ω) ∩H1
0 (Ω)),

∂ϕ

∂t
∈ L2(0, T ;H1

0 (Ω)),

µ ∈ C([0, T ];H1
0 (Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0 (Ω)),

and
∂µ

∂t
∈ L2(0, T ;L2(Ω)).

3.2. Convergence to the Cahn-Hilliard system
Our aim in this section is to pass to the limit in (2.1) as ε goes to 0+ and β goes to
0+. Note that the limit problem for ε = 0 corresponds to the Cahn–Hilliard-Oono
system,

∂ϕ0,β

∂t
= ∆µ0,β − βϕ0,β ,

µ0,β = −∆ϕ0,β + f(ϕ0,β),

ϕ0,β = µ0,β = 0 on Γ,

ϕ0,β |t=0 = ϕ0, µ
0,β |t=0 = µ0 = −∆ϕ0 + f(ϕ0),

(3.15)

then for β = 0 corresponds to the Cahn–Hilliard system,

∂ϕ0,0

∂t
= ∆µ0,0,

µ0,0 = −∆ϕ0,0 + f(ϕ0,0),

ϕ0,0 = µ0,0 = 0 on Γ,

ϕ0,0|t=0 = ϕ0, µ
0,0|t=0 = µ0 = −∆ϕ0 + f(ϕ0).

(3.16)

In order to accomplish our purpose, we first need to derive estimates on the solutions
to (2.1) which are independent of ε and β (we consider here strong solutions as given
in Theorem 3.2).

We thus consider the initial and boundary value problem

∂ϕε,β

∂t
= ∆µε,β − ε∂µ

ε,β

∂t
− g(ϕε,β), (3.17a)

µε,β = −∆ϕε,β + f(ϕε,β), (3.17b)

ϕε,β = µε,β = 0 on Γ, (3.17c)

ϕε,β |t=0 = ϕ0, µ
ε,β |t=0 = µ0 = −∆ϕ0 + f(ϕ0). (3.17d)

Note that the constants below may depend on ε0 and β0, but they are independent
of ε and β.



1340 A. Miranville & Z. Taha

We multiply (3.17a) by µε,β and have

ε

2

d

dt
‖µε,β‖2 + ‖∇µε,β‖2 = −(

∂ϕε,β

∂t
, µε,β)− β(ϕε,β , µε,β). (3.18)

Note that multiplying (3.17b) by
∂ϕε,β

∂t
we obtain

(
∂ϕε,β

∂t
, µε,β) =

1

2

d

dt
‖∇ϕε,β‖2 +

d

dt

∫
Ω

F (ϕε,β)dx. (3.19)

Combining (3.18) and (3.19), we find

d

dt

(
ε‖µε,β‖2 + ‖∇ϕε,β‖2 + 2

∫
Ω

F (ϕε,β)dx
)

+ 2‖∇µε,β‖2

=− 2β(ϕε,β ,−∆ϕε,β + f(ϕε,β)).

Noting that
(f(s), s) ≥ c‖s‖4L4(Ω) − c,

we find
d

dt

(
ε‖µε,β‖2 + ‖∇ϕε,β‖2 + 2

∫
Ω

F (ϕε,β)dx
)

+ 2‖∇µε,β‖2 + 2β‖∇ϕε,β‖2

+ cβ‖ϕε,β‖4L4(Ω) ≤ c.
(3.20)

Next, we multiply (3.17a) by
∂µε,β

∂t
and have

1

2

d

dt
‖∇µε,β‖2 + ε‖∂µ

ε,β

∂t
‖2 = −(

∂ϕε,β

∂t
,
∂µε,β

∂t
)− β(ϕε,β ,

∂µε,β

∂t
). (3.21)

Differentiating then (3.17b) with respect to time, we obtain

∂µε,β

∂t
= −∆

∂ϕε,β

∂t
+ f ′(ϕε,β)

∂ϕε,β

∂t
. (3.22)

Multiplying (3.22) by
∂ϕε,β

∂t
, we find

(
∂µε,β

∂t
,
∂ϕε,β

∂t
) ≥ ‖∇∂ϕ

ε,β

∂t
‖2 − ‖∂ϕ

ε,β

∂t
‖2,

which yields, in view of (3.21),

1

2

d

dt
‖∇µε,β‖2 + ε‖∂µ

ε,β

∂t
‖2 + ‖∇∂ϕ

ε,β

∂t
‖2 ≤ ‖∂ϕ

ε,β

∂t
‖2 − β(ϕε,β ,

∂µε,β

∂t
). (3.23)

Using the fact that

(ϕε,β ,
∂µε,β

∂t
) =

∂

∂t
(ϕε,β , µε,β)− (

∂ϕε,β

∂t
, µε,β),

we find

d

dt
(‖∇µε,β‖2 +2β(ϕε,β , µε,β))+2ε‖∂µ

ε,β

∂t
‖2 +2‖∇∂ϕ

ε,β

∂t
‖2 ≤ c‖∂ϕ

ε,β

∂t
‖2 +2‖µε,β‖2.

(3.24)
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Employing the interpolation inequality

‖∂ϕ
ε,β

∂t
‖2 ≤ ‖∂ϕ

ε,β

∂t
‖−1‖∇

∂ϕε,β

∂t
‖,

we thus have the following differential inequality

d

dt
(‖∇µε,β‖2 +2β(ϕε,β , µε,β))+2ε‖∂µ

ε,β

∂t
‖2 +‖∇∂ϕ

ε,β

∂t
‖2 ≤ c‖∂ϕ

ε,β

∂t
‖2−1 +2‖µε,β‖2.

(3.25)
Note that it follows from (3.17a) that

‖∂ϕ
ε,β

∂t
‖−1 ≤ ‖∇µε,β‖+ cε‖∂µ

ε,β

∂t
‖+ β‖ϕε,β‖−1.

It thus follows that

d

dt
(‖∇µε,β‖2 + 2β(ϕε,β , µε,β)) + 2ε‖∂µ

ε,β

∂t
‖2 + ‖∇∂ϕ

ε,β

∂t
‖2

≤cβ2‖ϕε,β‖2−1 + c‖∇µε,β‖2 + cε2‖∂µ
ε,β

∂t
‖2,

(3.26)

which yields, employing the Poincare inequality

‖(−∆)−1ϕε,β‖ ≤ c‖∇ϕε,β‖,

the differential inequality

d

dt
(‖∇µε,β‖2 + 2β(ϕε,β , µε,β)) + ‖∇∂ϕ

ε,β

∂t
‖2 + ε(2− cε0)‖∂µ

ε,β

∂t
‖2

≤cβ2‖∇ϕε,β‖2 + c‖∇µε,β‖2.
(3.27)

Summing (3.20) and δ1 times (3.27), where δ1 > 0 is small enough, we obtain

d

dt

(
ε‖µε,β‖2 + ‖∇ϕε,β‖2 + δ1‖∇µε,β‖2 + 2

∫
Ω

F (ϕε,β)dx+ 2βδ1(ϕε,β , µε,β)
)

+cβ‖ϕε,β‖4L4(Ω) + β(2− cβ0δ1)‖∇ϕε,β‖2 + (2− cδ1)‖∇µε,β‖2 + ‖∇∂ϕ
ε,β

∂t
‖2

+εδ1(2− cε0)‖∂µ
ε,β

∂t
‖2 ≤ c.

(3.28)
We can assume, without loss of generality, that

2− cδ1 > 0, 2− cβ0δ1 > 0 and 2− cε0 > 0. (3.29)

We can now prove the following

Theorem 3.3. We assume that the assumptions of Theorem 3.2 and (3.29) hold.
Then,

1. the sequence of solutions (ϕε,β , µε,β) to (3.17) converges to a weak solution,
(ϕ0,β , µ0,β), to (3.15) on finite time intervals [0, T ], T > 0, as ε→ 0+,

2. the sequence of solutions (ϕ0,β , µ0,β) to (3.15) converges to a weak solution,
(ϕ0,0, µ0,0), to (3.16) on finite time intervals [0, T ], T > 0, as β → 0+.
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Furthermore, (ϕ0,0, µ0,0) is a strong solution to (3.16).

Proof.

1. We can note that it follows from the above a priori estimates that ϕε,β

is bounded in L∞(0, T ;H1
0 (Ω)),

∂ϕε,β

∂t
is bounded in L2(0, T ;H1

0 (Ω)) and

µε,β is bounded in L∞(0, T ;H1
0 (Ω)), independently of ε, T > 0 given. Fur-

thermore, ε
1
2
∂µε,β

∂t
is bounded in L2(0, T ;L2(Ω)) and β

1
2ϕε,β is bounded in

L2(0, T ;L2(Ω)), independently of ε.
Then, the solution converges, up to a subsequence which we do not relabel,
to a limit function (ϕ0,β , µ0,β) in the following sense, as ε→ 0+,

ϕε,β → ϕ0,β in L∞(0, T ;H1
0 (Ω)) weak - star,

∂ϕε,β

∂t
→ ∂ϕ0,β

∂t
in L2(0, T ;H1

0 (Ω)) weakly,

µε,β → µ0,β in L2(0, T ;H1
0 (Ω)) weakly,√

βϕε,β →
√
βϕ0,β in L2(0, T ;L2(Ω)) weakly

and

ε
∂µε,β

∂t
→ 0 in L2(0, T ;L2(Ω)) weakly.

Then we use a classical Aubin-Lions compactness results and have

ϕε,β → ϕ0,β a.e. and in C([0, T ];H1−δ(Ω)), δ > 0.

We can pass to the limit in a variational formulation associated with (3.17)
and prove that (ϕ0,β , µ0,β) is a weak solution to (3.15). Indeed, passing to
the limit in the linear terms is straightforward. As far as the nonlinear term
is concerned, we note that

‖ϕε,β‖4L4(Ω) ≤ 2(f(ϕε,β), ϕε,β) + 1

≤ 2|(µε,β , ϕε,β)|+ 2‖∇ϕε,β‖2 + 1

≤ (using the above estimations)
≤ c,

then
ϕε,β → ϕ0,β in L4(0, T ;L4(Ω)),

therefore, up to a subsequence which we again do not relabel,

(ϕε,β)3 → (ϕ0,β)3 a.e. and in L
4
3 (0, T ;L

4
3 (Ω)).

2. Now, taking ε → 0+, we can pass to the limit in the above estimations

then we note that ϕ0,β is bounded in L∞(0, T ;H1
0 (Ω)),

∂ϕ0,β

∂t
is bounded in

L2(0, T ;H1
0 (Ω)), µ0,β is bounded in L2(0, T ;H1

0 (Ω)) and β
1
2ϕε,β is bounded

in L2(0, T ;L2(Ω)), independently of β. It thus follows from standard Aubin-
Lions compactness results that, at least for a subsequence which we do not
relabel, there exists (ϕ0,0, µ0,0) such that, as β → 0+,

ϕ0,β → ϕ0,0 in L∞(0, T ;H1
0 (Ω)) weak - star,
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ϕ0,β → ϕ0,0 a.e. and in C([0, T ];H1−δ(Ω)), δ > 0,

∂ϕ0,β

∂t
→ ∂ϕ0,0

∂t
in L2(0, T ;H1

0 (Ω)) weakly,

µ0,β → µ0,0 in L2(0, T ;H1
0 (Ω)) weakly

and √
βϕ0,β → 0 in L2(0, T ;L2(Ω)) weakly.

This is sufficient to pass to the limit in a variational formulation associated
with (3.17) and prove that (ϕ0,0, µ0,0) is a weak solution to (3.16).

Finally, since ϕ0 ∈ H3(Ω) ∩ H1
0 (Ω), it is standard to prove that (ϕ0,0, µ0,0) is a

strong solution to (3.16) (see [21]).

Theorem 3.4. We assume that the assumptions of Theorem 3.2 and (3.29) hold.
Then, the sequence of strong solutions (ϕε,β , µε,β) to (3.17) converges to a strong
solution to (3.16) on finite time intervals [0, T ], T > 0, as ε→ 0+ and β → 0+.

Proof. We can note that it follows from the above a priori estimates that ϕε,β

is bounded in L∞(0, T ;H1
0 (Ω)),

∂ϕε,β

∂t
is bounded in L2(0, T ;H1

0 (Ω)) and µε,β is

bounded in L2(0, T ;H1
0 (Ω)), independently of ε and β, T > 0 given. Furthermore,

ε
1
2
∂µε,β

∂t
is bounded in L2(0, T ;L2(Ω)) and β

1
2ϕε,β is bounded in L2(0, T ;L2(Ω)),

independently of ε and β. It thus follows from standard Aubin-Lions compact-
ness results that, at least for a subsequence which we do not relabel, there exists
(ϕ0,0, µ0,0) such that, as ε→ 0+ and β → 0+,

ϕε,β → ϕ0,0 in L∞(0, T ;H1
0 (Ω)) weak - star,

ϕε,β → ϕ0,0 a.e. and in C([0, T ];H1−δ(Ω)), δ > 0,

∂ϕε,β

∂t
→ ∂ϕ0,0

∂t
in L2(0, T ;H1

0 (Ω)) weakly,

µε,β → µ0,0 in L2(0, T ;H1
0 (Ω)) weakly,

βϕε,β → 0 in L2(0, T ;L2(Ω)) weakly

and

ε
∂µε,β

∂t
→ 0 in L2(0, T ;L2(Ω)) weakly.

This is sufficient to pass to the limit in a variational formulation associated with
(3.17) and prove that (ϕ0,0, µ0,0) is a weak solution to (3.16). Then, since ϕ0 ∈
H3(Ω) ∩ H1

0 (Ω), it is standard to prove that (ϕ0,0, µ0,0) is a strong solution to
(3.16).

We can derive error estimates and prove the following

Theorem 3.5. Under the assumptions of Theorem 3.4, there hold, for t ∈ [0, T ],
T > 0 given,

1.

‖(ϕε,β − ϕ0,β)(t)‖2−1 + c

∫ T

0

‖∇(ϕε,β − ϕ0,β)(s)‖2ds

≤cε(1 + T )ec
′T (‖ϕ0‖2H1(Ω) + ‖ϕ0‖4L4(Ω) + ‖µ0‖2H1(Ω) + 1),

(3.30)

where the constants c and c′ are independent of ε.
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2.

‖(ϕ0,β − ϕ0,0)(t)‖2−1 + c

∫ T

0

‖∇(ϕ0,β − ϕ0,0)(s)‖2ds

≤cβ(1 + T )ec
′T (‖ϕ0‖2H1(Ω) + ‖ϕ0‖4L4(Ω) + ‖µ0‖2H1(Ω) + 1),

(3.31)

where the constants c and c′ are independent of β.

3.

‖(ϕε,β − ϕ0,0)(t)‖2−1 + c

∫ T

0

‖∇(ϕε,β − ϕ0,0)(s)‖2ds

≤cmax(ε, β)(1 + T )ec
′T (‖ϕ0‖2H1(Ω) + ‖ϕ0‖4L4(Ω) + ‖µ0‖2H1(Ω) + 1),

(3.32)

where the constants c and c′ are independent of ε and β.

Proof.

1. We set (ϕ1, µ1) = (ϕε,β , µε,β)− (ϕ0,β , µ0,β), 0 < ε < ε0 and 0 < β < β0, and
have

(−∆)−1 ∂ϕ1

∂t
= −µ1 − ε(−∆)−1 ∂µ

ε,β

∂t
− β(−∆)−1ϕ1, (3.33a)

µ1 = −∆ϕ1 + f(ϕε,β)− f(ϕ0,β), (3.33b)
ϕ1 = µ1 = 0 on Γ, (3.33c)
ϕ1|t=0 = 0. (3.33d)

Multiplying (3.33a) by ϕ1, we obtain

1

2

d

dt
‖ϕ1‖2−1 + (µ1, ϕ1) = −ε(∂µ

ε,β

∂t
, (−∆)−1ϕ1)− β(ϕ1, (−∆)−1ϕ1). (3.34)

We then multiply (3.33b) by ϕ1 to find,

(µ1, ϕ1) ≥ ‖∇ϕ1‖2 − ‖ϕ1‖2. (3.35)

Using (3.35), the Cauchy-Schwarz and Young’s inequalities and the interpo-
lation inequality

‖ϕ1‖2 ≤ ‖ϕ1‖−1‖∇ϕ1‖,

we obtain

d

dt
‖ϕ1‖2−1 + c‖∇ϕ1‖2 ≤ c′‖ϕ1‖2−1 + cε2‖∂µ

ε,β

∂t
‖2. (3.36)

It follows from (3.36) and Gronwall’s lemma that

‖ϕ1(t)‖2−1 + c

∫ T

0

‖∇ϕ1(s)‖2ds ≤ c(1 + T )ec
′T

∫ T

0

ε2‖∂µ
ε,β

∂t
(s)‖2ds. (3.37)

We note that it follows from (3.28) and

β(ϕε,β , µε,β) ≥ c(‖∇ϕε,β‖2 + ‖ϕε,β‖4L4(Ω))− c,
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that ∫ T

0

ε‖∂µ
ε,β

∂t
(s)‖2ds ≤ c(‖ϕ0‖2H1(Ω) + ‖ϕ0‖4L4(Ω) + ‖µ0‖2H1(Ω) + 1),

which finally yields

‖ϕ1(t)‖2−1 + c

∫ T

0

‖∇ϕ1(s)‖2ds

≤cε(1 + T )ec
′T (‖ϕ0‖2H1(Ω) + ‖ϕ0‖4L4(Ω) + ‖µ0‖2H1(Ω) + 1).

2. We set (ϕ2, µ2) = (ϕ0,β , µ0,β)− (ϕ0,0, µ0,0), 0 < β < β0, and have

(−∆)−1 ∂ϕ2

∂t
= −µ2 − β(−∆)−1ϕ0,β , (3.38a)

µ2 = −∆ϕ2 + f(ϕ0,β)− f(ϕ0,0), (3.38b)
ϕ2 = µ2 = 0 on Γ, (3.38c)
ϕ2|t=0 = 0. (3.38d)

Multiplying (3.38a) by ϕ2, we obtain

1

2

d

dt
‖ϕ2‖2−1 + (µ2, ϕ2) = −β(ϕ0,β , (−∆)−1ϕ2). (3.39)

We then multiply (3.38b) by ϕ2 to find,

(µ2, ϕ2) ≥ ‖∇ϕ2‖2 − ‖ϕ2‖2. (3.40)

Using (3.40), the Cauchy-Schwarz and Young’s inequalities and the interpo-
lation inequality

‖ϕ2‖2 ≤ ‖ϕ2‖−1‖∇ϕ2‖,

we obtain

d

dt
‖ϕ2‖2−1 + c‖∇ϕ2‖2 ≤ c′‖ϕ2‖2−1 + cβ2‖∇ϕ0,β‖2. (3.41)

It follows from (3.41) and Gronwall’s lemma that

‖ϕ2(t)‖2−1 + c

∫ T

0

‖∇ϕ2(s)‖2ds ≤ c(1 + T )ec
′T

∫ T

0

β2‖∇ϕ0,β(s)‖2ds. (3.42)

We note that it follows from (3.28), as ε→ 0+,

d

dt

(
‖∇ϕ0,β‖2 + ‖∇µ0,β‖2 + 2

∫
Ω

F (ϕ0,β)dx+ 2β(ϕ0,β , µ0,β)
)

+(2− c)‖∇µ0,β‖2 + 2β‖∇ϕ0,β‖2 + cβ‖ϕ0,β‖4L4(Ω) + ‖∇∂ϕ
0,β

∂t
‖2 ≤ c.

(3.43)

It follows from (3.43) and

β(ϕ0,β , µ0,β) ≥ c(‖∇ϕ0,β‖2 + ‖ϕ0,β‖4L4(Ω))− c,
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that ∫ T

0

β‖∇ϕ0,β(s)‖2ds ≤ c(‖ϕ0‖2H1(Ω) + ‖ϕ0‖4L4(Ω) + ‖µ0‖2H1(Ω) + 1),

which finally yields

‖ϕ2(t)‖2−1 + c

∫ T

0

‖∇ϕ2(s)‖2ds

≤cβ(1 + T )ec
′T (‖ϕ0‖2H1(Ω) + ‖ϕ0‖4L4(Ω) + ‖µ0‖2H1(Ω) + 1).

3. We set (ϕ, µ) = (ϕε,β , µε,β) − (ϕ0,0, µ0,0), 0 < ε < ε0 and 0 < β < β0, and
have

(−∆)−1 ∂ϕ

∂t
= −µ− ε(−∆)−1 ∂µ

ε,β

∂t
− β(−∆)−1ϕε,β , (3.44a)

µ = −∆ϕ+ f(ϕε,β)− f(ϕ0,0), (3.44b)
ϕ = µ = 0 on Γ, (3.44c)
ϕ|t=0 = 0. (3.44d)

Multiplying (3.44a) by ϕ, we obtain

1

2

d

dt
‖ϕ‖2−1 + (µ, ϕ) = −ε(∂µ

ε,β

∂t
, (−∆)−1ϕ)− β(ϕε,β , (−∆)−1ϕ). (3.45)

We then multiply (3.44b) by ϕ to find,

(µ, ϕ) ≥ ‖∇ϕ‖2 − ‖ϕ‖2. (3.46)

Combining (3.45) and (3.46), we have

1

2

d

dt
‖ϕ‖2−1 + ‖∇ϕ‖2 ≤ ‖ϕ‖2 − ε(∂µ

ε,β

∂t
, (−∆)−1ϕ)− β(ϕε,β , (−∆)−1ϕ),

which yields, employing the Cauchy-Schwarz and Young’s inequalities and the
interpolation inequality

‖ϕ‖2 ≤ ‖ϕ‖−1‖∇ϕ‖,

the differential inequality

d

dt
‖ϕ‖2−1 + c‖∇ϕ‖2 ≤ c′‖ϕ‖2−1 + cε2‖∂µ

ε,β

∂t
‖2 + cβ2‖∇ϕε,β‖2. (3.47)

It follows from (3.47) and Gronwall’s lemma that

‖ϕ(t)‖2−1 + c

∫ T

0

‖∇ϕ(s)‖2ds

≤cec
′T (1 + T )

∫ T

0

(
ε2‖∂µ

ε,β

∂t
(s)‖2 + β2‖∇ϕε,β(s)‖2

)
ds.

(3.48)

We note that it follows from (3.28) and

β(ϕε,β , µε,β) ≥ c(‖∇ϕε,β‖2 + ‖ϕε,β‖4L4(Ω))− c,



Allen-Cahn equation based on an unconstrained order parameter. . . 1347

that ∫ T

0

(
ε‖∂µ

ε,β

∂t
(s)‖2 + 2β‖∇ϕε,β(s)‖2

)
ds

≤c(‖ϕ0‖2H1(Ω) + ‖ϕ0‖4L4(Ω) + ‖µ0‖2H1(Ω) + 1),

which finally yields

‖ϕ(t)‖2−1 + c

∫ T

0

‖∇ϕ(s)‖2ds

≤cmax(ε, β)(1 + T )ec
′T (‖ϕ0‖2H1(Ω) + ‖ϕ0‖4L4(Ω) + ‖µ0‖2H1(Ω) + 1).

4. The Case g(s) =
ks

k′ + |s|
4.1. Well-posedness and regularity results
The estimates below are formal, but they can be justified within a Galerkin scheme.

We multiply (2.5a) by w, integrate over Ω and by parts and have

ε

2

d

dt
‖w‖2 + ‖∇w‖2 = (∇w,∇ϕ)− ε(g(ϕ), w).

Note that,

|ε(g(ϕ), w)| ≤ 1

ε
‖w‖2 + c′,

we obtain, employing the Cauchy-Schwarz inequality and (3.2),

ε
d

dt
‖w‖2 + ‖∇w‖2 ≤ c

ε
‖w‖2 + c′.

Next, we multiply (2.5a) by (−∆)−1 ∂w

∂t
and have

1

2

d

dt
‖w‖2 + ε

∥∥∂w
∂t

∥∥2

−1
= (ϕ,

∂w

∂t
)− ε(g(ϕ), (−∆)−1 ∂w

∂t
),

which yields,
d

dt
‖w‖2 + ε

∥∥∂w
∂t

∥∥2

−1
≤ c

ε
‖∇ϕ‖2 + c′,

so that, owing to (3.2),

d

dt
‖w‖2 + ε

∥∥∂w
∂t

∥∥2

−1
≤ c

ε2
‖w‖2 + c′. (4.1)

Similarly to the previous section, it follows that

Theorem 4.1. Let T > 0 be given.

1. We assume that w0 ∈ L2(Ω). Then, (2.5) possesses a unique weak solution
(w,ϕ) such that

w ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),
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∂w

∂t
∈ L2(0, T ;H−1(Ω)),

ϕ ∈ C([0, T ];H2(Ω)w) ∩ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)),

and
∂ϕ

∂t
∈ L2(0, T ;H1

0 (Ω)),

where the index w denotes the weak topology.

2. If we further assume that w0 ∈ H1
0 (Ω), then,

w ∈ C([0, T ];H1
0 (Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0 (Ω)),

∂w

∂t
∈ L2(0, T ;L2(Ω)),

and
ϕ ∈ C([0, T ];H3(Ω)w) ∩ L∞(0, T ;H3(Ω) ∩H1

0 (Ω)).

Furthermore, the solution is strong.

Proof. The proof is similar to the one of Theorem 3.1.

Theorem 4.2. We assume that (ϕ0, µ0) ∈ (H3(Ω) ∩H1
0 (Ω)) ×H1

0 (Ω), with µ0 =
−∆ϕ0 + f(ϕ0). Furthermore, let T > 0 be given. Then, (2.1) possesses a unique
strong solution (ϕ, µ) such that

ϕ ∈ C([0, T ];H3(Ω)w) ∩ L∞(0, T ;H3(Ω) ∩H1
0 (Ω)),

∂ϕ

∂t
∈ L2(0, T ;H1

0 (Ω)),

µ ∈ C([0, T ];H1
0 (Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0 (Ω)),

and
∂µ

∂t
∈ L2(0, T ;L2(Ω)).

4.2. Convergence to the Cahn-Hilliard system
We now wish to pass to the limit in (2.1) as ε goes to 0+. Note that the limit
problem for ε = 0 corresponds to the Cahn–Hilliard system,

∂ϕ0

∂t
= ∆µ0 − g(ϕ0),

µ0 = −∆ϕ0 + f(ϕ0),

ϕ0 = µ0 = 0 on Γ,

ϕ0|t=0 = ϕ0, µ
0|t=0 = µ0 = −∆ϕ0 + f(ϕ0).

(4.2)

In order to accomplish our purpose, we first need to derive estimates on the solutions
to (2.1) which are independent of ε (we consider here strong solutions as given in
Theorem 4.2).

We thus consider the initial and boundary value problem

∂ϕε

∂t
= ∆µε − ε∂µ

ε

∂t
− g(ϕε), (4.3a)
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µε = −∆ϕε + f(ϕε), (4.3b)
ϕε = µε = 0 on Γ, (4.3c)
ϕε|t=0 = ϕ0, µ

ε|t=0 = µ0 = −∆ϕ0 + f(ϕ0). (4.3d)

Note that the constants below may depend on ε0, but they are independent of ε.
We multiply (4.3a) by µε and have

ε

2

d

dt
‖µε‖2 + ‖∇µε‖2 = −(

∂ϕε

∂t
, µε)− (g(ϕε), µε). (4.4)

Note that multiplying (4.3b) by
∂ϕε

∂t
we obtain

(
∂ϕε

∂t
, µε) =

1

2

d

dt
‖∇ϕε‖2 +

d

dt

∫
Ω

F (ϕε)dx. (4.5)

Combining (4.4) and (4.5), we find

d

dt

(
ε‖µε‖2 + ‖∇ϕε‖2 + 2

∫
Ω

F (ϕε)dx
)

+ 2‖∇µε‖2 = (g(ϕε), µε).

Using (2.3), we find

d

dt

(
ε‖µε‖2 + ‖∇ϕε‖2 + 2

∫
Ω

F (ϕε)dx
)

+ ‖∇µε‖2 ≤ c. (4.6)

Next, we multiply (4.3a) by
∂µε

∂t
and have

1

2

d

dt
‖∇µε‖2 + ε‖∂µ

ε

∂t
‖2 = −(

∂ϕε

∂t
,
∂µε

∂t
)− (g(ϕε),

∂µε

∂t
). (4.7)

Differentiating then (4.3b) with respect to time, we obtain

∂µε

∂t
= −∆

∂ϕε

∂t
+ f ′(ϕε)

∂ϕε

∂t
. (4.8)

Multiplying (4.8) by
∂ϕε

∂t
, we find

(
∂µε

∂t
,
∂ϕε

∂t
) ≥ ‖∇∂ϕ

ε

∂t
‖2 − ‖∂ϕ

ε

∂t
‖2,

which yields, in view of (4.7),

1

2

d

dt
‖∇µε‖2 + ε‖∂µ

ε

∂t
‖2 + ‖∇∂ϕ

ε

∂t
‖2 ≤ ‖∂ϕ

ε

∂t
‖2 − (g(ϕε),

∂µε

∂t
). (4.9)

Using the fact that

(g(ϕε),
∂µε

∂t
) =

∂

∂t
(g(ϕε), µε)− (

∂g(ϕε)

∂t
, µε),

we find

d

dt
(‖∇µε‖2 +2(g(ϕε), µε))+2ε‖∂µ

ε

∂t
‖2 +2‖∇∂ϕ

ε

∂t
‖2 ≤ c‖∂ϕ

ε

∂t
‖2 + |(g′(ϕε)∂ϕ

ε

∂t
, µε)|.
(4.10)
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Using

|(g′(ϕε)∂ϕ
ε

∂t
, µε)| ≤ c‖∂ϕ

ε

∂t
‖2 + c‖µε‖2,

and the interpolation inequality

‖∂ϕ
ε

∂t
‖2 ≤ ‖∂ϕ

ε

∂t
‖−1‖∇

∂ϕε

∂t
‖,

we thus have the following differential inequality

d

dt
(‖∇µε‖2 + 2(g(ϕε), µε)) + 2ε‖∂µ

ε

∂t
‖2 + ‖∇∂ϕ

ε

∂t
‖2 ≤ c‖∂ϕ

ε

∂t
‖2−1 + c‖µε‖2. (4.11)

Multiplying (4.3a) by (−∆)−1 ∂ϕ
ε

∂t
and using (2.3), we obtain

‖∂ϕ
ε

∂t
‖2−1 ≤ c1‖∇µε‖2 + c2ε

2‖∂µ
ε

∂t
‖2 + c3‖

∂ϕε

∂t
‖2−1 + c4,

where 1− c3 > 0.
It thus follows that

d

dt
(‖∇µε‖2 + 2(g(ϕε), µε)) + 2ε‖∂µ

ε

∂t
‖2 + ‖∇∂ϕ

ε

∂t
‖2 ≤ c+ c1‖∇µε‖2 + c2ε

2‖∂µ
ε

∂t
‖2.

(4.12)
Summing (4.6) and δ2 times (4.12), where δ2 > 0 is small enough, we obtain

d

dt

(
ε‖µε‖2 + ‖∇ϕε‖2 + δ2‖∇µε‖2 + 2

∫
Ω

F (ϕε)dx+ 2δ2(g(ϕε), µε)
)

+(1− c1δ2)‖∇µε‖2 + δ2‖∇
∂ϕε

∂t
‖2 + εδ2(2− c2ε0)‖∂µ

ε

∂t
‖2 ≤ c.

(4.13)

We can assume, without loss of generality, that

1− c1δ2 > 0 and 2− c2ε0 > 0. (4.14)

Theorem 4.3. We assume that the assumptions of Theorem 4.2 and (4.14) hold.
Then, the sequence of strong solutions (ϕε, µε) to (4.3) converges to a strong solution
to (4.2) on finite time intervals [0, T ], T > 0, as ε→ 0+.

Proof. We can note that it follows from the above a priori estimates that ϕε

is bounded in L∞(0, T ;H1
0 (Ω)),

∂ϕε

∂t
is bounded in L2(0, T ;H1

0 (Ω)) and µε is

bounded in L2(0, T ;H1
0 (Ω)), independently of ε, T > 0 given. Furthermore, ε

1
2
∂µε

∂t
is bounded in L2(0, T ;L2(Ω)), independently of ε. It thus follows from standard
Aubin-Lions compactness results that, at least for a subsequence which we do not
relabel, there exists (ϕ0, µ0) such that, as ε→ 0+,

ϕε → ϕ0 in L∞(0, T ;H1
0 (Ω)) weak - star,

ϕε → ϕ0 a.e. and in C([0, T ];H1−δ(Ω)), δ > 0,

∂ϕε

∂t
→ ∂ϕ0

∂t
in L2(0, T ;H1

0 (Ω)) weakly,
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µε → µ0 in L2(0, T ;H1
0 (Ω)) weakly

and

ε
∂µε

∂t
→ 0 in L2(0, T ;L2(Ω)) weakly.

This is sufficient to pass to the limit in a variational formulation associated with (4.3)
and prove that (ϕ0, µ0) is a weak solution to (4.2). Then, since ϕ0 ∈ H3(Ω)∩H1

0 (Ω),
it is standard to prove that (ϕ0, µ0) is a strong solution to (4.2).

Theorem 4.4. Under the assumptions of Theorem 4.3, there holds, for t ∈ [0, T ],
T > 0 given,

‖(ϕε − ϕ0)(t)‖2−1 + c

∫ T

0

‖∇(ϕε − ϕ0)(s)‖2ds

≤cε(1 + T )ec
′T (‖ϕ0‖2H1(Ω) + ‖ϕ0‖4L4(Ω) + ‖µ0‖2H1(Ω) + 1),

(4.15)

where the constants c and c′ are independent of ε and β.

Proof. We set (ϕ, µ) = (ϕε, µε)− (ϕ0, µ0), 0 < ε < ε0, and have

(−∆)−1 ∂ϕ

∂t
= −µ− ε(−∆)−1 ∂µ

ε

∂t
− (−∆)−1

(
g(ϕε)− g(ϕ0)

)
, (4.16a)

µ = −∆ϕ+ f(ϕε)− f(ϕ0), (4.16b)

ϕ = µ = 0 on Γ, (4.16c)

ϕ|t=0 = 0. (4.16d)

Multiplying (4.16a) by ϕ, we obtain

1

2

d

dt
‖ϕ‖2−1 + (µ, ϕ) = −ε(∂µ

ε

∂t
, (−∆)−1ϕ)− (g(ϕε)− g(ϕ0), (−∆)−1ϕ). (4.17)

We then multiply (4.16b) by ϕ to find,

(µ, ϕ) ≥ ‖∇ϕ‖2 − ‖ϕ‖2. (4.18)

Combining (4.17) and (4.18), we have

1

2

d

dt
‖ϕ‖2−1 + ‖∇ϕ‖2 ≤ ‖ϕ‖2 − ε(∂µ

ε

∂t
, (−∆)−1ϕ)− (g(ϕε)− g(ϕ0), (−∆)−1ϕ),

which yields, employing the Cauchy-Schwarz and Young’s inequalities and the in-
terpolation inequality

‖ϕ‖2 ≤ ‖ϕ‖−1‖∇ϕ‖,

the differential inequality

d

dt
‖ϕ‖2−1 + c‖∇ϕ‖2 ≤ c′‖ϕ‖2−1 + cε2‖∂µ

ε

∂t
‖2 + |(g(ϕε)− g(ϕ0), (−∆)−1ϕ)|. (4.19)
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We note that

|(g(ϕε)− g(ϕ0), (−∆)−1ϕ)| ≤
∫

Ω

|(−∆)−1ϕ||ϕ|
∫ 1

0

|g′(sϕε + (1− s)ϕ0)|dsdx

≤ c
∫

Ω

|(−∆)−1ϕ||ϕ|dx

≤ c‖ϕ‖−1‖ϕ‖

≤ c‖ϕ‖2−1 + c‖∇ϕ‖2,

which yields
d

dt
‖ϕ‖2−1 + c‖∇ϕ‖2 ≤ c′‖ϕ‖2−1 + cε2‖∂µ

ε

∂t
‖2. (4.20)

It follows from (4.20) and Gronwall’s lemma that

‖ϕ(t)‖2−1 + c

∫ T

0

‖∇ϕ(s)‖2ds ≤ c(1 + T )ec
′T

∫ T

0

ε2‖∂µ
ε

∂t
(s)‖2ds. (4.21)

We note that it follows from (4.13) that∫ T

0

ε‖∂µ
ε

∂t
(s)‖2ds ≤ c(‖ϕ0‖2H1(Ω) + ‖ϕ0‖4L4(Ω) + ‖µ0‖2H1(Ω) + 1),

which finally yields

‖ϕ(t)‖2−1+c

∫ T

0

‖∇ϕ(s)‖2ds ≤ cε(1+T )ec
′T (‖ϕ0‖2H1(Ω)+‖ϕ0‖4L4(Ω)+‖µ0‖2H1(Ω)+1).

Remark 4.1. The Allen-Cahn system endowed with Neumann boundary condi-
tions,

∂ϕ

∂t
= ∆µ− ε∂µ

∂t
− g(ϕ), ε > 0, (4.22a)

µ = −∆ϕ+ f(ϕ), (4.22b)

∂ϕ

∂ν
=
∂µ

∂ν
= 0 on Γ, (4.22c)

ϕ|t=0 = ϕ0, µ|t=0 = µ0, (4.22d)

where ν is the unit outer normal, can also be considered. In this case, integrating
(4.22a) and owing to the boundary conditions, we obtain

d

dt

(
〈ϕ〉+ ε〈µ〉

)
+ 〈g(ϕ)〉 = 0, (4.23)

where 〈·〉 =
1

Vol(Ω)

∫
Ω
· dx. We can then adapt the above proofs to these boundary

conditions using (4.23), definition of source term, g(s), and the fact that

v 7→ (‖v̄‖2−1 + 〈v〉2)
1
2 ,
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v 7→ (‖v̄‖2 + 〈v〉2)
1
2 ,

v 7→ (‖∇v‖2 + 〈v〉2)
1
2 ,

and
v 7→ (‖∆v‖2 + 〈v〉2)

1
2 ,

are norms in H−1(Ω), L2(Ω), H1(Ω), and H2(Ω), respectively, which are equivalent
to the usual ones.

5. Numerical validation
Consider the initial and boundary value problem

∂ϕ

∂t
= ∆µ− ε∂µ

∂t
− g(ϕ), (5.1a)

µ = −∆ϕ+ f(ϕ), (5.1b)

ϕ = µ = 0 on Γ, (5.1c)

ϕ|t=0 = ϕ0, µ|t=0 = µ0 = −∆ϕ0 + f(ϕ0). (5.1d)

For the numerical simulations, we used Newton’s algorithm to approach the solution
of the nonlinear system. Then, for the obtained linearized problem, we use a P1-
finite element for the space discretization. The numerical simulations are performed
with the software Freefem++ [13].

In the numerical results presented below, Ω is a (0, 1) × (0, 1)-rectangle. The
triangulation is obtained by dividing Ω into 100 × 100 rectangles and by dividing
each rectangle along the same diagonal. The time step is taken as ∆t = 0.00001.
We furthermore take f(s) = s3 − s.

5.1. The case when g(s) = βs

Figures 4 and 5 show the evolution of 〈ϕ〉 =
1

Vol(Ω)

∫
Ω
ϕdx, with respect to time,

ϕ being the numerical solution to (5.1).
In Fig. 4, we take ϕ0(x, y) = 1 − sin2(x + y). Fig. 5 corresponds to the initial

datum ϕ0(x, y) =
cos(x− y)

x6 + 1
.

Figures 1 and 2 correspond to the cases β = 0.05 and β = 0.5, respectively. The
solutions tend to the solution of (5.1) for ε = 0, as ε decreases.

In Figures 3 and 5, we take different values for ε and β. The solutions tend to
the solution of (5.1) for ε = 0 and β = 0, as ε and β decrease.

In Fig. 10, we take ϕ0(x, y) =
1

5(x6 + 1)(y5 + 0.5)
and β = 0.01. Figures 6, 7,

8 and 9 correspond to the cases ε = 0, 0.00001, 0.0001 and 0.001, respectively. The
figures below show the variation of ϕ, ϕ being the numerical solution to (5.1), after
100 iterations (t = 10−4).

In Fig. 15, ϕ0 takes random values between 0 and 0.5. Figures 11, 12, 13
and 14 correspond to the cases (ε, β) = (0, 0), (0.00001, 0.001), (0.0001, 0.01) and
(0.001, 0.1), respectively. The figures below show the variation of ϕ, ϕ being the
numerical solution to (5.1), after 15 iterations (t = 15× 10−5).
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Figure 1. β = 0.05. Figure 2. β = 0.5.

Figure 3. g(s) = βs.

Figure 4. ϕ0(x, y) = 1− sin2(x+ y).

Figure 5. ϕ0(x, y) =
cos(x− y)

x6 + 1
.
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Figure 6. ε = 0. Figure 7. ε = 0.00001.

Figure 8. ε = 0.0001. Figure 9. ε = 0.001.

Figure 10. ϕ0(x, y) =
1

5(x6 + 1)(y5 + 0.5)
.

5.2. The case when g(s) =
s

2 + |s|

In Fig. 20, we take ϕ0(x, y) = 1− sin2(x+ y). Figures 16, 17, 18 and 19 correspond
to the cases ε = 0, 0.00001, 0.0001 and 0.001, respectively. The figures below show
the variation of ϕ, ϕ being the numerical solution to (5.1), after 300 iterations
(t = 3× 10−4). In Fig. 27, ϕ0 takes random values between 0 and 0.5. Figures 21,
22, 23, 24, 25 and 26 correspond to the cases ε = 0, 0.0000001, 0.000001, 0.00001,
0.0001 and 0.001, respectively. The figures below show the variation of ϕ, ϕ being
the numerical solution to (5.1), after 15 iterations (t = 15× 10−5).

Table 1 provides the numerical results obtained for different initial datum with
different values for ε, where ϕε is the numerical solution to (5.1). The results
support the theoretical results obtained above.
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Figure 11. (ε, β) = (0, 0). Figure 12. (ε, β) = (0.00001, 0.001).

Figure 13. (ε, β) = (0.0001, 0.01). Figure 14. (ε, β) = (0.001, 0.1).

Figure 15. Random initial datum between 0 and 0.5.

Table 1. Numerical results after 200 iterations.

ε
ϕ0(x, y) 1− sin2(x+ y)

cos(x− y)

x6 + 1

1

5(x6 + 1)(y5 + 0.5)
Random values between 0 and 0.5

‖ϕε − ϕ0‖2 ‖ϕε − ϕ0‖2 ‖ϕε − ϕ0‖2 ‖ϕε − ϕ0‖2

0.1 1.07465 6.03614 1.1294 0.564182

0.01 1.07443 6.03514 1.12807 0.449319

0.001 0.119854 0.219703 0.0915962 0.00333638

0.0001 0.0010845 0.00236198 0.000836541 7.98553× 10−6

10−5 1.04779× 10−5 2.41389× 10−5 8.25374× 10−6 7.55053× 10−6

10−6 1.04367× 10−7 2.41971× 10−7 8.24235× 10−8 9.29424× 10−7
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Figure 16. ε = 0. Figure 17. ε = 0.00001.

Figure 18. ε = 0.0001. Figure 19. ε = 0.001.

Figure 20. ϕ0(x, y) = 1− sin2(x+ y).
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