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THE FIRST THREE ORDER MELNIKOV
FUNCTIONS FOR GENERAL PIECEWISE

HAMILTONIAN SYSTEMS WITH A
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Abstract This paper focuses on the first three order Melnikov functions of
general planar piecewise Hamiltonian systems under the piecewise perturba-
tions with a non-regular separation line. By using the first three order Mel-
nikov functions, we obtain the exact upper bounds of the number of limit cycles
bifurcated from two different piecewise linear near-Hamiltonian systems.

Keywords Melnikov functions, separation line, limit cycles.

MSC(2010) 34C05, 34C07, 37G15.

1. Introduction

In recent years, the qualitative theory of piecewise smooth systems has received a
large amount of attention due to its application in real life. The problem of the
number and distribution of limit cycles of piecewise smooth differential systems is
one of the important issues, which is closely related to the weak Hilbert’s 16th
problem. For a piecewise system, the separation line plays a significant role in
determining the number of limit cycles. Braga and Mello in [2] proposed that
“Given n ∈ N , there is a piecewise linear system with two zones in the plane with
exactly n limit cycles.”

In the present paper, we would like to focus on the higher order Melnikov theory
for planar piecewise differential systems, which is one of the important tools to deal
with the weak Hilbert’s 16th problem aiming at finding more limit cycles. The algo-
rithm of higher order Melnikov functions for smooth differential systems is proposed
by Françoise [7]. In recent decades, researchers extended the Melnikov theory into
the non-smooth case. But due to the complex calculations and iterations, there are
fewer articles related to higher order Melnikov functions. When the separation line
is a straight line, the authors in [15] derived the first order Melnikov function for
piecewise Hamiltonian systems, and [14, 18] gave the second order Melnikov func-
tion for piecewise Hamiltonian systems in different forms. When the separation line
is non-regular, we proposed in [19] the first and second order Melnikov functions
for piecewise Hamiltonian systems. Recently, [11] considered the third order Mel-
nikov function of a special piecewise Hamiltonian system and gave an application
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of the first and second order Melnikov functions. The authors in [4] also calculated
the higher order Melnikov functions of an elementary center under piecewise linear
perturbations. Some other papers also consider Melnikov or averaging functions for
different cases of piecewise differential systems, see references [1,3,6,8,12,13,16,17].

Inspired by the above articles, we derive the explicit formula of the first three
order Melnikov functions for the general piecewise Hamiltonian systems when the
separation line is formed by two semi-straight lines starting from the origin forming
an angle θ ∈ (0, π]. And as applications, we consider the linear perturbations of two
concrete different piecewise linear systems where θ ∈ (0, π) and θ = π, respectively.

More specificly, we consider the perturbed system as follows,

dH + εω1 + ε2ω2 + ε3ω3 = 0 (1.1)

where

H(x, y) =

H+(x, y), (x, y) ∈ Σ+,

H−(x, y), (x, y) ∈ Σ−,

and

ωi =

ω+
i = p+

i (x, y)dy − q+
i (x, y)dx, (x, y) ∈ Σ+,

ω−i = p−i (x, y)dy − q−i (x, y)dx, (x, y) ∈ Σ−,

with H±(x, y), p±i (x, y), q±i (x, y), i = 1, 2, 3 being polynomials of degree n in
x and y. Σ± are the sectors separated by the two semi-straight lines, and Σ+

corresponds to the angle θ ∈ (0, π]. Without loss of generality, the separation lines
are denoted by y = k0x and y = k1x. The unperturbed system (1.1) with ε = 0 is
a piecewise Hamiltonian system.

Figure 1. The perturbed system (1.1).

Assume that system (1.1)|ε=0 has a family of period orbits around the origin
denoted by Lh = L+

h ∪ L
−
h for h ∈ (α, β), here L+

h (resp. L−h ) represents the arc
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orbit beginning from A(h)(resp.B(h)) and ending at B(h)(resp. (A(h))) on (x, y) ∈
Σ+(resp.(x, y) ∈ Σ−). This implies, there exist two points A(h) = (a(h), k0a(h))
and B(h) = (b0(h), k1b0(h)), denoted simply by A and B, such that

H+(A) = H+(B) = h, H−(A) = H−(B). (1.2)

Without loss of generality, suppose that Lh has a clockwise orientation, see Figure 1.
Let L+

h, ε(resp. L
−
h, ε) be the solution of system (1.1) defined in Σ± which starts from

A(h)(resp.B−ε (h)) and ends at B+
ε (h)(resp.A(h)), here B±ε (h) = (b±ε (h), k1b

±
ε (h)),

denoted simply by B±ε . Expand b±ε (h) at ε = 0 and let b±ε (h) = b±0 (h) + εb±1 (h) +
1
2ε

2b±2 (h) + · · · . Naturally we can define the displacement function as

b+ε (h)− b−ε (h) = εM1(h) + ε2M2(h) + · · · , (1.3)

where

Mk(h) =
1

k!
(b+k (h)− b−k (h)), k ≥ 1, (1.4)

which is called the k−th order Melnikov function. Such assumptions and definitions
see also in [18,19], etc.

This paper is organized as follows. The main results and related definitions are
presented in Section 2. The expressions of the first three order Melnikov functions
for the general piecewise Hamiltonian systems are derived in Section 3. The formula
is applied to consider piecewise linear perturbations of two different Hamiltonian
systems in Section 4. Some comments and open problems are proposed in Section
5.

2. The main results

In this section, we shall give our main results.

Definition 2.1 (Corresponding function). Let ϕ±t be a flow of the vector field χ±0
defined by system (1.1)|ε=0 starting from (x±0 , y

±
0 ), we denote the corresponding

multiple-valued function as follows, ψ±1 = −1, and

ψ±2 (x, y) =

∫ T±(x, y)

0

div(χ±1 ) ◦ (ϕ±t (x±0 , y
±
0 ))dt,

ψ±3 (x, y) =

∫ T±(x, y)

0

div(χ±2 ) ◦ (ϕ±t (x±0 , y
±
0 ))dt,

where the vector fields χ±1 = (P±1 , Q
±
1 ), χ±2 = (P±2 , Q

±
2 ) correspond to the 1−forms

Ω±1 = −ψ±1 ω
±
1 = P±1 dy −Q

±
1 dx and Ω±2 = −ψ±2 ω

±
1 − ψ

±
1 ω
±
2 = P±2 dy −Q

±
2 dx, here

(x, y) = ϕ±(T±(x, y), x±0 , y
±
0 ).

According to Definition 2.1, we have the following decomposition:

Lemma 2.1 (1−form decomposition). According to the definitions of Ω±1 , Ω±2 and
ψ±2 (x, y), ψ±3 (x, y), there exist multiple-valued analytic functions R±2 (x, y) and
R±3 (x, y) satisfying

Ω±1 = ψ±2 (x, y)dH±(x, y) + dR±2 (x, y), Ω±2 = ψ±3 (x, y)dH±(x, y) + dR±3 (x, y).
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Finally, we give the explicit expressions of the first three order Melnikov func-
tions:

Theorem 2.1. For system (1.1) with θ ∈ (0, π), if M1(h) = M2(h) ≡ 0, then the
third order Melnikov function M3(h) is given as

M3(h) =
1

K+
1 (B)

(∫
L+
h

(ψ+
3 ω

+
1 + ψ+

2 ω
+
2 + ψ+

1 ω
+
3 )− [J+

31(B)b+1 +
1

2
(J+

21(B)b+2

+ J+
22(B)b+1

2
)]− (

1

2
K+

2 (B)b+1 b
+
2 +

1

3!
K+

3 (B)b+1
3
)
)

+
1

K−1 (B)

(∫
L−h

(ψ−3 ω
−
1 + ψ−2 ω

−
2 + ψ−1 ω

−
3 ) + [J−31(B)b−1 +

1

2
(J−21(B)b−2

+ J−22(B)b−1
2
)] + (

1

2
K−2 (B)b−1 b

−
2 +

1

3!
K−3 (B)b−1

3
)
)
.

(2.1)

Here K±i (x, y) = ( ∂
∂x + k1

∂
∂y )iH±(x, y), and J±ji (x, y) = ( ∂

∂x + k1
∂
∂y )iR±j (x, y) for

i = 1, 2, 3, j = 2, 3.

Remark 2.1. It is worth mentioning that the first and second order Melnikov
functions for system (1.1) have been given in [19], here their more symmetrical
expressions are presented in the following.

(i) The first order Melnikov function M1(h) is given as

M1(h) =
1

K+
1 (B)

∫
L+
h

−ω+
1 +

1

K−1 (B)

∫
L−h

−ω−1 .

(ii) If M1(h) ≡ 0, then the second order Melnikov function M2(h) is given as

M2(h) =
1

K+
1 (B)

∫
L+
h

(ψ+
2 ω

+
1 + ψ+

1 ω
+
2 )− 1

K+
1 (B)

(J+
21(B)b+1 +

1

2
K+

2 (B)b+1
2
)

+
1

K−1 (B)

∫
L−h

(ψ−2 ω
−
1 + ψ−1 ω

−
2 ) +

1

K−1 (B)
(J−21(B)b−1 +

1

2
K−2 (B)b−1

2
).

Corollary 2.1. For system (1.1) with θ = π, the following statements hold.

(i) The first order Melnikov function M1(h) is given as

M1(h) =
1

H+
y (B)

∫
L+
h

−ω+
1 +

1

H−y (B)

∫
L−h

−ω−1 .

(ii) If M1(h) ≡ 0, then the second order Melnikov function M2(h) is given as

M2(h) =
1

H+
y (B)

∫
L+
h

(ψ+
2 ω

+
1 + ψ+

1 ω
+
2 )− 1

H+
y (B)

(R+
2y(B)b+1 +

1

2
H+
yy(B)b+1

2
)

+
1

H−y (B)

∫
L−h

(ψ−2 ω
−
1 + ψ−1 ω

−
2 ) +

1

H−y (B)
(R−2y(B)b−1 +

1

2
H−yy(B)b−1

2
).

(iii) If M1(h) = M2(h) ≡ 0, then the third order Melnikov function M3(h) is



1378 P. Yang & J. Yu

given as

M3(h)

=
1

H+
y (B)

(∫
L+
h

(ψ+
3 ω

+
1 + ψ+

2 ω
+
2 + ψ+

1 ω
+
3 )− [R+

3y(B)b+1 +
1

2
(R+

2y(B)b+2 +R+
2yy(B)b+1

2
)]

− (
1

2
H+

yy(B)b+1 b
+
2 +

1

3!
H+

yyy(B)b+1
3
)
)

+
1

H−y (B)

(∫
L−
h

(ψ−3 ω
−
1 + ψ−2 ω

−
2 + ψ−1 ω

−
3 )

+ [R−3y(B)b−1 +
1

2
(R−2y(B)b−2 +R−2yy(B)b−1

2
)] +

1

2
H−yy(B)b−1 b

−
2 +

1

3!
H−yyy(B)b−1

3
)
.

3. The Algorithm for higher order Melnikov func-
tions

In this section, we give the proof of main theorems.

Proof of Lemma 2.1. For k = 1, 2, noting that ψ±k+1(x, y) are the integrals of the

functions div(χ±k ) along the trajectories of χ±0 . Hence, it is straightforward to obtain
χ±0 ◦ (ψ±k+1) = div(χ±k ) from the derivatives of ψ±k+1(x, y) along the trajectories of

the vector field χ±0 , which implies

dψ±k+1 ∧ dH
± = χ±0 ◦ (ψ±k+1)dx ∧ dy = div(χ±k )dx ∧ dy.

It is easy to get div(χ±k )dx ∧ dy = dΩ±k . Therefore we have

dψ±k+1 ∧ dH
± = d(ψ±k+1dH

±) = dΩ±k ,

and the 1-forms Ω±k − ψ
±
k+1dH

± are closed. The domain on which it is defined is

connected, so there exist unique functions R±k+1(x, y) satisfying

Ω±k = ψ±k+1dH
± + dR±k+1.

Then we completed the proof.

Proof of Theorem 2.1. By expanding H±(B±ε ) in variable ε at the point B, we
obtain

H±(Bε)−H±(A)

= H±(B)−H±(A) +
(

∆b±
∂

∂x
+ k1∆b±

∂

∂y

)
H±(B) +

1

2

(
∆b±

∂

∂x

+ k1∆b
∂

∂y

)2

H±(B) +
1

3!

(
∆b±

∂

∂x
+ k1∆b±

∂

∂y

)3

H±(B) +O((∆b±)4)

= εl±1 + ε2l±2 + ε3l±3 +O(ε4),

(3.1)

where ∆b± = εb±1 + 1
2ε

2b±2 + 1
3!ε

3b±3 +O(ε4) and

l±1 = K±1 (B)b±1 ,

l±2 =
1

2
K±1 (B)b±2 +

1

2
K±2 (B)b±1

2
,

l±3 =
1

3!
K±1 (B)b±3 +

1

2
K±2 (B)b±1 b

±
2 +

1

3!
K±3 (B)b±1

3
.

(3.2)
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In the following, we will restrict ourselves to M3(h). We first focus on the following
equation

(−ψ±1 − εψ
±
2 − ε2ψ

±
3 )(dH± + εω±1 + ε2ω±2 + ε3ω±3 ) = 0.

It can be rewritten as

−ψ±1 dH±−εψ
±
2 dH

±−ε2ψ±3 dH±+εΩ±1 +ε2Ω±2 = ε3(ψ±3 ω
±
1 +ψ±2 ω

±
2 +ψ±1 ω

±
3 )+O(ε4).

Taking the decomposition in Theorem 2.1 into consideration, we have

dH± + εdR±2 + ε2dR±3 = ε3(ψ±3 ω
±
1 + ψ±2 ω

±
2 + ψ±1 ω

±
3 ) +O(ε4).

Next we only consider the right subsystem, and the left subsystem is similar to
follow. By integrating the above equations along L+

h, ε, we have∫
L+
h, ε

dH+ +

∫
L+
h, ε

2∑
i=1

εidR+
i+1 =

∫
L+
h, ε

ε3(ψ+
3 ω

+
1 + ψ+

2 ω
+
2 + ψ+

1 ω
+
3 ) +O(ε4), (3.3)

which implies

H+(B+
ε )−H+(A) +

2∑
i=1

εi(R+
i+1(B+

ε )−R+
i+1(A))

=ε3
∫
L+
h

(ψ+
3 ω

+
1 + ψ+

2 ω
+
2 + ψ+

1 ω
+
3 ) +O(ε4). (3.4)

Expand R+
i+1(B+

ε ) in variable ε at B(b0(h), k1b0(h)) as follows,

R+
i+1(B+

ε ) = R+
i+1(B) +

(
∆b±

∂

∂x
+ k1∆b±

∂

∂y

)
R+
i+1(B) +

1

2

(
∆b±

∂

∂x

+ k1∆b±
∂

∂y

)2

R+
i+1(B) +

1

3!

(
∆b±

∂

∂x
+ k1∆b±

∂

∂y

)3

R+
i+1(B)

+O((∆b±)4)

= R+
i+1(B) + εR+

i+1, 1(B) + · · ·+ εnR+
i+1, n(B) +O(εn+1),

(3.5)

where ∆b± = εb±1 + 1
2ε

2b±2 + 1
3!ε

3b±3 +O(ε4) and

R+
i+1, 1(B) = J+

i+1, 1(B)b+1 ,

R+
i+1, 2(B) =

1

2
J+
i+1, 1(B)b+2 +

1

2
J+
i+1, 2(B)b+1

2
,

R+
i+1, 3(B) =

1

3!
J+
i+1, 1(B)b+3 +

1

2
J+
i+1, 2(B)b+1 b

+
2 +

1

3!
J+
i+1, 3(B)b+1

3
.

Taking derivative three times in succession with respect to ε, we can obtain the
following equation

l+3 +R+
2, 2(B) +R+

3, 1(B) =

∫
L+
h

(ψ+
3 ω

+
1 + ψ+

2 ω
+
2 + ψ+

1 ω
+
3 ),

which displays

l+3 =

∫
L+
h

(ψ+
3 ω

+
1 + ψ+

2 ω
+
2 + ψ+

1 ω
+
3 )− (R+

2, 2(B) +R+
3, 1(B)). (3.6)
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According to the formula (3.2), we can derive

b+3 =
3!

K+
1 (B)

(∫
L+
h

(ψ+
3 ω

+
1 + ψ+

2 ω
+
2 + ψ+

1 ω
+
3 )− (R+

2, 2(B) +R+
3, 1(B))

)
− 1

3!
(
1

2
K+

2 (B)b+1 b
+
2 +

1

3!
K+

3 (B)b+1
3
)).

(3.7)

Similarly, when we consider the left subsystem, by integrating the above equations
along −L−h, ε from A to B−ε , we have

b−3 =
3!

K−1 (B)

(∫
L−h

−(ψ−3 ω
−
1 + ψ−2 ω

−
2 + ψ−1 ω

−
3 )− (R−2, 2(B) +R−3, 1(B))

)
− 1

3!
(
1

2
K−2 (B)b−1 b

−
2 +

1

3!
K−3 (B)b−1

3
)).

(3.8)

Finally, it is easy to obtain that M3(h) = 1
3! (b

+
3 − b−3 ), hence we completed the

proof.

Proof of Corollary 2.1. The proof of Corollary 2.1 is analogous to that of Theorem

2.1. It is worth noticing that K±i (x, y) = ∂iH±(x, y)
∂yi and J±ji (x, y) =

∂iR±j (x, y)

∂yi for
θ = π.

4. Applications

In this section, we shall consider two piecewise Hamiltonian systems with different
separation lines, that is, the non-regular separation line with θ ∈ (0, π) and the
straight line with θ = π.

4.1. An application for θ ∈ (0, π)

As an application, we consider a linear perturbation of a piecewise linear Hamilto-
nian system. One of the subsystems is a linear center and the other is a constant
differential system, and the corresponding Hamiltonian functions are H(x, y) =
ax2 + by2 + cxy + dx+ ey with −c2 + 4ab > 0 and H(x, y) = px+ qy. This system
has been studied in [19] by using the first two order Melnikov functions. Here we
shall consider the same system by using the third order Melnikov function and the
aim is to find if there are more limit cycles or not by considering linear perturbations
up to higher order in ε.

More specificly, consider the perturbed system as follows:

dH + εω1 + ε2ω2 + ε3ω3 = 0 (4.1)

where H(x, y) is defined by:

H(x, y) =

H−(x, y) = ax2 + by2 + cxy + dx+ ey (x, y) ∈ Σ−,

H+(x, y) = px+ qy (x, y) ∈ Σ+,

and

ωi =

ω−i = f−i (x, y)dy − g−i (x, y)dx (x, y) ∈ Σ−,

ω+
i = f+

i (x, y)dy − g+
i (x, y)dx (x, y) ∈ Σ+,



Limit cycles of piecewise Hamiltonian systems 1381

with the condition of −c2 +4ab > 0 and the definition of Σ± are the same as system
(1.1). Here i = 1, 2, 3 and f±i (x, y), g±i (x, y) are linear polynomials. Assume that
the unperturbed system (4.1) with ε = 0 has a family of period orbits.

Theorem 4.1. For system (4.1), when M1(h) = M2(h) ≡ 0 and M3(h) 6≡ 0, the
upper bound of the number of limit cycles bifurcated from the period orbits is 5
(taking into account their multiplicities) by using the third order Melnikov function,
and the upper bound can be reached.

Corollary 4.1. For system (4.1) with ω±2 = ω±3 = 0, when M1(h) = M2(h) ≡ 0
and M3(h) 6≡ 0, the upper bound of the number of limit cycles bifurcated from the
period orbits is 2 (taking into account their multiplicities) by using the third order
Melnikov function and the upper bound can be reached.

Before proving Theorem 4.1, we first give a theorem of the normal form of system
(4.1), which is proved in [19].

Theorem 4.2. [19] The unperturbed system (4.1)|ε=0 can be written as a normal-
ized canonical form as  ẋ = Hy,

ẏ = −Hx,
(4.2)

where

H(x, y) =

H−(x, y) = (x+ 1)2 + y2 = h2 (x, y) ∈ Σ−,

H+(x, y) = x = x0 (x, y) ∈ Σ+.

Here Σ± are the same as system (1.1), but it is worth mentioning that in system
(4.2), k1 = −k0, and we replace k0 and k1 by k and −k, see Figure 2.

Figure 2. Unperturbed system (4.2).

Naturally, the perturbed system (4.1) can be transformed into the following
system: 

ẋ = Hy +
3∑
i=1

εifi(x, y),

ẏ = −Hx +
3∑
i=1

εigi(x, y),

(4.3)
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where

H(x, y) =

H−(x, y) = (x+ 1)2 + y2 = h2 (x, y) ∈ Σ−,

H+(x, y) = x = x0 (x, y) ∈ Σ+,

fi(x, y) =

 f−i (x, y) = a−i1x+ a−i2y + a−i0 (x, y) ∈ Σ−,

f+
i (x, y) = a+

i1x+ a+
i2y + a+

i0 (x, y) ∈ Σ+,

and

gi(x, y) =

 g−i (x, y) = b−i1x+ b−i2y + b−i0 (x, y) ∈ Σ−,

g+
i (x, y) = b+i1x+ b+i2y + b+i0 (x, y) ∈ Σ+.

The first and second order Melnikov functions have been considered in [19]. In order
to successfully introduce the calculation of the third order Melnikov function, we
briefly display the associated results of the first two order Melnikov functions.

Noting that the unperturbed system (4.3) with ε = 0 has a family of period
orbits, we have

x0 =

√
(1 + k2)h2 − k2 − 1

k2 + 1
and α = arcsin(

kx0

h
).

In [19] we have given the first order Melnikov function as follows,

M1(x0) =
A0(π − α) +A1x0 +A2x

2
0 +A3x

3
0

2(x0 + 1) + 2k2x0
(4.4)

with

A0 = a−11 + b−12,

A1 = 4ka+
10 + 2π(a−11 + b−12) + k(a−11 + b−12 − 2a−10),

A2 = π(1 + k2)(a−11 + b−12) + 4k(a+
10k

2 + a+
10 + a+

11)− a−11k + b−12k,

A3 = 4k(k2 + 1)a+
11,

and when M1(x0) ≡ 0, the second order Melnikov function is given as follows,

M2(x0) = −B1x0 +B2x
2
0 +B3x

3
0 +B4x

4
0 −B0(k2x2

0 + x2
0 + 2x0 + 1)(π − α)

6(k2x0 + x0 + 1)
(4.5)

where

B0 = 3(a−21 + b−22),

B1 = −3k(4a+
10b

+
10 − 2a+

10b
−
10 + 4a+

20 − 2a−20 + a−21 + b−22),

B2 = (12a+
10a

+
12 − 12a+

10b
+
10 − 6a+

10a
−
12 − 12a+

20)k3 + (−12a+
10b

+
10 − 12a+

10b
+
11

+ 6a+
10b
−
11 − 12a+

20 − 12a+
21 + 3a−21 − 3b−22)k,

B3 = 4k(3a+
10a

+
12k

4 + 3a+
10a

+
12k

2 − 3a+
10b

+
11k

2 − a+
12b

+
12k

2 − 3a+
21k

2 − 3a+
10b

+
11 − 3a+

21),

B4 = −4a+
12b

+
12k

3(k2 + 1).
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If M1(x0) = M2(x0) ≡ 0, then A0 = A1 = A2 = A3 = B0 = B1 = B2 = B3 =
B4 = 0. Consequently, we have

Case 21. {a+
11 = 0, a−10 = 2a+

10, a
−
11 = −b−12 = (2k2 + 2)a+

10, a
+
12 = 0, a+

21 =
−a+

10b
+
11, a

−
20 = 2a+

10b
+
10 − a+

10b
−
10 + 2a+

20, a
−
21 = −b−22 = 2a+

10b
+
10k

2 + a+
10a
−
12k

2 +
2a+

20k
2 + 2a+

10b
+
10 − a

+
10b
−
11 + 2a+

20};
Case 22. {a+

11 = 0, a−10 = 2a+
10, a

−
11 = −b−12 = (2k2 + 2)a+

10, a
+
21 = a+

10a
+
12k

2 −
a+

10b
+
11, b

+
12 = 0, a−20 = 2a+

10b
+
10−a

+
10b
−
10 + 2a+

20, a
−
21 = −b−22 = 2a+

10b
+
10k

2 +a+
10a
−
12k

2 +
2a+

20k
2 + 2a+

10b
+
10 − a

+
10b
−
11 + 2a+

20}.

Lemma 4.1. For system (4.3), when M1(x0) = M2(x0) ≡ 0, and M3(x0) 6≡ 0, the
third order Melnikov function has at most 5 isolated zeros, multiplicity taken into
account, and the upper bound can be reached.

Proof. Since the first two order Melnikov functions have already been calculated
in detail in [19], here we just display the related results which will be used in the
proof. The expressions of b±1 and b±2 are

b+1 = 2ka+
11x

2
0 + 2ka+

10x0,

b−1 =
1

2(x0 + 1) + 2k2x0
((k(a−11 − b

−
12)− (k2 + 1)(a−11 + b−12)(π − α))x2

0

+ 2(k(a−10 − a
−
11 − b

−
12)− (a−11 + b−12)(π − α))x0 − (a−11 + b−12)(π − α)),

b+2 =
2

3
a+

12b
+
12k

3x3
0 − 2k(a10a12k

2 − a10b
+
11 − a

+
21)x2

0 + 2k(a+2
10 k + a+

10b
+
10 + a+

20)x0,

and

b−2 =
1

2 + 2x0(k2 + 1)
[(k(4a+2

10 k
3 − 2a+

10a
−
12k

2 + 4a+2
10 k + 2a+

10b
−
11 + a−21 − b

−
22)

+ (k(4a+2
10 k + 2a+

10b
−
10 + 2a−20 − a

−
21b
−
22)− 2(a−21 + b−22)(π − α))x0

− (k2 + 1)(a−21 + b−22)(π − α))x2
0 − (a−21 + b−22)(π − α)].

The corresponding functions ψ±2 are also needed and have been presented as follows:

ψ+
2 (x, y) = b+12(kx0 − y), ψ−2 (x, y) = 0.

Then we have

R+
2x(B) = −b+12kx0 − b+11x0 − b+10, R+

2y(B) = −a+
12kx0 + a+

10,

and

R−2x(B) = b−12kx0 − b−11x0 − b−10, R−2y(B) = −a−12kx0 + a−11x0 + a−10.

In the following, we shall show the calculation of the third order Melnikov func-
tion. Firstly, by the definition of corresponding function and the conditions of
M1(x0) = M2(x0) ≡ 0, we get

ψ−3 (x, y) =

∫ T−(x, y)

0

div(χ−2 ) ◦ (ϕ−t (x0, y0))dt = 0, (4.6)
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and

ψ+
3 (x, y) =

∫ T+(x, y)

0

div(χ+
2 ) ◦ (ϕ+

t (x0, y0))dt

= −1

2
b+12(a+

11 + 2b+12)y2 − (b+11b
+
12x− a

+
11b

+
12kx0 − b+2

12 kx0 + b+10b
+
12

+ a+
21 + b+22)y + kx0(b+11b

+
12x−

1

2
a+

11b
+
12kx0 + b+10b

+
12 + a+

21 + b+22).

(4.7)

Secondly, from M1(x0) = M2(x0) ≡ 0 and the decompositions of

Ω±1 = ψ±2 (x, y)dH±(x, y) + dR±2 (x, y), Ω±2 = ψ±3 (x, y)dH±(x, y) + dR±3 (x, y),

we have

R+
2xx(B) = −b+11, R+

2yy(B) = a+
12, R+

2xy(B) = 0,

R−2xx(B) = −b−11, R−2yy(B) = a−12, R−2xy(B) = 0,

R+
3x(B) = 2a+

11b
+
12k

2x2
0 + (−2a+

21k − b
+
22k − b

+
21)x0 − b+20,

R+
3y(B) = 2(a+

12k − a
+
11)b12kx

2
0 + (−2a+

10b
+
12k − a

+
22k + a+

21)x0 + a+
20,

R−3x(B) = b−22kx0 − b−21x0 − b−20, R−3y(B) = −a−22kx0 + a−21x0 + a−20.

(4.8)

Finally, we consider the third order Melnikov function for Case 21 and Case 22,
respectively.

For Case 21, by substituting the above equations into the explicit expression of
the third order Melnikov function (2.1), we have

M3(x0) =
C̄0 + C̄1x0 + C̄2x

2
0 + C̄3x

3
0 + C̄4x

4
0 + C̄5f5

k2x0 + x0 + 1
(4.9)

where

C̄0 = 12a+10b
+2
10 − 6a+10b

+
10b
−
10 + 12a+10b

+
20 − 6a+10b

−
20 + 12a+20b

+
10 − 6a+20b

−
10 + 12a+30

− 6a−30 + 3a−31 + 3b−32,

C̄1 = 12a+3
10 k

4 + (12a+3
10 − 12a+2

10 b
+
12 + 12a+10b

+2
10 + 6a+10b

+
10a
−
12 − 12a+10a

+
22 + 12a+10b

+
20

+ 6a+10a
−
22 + 12a+20b

+
10 + 6a+20a

−
12 + 12a+30)k2 + 12a+10b

+2
10 + 12a+10b

+
10b

+
11 − 6a+10b

+
10b
−
11

+ 12a+10b
+
20 + 12a+10b

+
21 − 6a+10b

−
21 + 12a+20b

+
10 + 12a+20b

+
11 − 6a+20b

−
11 + 12a+30 + 12a+31

− 3a−31 + 3b−32 + C̄0(1 + k2),

C̄2 = −12a+10(a+10b
+
12 + a+22)k4 + 4(−3a+2

10 b
+
12 + 3a+10b

+
10b

+
11 + a+10b

+2
12 − 3a+10a

+
22 + 3a+10b

+
21

+ 3a+20b
+
11 + a+22b

+
12 + 3a+31)k2 + 12(a+10b

+
10b

+
11 + a+10b

+
21 + a+20b

+
11 + a+31) + C̄1(1 + k2),

C̄3 = (1 + k2)(4k2b+12(a+10b
+
12 + a+22) + C̄2), C̄4 = C̄3(1 + k2),

C̄5 =
1

2
(a−31 + b−32), f5 = (k2x20 + x20 + 2x0 + 1)(π − α).

Similarly, for Case 22, the third order Melnikov function M3(x0) is

M3(x0) =
C̃0 + C̃1x0 + C̃2x

2
0 + C̃3x

3
0 + C̃4x

4
0 + C̃5f5

k2x0 + x0 + 1
(4.10)
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where

C̃0 = 12a+10b
+2
10 − 6a+10b

+
10b
−
10 + 12a+10b

+
20 − 6a+10b

−
20 + 12a+20b

+
10 − 6a+20b

−
10 + 12a+30

− 6a−30 + 3a−31 + 3b−32,

C̃1 = 12a+3
10 k

4 + (12a+3
10 − 12a+10a

+
12b

+
10 + 12a+10b

+2
10 + 6a+10b

+
10a
−
12 − 12a+10a

+
22 + 12a+10b

+
20

+ 6a+10a
−
22 − 12a+12a

+
20 + 12a+20b

+
10 + 6a+20a

−
12 + 12a+30)k2 + 12a+10b

+2
10 + 12a+10b

+
10b

+
11

− 6a+10b
+
10b
−
11 + 12a+10b

+
20 + 12a+10b

+
21 − 6a+10b

−
21 + 12a+20b

+
10 + 12a+20b

+
11 − 6a+20b

−
11

+ 12a+30 + 12a+31 − 3a−31 + 3b−32 + C̃0(1 + k2),

C̃2 = (4a+10a
+2
12 − 12a+10a

+
12b

+
10 − 12a+10a

+
22 − 12a+12a

+
20)k4 + (−12a+10a

+
12b

+
10 − 4a+10a

+
12b

+
11

+ 12a+10b
+
10b

+
11 − 12a+10a

+
22 + 12a+10b

+
21 − 12a+12a

+
20 + 4a+12b

+
22 + 12a+20b

+
11 + 12a+31)k2

+ 12a+10b
+
10b

+
11 + 12a+10b

+
21 + 12a+20b

+
11 + 12a+31 + C̃1(1 + k2),

C̃3 = (1 + k2)(4a+10a
+2
12 k

4 − 4a+10a
+
12b

+
11k

2 + 4a+12b
+
22k

2 + C̃2),

C̃4 = C̃3(1 + k2), C̃5 =
1

2
(a−31 + b−32), f5 = (k2x20 + x20 + 2x0 + 1)(π − α).

It is obvious that M3(x0) has the same generators with M2(x0), hence according to
Theorem 2.4 in [19], the third order Melnikov function has at most 5 isolated zeros,
taking into account their multiplicities. By straightly calculation, we have

rank
( ∂(C̄0, C̄1, C̄2, C̄3, C̄4, C̄5)

∂(a+
20, b

+
12, b

+
11, a

+
22, a

−
31, k)

)
= 6, rank

( ∂(C̃0, C̃1, C̃2, C̃3, C̃4, C̃5)

∂(a+
20, a

+
12, b

+
10, b

+
22, a

−
31, k)

)
= 6,

which means that with proper parameters, the upper bound can be reached. Hence
the proof has been finished.

The proof of Theorem 4.1 and Corollary 4.1. The proof of Theorem 4.1 can
be obtained according to Lemma 4.1, Theorem 1.1 [9] and Theorem 3.3 [10], namely,
the upper bound of the number of limit cycles bifurcated from the period orbits is
5 (taking into account their multiplicities) for system (4.3).

Corollary 4.1 can be proved similarly by substituting a±i0 = a±i1 = a±i2 = b±i0 =
b±i1 = b±i2 = 0, i = 2, 3 into (4.6)-(4.8). When M1(x0) = M2(x0) ≡ 0, we have

Case 21a. {a−10 = a+
10 = a+

11 = a−11 = b−12 = a+
12 = 0};

Case 21b. {a+
11 = b+11 = a+

12 = 0, a−10 = 2a+
10, a

−
11 = (2k2 + 2)a+

10, b
−
12 = −(2k2 +

2)a+
10, b

−
10 = 2b+10, b

−
11 = 2b+10k

2 + a−12k
2 + 2b+10};

Case 22a. {a−10 = a+
10 = a+

11 = a−11 = b−12 = b+12 = 0};
Case 22b. {a+

11 = b+12 = 0, a−10 = 2a+
10, a

−
11 = (2k2 + 2)a+

10, b
−
12 = −(2k2 +

2)a+
10, b

+
11 = a+

12k
2, b−10 = 2b+10, b

−
11 = 2b+10k

2 + a−12k
2 + 2b+10}.

For Case 21a and Case 22a, M3(x0) ≡ 0. For Case 22b, we have M3(x0) =
2k3x2

0a
+3
10 (k2+1)

1+(k2+1)x0
. It has no isolated zero for x0 > 0.

For Case 21b, we have

M3(x0)

=
2

3

k3x20a
+
10(b+12(k2 + 1)x20 − b+12(3a+10k

2 + 3a+10 − b
+
12)x0 + 3a+10(a+10k

2 + a+10 − b
+
12))

1 + (k2 + 1)x0
.
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It is obvious that for system (4.3) with ω±2 = ω±3 = 0, M3(x0) has at most 2 isolated
zeros taking into account their multiplicities, and the upper bound can be reached
with proper parameters. Hence Corollary 4.1 has been proved.

4.2. An application for θ = π

In this subsection, we consider another piecewise linear differential system which is
a perturbation of a linear center-center type Hamiltonian system, namely,

dH + εω1 + ε2ω2 + ε3ω3 = 0, (4.11)

where

H(x, y) =

H+(x, y) = (x− 1)2 + y2 = h2, x ≥ 0,

H−(x, y) = (x+ 1)2 + y2, x < 0,

and for i = 1, 2, 3,

ωi =

ω+
i = P+

i (x, y)dy −Q+
i (x, y)dx, x ≥ 0,

ω−i = P−i (x, y)dy −Q−i (x, y)dx, x < 0,

with

P±i (x, y) = a±i0 + a±i1x+ a±i2y,

Q±i (x, y) = b±i0 + b±i1x+ b±i2y.

This system has been studied in [5] by using the first order Melnikov function.
Here we shall consider the same system by using the first three order Melnikov func-
tions and the aim is also to find if there are more limit cycles or not by considering
linear perturbations up to higher order in ε.

Obviously, system (4.11)|ε=0 has a family of period orbits when h > 1. In the
following, we give the main theorem about the limit cycles for system (4.11). It is
worth mentioning that the number of zeros for the k−th order Melnikov function is
obtained when the first k − 1 order Melnikov functions vanish and the k−th order
Melnikov function is not zero identically.

Theorem 4.3. For system (4.11), the upper bound of the number of limit cycles
bifurcated from the period orbits is 2, 2, 2 (taking into account their multiplicities)
by using the first three order Melnikov functions, respectively, and two limit cycles
can appear with proper parameters.

Lemma 4.2. For system (4.11), if the first order Melnikov function M1(h) is not
zero identically, then M1(h) has at most 2 isolated zeros, taking into account their
multiplicities, and 2 can be reached.

Proof. For system (4.11), we make different coordinate transformations as x =
−h cos θ − 1, y = h sin θ, and x = h cos θ + 1, y = h sin θ, respectively for the left
and right subsystems. Noting that the unperturbed system (4.11) with ε = 0 has
a family of period orbits, we have α = arctan(

√
h2 − 1), see Figure 3. It is easy
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Figure 3. Unperturbed system (4.11)

to calculate the first order Melnikov function. Here we just give the expression of
M1(h) as follows,

M1(h) = b+1 − b
−
1 = Ã0 + Ã1

h2

√
h2 − 1

(π − α), (4.12)

where

Ã0 = a−10 − a
+
10 −

1

2
(a−11 + b−12)− 1

2
(a+

11 + b+12),

Ã1 = −1

2
(a−11 + b−12)− 1

2
(a+

11 + b+12).

Let t =
√
h2 − 1, and taking derivative twice in succession leads to

M ′1(t) = Ã1 ·
t2(π − arctan t)− (π − arctan t)− t

t2
,

M ′′1 (t) = 2Ã1 ·
t2(π − arctan t) + (π − arctan t) + t

t3(t2 + 1)
.

Noting that π − α > 0, it is apparent from M ′′1 (t) > 0 for t ∈ (0, +∞) that M1(t)
has at most 2 isolated zeros, taking into account their multiplicities, and it can be
reached with proper parameters.

If M1(h) ≡ 0, then we have Ã0 = Ã1 = 0, namely,

{a−10 = a+
10, a

−
11 + b−12 + a+

11 + b+12 = 0}. (4.13)

Lemma 4.3. For system (4.11), when M1(h) ≡ 0 and M2(h) 6≡ 0, the second order
Melnikov function M2(h) has at most 2 isolated zeros, taking into account their
multiplicities, and 2 can be reached.

Proof. When M1(h) ≡ 0, we have to consider the second order Melnikov function.
The first step is calculating the corresponding functions ψ±2 (h, θ) as follows,

ψ+
2 (h, θ) =

∫ T+(h, θ)

0

div(χ+
1 ) ◦ (ϕ+

t )dt = −1

2
(a+

11 + b+12)(θ − π + α),
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where θ ∈ [α− π, π − α], and

ψ−2 (h, θ) =

∫ T−(h, θ)

0

div(χ−1 ) ◦ (ϕ−t )dt =
1

2
(a−11 + b−12)(θ − π + α),

with θ ∈ [α− π, π − α].
The second step focuses on the decomposition aiming at R±2y(B), and it gives to

R+
2y(B) = P+

1 (B)− ψ+
2 H

+
y (B)

= P+
1 (α− π, h)− ψ+

2 (α− π)H+
y (B)

= a+
10 − a

+
12

√
h2 − 1 + 2(a+

11 + b+12)
√
h2 − 1(π − α),

and

R−2y(B) = P−1 (B)− ψ−2 H−y (B)

= P−1 (α− π, h)− ψ−2 (α− π)H−y (B)

= a−10 − a
−
12

√
h2 − 1− 2(a−11 + b−12)

√
h2 − 1(π − α).

Thirdly, according to Corollary 2.1, we have

b+2 =
2

H+
y (B)

(

∫ α−π

π−α
ψ+

2 ω
+
1 − ω

+
2 −R

+
2y(B)b+1 −

1

2
H+
yy(B)b+1

2
),

and

b−2 =
2

H−y (B)
(

∫ α−π

π−α
ψ−2 ω

−
1 − ω

−
2 −R

−
2y(B)b−1 −

1

2
H−yy(B)b−1

2
).

The first part in above formula can be calculated as follows,∫ α−π

π−α
ψ+

2 ω
+
1 − ω

+
2

= −1

4
(π − α)(−a+

11a
+
12 − a

+
11b

+
11 − a

+
12b

+
12 − b

+
11b

+
12 − 4a+

21 − 4b+22)h2

− 1

2
(a+

11 + b+12)2(π − α)2h2 − 1

2
(π − α)(a+

12 − 2b+10 − b
+
11)(a+

11 + b+12)

+ (−1

4
a+

11a
+
12 + b+10a

+
11 + a+

21 + b+22 + 2a+
20 −

1

4
a+

12b
+
12 +

3

4
(b+11a

+
11 + b+11b

+
12)

+ b+10b
+
12)
√
h2 − 1− 1

2
(π − α)(a+

11 + b+12)(2a+
10 + a+

11 + b+12)
√
h2 − 1,

and ∫ α−π

π−α
ψ−2 ω

−
1 − ω

−
2

= −1

4
(π − α)(a−11a

−
12 + a−11b

−
11 + a−12b

−
12 + b−11b

−
12 + 4a−21 + 4b−22)h2

− 1

2
(a−11 + b−12)2(π − α)2h2 +

1

2
(π − α)(a−12 + 2b−10 − b

−
11)(a−11 + b−12)

+ (
1

4
a−11a

−
12 +

1

4
a−12b

−
12 + b−10a

−
11 −

3

4
b−11(a−11 + b−12) + 2a−20 − a

−
21 − b

−
22

+ b−10b
−
12)
√
h2 − 1 +

1

2
(π − α)(a−11 + b−12)(2a−10 − a

−
11 − b

−
12)
√
h2 − 1.
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Finally, let t =
√
h2 − 1, a routine computation gives rise to

M2(t) =
1

2
(b+2 − b

−
2 ) = − 1

8t
(B1f1 +B2f2 +B3f3),

where
f1 = t, f2 = (π − α), f3 = (π − α)t2,

and

B1 = −4a+
12a
−
10 + 3a+

12a
−
11 + 3a+

12b
−
12 − 4b+10a

−
11 − 4b+10b

−
12 − 3b+11a

−
11 − 3b+11b

−
12

+ 4a−10a
−
12 − 3a−11a

−
12 − 4a−11b

−
10 + 3a−11b

−
11 − 3a−12b

−
12 − 4b−10b

−
12

+ 3b−11b
−
12 + 8a+

20 + 4a+
21 + 4b+22 − 8a−20 + 4a−21 + 4b−22,

B2 = (a−11 + b−12)(3a+
12 − 4b+10 − 3b+11 − 3a−12 − 4b−10 + 3b−11)

+ 4a+
21 + 4b+22 + 4a−21 + 4b−22,

B3 = (a−11 + b−12)(a+
12 − b

+
11 − a

−
12 + b−11) + 4a+

21 + 4b+22 + 4a−21 + 4b−22.

In the following, rewrite M2(t) as M2(t) = −B3

8 (B1

B3
+ B2

B3
P (t)+Q(t)), where P (t) =

π−α
t and Q(t) = (π − α)t. The zeros of M2(t) can be obtained by considering

the zeros of B1

B3
+ B2

B3
P (t) + Q(t) = 0. Let Σ = {(P, Q)(t)|t ∈ (0, +∞)}, and L =

{(P, Q)|B1

B3
+ B2

B3
P+Q = 0}, then the problem is equivalent to finding the number of

intersection points of Σ and L in P−Q plane, taking into account their multiplicities.
We claim that Σ is convex strictly. The proof of this claim is postponed until
Appendix A. Based on the claim, L can have at most two intersection points with
Σ, namely, M2(t) has at most two zeros, taking into account their multiplicities.

On the other hand, it gives by calculating

rank
( ∂(B1, B2, B3)

∂(a−10, b
−
12, b

+
10)

)
= 3.

Thus M2(t) can have at least 2 simple zeros, taking into account their multiplicities,
and the upper bound can be reached.

If M1(h) = M2(h) ≡ 0, then we have

Case a. {a+
10 = a−10, a

+
11 = −b+12, a

+
20 = a−20− 1

2a
−
10a
−
12 + 1

2a
−
10a

+
12, a

+
21 = −b+22−a

−
21−

b−22, a
−
11 = −b−12};

Case b. {a+
10 = a−10, a

+
11 = −b+12−a

−
11−b

−
12, a

+
12 = 2b+10 +b+11 +a−12 +2b−10−b

−
11, a

+
20 =

a−20 + a−10b
+
10 + 1

2a
−
10b

+
11 + a−10b

−
10 − 1

2a
−
10b
−
11, a

+
21 = − 1

2b
+
10a
−
11 − 1

2a
−
11b
−
10 − 1

2b
+
10b
−
12 −

1
2b
−
10b
−
12b

+
22 − a

−
21 − b

−
22}.

Lemma 4.4. For system (4.11), when M1(h) = M2(h) ≡ 0 and M3(h) 6≡ 0, the
third order Melnikov function M3(h) has at most 2 isolated zeros for Case a and
Case b, taking into account their multiplicities, and the upper bound can be reached.

Proof. Because of tedious expressions, we omit the first and second steps for
calculating ψ±3 (h, θ), R±2yy(B) and R±3y(B), and put them in Appendix B. Hence
we obtain M3(t) straightly for Case a:

M3(t) = − 1

8t
(C1af1 + C2af2 + C3af3), (4.14)
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where

C1a = 2a−10a
−
12(a+12 − a

−
12)− 4a+12a

−
20 + 3a+12a

−
21 + 3a+12b

−
22 − 4a−10a

+
22 − 4b+10a

−
21 − 4b+10b

−
22

− 3b+11a
−
21 − 3b+11b

−
22 + 4a−10a

−
22 + 4a−12a

−
20 − 3a−12a

−
21 − 3a−12b

−
22 − 4a−21b

−
10 + 3a−21b

−
11

− 4b−10b
−
22 + 3b−11b

−
22 + 8a+30 + 4a+31 + 4b+32 − 8a−30 + 4a−31 + 4b−32,

C2a = (a−21 + b−22)(3a+12 − 4b+10 − 3b+11 − 3a−12 − 4b−10 + 3b−11) + 4a+31 + 4b+32 + 4a−31 + 4b−32,

C3a = (a−21 + b−22)(a+12 − b
−
11 − a

−
12 + b−11) + 4a+31 + 4b+32 + 4a−31 + 4b−32.

Similarly, the third order Melnikov function for Case b is calculated as follows,

M3(t) = − 1

16t
(C1bf1 + C2bf2 + C3bf3), (4.15)

where

C1b = −3b+2
10 a

−
11 − 3b+2

10 b
−
12 − 6b+10b

+
11a
−
11 − 6b+10b

+
11b
−
12 + 8b+10a

−
10a
−
12 − 6b+10a

−
11a
−
12

− 10b+10a
−
11b
−
10 + 6b+10a

−
11b
−
11 − 6b+10a

−
12b
−
12 − 10b+10b

−
10b
−
12 + 6b+10b

−
11b
−
12 − 3b+2

11 a
−
11

− 3b+2
11 b
−
12 + 4b+11a

−
10a
−
12 − 3b+11a

−
11a
−
12 − 6b+11a

−
11b
−
10 + 3b+11a

−
11b
−
11 − 3b+11a

−
12b
−
12

− 6b+11b
−
10b
−
12 + 3b+11b

−
11b
−
12 − 3b+2

12 a
−
11 − 3b+2

12 b
−
12 + 4b+12a

−
10a
−
11 + 4b+12a

−
10b
−
12

− 3b+12a
−2
11 − 6b+12a

−
11b
−
12 − 3b+12b

−2
12 + 4a−10a

−
11b
−
12 + 8a−10a

−
12b
−
10 − 4a−10a

−
12b
−
11

+ 4a−10b
−2
12 − 3a−2

11 b
−
12 − 6a−11a

−
12b
−
10 + 3a−11a

−
12b
−
11 − 7a−11b

−2
10 + 6a−11b

−
10b
−
11 − 3a−11b

−2
12

− 6a−12b
−
10b
−
12 + 3a−12b

−
11b
−
12 − 7b−2

10 b
−
12 + 6b−10b

−
11b
−
12 − 8a+22a

−
10 + 6a+22a

−
11 + 6a+22b

−
12

− 16b+10a
−
20 + 4b+10a

−
21 + 4b+10b

−
22 − 8b+11a

−
20 − 8b+20a

−
11 − 8b+20b

−
12 − 6b+21a

−
11 − 6b+21b

−
12

+ 8a−10a
−
22 − 6a−11a

−
22 − 8a−11b

−
20 + 6a−11b

−
21 − 16a−20b

−
10 + 8a−20b

−
11 + 4a−21b

−
10 − 6a−22b

−
12

+ 4b−10b
−
22 − 8b−12b

−
20 + 6b−12b

−
21 + 16a+30 + 8a+31 + 8b+32 − 16a−30 + 8a−31 + 8b−32,

C2b = −(a−11 + b−12)(3b+2
10 + 6b+10b

+
11 + 6b+10a

−
12 + 10b+10b

−
10 − 6b+10b

−
11 + 3b+2

11 + 3b+11a
−
12

+ 6b+11b
−
10 − 3b+11b

−
11 + 3b+2

12 − 4b+12a
−
10 + 3b+12a

−
11 + 3b+12b

−
12 − 4a−10b

−
12 + 3a−11b

−
12

+ 6a−12b
−
10 − 3a−12b

−
11 + 7b−2

10 − 6b−10b
−
11) + 6a+22a

−
11 + 6a+22b

−
12 + 4b+10a

−
21 + 4b+10b

−
22

− 8b+20a
−
11 − 8b+20b

−
12 − 6b+21a

−
11 − 6b+21b

−
12 − 6a−11a

−
22 − 8a−11b

−
20 + 6a−11b

−
21 + 4a−21b

−
10

− 6a−22b
−
12 + 4b−10b

−
22 − 8b−12b

−
20 + 6b−12b

−
21 + 8a+31 + 8b+32 + 8a−31 + 8b−32,

C3b = −(a−11 + b−12)(b+2
10 + 2b+10b

+
11 + 2b+10a

−
12 + 2b+10b

−
10 − 2b+10b

−
11 + b+2

11 + b+11a
−
12 + 2b+11b

−
10

− b+11b
−
11 + b+2

12 + b+12a
−
11 + b+12b

−
12 + a−11b

−
12 + 2a−12b

−
10 − a

−
12b
−
11 + b−2

10 − 2b−10b
−
11)

+ 2a+22a
−
11 + 2a+22b

−
12 + 4b+10a

−
21 + 4b+10b

−
22 − 2b+21a

−
11 − 2b+21b

−
12 − 2a−11a

−
22 + 2a−11b

−
21

+ 4a−21b
−
10 − 2a−22b

−
12 + 4b−10b

−
22 + 2b−12b

−
21 + 8a+31 + 8b+32 + 8a−31 + 8b−32.

Noting that the generators of M3(t) are the same with M2(t), it follows that
M3(t) has at most 2 zeros in Case a and Case b .

On the other hand, it gives by calculating

rank
(∂(C1a, C2a, C3a)

∂(a−10, b
−
21, b

−
32)

)
= 3, rank

(∂(C1b, C2b, C3b)

∂(a−10, b
−
12, b

−
32)

)
= 3.

Thus M3(t) can have at least 2 isolated zeros, and 2 can be reached.

The proof of Theorem 4.3. The proof of Theorem 4.3 can be obtained according
to Lemma 4.2, Lemma 4.3, Lemma 4.4, Theorem 1.1 [9] and Theorem 3.3 [10].
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5. Conclusion

Compared with the results in [3] and [4], we can clearly observe the differences
between them by Table 1. When the unperturbed system is an elementary center,
Buzzi et al. [3] found one limit cycle by the first and second order Melnikov functions.
When considering the center-center type system (4.11), we find two limit cycles by
M1(h). On the other hand, Cardin and Torregrosa [4] obtained 4 and 5 limit cycles
by M5(h) and M6(h), respectively. Compared with the results in [4], we obtain
4, 5, 5 limit cycles by the first three order Melnikov functions, respectively.

Table 1. The comparison of the upper bounds for different systems

Unperturbed system

M
k (h)

M1(h) M2(h) M3(h) M4(h) M5(h) M6(h) M7(h)

Elementary center [3], θ = π 1 1 2 3 3 3 3

System (4.11)|ε=0, θ = π 2 2 2 – – – –

Elementary center [4], θ ∈ (0, π) 1 2 2 3 4 5 –

System (4.1)|ε=0, θ ∈ (0, π) 4 5 5 – – – –

It is worth mentioning that for system (4.11), we guess the maximum number
of zeros for any order Melnikov function Mk(h) is two. This conjecture is based
on the following two facts. On the one hand, we try to calculate the fourth order
Melnikov function and get the same generators with M2(h) and M3(h). Due to the
complex calculation for higher order Melnikov functions, we omit the expression
of M4(h). On the other hand, in other work, we also consider the piecewise linear
perturbation of linear center-center type system which the centers of two subsystems
are not symmetry. We obtain the maximum number of zeros for any order Melnikov
function Mk(h) is also two for such system. Hence we propose a conjecture: for
the piecewise linear perturbation of a symmetric linear center-center type system
(4.11), the maximum number of zeros is 2 by any order Melnikov function Mk(h).

Similarly, for system (4.1) with θ ∈ (0, π), we also calculate the fourth order
Melnikov function and obtain the same generators with M2(h) and M3(h). Hence
we guess that the maximum number of zeros is 5 by any order Melnikov function
Mk(h). These are both open problems which need us to explore in the future.

Appendix A

In the proof of Lemma 4.3, we give a claim that Σ is convex strictly. Here Σ =
{(P, Q)(t)|t ∈ (0, +∞)}, where α = arctan t, P (t) = π−α

t and Q(t) = (π − α)t. We
are now in a position to show that this claim holds.

Claim. Σ is convex strictly.

Proof. A routine computation gives rise to d2Q
dP 2 = 2(t2+1)t3

((π−α)t2+(π−α)+t)3S(t) where

S(t) = (π − α)2(t2 + 1)2 + (π − α)t3 − (π − α)t− 2t2.
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In view of the fact that π
2 < π−α < π and t > 0, it is easy to obtain that S(t) > s(t)

where

s(t) =
π2

4
(t2 + 1)2 +

π

2
t3 − πt− 2t2.

The first two derivatives of s(t) are s′(t) = (t2 + 1)π2t + 3
2πt

2 − π − 4t and
s′′(t) = 3π2t2 + 3πt + π2 − 4. Obviously, s′′(t) > 0 and s′(t) has one simple
zero t0 ≈ 0.3567304312, which implies, s(t) has a minimum value at t = t0. It
is straightforward to obtain that S(t) > s(t) ≥ s(t0) ≈ 1.828792213. It is apparent

from d2Q
dP 2 > 0 that Σ is convex strictly, hence we completed the proof.

Appendix B

The expressions of ψ±3 (θ, h), R±2yy(B) and R±3y(B) are given as follows:

ψ+
3 (θ, h) = −1

8
(π − α− θ)((a+11 + b+12)2(π − α− θ) + a+11a

+
12 − a

+
11b

+
11 + a+12b

+
12

− b+11b
+
12 − 4a+21 − 4b+22)− 1

8
cos(θ)(a+11 + b+12)(cos(θ)a+11 + a+12 sin(θ)

+ b+11 sin(θ)− cos(θ)b+12)− 1

4h
(a+11 + b+12)(a+10 cos(θ) + cos(θ)a+11

+ b+10 sin(θ) + b+11 sin(θ))− 1

8h2
(a+11 + b+12)(

√
h2 − 1(a+12 − 2b+10 − b

+
11)

+ 2a+10 + a+11 + b+12),

ψ−3 (θ, h) = −1

8
(π − α− θ)((a−11 + b−12)2(π − α− θ)− a−11a

−
12 + a−11b

−
11 − a

−
12b
−
12

+ b−11b
−
12 + 4a−21 + 4b−22) +

1

8
cos(θ)(a−11 + b−12)(sin(θ)a−12 + b−11 sin(θ)

− a−11 cos(θ) + cos(θ)b−12)− 1

4h
(a−11 + b−12)(−a−10 cos(θ) + cos(θ)a−11

+ b−10 sin(θ)− b−11 sin(θ)) +
1

8h2
(a−11 + b−12)(

√
h2 − 1(a−12 + 2b−10 − b

−
11)

+ 2a−10 − a
−
11 − b

−
12),

R+
2yy(B) = −2(π − α)(a+11 + b+12) + a+12 + (a+11 + b+12)

√
h2 − 1

h2
,

R−2yy(B) = 2(π − α)(a−11 + b−12) + a−12 − (a−11 + b−12)

√
h2 − 1

h2
,

R−3y(B) = −(π − α)2(a−11 + b−12)2
√
h2 − 1− 1

2
(π − α)((a−11a

−
12 + a−11b

−
11 + a−12b

−
12

+ b−11b
−
12 + 4a−21 + 4b−22)

√
h2 − 1− 2a−10a

−
11 − 2a−10b

−
12) +

1

2
(a−12 + 2b−10 − b

−
11)

(a−11 + b−12) + a−20 − a
−
22

√
h2 − 1− 1

2h2
(a−12 + 2b−10 − b

−
11)(a−11 + b−12),

and

R+
3y(B) = −(π − α)2(a+11 + b+12)2

√
h2 − 1 +

1

2
(π − α)((a+11a

+
12 + a+11b

+
11 + a+12b

+
12 + b+11b

+
12

+ 4a+21 + 4b+22)
√
h2 − 1− 2a+10a

+
11 − 2a+10b

+
12)− 1

2
(a+12 − 2b+10 − b

+
11)(a+11 + b+12)

+ a+20 − a
+
22

√
h2 − 1 +

1

2h2
(a+12 − 2b+10 − b

+
11)(a+11 + b+12).
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