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PROPAGATING TERRACE IN A PERIODIC
REACTION-DIFFUSION EQUATION WITH

CONVECTION
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Abstract In this paper, we study the asymptotic properties of the solution
for a space periodic reaction-diffusion equation with convection term. Firstly,
we introduce the zero-number parameter method to compare the steepness of
different solutions, so as to obtain the convergence of solution and the existence
of the minimal propagating terrace. To be exact, the minimal propagating ter-
race is composed of individual pulsating traveling waves. By constructing the
ω-limit set, we prove that the existence of pulsating traveling waves. Secondly,
the stability theory is a necessary condition for the existence of the propa-
gating terrace. Contrary to conventional conclusions, there we first consider
extend the stability theory of the classical reaction-diffusion equation to the
reaction-diffusion equation with convection term, and through constructing
the Cauchy problem of the initial boundary value to solve the stability prob-
lem of the equation solution. Besides, we are especially concerned with the
minimal propagating terrace existence, uniqueness, and their spatial structure.

Keywords Spatial period, convective term, pulsating wave, minimal propa-
gating terrace, limit set.
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1. Introduction

In this paper, we consider the following reaction-diffusion equation{
∂tu(t, x) = ∂xxu(t, x) + b(x)∂xu(t, x) + f(x, u(t, x)), x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R,
(1.1)

where b(x) is the convective term coefficient and satisfies inf
x∈R

b(x) > 0. Equation

(1.1) arise especially in the fields of river dynamics, natural air flow ecology, physics
and also medicine and biology (see [3, 5, 12, 30–32, 35, 36]). The function u(t, x)
denotes the temperature or air velocity and reaction term f ∈ C(R2,R) satisfies

f(x+ L, u) ≡ f(x, u) and f(x, 0) ≡ 0,
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where L > 0 is a constant. Assuming that there exists a positive and L-periodic
stationary solution p(x) of (1.1), that is to say p(x) satisfies{

p′′(x) + b(x)p′(x) + f(x, p(x)) = 0, x ∈ R,
p(x) > 0, p(x+ L) ≡ p(x).

(1.2)

In the past, there are many researches about periodic reaction-diffusion equations.
By using comparison principle and establishing the decay rate of pulsating fronts
near unstable equilibrium, the uniqueness of monostable pulsating wave front for
time periodic reaction-diffusion equations have been studied (see [1,6,13,19–22,38]).
The admissible speeds in the space periodic bistable reaction-diffusion equation is
considered through upper and lower solution method (see [4, 7, 16–18, 24–28, 33]).
In [23], a pulsating front was constructed in special case when the coefficients are
close to constants. Yet dealing with more general heterogeneities turned out to be
much more difficult, and only recently a pulsating front was constructed in [9] for
the one-dimensional case. Besides, when multiple steady states and finite fronts are
involved, how do we think about the propagating properties? Clearly, the notion
of a single front is not sufficient to understand the dynamics behavior of solutions,
thus we instead observe the appearance of a so-called propagating terrace.

The concept of propagating terrace was first put forward by Ducrot et al. in [11].
They considered a spatial periodic reaction-diffusion equation, by using the upper
and lower solution method and stability theory proved that the solution converges to
a minimal propagating terrace. Giletti and Matano [14] further studied properties
of propagating terrace and extended the convergence result to the zero speeds. Then
Matano & Du [10] and Giletti & Rossi [15] considered the existence of propagating
terrace in high-dimensional case by constructing eadial terrace solutions and using
zero-number argument theory and upper and lower solutions method proved that
existence of minimal propagating terrace.

To sum up, the propagation properties of parabolic equations and the forma-
tion of propagating terrace in space are considered. But for the propagation of
the equation solution in time, is there a similar conclusion? Ding and Matano [8]
first considered the long time behavior of the equation solutions for time period
and gave initial data with compactly support. On this basis, Ding and Matano [9]
weakened the condition of initial data and considered the front-like initial data,
through stability theory and zero-number argument theory proving the existence of
the minimal propagating terrace. In addition, they obtain that the convergence of
the time period equation solution can be divided into local convergence or expo-
nential convergence to the minimal propagating terrace in the case of multistable
states. For the initial data with compactly support, Wang & Wang [37] considered
the initial data with the Heavside type and proved that the existence of minimal
propagating terrace.

The above researches were studied by scholars in one-dimensional reaction-
diffusion equation for time or space. Different from the above studies, Du and
Matano [10] considered the existence of propagating terrace in higher dimensional
reaction-diffusion equations. They adopted lengthy argument to construct radial
terrace solution u(r, t), by using upper and lower solutions method introduce shifting
function ηk(t) to prove the existence of propagating terrace. Additionily, Giletti and
Rossi [15] studied special case, that is the pulsating solutions for multidimensional
bistable or multistable equations. By defining speed function and capturing the it-
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eration at the suitable moment and position, they constructed a discrete pulsating
travelling front and completed the proof of the propagating terrace existence.

However, the above studies ignore the influence of convection term (such as
water flow, air flow) on propagation dynamics. Inspired by [2, 5, 8, 29, 34, 37], we
consider the model (1.1), the presence of convection term increases the complexity
of the equation. For the classical parabolic equations, the existing stability theory
can be applied, but after adding the convection term to the reaction-diffusion equa-
tions, this set of theory will not be appliable. We will construct a Cauchy boundary
value problem, by using the strong maximum principle and upper and lower solu-
tion method to solve the stability problem and obtain relevant conclusions about
propagating terrace.

In order to show the attractiveness of p(x) with respect to at least one com-
pactly supported initial data and propagating terrace consists of not only a single
(pulsating) traveling wave. There are two assumptions.

Assumption 1.1. There exists a solution u(x, t) of (1.1) with compactly supported
initial data 0 ≤ u0(x) ≤ p(x) that converges locally uniformly to p(x) as t→∞.
Assumption 1.2. There exists no L-periodic stationary solution q(x) with 0 <
q(x) < p(x) that is both isolated from below and stable from below with respect to
(1.1).

To facilitate the definition of the propagating terrace, the following concepts are
given.

Definition 1.3. Let v1(t, x) and v2(t, x) be two entire solutions of (1.1). We say
v1(t, x) is steeper than v2(t, x) if and only if for any t1, t2 and x′ ∈ R such that
v1(t1, x

′) = v2(t2, x
′), one has

v1(·+ t1, ·) ≡ v2(·+ t2, ·) or ∂xv1(t1, x
′) < ∂xv2(t2, x

′).

Definition 1.4. There exists two periodic stationary states p1(x) and p2(x), by a
pulsating traveling front of (1.1) connecting p1(x) to p2(x), which mean any entire
solution U(t, x) of (1.1) satisfying, for T > 0,

U(t, x− L) = U(t+ T, x)

along with the asymptotics

lim
t→−∞

U(t, x) = p1(·) and lim
t→∞

U(t, x) = p2(·).

There c := L
T > 0 is called the average speed of this pulsating traveling wave.

Clearly, the form U(t, x) can be written Û(x − ct, x), where Û is L-periodic in its
second variable and satisfies U(+∞, ·) = p1(·) and U(−∞, ·) = p2(·).

Next, we introduce the notion of propagating terrace and some properties of the
propagating terrace.

Definition 1.5. A propagating terrace connecting 0 to p(x) is a pair of finite
sequences (pk)0≤k≤N and (Uk)1≤k≤N satisfies
• Each pk is a L-periodic stationary solution of (1.1) satisfying

p(x) = p0(x) > p1(x) > ... > pN (x) = 0.
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• For each 1≤ k ≤ N, Uk(t, x) is a pulsating traveling solution of (1.1)
connecting pk(x) to pk−1(x).

• The speed (ck)1≤k≤N of each Uk(t, x) satisfies c1 ≤ c2 ≤ ... ≤ cN .
Moreover, a propagating terrace z = ((pk)0≤k≤N , (Uk)1≤k≤N ) connecting 0 to

p(x) is the minimal if it satisfies the following

• For any propagating terrace z′ = ((qk)0≤k≤N ′ , (Vk)1≤k≤N ′), one has

{pk(x)|0 ≤ k ≤ N} ⊂ {qk(x)|0 ≤ k ≤ N ′} .

• For each 1 ≤ k ≤ N , Uk(t, x) is steeper than any other traveling wave
connecting pk(x) to pk−1(x).

Proposition 1.6. A propagation terrace z = ((pk)0≤k≤N , (Uk)1≤k≤N ) is called the
minimal propagating terrace in the sense of Definition 1.5, then it is unique up to
time shifts.

Assumption 1.7. There exists a decomposition between 0 and p(x), that is to
say, there exists a finite sequence of solutions (pk)0≤k≤N of (1.2) such that p(x) =
p0(x) > p1(x) > ... > pN (x) = 0, there exists a pulsating traveling wave Uk(t, x)
connecting pk(x) to pk−1(x).

Before giving the final conclusion, we consider (1.1) whose the initial data is
Heavside type, that is u0(x) = p(x)H(a− x), where a ∈ R is any constant. Where
H is defined by

H(x) :=

{
0 if x < 0,

1 if x ≥ 0.

Thus, we have the following results.

Theorem 1.8. Let Assumption 1.1 and Assumption 1.7 hold. There exists a
minimal propagating terrace ((pk)0≤k≤N , (Uk)1≤k≤N ) in the sense of Definition 1.5.
Moreover, it satisfies

(i) For any 0 ≤ k ≤ N , the stationary solution pk(x) is isolated and stable from
below with respect to (1.1).

(ii) All the pk(x) and Uk(t, x) are steeper than any other entire solution of (1.1).

And about the convergence of the solution, we have the following results.

Theorem 1.9. Let Assumption 1.1 hold and u(t, x) is the solution of (1.1) with
u0(x) satisfying Heavside type. The solution u(t, x) converges as t → +∞ to the
minimal propagating terrace ((pk)0≤k≤N , (Uk)1≤k≤N ). Moreover, there exist func-
tions (γi(t))1≤i≤N such that the following statements hold

(i) γi(t) = o(t) as t→ +∞ for i = 1, ..., N,

(ii) The convergence holds

lim
t→∞

sup
x∈R

∣∣∣u(t, x)−
( N∑
i=1

Ui(t, x− γi(t))−
N∑
i=1

pi(x)
)∣∣∣ = 0.

Outline of the paper. In Section 2, we recall the properties of ω-limit set and
the zero-number argument theory, and introduce the stability of solutions of (1.2).
The asymptotic behavior of solutions of (1.1) with Heaviside type initial data and
the proof of Theorem 1.8 and Theorem 1.9 are shown in Section 3.
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2. Preliminary

In the section, we will do preliminaries to prove the existence of the propagating
terrace. In subsection 2.1, the zero-number parameter theory is introduced to com-
pare steepness between different solutions. In subsection 2.2, the concept and basic
properties of ω-limit set are given. The stability theory of stationary solutions of
(1.2) is shown in subsection 2.3.

2.1. Zero-number argument properties

In this subsection, we mainly rely on the properties of zero-number argument theory.
This zero-number argument method can be used to prove the convergence results
of solutions in semilinear parabolic equations, but in this paper we use this zero-
number argument method not only to prove the convergence of solutions, but also to
prove the existence of the pulsating traveling waves and propagating terrace. First
of all, from standard zero-number argument symbol Z[·], we introduce a related
concept SGN [·] , which will be very useful later in our lemmas.

Definition 2.1. For a real-valued function w(x) defined on R, we define two prop-
erties. (i) Z[w(·)] is defined as the number of changes in sign of the real valued
function w, namely the supremum over all k ∈ N such that there exist real numbers
x1 < x2 < ... < xk+1 with

w(xi).w(xi+1) < 0 for all i = 1, 2, ..., k.

(ii) SGN [w(·)] is the word consisting of + and − and it describes the signs of

w(x1), ..., w(xk+1),

where x1 < ... < xk+1 is a sequence defined in Z[w] with maximal k.
In the case of (i), We set Z[w] = 0 if w/≡0, and Z[w] = −1 if w ≡ 0. In the case

of (ii), when k does not exist, we set SGN [w]=sgn(w(x)) if w/≡ 0 and w(x) 6= 0.
In this case, sgn is defined as a sign function, and SGN [0] = [ ], the empty word.

When w only have simple zeros on R, then Z[w] is made up of a number of
zeros. We give an example,

Z[x2 − 5] = 2, SGN [x2 − 5] = [+−+].

From the previous definition, we know that the length of SGN [w] is equal to
Z[w] + 1.

If W and V are made up of + and −, we stipulate that W � V (or W � V ) if
V is a subword of W . We give an example,

[+−] � V for V = [+−], [+], [−], [], but not [+−] � [−+].

Lemma 2.2. Let w(t, x)/≡0 be a solution to the periodic equation of the following
form

∂tw = ∂xxw + b(x)∂xw + c(t, x)w on a domain (t1, t2)× R, (2.1)

where c(t, x) is a bounded function. Furthermore,
(i) Z[w(t, ·)] and SGN [w(t, ·)] are nonincreasing with respect to t, for any t′ > t,
we have
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Z[w(t, ·)] ≥ Z[w(t′, ·)], SGN [w(t, ·)] � SGN [w(t′, ·)].

When w(t, x) can be extended as a continuous function on [t1, t2) × R, we assert
that this is also true for t = t1.
(ii) For some t′ ∈ (t1, t2) and x′ ∈ R, if w(t′, x′) = ∂xw(t′, x′) = 0, then

Z[w(t, ·)]− 2 ≥ Z[w(s, ·)] ≥ 0, for t ∈ (t1, t
′) and s ∈ (t′, t2),

where Z[w(t, ·)] <∞.
We know from the statement (ii) that the second inequality is not true when

w ≡ 0 on (t1, t2)×R. Otherwise, for t ∈ (t1, t2), the function w(t, x) does not vanish
on R. The second inequality is due to [2]. However, [2] only solves the equation
on the bounded intervals. While in [8], the author uses the maximum principle to
generalize it to the infinite interval.

The statement (i) is derived from (ii), when the boundary is a bounded interval.
We can prove it by the maximum principle and a topological argument, and by this
proof we can prove SGN [w], so that the proof for Z[w] can be derived automatically.

Lemma 2.3. Let (wn)n∈N be a sequence of functions that converge to w pointwise
on R, we have

Z[w] ≤ lim
n→+∞

inf Z[wn],

SGN [w] / lim
n→+∞

inf SGN [wn].

Combining Lemma 2.2 and Lemma 2.3, we can derive the following lemma.

Lemma 2.4. Let v1(t, x) and v2(t, x) be two solutions of (1.1) such that the initial
value v1(0, x) is a piecewise continuous bounded function on R, and the initial value
of v2(0, x) be continuous bounded function on R. We assume that v1(0, x)−v2(0, x)
changes sign at most a finite number of times on R. Then
(i) for 0 ≤ t < t′ <∞,

Z[v1(t, ·)− v2(t, ·)] ≥ Z[v1(t′, ·)− v2(t′, ·)],

SGN [v1(t, ·)− v2(t, ·)] . SGN [v1(t′, ·)− v2(t′, ·)].

(ii) for some t1 > 0, the graphs of v1(t1, x) and v2(t1, x) intersect at some point in
R, if v1(t, x)/≡v2(t, x), then for any t, s with 0 ≤ t < t1 < s,

Z[v1(t, ·)− v2(t, ·)]− 2 ≥ Z[v1(s, ·)− v2(s, ·)] ≥ 0.

Proof. Let the function w(t, x) := v1(t, x)− v2(t, x) be a solution to the equation

of the form (2.1), where c(x, t) := f(x,v1)−f(x,v2)
v1−v2 is bounded, so this lemma can be

concluded from Lemma (2.2). In addition, when t = 0, if both v1(0, x) and v2(0, x)
are continuous functions, then this conclusion is also true. In the general case, when
v1(0, x) is a piecewise continuous function, we can approximate v1 with a sequence
of the solution, say v1,n, whose v1,n(0, x) are continuous and satisfy

(i) sup‖v1,n(0, ·)‖L∞(R) <∞ and v1,n(0, x)→ v1(0, x),
(ii) SGN [v1,n(0, ·)− v2(0, ·)] = SGN [v1(0, ·)− v2(0, ·)] for n ∈ N.

Then, we conclude that for t′ > 0,

SGN [v1(0, ·)− v2(0, ·)] . SGN [v1,n(t′, ·)− v2(t′, ·)].
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Finally let n→∞ and combine Lemma 2.3, we can reach the above conclusion.
Next we introduce a corollary, which we will use later.

Corollary 2.5. Suppose u1 and u2 are two entire solutions of (1.1), and satisfy

SGN [u1(t′, ·)− u2(t′′, ·)] / [+−] for t′, t′′ ∈ R.

Then in the sense of Definition 1.3, u1 is steeper than u2.

Proof. Take any t′, t′′ ∈ R. From the above assumption we have

Z[u1(t+ t′, ·)− u2(t+ t′′, ·)] ≤ 1 for t ∈ R.

If u1(· + t′, ·)/≡u2(· + t′′, ·), it can be known from (ii) of Lemma (2.4) that the
graph of u1(t, x) and u2(t, x) have at most one intersection point, that is to say,
u1(t′, x)−u2(t′′, x) has at most one zero point. We assume the zero is x1. Then we
can know from this zero point and SGN [u1−u2]/[+−], which display ∂xu1(t′, x1) <
∂xu2(t′′, x1). This indicate that u1(t, x) is steeper than u2(t, x).

2.2. Basic properties on the ω-limit set of û(·, ·).
In this subsection, we summarize some basic properties of ω-limit set, the definition
of ω-limit set is different from the standard notion of ω(u).

Definition 2.6. Let u(t, x) be a bounded solution of the (1.1). We say w(t, x) is
a member of the ω-limit set of û if it exists a sequences tj → ∞ and xj = kjL for
some integers kj such that

u(t+ tj , x+ xj)→ w(t, x), as j →∞. (2.2)

Proposition 2.7. By the standard parabolic estimates, we know that the conver-
gence conclusion above occurs in x ∈ C2 and t ∈ C1, so we can easily get that the
element w(t, x) of the ω-limit set is an entire solution of (1.1). In addition, We
have assume w(t, x) is an element of the ω-limit set, then we have

u(t+ tj , x)→ w(t, x).

Take t′ = t+ tj and we get

u(t′ + τj , x)→ w(t+ τ, x),

which implies w(t+ τ, x) is also an entire solution for τ ∈ R and x ∈ R.
Next we will introduce a lemma that will be used repeatedly in our article.

Lemma 2.8. Let w1(t, x) is an element of the ω-limit set of û(·, ·). In the sense of
Definition 1.3, w1(t, x) is steeper than any entire solution of (1.1), which the entire
solution is between 0 and p(x).

Proof. Take the sequences tj →∞ and xj ∈ R. By (2.2), we can get û(t+ tj , x+
xj) → w1(t, x) as j → +∞. By standard parabolic estimate, this convergence
holds in Cloc(R2). Take w(t, x) as an entire solution between 0 and p(x). We fix
x1 ∈ R, then û(0, x) ≥ w(t, x) for x < x1 and û(0, x) ≤ w(t, x) for x > x1. For
j ∈ N and τ ∈ R, we have

Z[û(0, ·)− w(τ − tj , ·)] = 1 and SGN [û(0, ·)− w(τ − tj , ·)] = [+−].
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From Lemma 2.4, we know for j ∈ N and t ≥ −tj ,

Z[û(t+ tj , ·)− w(τ + t, ·)] ≤ 1,

SGN [û(t+ tj , ·)− w(τ + t, ·)] / [+−].

Let j → +∞, we get

SGN [w1(t, ·)− w(τ + t, ·)] / [+−].

Finally, by Corollary 2.5, we proved that w1(t, x) is steeper than w(t, x).

2.3. Stability of solutions of (1.2) connected by stationary so-
lution.

In this subsection, we research the stability of p+(x) and p−(x) by giving a pulsating
traveling wave U(t, x) to connect them. We will introduce a lemma, and this lemma
is going to be important in the rest of the proof.

Lemma 2.9. Let p−(x) < p+(x) be two solutions of (1.2). We assume there is
a periodic pulsating traveling wave U(t, x) of (1.1) connecting p−(x) to p+(x) with
speed c ∈ R. Then the following statements hold.
(a) If c > 0, then p+(x) is stable from below and isolated from below;

(b) If c < 0, then p−(x) is stable from above and isolated from above;

(c) If c = 0, then p+(x) is stable from below and p−(x) is stable from above.

Proof. Let us consider situation (a). Use proof by contradiction, we assume that
p+(x) is unstable from below. Then here exists R > 0 sufficiently large such that
the following problem

ϕt = ϕxx + b(x)ϕx + f(x, ϕ), for x ∈ R,−R < t < R,

ϕ(t, x+ L) = ϕ(t, x), for x ∈ R,−R < t < R,

p−(x) < ϕ(t, x) < p+(x), for x ∈ R,−R < t < R,

ϕ(±R, x) = p+(x), for x ∈ R,

has an entire soiution ϕ(t, x) satisfying

∂tϕ(t, x) ≥ 0 for t ∈ [−R,R], x ∈ R.

Clearly, we can find an entire solution ϕ(t, x) satisfies above problem, we only
just show that ϕ(t, x) is nondecreasing with respect to time. We will more precisely
prove that for t ∈ [−R,R], ∂tϕ(t, x) does not change sign. To prove this statement,
we will argue by contradiction by assuming that for some given t0 ∈ [−R,R] there
exist x0 ∈ R and x1 ∈ R such that

∂tϕ(t0, x0) > 0 and ∂tϕ(t0, x1) < 0. (2.3)

Let x′ ∈ R be given. For any 0 < α < p(x′), let us define τ(x
′
, α) := min{t >

0|û(t, x
′
) = α)}. It is then clear that for any τ small enough, one has

Z[ϕ(t0 + τ, ·)− ϕ(t0, ·)] ≥ 1.
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Besides, recall that ϕ(t, x) is an ω-limit set of û, and so is ϕ(· + τ, ·) for any
τ in R. Therefore, they are steeper than each other, and it immediately follows
that ϕ(t0 + τ, ·) ≡ ϕ(t0, ·) for each τ small enough. Hence,

∂tϕ(t0, ·) ≡ 0,

a contradiction together with (2.3). This implies that for any t ∈ [−R,R], one has

SGN [∂tϕ(t, ·)] = [ ] or [+] or [−]. (2.4)

Let us denote Φ := ∂tϕ. It is an entire solution of the linear parabolic equation

∂tΦ = ∂xxΦ+ b(x)∂xΦ+ ∂uf(x, ϕ)Φ.

We infer from (2.4) and the strong maximum principle that either ∂tϕ < 0,
∂tϕ > 0 or ∂tϕ ≡ 0. Due to the definition of τ(x

′
, α), one has ∂tϕ(0, x

′
) ≥ 0. This

completes the proof of the monotonicity in time of ϕ(t, x).
In addition, the pulsating traveling wave U(t, x) satisfies

lim
t→−∞

U(t, x) = p−(x) and lim
t→+∞

U(t, x) = p+(x) locally uniformly in x ∈ R.
(2.5)

We know from the formula above that, at x = 0, there exists t0 ∈ R such that
U(t+ t0, 0) and ϕ(t, 0) intersects and we have

U(t+ t0, 0) ≤ ϕ(t, 0) for t ∈ [−R,R].

Besides, U(t+t0, x) < ϕ(t, x) for x ≥ 0, t = ±R. By the strong maximum principle,
we get

U(t+ t0, x) < ϕ(t, x) for x > 0, −R ≤ t ≤ R. (2.6)

If c = 0, due to U(t, x) is L-periodic in x and ϕ(t, x) is also L-periodic. There
esists β0 such that U(t0 + β0, L) = ϕ(β0, L), which is a contradiction with (2.6). In
c > 0, since

U(t+ kT, x) = U(t, x− ckT ) for k ∈ Z, (2.7)

it shows from (2.5) that U(t + kT, x) converges to p+(x) locally uniformly in t ∈
R and x ∈ R which contradicts (2.6). Since ϕ(0, ckT ) = ϕ(0, 0) < p+(0) for k ∈
Z. Thus p+(x) is stable from below if c ≥ 0. In c ≤ 0, we can prove the similar
conclusion that p−(x) is stable from above. Here we omit the details.

Next we show that p+(x) is isolated from below in c > 0. We use proof by
contradiction and assume p+(x) is accumulated from below. Then there exists
the sequence pj(x) of solutions of (1.2) such that pj(x) → p+(x) as j → ∞ and
pj(x) < p+(x) for j ∈ N. We can see that∫ L

0

∂uf(x, p+(x))dx = 0

and the following problem{
− ∂xxφλ + (2λ− b(x))∂xφλ − fu(x, p+(x)) = µ(λ)φλ, x ∈ R,
φλ > 0 and L− periodic.

(2.8)

has a unique positive solution φ ∈ C1(R).
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In order to find a contradiction, we will construct a super-solution of (1.1).
Consider the function v(t, x) defined by

v(t, x) := min

{
p+(x), e−λ(x−ct)φλ + pj

}
for t ∈ [−R,R], x ∈ R,

the value of c here is between zero and minimum speed and λ > 0 while φλ is a
solution of (2.8).

Clearly, there exists increasing map function t 7→ x(t) satisfies

v(t, x(t)) = p+(x(t)), ∀t ∈ [−R,R],

v(t, x) < p+(x), ∀t ∈ [−R,R] and ∀x > x(t).

Next we define

D := {(t, x)|x ≥ x(t)} ,

and straightforwardly compute the following formula:

∂tv − b(x)∂xv − ∂xxv − f(x, v)

=e−λ(x−ct)[(b(x)λ+ cλ− λ2)φλ + (2λ− b(x))∂xφλ − ∂xxφλ]

− ∂xxpj − f(x, pj + e−λ(x−ct)φλ)

=e−λ(x−ct)[(b(x)λ+ cλ− λ2)φλ + (2λ− b(x))∂xφλ − ∂xxφλ]

− ∂f
∂u

(x, pj)e
−λ(x−ct)φλ + o

(
min

{
p+ − pj , e−λ(x−ct)φλ

})
=e−λ(x−ct)[(b(x)λ+ cλ− λ2)φλ + (2λ− b(x))∂xφλ − ∂xxφλ]

− ∂f
∂u

(x, p∗)e
−λ(x−ct)φλ + o

(
min

{
p+ − pj , e−λ(x−ct)φλ

})
=e−λ(x−ct)(cλ+ b(x)λ− λ2 + µ(λ))φλ + o

(
min

{
p+ − pj , e−λ(x−ct)φλ

})
.

Due to µ(λ)φλ ≥ 0, we have

e−λ(x−ct)(cλ+ b(x)λ− λ2 + µ(λ))φλ + o
(

min
{
p+ − pj , e−λ(x−ct)φλ

})
≥e−λ(x−ct)(cλ+ b(x)λ− λ2)φλ + o

(
min

{
p+ − pj , e−λ(x−ct)φλ

})
.

In addition, since b(x) ≥ 0 and λ ≥ 0, we can fix b(x) is enough large such that
c+ b(x)− λ ≥ 0, which implies

e−λ(x−ct)(cλ+ b(x)λ− λ2)φλ + o
(

min
{
p+ − pj , e−λ(x−ct)φλ

})
≥ 0,

thus, v(t, x) is a super-solution of (1.1) over D.
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Let x
′
> 0 be a enough large real number satisfies

U(0, x+ x
′
) ≤ v(0, x), for x ≥ x(0).

Then by comparison principle, we have

U(t, x+ x
′
) ≤ v(t, x), for t ≥ 0, x ≥ x(t).

It shows that there exists some ε > 0 such that

U(t, x(t) + 2 + x
′
) ≤ v(t, x(t) + 2) ≤ p+(x)− ε for t ≥ 0. (2.9)

Combine (2.5) and (2.7), we obtain

U(kT, x(kT ) + 2 + x
′
) = U(0, x(kT )− ckT + 2 + x

′
)→ p+(0) as k →∞.

This contradicts the (2.9). Thus, p+(x) is isolated from below if c > 0. In c < 0,
we can conclude that p−(x) is isolated from above. The proof of Lemma 2.9 is
completed.

3. Existence of minimal terrace and convergence
with Heaviside type initial data

In this section, we will prove the existence of the minimal propagating terrace and
the convergence under a given initial data of Heaviside type. The Heaviside type
function here is a function u0(x) = p(0)H(a− x) for a ∈ R.

In subsection 3.1, we show that û(t, x) converges to a limit function around a
given level set. In addition, we show that this limit function is either a solution
of (1.1) or a periodic traveling wave solution of (1.1) connecting two steady-states.
Once we have the property about convergence, we can construct the minimal prop-
agating terrace and complete the proof of Theorem 1.8. We assume that there is a
decomposition between 0 and p(x) in order to ensure that the propagation of the
solution can be completed in finite steps (see subsection 3.2). In subsection 3.3, we
will prove the Theorem 1.9.

3.1. Convergence around a given level set.

Let û(t, x) be an entire solution of (1.1) with the initial date of the Heavside type.
Obviously, 0 ≤ û(t, x) ≤ p(x) for t ∈ R, x ∈ R and û(t, x) is nondecreasing in
t ∈ R, satisfies

lim
t→−∞

û(t, x) = 0 and lim
t→+∞

û(t, x) = p(x).

It is clear that for k ∈ N, there exists a unique mk ∈ R such that

û(kT,mk) = α, (3.1)

where α ∈ (0, p(0)) is a constant.

Lemma 3.1. For α ∈ (0, p(0)), take sequence (mk)k∈N by (3.1). We have

lim
k→∞

û(t+ kT, x+mk) := w∞(t, x;α). (3.2)
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The function w∞(t, x;α) is a positive entire solution of (1.1) and it is steeper than
any entire solution between 0 and p(x). In addition, it is either time heterogeneity
or time nondecreasing.

Proof. By standard parabolic estimates, the sequence û(t+ kT, x+mk)k∈N is
uniformly bounded. Then it is compactly supported on C(R2). There exists a
sequence of integer (kj)j∈N that makes kj →∞ as j →∞ and

û(t+ kTj , x+mkj )→ w∞(t, x;α) as j →∞ in C(R2).

Where w∞(t, x;α) is not only an entire solution of (1.1) but also a member of
the ω-limit set of û(t, x) and w∞(0, 0;α) = α. It is obvious that from the max-
imum principle that 0 < w∞(t, x;α) < p(x) for t ∈ R. By Lemma 2.8 we know
w∞(t, x;α) is steeper than any other entire solutions of (1.1) which between 0 and
p(x). This show that w∞(t, x;α) does not depend on the choice of (kj), so the
sequence û(t+ kT, x+mk) converges to w∞(t, x;α) as k →∞ in C(R2). Next we
will show w∞(t, x;α) is either time heterogeneity or time nondecreasing in t ∈ R.
For each k ∈ N, the function x 7→ û(t+ kT, x+mk) is nondecreasing. Let k →∞,
we have

∂xw∞(t, x;α) ≥ 0 for t ∈ R, x ∈ R.

Finally combine strong maximum principle to the equation satisfied by ∂xw∞(t, x;α),
we obtain either ∂xw∞(t, x;α)/≡0 or ∂xw∞(t, x;α) > 0 for t ∈ R, x ∈ R. Thus we
complete the Lemma 3.1 proof.

Lemma 3.2. There exists constants 0 < c∗ < c∗ <∞ that do not depend on a ∈ R,
such that

(i) for each c > c∗, lim
t→∞

supx≥ct û(t, x) = 0,

(ii) for each 0 < c < c∗, lim
t→∞

supx≤ct |û(t, x)− p(x)| = 0.

Proof. The proof of this Lemma 3.2 we refer to reference [9, Lemma 2.9], here we
omit the details.

Next we will define a sequence of (lk)k∈N:

lk :=

mk −mk−1, if k > 1,

m0, if k = 0,

where (mk)k∈N is given by (3.1) and mk =
∑k
j=0 lj . Due to û(kT,mk) = α ∈

(0, p(0)) for k ∈ N, then from Lemma 3.2, we have

c∗kT ≤ mk ≤ c∗kT for k ∈ N.

Finally,

c∗ ≤ lim
k→∞

inf

∑k
j=0 lj

kT
≤ lim
k→∞

sup

∑k
j=0 lj

kT
≤ c∗. (3.3)

Lemma 3.3. For given α ∈ (0, p(0)), let w∞(t, x;α) be the entire solution which is
defined by Lemma 3.1. Then either of the following is true

(i) w∞(t, x;α) is time heterogeneity, and it is a positive periodic stationary so-
lution,
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(ii) w∞(t, x;α) is nondecreasing in t ∈ R, and it is a pulsating traveling wave.

Proof. The proof will depend on the sequence (lk)k∈N. We divide this proof into
two parts.

Case (1). There exists a sequence (kj)j∈N such that lkj converging to l∞ as j →∞
for l∞ ∈ R. In case (1), combine (3.2), we have

w∞(t, x− l∞;α) = lim
j→∞

û(t+ kjT, x+mkj − lkj )

= lim
j→∞

û(t+ kjT, x+mkj−1)

= w∞(t+ T, x;α).

From Lemma 2.9 we know that w∞ is time heterogeneity or time nondecreasing. It
shows w∞ is a positive stationary solution when ∂xw∞ ≡ 0 and a pulsating traveling
wave if ∂xw∞ > 0. When ∂xw∞ > 0, c= l∞

T is the speed of w∞. Therefore, when
case (1) happens, (i) and (ii) both are holds.

Case (2). there is no subsequence of (lk)k∈N converging to a positive constant.
In the second case, we will show that only (i) happens. Since no sequence of

(lk)k∈N converges to a positive constant. By (3.3), we can find two subsequences
converge to 0 and ∞. First we consider the subsequence convergens to 0, this can
lead us to

w∞(t, x;α) = w∞(t, x− l∞;α), (3.4)

then w∞(t, x;α) is periodic in space variable for all time.
We know from (i) that we want to show that w∞(t, x;α) is stationary, let us use

proof by contradiction and assume w∞ is not stationary. By Lemma 3.1, one has
that

∂tw∞(0, x+ l∞;α) > 0.

Combine the convergence of û(t + mkT, x;α) to w∞ as k → ∞, there exists δ > 0
for any 0 ≤ t ≤ δ and k ∈ R such that

∂tû(t+mkT, x+ l∞;α) ≥ ∂tw∞(0, x+ l∞;α)

4
> 0.

Next, using (3.4), for any ε > 0, the following conclusion is holds for k large enough

û(mkT, x+ l∞;α) > α− ε.

Then we get

û(δ +mkT, x+ l∞;α) > α− ε+
∂tw∞(0, x+ l∞;α)

4
δ.

Since ε is small enough, we get that û(δ + kT, x+ l∞;α) > α, then

δ > mk+1 −mk.

In particular, we can obtain that (lk)k∈N is bounded, this contradicts our second
case which the existence of a sequence going to ∞. The proof of the Lemma 3.3 is
completed.
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3.2. Existence of a minimal terrace.

From the preparatory work we have done above, we are now ready to construct a
minimal propagating terrace. Before we construct the minimal propagating terrace,
here we give two claims.

Claim 3.4. Let U1(t, x) := w∞(t, x;α1) be a periodic pulsating traveling wave of
(1.1) which connects pk1(x) to p(x) for k1 ∈ {1, ..., N}.
Proof of Claim 3.4. Firstly, we prove that U1(t, x) is a periodic pulsating traveling
wave. Here we use proof by contradiction and assume it is not true. From the
previous Lemma 3.3 we know that w∞(t, x;α1) is time-heterogeneous and it is a
solution of (1.2) with w∞(0, 0;α1) = α1. Since p1(x) < w∞(t, x;α) < p(x) and let
V1(t, x) is a periodic pulsating traveling wave connecting p1(x) to p(x). It is clear
that V1(t, x) is steeper than w∞(t, x;α). This contradicts the statement of Lemma
2.8. Therefore, U1(t, x) is a periodic pulsating traveling wave.

Next we will prove that

lim
t→+∞

U1(t, x) = pk1(x) locally uniformly in t ∈ R.

Due to w∞(t, x;α1) is a periodic pulsating traveling wave, we define
lim

t→+∞
w∞(t, x;α1) := w∞(∞, x) and w∞(∞, x) is a solution of (1.2). We have

0 ≤ w∞(∞, x) ≤ p(x) for t ∈ R. (3.5)

In view of Definition 1.3 and Lemma 2.8, we know w∞(t, x;α1) is a steepest solution
of (1.1) which between 0 and p(x). We also get w∞(∞, x) is steeper than any other
entire solution between 0 and p(x). This shows that for any x ∈ R, w∞(∞, x) and
V1(t, x) can not intersect. Since w∞(∞, 0) > V1(t0, 0) = α1 for t0 ∈ R, then it
follows w∞(∞, x) > V1(t, 0) for t ∈ R. By comparison principle, we get

w∞(∞, x) ≥ V1(t, x) for t ∈ R, x ∈ R.

Since w∞(∞, x) is L-periodic with respect to the x variable and V1(t, x) con-
verges to p(x) as t→∞, we have w∞(∞, x) ≥ p(x) for x ∈ R. Apply the inequality
of (3.5), we immediately get w∞(∞, x) ≡ p(x). This implies that

lim
t→+∞

U1(t, x) = pk1(x) locally uniformly in t ∈ R.

In fact, we know from the above analysis that w∞(∞, x) is steeper than any other

entire solution of (1.1) between 0 and p(x). Otherwise, there exists k̃ ∈ {2, ..., N}
such that Vk̃(t, x) cross through w∞(∞, x), which is impossible. And that completes
the proof of Claim 3.4.

Claim 3.5. Assume that for ki ∈ {1, ..., N−1} and αi ∈ (pki(0), p(0)), the function

Ui(t, x) :≡ w∞(t, x;αi)

is a periodic pulsating traveling wave connecting pki(x) to pki−1(x) > pki(x). There
exists αi+1 ∈ (0, pki(0)) such that

Ui+1(t, x) :≡ w∞(t, x;αi+1)
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is a periodic pulsating traveling wave connecting pki+1(x) < pki(x) to pki(x).

Proof of Claim 3.5. This part of the proof is given in [9] in detail, therefore we
omit the details.

The above process ends at pki(x) ≡ 0. So this is actually a finite steps, which
means it is happening in a finite number of steps i = M for 1 ≤ M ≤ N . Then,
we can get a decreasing sequence of level sets (αi)1≤i≤M , a decreasing sequence of
solutions (pki)0≤i≤M and a sequence of (Ui)1≤i≤M . For each 1 ≤ i ≤ M , Ui(t, x)
is a periodic pulsating traveling wave connecting pki(x) to pki−1

(x) and satisfy
Ui(0, 0) = αi.

For 1 ≤ i ≤M , we let ci be the speed of Ui(t, x). We will prove that

z := ((pki)0≤i≤M , (Ui, ci)1≤i≤M )

is a propagating terrace. We use the sequence (mi,k)k∈N to define (3.1) with α
replaced by αi. The (3.3) clearly implies

ci = lim
k→∞

mi,k

kT
. (3.6)

Since αi+1 < αi for each 1 ≤ i ≤ M − 1 and û(t, x) is increasing in t. We have
αi+1,k < αi,k for k ∈ N. From (3.7), it implies that ci+1 < ci. Then the existence
of propagating terrace is completed. According to the above analysis, we see that
pki(x) and Ui(t, x) are steeper than any other entire solution between 0 and p(x),
which shows statement (ii) of Theorem 1.8 and the minimality of the propagating
terrace z. Lastly, the statement (i) of Theorem 1.8 from Lemma 2.9, we complete
the proof.

3.3. Convergence with Heaviside type initial data

In this section we are going to prove Theorem 1.9. It have proved the existence of
minimal propagating terrace in the previous section, we will show that at certain
initial data ( Heaviside type ) and it will attract all solutions of (1.1).

Proof of Theorem 1.9. Let z := ((pi)0≤i≤M , (Ui, ci)1≤i≤M ) be the minimal
propagating terrace connecting 0 and p(x). We know from the proof in the previous
part up to some time shift, it is the unique minimal terrace. Moreover, Theorem
1.8 shows that each pi(x) and Ui(t, x) is steeper than any other entire solution of
(1.1) between 0 and p(x). We take û(t, x) be a solution of the equation (1.1) with
an initial data of Heaviside type initial function. For each i ∈ {1, ...,M}, take the
sequence (mi,k)k∈N satisfy

û(kT,mi,k) = Ui(0, 0) for k ∈ N,

where (mi,k)k∈N converges to (mk)k∈N as i→∞.
We know that Ui(t, x) is the steepest entire solution between 0 and p(x), combine

Lemma 3.1 and Lemma 3.3 for t ≥ 0,

û(t+ kT, x+mi,k)→ Ui(t, x) as k →∞. (3.7)

Since

Ui(·, ·) = Ui(·+mT, ·+ cimT ) for m ∈ Z. (3.8)
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(3.7) shows that

û(t, x+mi,bt\Tc)− Ui(t, x+ cibt\T cT )→ 0 as t→∞, (3.9)

where bt/T c is the step function of t/T, the maximum integer is smaller than t/T.
For each i ∈ {1, ...,M}, let γi : [0,∞)→ R, t 7→ γi(t) be a function satisfying

γi(t) + cibt/T cT −mi,bt/Tc → 0 as t→∞. (3.10)

Next we go through each of the statements (i)-(ii) of Theorem 1.9.
From (3.7) and (3.8), we notice lim

k→∞
(mi,k+1 −mi,k) = ciT . This shows that

cibt/T cT −mi,bt/Tc

t
=
bt/T cT

(
ci −

mi,bt/Tc
bt/TcT

)
t

→ 0 as t→∞.

Then from (3.10), we get that γi(t)/t→ 0 as t→∞. Statement (i) is proved.
Finally, let us prove the convergence property of (ii). Since Ui(t, x) satisfies

lim
t→−∞

Ui(t, x+ cit) = pi−1(x) and lim
t→∞

Ui(t, x+ cit) = pi(x) in t ∈ R.

For any sufficiently small ε > 0, there exists N > 0 such that

Ui(t, cit+N) ≤ pi(x) +
ε

2
and Ui(t, cit−N) ≥ pi−1(x)− ε

2
for t ∈ R. (3.11)

By (3.9) and (3.10), we can find a T
′

large enough that for any t ≥ T ′ ,

|û− Ui(t, x− γi(t))| ≤
ε

2
for cit+ γi(t)−N ≤ x ≤ cit+ γi(t) +N. (3.12)

Together with (3.11) shows that

û(t, cit+ γi(t) +N) ≤ pi(x) + ε and û(t, cit+ γi(t)−N) ≥ pi−1(x)− ε for t≥T
′
.

Due to û(t, x) is increasing in t ∈ R, we can get for each i ∈ {2, ...,M},

− ε ≤ û(t, x)− pi−1(x) ≤ ε for ci−1t+ γi−1(t) +N ≤ x ≤ cit+ γi(t)−N, t ≥ T
′
,

(3.13)
and

0 < û(t, x) ≤ ε for x ≥ cM t+ γN (t) +N, t ≥ T
′
, (3.14)

and that

p(x)− ε ≤ û(t, x) ≤ p(x) for x ≤ c1t+ γ1(t)−N, t ≥ T
′
. (3.15)

Applying inequalities (3.12)-(3.15), we get that for t ≥ T ′ and x ∈ R,

∣∣∣û(t, x)−
( N∑
i=1

Ui(t, x− γi(t))−
N∑
i=1

pi(x)
)∣∣∣ ≤ Nε.

That gives the proof of statement (ii). Thus we complete the proof.
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