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TRANSMISSION DYNAMICS AND OPTIMAL
CONTROL OF AN AGE-STRUCTURED

TUBERCULOSIS MODEL∗

Zhong-Kai Guo1, Hai-Feng Huo1,† and Hong Xiang2

Abstract Tuberculosis (TB) is still a serious threat to global public health,
approximately 2 billion people worldwide are infected with TB. It is urgent
to develop an optimal control strategy for TB. In this study, we propose an
age-structured TB model taking into account vaccination, treatment, and re-
lapse. We define the basic reproduction number R0 of the proposed model.
Mathematical analyses show that the disease-free equilibrium state is globally
asymptotically stable if R0 < 1, and the endemic equilibrium state is globally
asymptotically stable if R0 > 1. We combined TB data in China between
2007 and 2020 and the Markov-chain Monte-Carlo method to obtain the pa-
rameters and initial values of the model. Through the partial rank correlation
coefficient method, we find the most sensitive parameters to R0. In light of
the actual controllability, the transmission coefficient of TB and the treatment
rate of the infectious population are chosen as controlled parameters to study
the least cost-deviation problem. By using Pontryagin’s maximum principle,
we obtain the necessary conditions for optimal control. We also perform nu-
merical simulations based on the forward-backward sweep method. Finally, we
present optimal strategies that may help China achieve the End Tuberculosis
Strategy by 2035 proposed by World Health Organization (WHO).

Keywords Tuberculosis, age structure, global stability, optimal control, nu-
merical simulation.
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1. Introduction

TB is an ancient and persistent chronic infectious disease caused by a bacterium
called Mycobacterium tuberculosis, the bacillus is spread from one person to another
through the air, it can attack any part of the body. Pulmonary TB can be infectious,
TB in other parts of the body is usually not infectious. Therefore, TB mentioned
in our study refers to pulmonary TB. Although about 2 billion people are infected
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with TB bacillus, only a relatively small proportion (5-10%) of them will show
symptoms of TB. As a result, we divide TB infection into two stages: latent TB
infection (noninfectious stage) and TB disease (infectious stage). In general, the
length of the latent period can range from weeks to several years. TB is a curable
and preventable communicable disease. According to the TB Report 2021 of the
World Health Organization, around 9.9 million new TB cases and about 1.5 million
deaths are estimated to occur in the world in 2020 [1, 5]. It shows that the TB
pandemic is one of the greatest challenges in the field of global public health. China
has the third-highest TB burden worldwide, and in 2021, there were an estimated
780,000 new TB cases and 32,000 TB-related deaths [5]. Therefore, it is imperative
to address the urgent issue of controlling the spread of tuberculosis in China.

Important means of preventing and controlling the spread of TB mainly include
vaccination of young children and treatment of TB disease. Trollfors et al. [35]
showed that the vaccine has a significant effect on latent TB infection, the estimate
of vaccine effectiveness was 59 %. Without treatment, the mortality rate from TB
disease is high. As a result, it is very important to treat people with TB disease,
about 85 % of people with TB disease can be successfully treated. Meanwhile,
treatment of latent TB infection is also essential to control the spread of TB because
it substantially reduces the risk that latent TB infection progress to TB disease [1,5].
In addition, the pathogenesis of TB is complex. Burman et al. [9] believed that there
was still the possibility of relapse after some TB patients were completely cured.

Theoretical analysis of mathematical models combined with numerical exper-
iments gives us a better understanding of the characteristics of epidemic disease
transmission and can help us find feasible and effective control strategies for some
diseases. White et al. [38] argued that researchers don’t fully understand the trans-
mission dynamics of TB, this can be seen from the differences in mathematical mod-
els of TB [10,12,17,22,25,27,32,33,40], various factors are considered in these mod-
els, such as relapse, vaccination, treatment, drug resistance, and so on. Differences
in these models in turn produce differences in the predicted impacts of interventions.
This attracted researchers to develop mathematical models that are more consistent
with the characteristics of TB transmission to gain insight into the transmission dy-
namics of TB. In 1962, Waaler et al. [37] established no-linear ordinary differential
equations dividing the population into three compartments: susceptible, exposed,
and infective. Based on the proposed model, they studied the spread of TB. In [40],
Zhang analyzed a four-dimensional in-host TB model and obtained the analytical
formula for the basic reproduction number and the threshold for forward and back-
ward bifurcations. In recent years, many researchers have begun to combine data
to characterize the spread of many real-world diseases [11,14,19,24,26,29,36]. Li et
al. [26] proposed an SVEITR model with vaccination, fast and slow progression, in-
complete treatment, and relapse to study TB control strategies based on case data
in the United States. They believed that TB prevention and control education,
timely treatment, and enhanced efficacy could effectively curb the spread of TB in
the United States. A large number of TB models are applied to understand the
dynamics of TB transmission, but there are few studies on infection cases and cost
optimization control by age-structured tuberculosis model. Iannelli and Milner [23]
believed that the age structure factor should be taken into account when modeling
chronic infectious diseases such as TB and AIDS. Therefore, in this study, we will
propose an age-structured TB transmission model with vaccination, relapse, and
treatment of latent TB infection and TB disease. Further, the model is applied to



1436 Z.-K. Guo, H.-F. Huo & H. Xiang

curb the spread of TB in China. Our objective is that the control cost is as low
as possible and the final size of new TB cases falls to the given target as much as
possible. Based on the findings of our study, we develop mitigation measures that
may help to achieve the WHO target, that is, the incidence of tuberculosis was
reduced to 10% or less by 2035 compared to 2015.

The rest of the paper is organized as follows. In the next section, we propose an
age-structured TB transmission model and discuss the fundamental properties of
the solution of the model. In Sections 3 and 4, we study the local and global stability
of steady states respectively. In Section 5, to find the significant parameters relative
to the basic reproductive number, we present numerical simulations and sensitivity
analysis. In Section 6, we study the least cost-deviation optimal control problem
and derive the necessary condition of optimal control. Then we perform numerical
simulations based on the forward-backward sweep method. A brief conclusion is
given in the last section.

2. The example of inserting a figure

The population at time t is divided into five distinct subclasses, including susceptible
class (S(t)), vaccinated class (V (t)), latent class (e(t, a)), infectious class (I(t)),
and recovered class (R(t)), the a in e(t, a) represents the latent age of the exposed
individuals, e(t, a) is the density of the latent class at time t with latent age a, then

the total number of latent individuals at time t is
∫ +∞

0
e(t, a)da. The flow among

these subclasses is visualized in the following flowchart (Figure 1).

Figure 1. Flowchart of the spread of TB.

According to the above flowchart (Figure 1), we construct the following TB
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transmission model:

dS(t)

dt
= Λ− βSI − µS − pS,

dV (t)

dt
= pS − ρβV I − µV,

∂e(t, a)

∂t
+
∂e(t, a)

∂a
= −(µ+ δ(a) + α(a))e(t, a),

dI(t)

dt
=

∫ +∞

0

α(a)e(t, a)da+ ωR− µII − γI,

dR(t)

dt
= γηI +

∫ +∞

0

δ(a)e(t, a)da− µR− ωR,

e(t, 0) = βSI + ρβV I,

e(0, a) = e0(a), S(0) = s0, V (0) = v0, I(0) = i0, R(0) = r0,

(2.1)

here e0(a) ∈ L1
+(0,+∞), and s0, v0, i0, r0 ∈ R+. We summarize the list of parame-

ters used in model (2.1) in Table 1.

Table 1. The meanings of parameters of the model (2.1).

Notations Definitions

Λ the recruitment number of the susceptible population per unit of time

µ the constant natural death rate of individuals in every compartment

β the contagion rate of tuberculosis

p the vaccination rate of the susceptible population

ρ the reduction coefficient of contagion rate

α(a) the rate distribution of latent individuals entering infectious subclass

δ(a) the rate distribution of latent individuals entering recovered subclass

γ the rate of treatment

µI the death rate of the infectious individuals

η the proportion of effective treatment

ω the relapse rate

To study the actual situation of TB transmission, some assumptions and nota-
tions are given:

(1) : µ, β, p, η, γ, ρ, µI , ω,Λ > 0;
(2) : δ(a), α(a) ∈ L∞+ (0,+∞), their essential upper bounds are δ̄ > 0 and ᾱ > 0,

respectively;
For a ≥ 0, we let

k(a) = e−
∫ a
0

(µ+δ(s)+α(s))ds, K1 =

∫ +∞

0

α(a)k(a)da, K2 =

∫ +∞

0

δ(a)k(a)da,

X = R2
+ × L1

+(0,+∞)× R2
+, its norm is

‖ (x1, x2, x3, x4, x5) ‖X =
∑

i=1,2,4,5

| xi | +
∫ +∞

0

| x3(s) | ds.
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Remark 2.1. (1) k(a) denotes the probability of still being noninfectious stage
at latent age a after becoming infected. K1 represents the number of infectious
individuals produced by an infected person. K2 represents the number of recovered
individuals produced by an infected person.

(2) L1
+(0,+∞) = {u is nonnegative and measurable in (0,+∞);

∫ +∞
0
| u(a) |

da < ∞}. L∞+ (0,+∞) = {u is nonnegative and measurable in (0,+∞); |u(a)| <
K a. e. in (0,+∞)}, where K is a constant. R+ = [0,+∞).

2.1. Well-posedness

Using a similar analysis of Subsection 2.2 in [19], we can show that the system (2.1)
has a unique nonnegative solution. The following proposition is immediate.

Proposition 2.1. For x0 ∈X , the system (2.1) has a unique continuous semi-flow
Ψ(t, x0) : R+ ×X → X , and Ψ(0, x0) = x0. In addition, the following set Υ is
positively invariant for system (2.1):

Υ = {x = (S(t), V (t), e(t, a), I(t), R(t)) ∈X : ‖ x ‖X≤
Λ

µ
}.

Using simple calculations, we arrive at the following proposition.

Proposition 2.2. (1) For system (2.1), the semi-flow Ψ(t, ·) is point dissipative
and Υ can attract all points in the set X ;

(2) If C ⊂X is bounded, then Ψ(t, C) is also bounded;
(3) For x0 ∈ X with ‖ x0 ‖X≤ r, S(t), V (t), I(t), R(t), ‖ e(t, ·) ‖L1

+
≤

max{r, Λ
µ }.

Proof. ‖ Ψ(t, x0) ‖Y = S(t)+V (t)+I(t)+R(t)+
∫ +∞

0
e(t, a)da, the time derivative

of ‖ Ψ(t, x0) ‖X is satisfied with the following differential inequality.

d

dt
‖ Ψ(t, x0) ‖X≤ Λ− µ ‖ Φ(t, x0) ‖X .

It follows from the comparison principle that

‖ Ψ(t, x0) ‖X≤
Λ

µ
− e−µt(Λ

µ
− ‖ x0 ‖X ), (2.2)

namely

‖ Ψ(t, x0) ‖X≤ max{
Λ

µ
, ‖ x0 ‖X }. (2.3)

From inequality (2.2), we know that conclusions (1) and (2) of Proposition 2.2 hold.
From inequality (2.3), we know that conclusion (3) of Proposition 2.2 holds.

2.2. Asymptotic smoothness

Along characteristic line t − a=const., we integrate the third equation of system
(2.1), and derive that

e(t, a) =


e0(a− t) k(a)

k(a− t)
, 0 ≤ t < a,

e(t− a, 0)k(a), 0 ≤ a ≤ t.
(2.4)
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The following lemmas [34] will be used to prove that the semi-flow {Ψ(t, ·)}t≥0 is
asymptotically smooth.

Lemma 2.1. For any bounded closed set B ⊂ X that satisfies Ψ(t,B) ⊂ B,
when the following two conditions hold, the semi-flow Ψ(t, x) = K1(t, x)+K2(t, x) :
R+ ×X →X is asymptotically smooth.

(1) lim
t→+∞

diamK2(t,B) = 0;

(2) for some tB ≥ 0, K1(t,B) has compact closure for each t ≥ tB.

For space L1
+(0,+∞), the precompactness cannot be deduced from bounded-

ness. Thus, we need to use the following lemma to deduce the precompactness of
L1

+(0,+∞):

Lemma 2.2. For bounded set A ⊂ L1
+(0,+∞), if the following four conditions

hold, then A is compact closure.
(1) sup

g∈A

∫ +∞
0
| g(s) | ds < +∞;

(2) lim
θ→+∞

∫ +∞
θ
| g(s) | ds = 0 uniformly in g ∈ A ;

(3) lim
θ→0+

∫ +∞
0
| g(s+ θ)− g(s) | ds = 0 uniformly in g ∈ A ;

(4) lim
θ→0+

∫ θ
0
| g(s) | ds = 0 uniformly in g ∈ A .

According to the above two lemmas, we can arrive at the following theorem:

Theorem 2.1. The continuous semi-flow {Ψ(t, ·)}t≥0 generated by model (2.1) is
asymptotically smooth.

Proof. Define the following two semi-flows:

K1(t, x) = (S(t), V (t), ẽ(t, ·), I(t), R(t)), K2(t, x) = (0, 0, φe(t, ·), 0, 0),

where

φe(t, a) =


e0(a− t) k(a)

k(a− t)
, 0 ≤ t < a,

0, 0 ≤ a ≤ t,
ẽ(t, a) =

0, 0 ≤ t < a,

e(t− a, 0)k(a), 0 ≤ a ≤ t,

for x = (S(0), V (0), e0(a), I(0), R(0)) ∈ X , we can state Ψ(t, x) = K1(t, x) +
K2(t, x).

Let B ⊂X be bounded, that is, there exists a positive number c ≥ Λ
µ such that

‖ x ‖X≤ c for each x ∈ B, then we have

‖ K2(t, x) ‖X =

∫ +∞

t

e0(θ − t) k(θ)

k(θ − t)
dθ

=

∫ +∞

0

e0(u)
k(u+ t)

k(u)
du

=

∫ +∞

0

e0(u)e−
∫ u+t
u

(µ+α(l)+δ(l))dldu

≤ e−µt ‖ x ‖X≤ ce−µt.

Thus, lim
t→+∞

diam K2(t,B) = 0. Next, we will discuss that K1(t,B) is compact

closure for each t ≥ 0.
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It follows from Proposition 2.2 that S(t), V (t), I(t), R(t) remain in the compact
set [0, c] for each t ≥ 0. In the following part, we will try to prove that ẽ(t, a) remain
in a precompact subset of L1

+(0,+∞) which is not dependent on x. It follows from

0 ≤ ẽ(t, a) =

0, 0 ≤ t < a,

e(t− a, 0)k(a), 0 ≤ a ≤ t,

and system (2.1) that
0 ≤ ẽ(t, a) ≤ β(1 + ρ)c2e−µa.

Consequently, conditions (1),(2) and (4) of Lemma 2.2 hold. Now, we need to show

lim
θ→0+

∫ +∞

0

| ẽ(t, a+ θ)− ẽ(t, a) | da = 0,∫ +∞

0

| ẽ(t, a+ θ)− ẽ(t, a) | da

=

∫ t−θ

0

| ẽ(t, a+ θ)− ẽ(t, a) | da+

∫ t

t−θ
| ẽ(t, a) | da

=

∫ t−θ

0

| e(t− a− θ, 0)k(a+ θ)− e(t− a, 0)k(a) | da+

∫ t

t−θ
| e(t− a, 0)k(a) | da

≤
∫ t−θ

0

| e(t− a− θ, 0) || k(a+ θ)− k(a) | da

+

∫ t−θ

0

| e(t− a− θ, 0) | e(t− a− θ, 0)− e(t− a, 0) || k(a) | da

+ β(1 + ρ)c2θ,

where ∫ t−θ

0

| e(t− a− θ, 0) || k(a+ θ)− k(a) | da

≤β(1 + ρ)c2(

∫ t−θ

0

k(a)− k(a+ θ)da)

=β(1 + ρ)c2(

∫ t−θ

0

k(a)da−
∫ t

θ

k(s)ds)

=β(1 + ρ)c2(

∫ θ

0

k(a)da−
∫ t

t−θ
k(s)ds)

≤β(1 + ρ)c2θ.

Notice that

| dS(t)

dt
|≤ Λ + βc2 + (µ+ p)c, | dV (t)

dt
|≤ (p+ µ)c+ ρβc2,

| dI(t)

dt
|≤ (ᾱ+ µI + ω + γ)c,

then

| e(t− a− θ, 0)− e(t− a, 0) |
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≤β | S(t− a− θ)I(t− a− θ)− S(t− a)I(t− a) |
+ βρ | V (t− a− θ)I(t− a− θ)− V (t− a)I(t− a) |

=β(| S(t− a− θ) || I(t− a− θ)− I(t− a) |
+ | I(t− a) || S(t− a− θ)− S(t− a) |)
+ βρ(| V (t− a− θ) || I(t− a− θ)− I(t− a) |
+ | I(t− a) || V (t− a− θ)− V (t− a) |)
≤Ξθ,

where

Ξ = (β + βρ)c(ᾱ+ µI + ω + γ)c+ βc(Λ + βc2 + (µ+ p)c) + βρc((p+ µ)c+ ρβc2).

Then ∫ t−θ

0

| e(t− a− θ, 0)− e(t− a, 0) || k(a) | da ≤ Ξθ

∫ t−θ

0

e−µsds ≤ Ξ

µ
θ.

Hence, ∫ +∞

0

| ẽ(t, a+ θ)− ẽ(t, a) | da ≤ (2β(1 + ρ)c2 +
Ξ

µ
)θ,

which means that condition (3) of Lemma 2.2 holds, then we can state that ẽ(t, a)
satisfies all conditions of Lemma 2.2 . As a consequence, we know that K1(t,B)
has compact closure for all t ≥ 0. It follows from Lemma 2.1 that the continuous
semi-flow {Ψ(t, ·)}t≥0 is asymptotically smooth.

By using Proposition 2.2, Theorem 2.1, and Theorem 2.6 in [30], we have the
following theorem.

Theorem 2.2. For the continuous semi-flow {Ψ(t, ·)}t≥0, there exists a global at-
tractor B in X that can attract any bounded set in X .

3. Equilibrium states and their local stability

3.1. Existence of equilibrium states

The dynamic system characterized by (2.1) has a disease-free equilibrium state

E0 = (S0, V 0, 0L1(0,+∞), 0, 0), where S0 = Λ
µ+p , V

0 = pS0

µ . Define the mathematical
expression of the basic reproduction number by

R0 =
γηω + (βS0 + ρβV 0)(K1(µ+ ω) + K2ω)

(µI + γ)(µ+ ω)
. (3.1)

R0 measures the expected number of secondary infectious individuals that a primary
infectious individual may produce during the entire infection period in a completely
susceptible population. Ref. [16] provides a detailed derivation of R0.

The endemic equilibrium state (S∗, V ∗, e∗(a), I∗, R∗) of system (2.1) should sat-
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isfy the following equations:

Λ− βS∗I∗ − µS∗ − pS∗ = 0,

pS∗ − βρV ∗I∗ − µV ∗ = 0,

de∗(a)

da
= −(µ+ δ(a) + α(a))e∗(a),

e∗(0) = βS∗I∗ + ρβV ∗I∗,

e∗(0)K1 − µII∗ − γI∗ + ωR∗ = 0,

γηI∗ + e∗(0)K2 − (µ+ ω)R∗ = 0.

(3.2)

By doing a simple calculation, we find that I∗ is the root of the following equation

g(I∗) = 1, where g(I∗) =
γηω + (βS∗ + ρβV ∗)(K1(µ+ ω) + K2ω)

(µI + γ)(µ+ ω)
.

In this equation, S∗ = Λ
βI∗+µ+p , V

∗ = pΛ
(βI∗+µ+p)(βρI∗+µ) and e∗(a) = e∗(0)k(a).

Clearly, we have g(0) = R0 and g(+∞) = γωη
(µ+ω)(µI+γ) < η ≤ 1, and it is not

difficult to find g′(I∗) < 0. Hence, g(I∗) = 1 has only a positive real root if
R0 > 1, namely, if R0 > 1, system (2.1) has only a endemic equilibrium state
E∗ = (S∗, V ∗, e∗(a), I∗, R∗). For the system (2.1), we arrive at the following result.

Theorem 3.1. The disease-free equilibrium state E0 of the system (2.1) is always
feasible. In addition, the endemic equilibrium state E∗ of the system (2.1) is also
feasible if R0 > 1.

3.2. Local stability of the equilibria

At equilibrium state Ẽ = (S̃, Ṽ , ẽ(a), Ĩ, R̃), the linearized system of system (2.1)
can be written as the following equations:

ds(t)

dt
= −βS̃i(t)− βĨs(t)− µs(t)− ps(t),

dv(t)

dt
= ps(t)− βρṼ i(t)− ρβĨv(t)− µv(t),

∂e(t, a)

∂t
+
∂e(t, a)

∂a
= −(µ+ δ(a) + α(a))e(t, a),

di(t)

dt
=

∫ +∞

0

α(a)e(t, a)da− (µI + γ)i(t) + ωr(t),

dr(t)

dt
= γηi(t) +

∫ +∞

0

δ(a)e(t, a)da− (µ+ ω)r(t),

e(t, 0) = βS̃i(t) + βĨs(t) + βρṼ i(t) + βρĨv(t),

(3.3)

where s(t) = S(t)−S̃, v = V (t)−Ṽ , e(t, a) = e(t, a)−ẽ(a), i(t) = I(t)−Ĩ , , r(t) =

R(t)− R̃.
Let

k1(λ) =

∫ +∞

0

α(a)e−
∫ a
0

(λ+µ+α(s)+δ(s))dsda,

k2(λ) =

∫ +∞

0

δ(a)e−
∫ a
0

(λ+µ+α(s)+δ(s))dsda.
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In system (3.3), we set s(t) = S0e
λt, v(t) = V0e

λt, e(t, a) = e0(a)eλt, i(t) =
I0e

λt, r(t) = R0e
λt and derive the following equations:

λS0 = −βS̃I0 − βĨS0 − (µ+ p)S0,

λV0 = pS0 − βρṼ I0 − βρĨV0 − µV0,

ė0(a) = −(λ+ µ+ δ(a) + α(a))e0(a),

(λ+ µI + γ)I0 =

∫ +∞

0

α(a)e0(a)da+ ωR0,

(λ+ µ+ ω)R0 = γηI0 +

∫ +∞

0

δ(a)e0(a)da,

e0(0) = βS̃I0 + βĨS0 + βρṼ I0 + βρĨV0.

(3.4)

By solving the system (3.4), we have

S0 =
−βS̃I0

λ+ βĨ + µ+ p
, V0 =

pS0 − ρβṼ I0
λ+ µ+ ρβĨ

, R0 =
γηI0 + e0(0)k2(λ)

λ+ µ+ ω
,

e0(0) =
λ+ µI + γ − ωγη

λ+µ+ω

k1(λ) + ωk2(λ)
λ+µ+ω

I0.

Combined the above expressions with the last equation of system (3.4), we get the
following equation

β(S̃ + Ĩ
−βS̃

λ+ Ĩ + µ+ p
+ ρṼ + ρĨ

−pβS̃
(λ+βĨ+µ+p)

− ρβṼ

λ+ µ+ ρβĨ
)I0 =

(λ+ µI + γ)− ωγη
λ+µ+ω

k1(λ) + ωk2(λ)
λ+µ+ω

I0.

The implies that, at equilibrium state Ẽ, the characteristic equation of system (3.3)
can be written in the following form:

f(λ) = 1,

where

f(λ) =
A+B

(λ+ βĨ + µ+ p)(λ+ βρĨ + µ)(λ+ µ+ ω)(λ+ µI + γ)
,

A = (λ+ µ)[βS̃(λ+ βρĨ + µ+ p) + βρṼ (λ+ βĨ + µ+ p)]

× [(λ+ µ+ ω)k1(λ) + ωk2(λ)],

B = ωγη(λ+ βĨ + µ+ p)(λ+ βρĨ + µ).

Next, we will give the local stability results of the equilibria. Rigorous proof of
local stability require more thorough spectral analysis, which be referred to in [28].
[28] formulated an age-structured model as an abstract non-densely defined Cauchy
problem, and Lemma 3.4 in [28] shows that point spectrum and spectrum are equal.
Thus, the growth rate of solutions is given by the point spectrum, so we only need
to study the eigenvalues of the characteristic equation of system (2.1).

Theorem 3.2. (i) The disease-free equilibrium state E0 is locally asymptotically
stable (unstable) for R0 < 1 (for R0 > 1).

(ii) If the endemic equilibrium state E∗ exists, then it is locally asymptotically
stable.
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Proof. First, let us prove the local stability of the equilibrium state E0.

f(λ) =
[β Λ
µ+p + βρ pµ

Λ
µ+p ][(λ+ µ+ ω)k1(λ) + ωk2(λ)] + ωγη

(λ+ µ+ ω)(λ+ µI + γ)
.

It is easy to find f ′(λ) < 0, f(0) = R0 and lim
λ→+∞

f(λ) = 0. Hence, for R0 > 1,

the equation f(λ) = 1 exists positive real root. In other words, for R0 > 1, the
equilibrium state E0 is unstable.

For R0 < 1, if λ0 = a0 + ib0 is a root of f(λ) = 1 with a0 ≥ 0. However

| f(a0 + ib0) |≤ R0 < 1.

As a consequence, for R0 < 1, the real parts of all the eigenvalues of f(λ) = 1 are
negative. That is, E0 is locally asymptotically stable for R0 < 1.

Now, we are going to prove the endemic equilibrium state E∗ is locally asymp-
totically stable.

f(λ) =
C

(λ+ βI∗ + µ+ p)(λ+ βρI∗ + µ)(λ+ µ+ ω)(λ+ µI + γ)

+
ωγη

(λ+ µ+ ω)(λ+ µI + γ)
,

where

C = (λ+µ)[βS∗(λ+βρI∗+µ+p)+βρV ∗(λ+βI∗+µ+p)][(λ+µ+ω)k1(λ)+ωk2(λ)].

The equilibrium state E∗ exists when R0 > 1, if λ∗ = a∗+ ib∗ is a root of f(λ) = 1
with a∗ ≥ 0. By calculating the characteristic equation f(λ) = 1, we have

| f(a∗ + ib∗) |< g(I∗) = 1.

From this, we might conclude that the real parts of all the eigenvalues of f(λ) = 1
are negative if R0 > 1. That is, E∗ is locally asymptotically stable for R0 > 1.

4. Uniform persistence and global stability

4.1. Uniform persistence

In this section of the paper, we are going to analyze the uniform persistence of the
system (2.1). Let us define

Γ ={(x1, x2, x3, x4, x5) ∈X |∃ t1, t2 ∈ R+ :

∫ +∞

0

α(a+ t1)x3(a)da

+

∫ +∞

0

δ(a+ t2)x3(a)da+ x4 + x5 > 0},

and ∂Γ = X \ Γ. We know X = Γ ∪ ∂Γ.

Theorem 4.1. For semi-flow Ψ(t, ·), Γ and ∂Γ are both positively invariant sets.
In addition, on set ∂Γ, the equilibrium state E0 is globally asymptotically stable.
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Proof. Let Ψ(0, x0) ∈ Γ, if I(0) > 0 or R(0) > 0, based on the system (2.1), it is
easy to verify that I(t) > I(0)e−(γ+µI)t > 0 or R(t) > R(0)e−(ω+µ)t > 0, then Γ is
positively invariant set of the semi-flow Ψ(t, ·). If I(0) = 0 and R(0) = 0, without

loss of generality, we assume ∃ t1 ∈ R+ such that
∫ +∞

0
α(a+ t1)e(0, a)da > 0, then

∀t ∈ [0, t1], s = t1 − t ≥ 0 such that∫ +∞

0

α(a+ s)e(t, a)da ≥
∫ +∞

t

α(a+ s)e(t, a)da

=

∫ +∞

0

α(a+ t+ s)e(t, a+ t)da

=

∫ +∞

0

α(a+ t1)e(0, a)
k(a+ t)

k(a)
da

≥ e−(µ+ᾱ+δ̄)t

∫ +∞

0

α(a+ t1)e(0, a)da

> 0.

(4.1)

If ∃ t2 ∈ (0, t1] such that I(t2) > 0, then I(t) > 0 for ∀t > t2. Otherwise, according
to (4.1), we have

dI(t1)

dt
≥

∫ +∞

0

α(a)e(t1, a)da > 0,

then I(t) > 0 for ∀t > t1. It means that Ψ(t,Γ) ⊂ Γ for all t ≥ 0. That is to say, Γ
is positively invariant set of the semi-flow Ψ(t, ·).

Let Ψ(0, x0) ∈ ∂Γ, we construct the following model

∂e(t, a)

∂t
+
∂e(t, a)

∂a
= −(µ+ δ(a) + α(a))e(t, a),

dI(t)

dt
=

∫ +∞

0

α(a)e(t, a)da+ ωR− (γ + µI)I(t),

dR(t)

dt
=

∫ +∞

0

δ(a)e(t, a)da+ γηI(t)− (µ+ ω)R(t),

e(t, 0) = βSI + βρV I,

e(0, a) = e0(a), I(0) = 0, R(0) = 0.

(4.2)

Since S(t), V (t) ≤ C, where C = max{‖ x0 ‖X ,
Λ

µ
}, it is easy to verify that

I(t) ≤ Î(t), R(t) ≤ T̂ (t), ‖ e(t, s) ‖L1
+
≤‖ ê(t, s) ‖L1

+
, (4.3)

where 

∂ê(t, a)

∂t
+
∂ê(t, a)

∂a
= −(µ+ δ(a) + α(a))ê(t, a),

dÎ(t)

dt
=

∫ +∞

0

α(a)ê(t, a)da+ ωR̂− (γ + µI)Î(t),

dR̂(t)

dt
=

∫ +∞

0

δ(a)ê(t, a)da+ γηÎ(t)− (µ+ ω)R̂(t),

ê(t, 0) = C(βÎ + βρÎ),

ê(0, a) = e0(a), Î(0) = 0, R̂(0) = 0.

(4.4)



1446 Z.-K. Guo, H.-F. Huo & H. Xiang

Similar to the formulation (2.4), we derive

ê(t, a) =


e0(a− t) k(a)

k(a− t)
, 0 ≤ t < a,

ê(t− a, 0)k(a), 0 ≤ a ≤ t.
(4.5)

We substitute (4.5) into the second and third equations of (4.4) and obtain the
following equations

dÎ(t)

dt
=

∫ t

0

α(a)ê(t− a, 0)k(a)da+G1(t) + ωR̂− (γ + µI)Î(t),

dR̂(t)

dt
= γηÎ(t) +

∫ t

0

δ(a)ê(t− a, 0)k(a)da+G2(t)− (µ+ ω)R̂(t),

Î(0) = 0, R̂(0) = 0,

(4.6)

where

G1(t) =

∫ +∞

t

α(a)e0(a− t) k(a)

k(a− t)
da, G2(t) =

∫ +∞

t

δ(a)e0(a− t) k(a)

k(a− t)
da.

Since

G1(t) ≤
∫ +∞

t

α(a)e0(a− t)da =

∫ +∞

0

α(a+ t)e0(a)da,

G2(t) ≤
∫ +∞

t

δ(a)e0(a− t)da =

∫ +∞

0

δ(a+ t)e0(a)da.

Based on Ψ(0, x0) ∈ ∂Γ, we know G1(t), G2(t) ≡ 0 for t ≥ 0, then the system (4.6)
can be rewritten in the following equations:

dÎ(t)

dt
=

∫ t

0

α(a)k(a)C(β + βρ)Î(t− a)da+ ωR̂− (γ + µI)Î(t),

dR̂(t)

dt
= γηÎ(t) +

∫ t

0

δ(a)k(a)C(β + βρ)Î(t− a)da− (µ+ ω)R̂(t),

Î(0) = 0, R̂(0) = 0.

It is easy to conclude that the system (4.6) exists a unique solution Î(t) ≡ 0, R̂(t) ≡ 0
for t ≥ 0. Depending on (4.4),(4.5), we know that ê(t, s) = 0 for 0 ≤ s ≤ t, thus,

‖ α(a+ u)ê(t, a) ‖L1
+

=

∫ +∞

t

α(a+ u)e0(a− t) k(a)

k(a− t)
da

≤‖ α(t+ u+ s)e0(s) ‖L1
+

= 0,

‖ δ(a+ u)ê(t, a) ‖L1
+

=

∫ +∞

t

δ(a+ u)e0(a− t) k(a)

k(a− t)
da

≤‖ δ(t+ u+ s)e0(s) ‖L1
+

= 0.

According to (4.3), we can conclude that I(t) = 0, R(t) = 0,

‖ α(a+ t1)e(t, a) ‖L1
+

= 0, ‖ δ(a+ t2)e(t, a) ‖L1
+

= 0, for all t, t1, t2 ≥ 0.
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Thus, ∂Γ is positively invariant set of the semi-flow Ψ(t, ·).
On set ∂Γ, system (2.1) reduces to the following system:

dS(t)

dt
= Λ− µS(t)− pS,

dV (t)

dt
= pS − µV (t).

(4.7)

We can easily find that lim
t→+∞

S(t) = Λ
µ+p and lim

t→+∞
(S(t) + V (t)) = Λ

µ . Hence,

lim
t→+∞

V (t) = Λp
µ(µ+p) . In other words, on set ∂Γ, the equilibrium state E0 is globally

asymptotically stable.

Theorem 4.2. the semi-flow {Ψ(t, ·)}t≥0 is uniformly persistent with respect to
(Γ, ∂Γ) when R0 > 1. Apart from this, there is a global attractor B0 ⊂ Γ for
{Ψ(t, ·)}t≥0.

Proof. Theorem 4 has proved that 4.1 that E0 is globally stable on set ∂Γ. It
follows from Theorem 4.2 in [21] that we need only to verify

ωs(E0) ∩ Γ = ∅,

where ωs(E0) = {x ∈ X | lim
t→+∞

Ψ(t, x) = E0}. Assume that there is a x0 ∈
Γ ∩ ωs(E0), then there exists a sequence {xn} ⊂ Γ such that

‖ Ψ(t, xn)− E0 ‖X <
1

n
, t ≥ 0.

Let us define Ψ(t, xn) = (Sn(t), Vn(t), en(t, ·), In(t), Rn(t)). Then

Λ

µ+ p
− 1

n
< Sn(t) <

Λ

µ+ p
+

1

n
,

Λp

µ(µ+ p)
− 1

n
< Vn(t) <

Λp

µ(µ+ p)
+

1

n
,

and Ψ(t, xn) ⊂ Γ, for all t ≥ 0. Similar to the analysis that Γ is positively invariant
set in Theorem 4.1, we know that there exists t0 ≥ 0 such that I(t) > 0 or R(t) > 0
for all t ≥ t0, we may as well let t0 = 0 and I(0) > 0. If n is sufficiently large, we
can assume that Λ

µ+p >
1
n , Λp

µ(µ+p) >
1
n and

f(n) =
γηω + (β(S0 − 1

n ) + ρβ(V 0 − 1
n ))(K1(µ+ ω) + K2ω)

(µI + γ)(µ+ ω)
> 1 (4.8)

when R0 > 1.
Next, we build the following system

∂ê(t, a)

∂t
+
∂ê(t, a)

∂a
= −(µ+ δ(a) + α(a))ê(t, a),

dÎ(t)

dt
=

∫ +∞

0

α(a)ê(t, a)da+ ωR̂− (γ + µI)Î(t),

dR̂(t)

dt
=

∫ +∞

0

δ(a)ê(t, a)da+ γηÎ(t)− (µ+ ω)R̂(t),

ê(t, 0) = (β(
Λ

µ+ p
− 1

n
) + βρ(

Λp

µ(µ+ p)
− 1

n
))Î ,

ê(0, a) = e0(a), Î(0) = i0, R̂(0) = r0.

(4.9)
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Similar to the analysis in Subsection 2.2, we know that the system (4.9) has a unique
nonnegative solution. It follows from the comparison principle that

I(t) ≥ Î(t), R(t) ≥ R̂(t), e(t, s) ≥ ê(t, s). (4.10)

Similar to the formulation (2.4), we can obtian

ê(t, θ) =


e0(a− t) k(a)

k(a− t)
, 0 ≤ t < a,

ê(t− a, 0)k(a), 0 ≤ a ≤ t.
(4.11)

We substitute (4.11) into the second and third equations of (4.9) and obtain the
following inequations

dÎ(t)

dt
≥

∫ t

0

α(a)k(a)(β(
Λ

µ+ p
− 1

n
) + βρ(

Λp

µ(µ+ p)
− 1

n
))Î(t− a)da

− (µI + γ)Î(t) + ωR̂(t),

dR̂(t)

dt
≥ γηÎ(t) +

∫ t

0

δ(a)k(a)(β(
Λ

µ+ p
− 1

n
) + βρ(

Λp

µ(µ+ p)
− 1

n
))Î(t− a)da

− (µ+ ω)R̂(t),

Î(0) = i0, R̂(0) = r0.
(4.12)

If Î(t) and R̂(t) are bounded, we take the Laplace transform of both sides of (4.12)
and obtain the following inequations{

− Î(0) + λL[Î](λ) ≥ L[u1](λ)L[Î](λ)− (γ + µI)L[Î](λ) + ωL[R̂](λ),

− R̂(0) + λL[R̂](λ) ≥ γηL[Î](λ) + L[u2](λ)L[Î](λ)− (µ+ ω)L[R̂](λ),
(4.13)

where

L[Î](λ) =

∫ +∞

0

e−λtÎ(t)dt, L[R̂](λ) =

∫ +∞

0

e−λtR̂(t)dt,

L[u1](λ) =

∫ ∞
0

α(a)k(a)(β(
Λ

µ+ p
− 1

n
) + βρ(

Λp

µ(µ+ p)
− 1

n
))e−λada,

L[u2](λ) =

∫ ∞
0

δ(a)k(a)(β(
Λ

µ+ p
− 1

n
) + βρ(

Λp

µ(µ+ p)
− 1

n
))e−λada.

From inequations (4.13), we can derive

(λ+ µ+ ω)(λ+ µI + γ)

ω
[1− ωγη + ωL[u2](λ) + L[u1](λ)(λ+ µ+ ω)

(λ+ µ+ ω)(λ+ µI + γ)
]L[Î](λ)

≥R̂(0) +
λ+ µ+ ω

ω
Î(0) > 0.

(4.14)
Applying the Dominated Convergence Theorem, we know L[ui](λ)→ L[ui](0), (i =
1, 2) as λ→ 0. Since

(λ+ µ+ ω)(λ+ µI + γ)

ω
[1− ωγη + ωL[u2](λ) + L[u1](λ)(λ+ µ+ ω)

(λ+ µ+ ω)(λ+ µI + γ)
] |λ=0
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=
(µ+ ω)(µI + γ)

ω
(1− f(n)) < 0,

which means that there exists a positive number ε such that

(λ+ µ+ ω)(λ+ µI + γ)

ω
[1− ωγη + ωL[u2](λ) + L[u1](λ)(λ+ µ+ ω)

(λ+ µ+ ω)(λ+ µI + γ)
] < 0,

for each λ ∈ [0, ε). It follows from (4.14) that L[Î](λ) < 0 for each λ ∈ (0, ε). But
there is a contradiction with the nonnegative of Î(t)(t ≥ 0). that is to say, Î(t)
and R̂(t) cannot both be bounded. It follows from I(t) ≥ Î(t) and R(t) ≥ R̂(t)
that I(t), R(t) cannot both be bounded. It is a contradiction with Proposition 2.2.
Thus, ωs(E0) ∩ Γ = ∅ holds. With Theorem 4.2 [21], it is easy to show that semi-
flow {Ψ(t, ·)}t≥0 of system (2.1) is uniformly persistent. With Theorem 3.7 [30], we
know that there is a global attractor B0 ⊂ Γ for {Ψ(t, ·)}t≥0.

4.2. Global stability

Theorem 4.3. For system (2.1), if R0 < 1, the disease-free equilibrium state E0

is globally asymptotically stable.

Proof. Let us define h(x) = x−lnx−1. It is easy to conclude that h(x) achieves a
global minimum at x = 1 and h(1) = 0. Thus h(x) > 0 for all x > 0 and x 6= 1. By
following the same reasoning as Lemma 4.2 [8], we can verify that any solution of
system (2.1) on B is satisfied that S(t), V (t) > 0 for any t ∈ R. Next, we define the
Lyapunov function W = W0 +W1 +W2 +W3 on B, It follows from the compactness
of B that W is bounded on B, where

W0 = (K1 +
ω

µ+ ω
K2)S0h(

S

S0
), S0 =

Λ

µ+ p
, W2 = I, W3 =

ω

µ+ ω
R,

W1 =

∫ +∞

0

F (a)e(t, a)da, F (a) =

∫ +∞

a

(α(u) +
ω

µ+ ω
δ(u))e−

∫ u
a

(µ+α(s)+δ(s))dsdu.

The derivatives of W0, W1, W2, W3 along solutions of system (2.1) are calculated
as

Ẇ0 = (K1 +
ω

µ+ ω
K2)(−(µ+ p)

(S − S0)2

S
− β(S − S0)I),

Ẇ1 = −
∫ +∞

0

F (a)((µ+ α(a) + δ(a))e(t, a) +
∂e

∂a
)da

= F (0)e(t, 0)−
∫ +∞

0

(α(a) +
ω

µ+ ω
δ(a))e(t, a)da

= (K1 +
ω

µ+ ω
K2)(βSI + ρβV I)−

∫ +∞

0

(α(a) +
µ

µ+ ω
δ(a))e(t, a)da,

Ẇ2 =

∫ +∞

0

α(a)e(t, a)da− (γ + µI)I(t) + ωR,

Ẇ3 =
ω

µ+ ω
(

∫ +∞

0

δ(a)e(t, a)da+ γηI − (µ+ ω)R).
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Further, we can obtian

dW

dt
= (K1 +

ω

µ+ ω
K2)(βS0I + ρβV I)− (µI + γ)I +

ω

µ+ ω
γηI

−(K1 +
ω

µ+ ω
K2)(µ+ p)

(S − S0)2

S
.

Thus
dW

dt
≤ −(K1 + ω

µ+ωK2)(µ+ p)
(S − S0)2

S
+ (γ + µI)I(R0 − 1)

+(K1 + ω
µ+ωK2)ρβ(V − V 0)I.

Notice that V (t) ≤ V 0 on B. As a consequence, if R0 < 1, then dW
dt ≤ 0 holds.

Let T is the largest invariant subset of {dWdt |(2.1) = 0}, the equality holds only if
S(t) = S0, I = 0, V = V 0. In T , S(t) = S0, I = 0, V = V 0, for all t ∈ R, then we
have e(t, a) = 0, Combining this with system (2.1), it follows that R(t) = 0, for
all t ∈ R. Hence, T = {E0}. It follows from the LaSalle invariance principle and
Theorem 3.2 that E0 is globally asymptotically stable.

When R0 > 1, the system (2.1) has a global attractor B0 ⊂ Γ. Let x ∈ B0, then
there exists a total trajectory {Ψ(t, x)}t∈R in B0. By following the same reasoning
as Subsection 3.2 in [8], the system (2.1) reduces to the following total trajectory
system: 

dS(t)

dt
= Λ− βSI − µS − pS,

dV (t)

dt
= pS − βρV I − µV,

e(t, a) = k(a)(βS(t− a)(I(t− a) + βρV (t− a)I(t− a)),

dI(t)

dt
=

∫ +∞

0

α(a)e(t, a)da+ ωR− (γ + µI)I(t),

dR(t)

dt
= γηI(t) +

∫ +∞

0

δ(a)e(t, a)da− (µ+ ω)R(t),

(S(0), V (0), e(0, a), I(0), R(0)) ∈ B0.

(4.15)

To prove that E∗ is globally stable, it is mandatory to prove that

S(t), V (t), e(t, a), I(t), R(t) > 0.

Lemma 4.1. All solutions of system (2.1) or (4.15) on B0 satisfy the following
inequalities:

ε ≤ S(t), V (t), I(t), R(t) ≤M, (β + βρ)ε2k(a) ≤ e(t, a) ≤ (β + βρ)M2k(a),

for all t ∈ R, a ∈ R+, where ε and M are positive constants.

Proof. Let Ψ(t, x) = (S(t), V (t), e(t, a), I(t), R(t)) ⊂ B0.
Now, we are going to prove that S(t) > 0 for all t ∈ R. We assume S(t0) = 0

for some t0 ∈ R. Clearly,
dS(t0)

dt
≥ Λ > 0, we can know from here, S(t0 − η0) < 0
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for some η0 > 0. This is a contradiction with B0 ⊂ Γ. Hence, S(t) > 0 for all t ∈ R.
Similarly, we can also derive V (t) > 0 for any t ∈ R.

Next, we are going to prove that I(t) > 0, R(t) > 0 for any t ∈ R. We assume
I(t0) = 0 and R(t0) = 0 for some t0 ∈ R. From (4.15), it is easy to derive that

I(t) = 0, R(t) = 0 when t ≤ t0. Furthermore, we have
∫ +∞

0
e(t, a)da = 0 for all

t ≤ t0. This is a contradiction with Ψ(t, x) ⊂ B0. Further, we assume that I(t0) =

0, R(t0) > 0 for some t0 ∈ R. It follows from (4.15) that
dI(t0)

dt
≥ ωR(t0) > 0, we

can know from here, I(t0 − η1) < 0 for some η1 > 0. This is a contradiction with
B0 ⊂ Γ. Similarly, the assumption that I(t0) > 0, R(t0) = 0 for some t0 ∈ R is not
true. Hence, I(t) > 0, R(t) > 0 for any t ∈ R. Furthermore, it follows from (4.15)
that e(t, a) > 0 for any (t, a) ∈ (R, R+). Then it follows from the compactness of
B0 that the conclusions of Lemma 4.1 hold.

Theorem 4.4. For system (2.1) or (4.15) in Γ, if R0 > 1, the equilibrium state
E∗ is globally asymptotically stable.

Proof. Let us define the Lyapunov function G(t) = G1 +G2 +G3 +G4 +G5 on
B0. It follows from Lemma 4.1 that G(t) is bounded, where

G1 = (K1 +
ω

µ+ ω
K2)S∗h(

S

S∗
), G2 = (K1 +

ω

µ+ ω
K2)V ∗h(

V

V ∗
),

G3 =

∫ +∞

0

F (a)e∗(a)h(
e(t, a)

e∗(a)
)da, G4 = I∗h(

I

I∗
), G5 =

ω

µ+ ω
R∗h(

R

R∗
),

and

h(x) = x− lnx− 1, F (a) =

∫ +∞

a

(α(u) +
ω

µ+ ω
δ(u))e−

∫ u
a

(µ+α(s)+δ(s))dsdu.

Along any solution in B0, we take the derivative versus time of G.

Ġ1 =− (K1 +
ω

µ+ ω
K2)(µ+ p)S∗(

S∗

S
+

S

S∗
− 2)

+ (K1 +
ω

µ+ ω
K2)βS∗I∗(1− SI

S∗I∗
− S∗

S
+

I

I∗
)

=(K1 +
ω

µ+ ω
K2)[(µ+ p)S∗(−h(

S

S∗
)− h(

S∗

S
))

+ βS∗I∗(h(
I

I∗
)− h(

S∗

S
)− h(

SI

S∗I∗
))],

Ġ2 =(K1 +
ω

µ+ ω
K2)pS∗(

S

S∗
− 1− V ∗S

V S∗
+
V ∗

V
)

− (K1 +
ω

µ+ ω
K2)µV ∗(

V ∗

V
+

V

V ∗
− 2)

+ (K1 +
ω

µ+ ω
K2)βρV ∗I∗(1− V I

V ∗I∗
− V ∗

V
+

I

I∗
)

=(K1 +
ω

µ+ ω
K2)[pS∗(h(

S

S∗
) + h(

V ∗

V
)− h(

V ∗S

S∗V
)) + µV ∗(−h(

V

V ∗
)− h(

V ∗

V
))
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+ ρβV ∗I∗(h(
I

I∗
)− h(

V ∗

V
)− h(

V I

V ∗I∗
))],

Ġ3 =F (0)βS∗I∗(
SI

S∗I∗
− 1− ln

e(t, 0)

e∗(0)
) + F (0)βρV ∗I∗(

V I

V ∗I∗
− 1− ln

e(t, 0)

e∗(0)
)

−
∫ +∞

0

(α(a) +
ω

µ+ ω
δ(a))e∗(a)h(

e(t, a)

e∗(a)
)da

=F (0)βS∗I∗(h(
SI

S∗I∗
)− h(

e∗(0)SI

e(t, 0)S∗I∗
))

+ F (0)ρβV ∗I∗(h(
V I

V ∗I∗
)− h(

e∗(0)V I

e(t, 0)V ∗I∗
))

−
∫ +∞

0

(α(a) +
ω

µ+ ω
δ(a))e∗(a)h(

e(t, a)

e∗(a)
)da.

Where, we use Λ = βS∗I∗ + (µ+ p)S∗ and pS∗ − ρβV ∗I∗ − µV ∗.

Ġ4 =

∫ +∞

0

α(a)e∗(a)(
e(t, a)

e∗(a)
− I

I∗
− e(t, a)I∗

e∗(a)I
+ 1)da+ ωR∗(

R

R∗
− I

I∗
− I∗R

IR∗
+ 1)

=

∫ +∞

0

α(a)e∗(a)(h(
e(t, a)

e∗(a)
)− h(

I

I∗
)− h(

e(t, a)I∗

e∗(a)I
))da

+ ωR∗(h(
R

R∗
)− h(

I

I∗
)− h(

I∗R

R∗I
)),

Ġ5 =
ω

µ+ ω

∫ +∞

0

δ(a)e∗(a)(
e(t, a)

e∗(a)
− R

R∗
− e(t, a)R∗

e∗(a)R
+ 1)da

+
ω

µ+ ω
γηI∗(

I

I∗
− R

R∗
− R∗I

RI∗
+ 1)

=
ω

µ+ ω

∫ +∞

0

δ(a)e∗(a)(h(
e(t, a)

e∗(a)
)− h(

R

R∗
)− h(

e(t, a)R∗

e∗(a)R
))da

+
ω

µ+ ω
γηI∗(h(

I

I∗
)− h(

R

R∗
)− h(

IR∗

I∗R
)).

Where, we use

γ + µI =
1

I∗
(

∫ +∞

0

α(a)e∗(a)da+ ωR∗), µ+ ω =
1

R∗
(

∫ +∞

0

δ(a)e∗(a)da+ γηI∗).

Further, we can get

Ġ =

5∑
i=1

Ġi

=− (K1 +
ω

µ+ ω
K2)((µ+ p)S∗ + βS∗I∗)h(

S∗

S
)− (K1 +

ω

µ+ ω
K2)µS∗h(

S

S∗
)
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− (K1 +
ω

µ+ ω
K2)[pS∗h(

V ∗S

S∗V
) + µV ∗h(

V

V ∗
)]− F (0)βS∗I∗h(

e∗(0)SI

e(t, 0)S∗I∗
)

− F (0)ρβV ∗I∗h(
e∗(0)V I

e(t, 0)V ∗I∗
)−

∫ +∞

0

α(a)e∗(a)h(
e(t, a)I∗

e∗(a)I
)da− ωR∗h(

I∗R

R∗I
)

− ω

µ+ ω

∫ +∞

0

δ(a)e∗(a)h(
e(t, a)R∗

e∗(a)R
)da− ω

µ+ ω
γηI∗h(

IR∗

I∗R
)

≤0.

It follows from the analysis of Theorem 4.3 [16] that B0 = {E∗}. Therefore, the
global asymptotic stability of E∗ is derived.

5. Parameters estimation and sensitivity analysis

5.1. Parameters estimation

In this subsection of the paper, based on the annual tuberculosis patients’ data
of China from 2007 to 2020, we will estimate the parameters of the system (2.1).
Based on the data from the National Bureau of Statistics of China (NBSC) [4],
we can deduce that between 2007 and 2020, the average newborn population in
China is 16, 289, 670 persons year−1, and the average life expectancy in China is
76.34 years old. Thus, we take Λ = 16, 289, 670 and µ = 1/76.34. The World
Health Organization estimates about a quarter of the world’s population has been
infected with TB and about 85 % of people who develop TB disease can be suc-
cessfully treated with a 6-month drug regimen. Thus, we take S(0) = 0.75 ∗
1, 314, 480, 000 persons,

∫ +∞
0

e(0, a)da = 0.25 ∗ 1, 314, 480, 000 persons, η = 0.85.
Trollfors et al. [35] suggested that the BCG vaccine has a significant effect on LTBI.
The effectiveness was 59%. Thus, parameter ρ = 0.41. Guo et al. [19] suggested that
the death rate due to TB was 0.056 year−1,thus parameter µI = µ+0.0056 year−1.
The initial infectious population I(0) = 5011912 persons, and the initial recovered
population R(0) = 7493719 persons. The annual tuberculosis patients’ data (Table
2) came from the Chinese Center for Disease Control and Prevention [2].

Table 2. The data of TB cases in China (persons).

Year 2007 2008 2009 2010 2011 2012 2013

Cases 1,163,959 1,169,540 1,076,938 991,350 953,275 951,508 904,434

Year 2014 2015 2016 2017 2018 2019 2020

Cases 889,381 864,015 836,236 835,193 823,342 775,764 670,538

After being infected with TB, some infected people will soon show symptoms of
TB (about a few weeks) because of a lack of immunity to the bacillus. Over time,
the immune system of infected people can fight off the bacillus, they are less and
less likely to show symptoms of TB and more and more likely to recover [1, 5]. We
use the year as the unit and the time length of a few weeks is negligible. Thus, we
create the following monotone functions to represent α(a) and δ(a), respectively

α(a) = α1e
−α2a, δ(a) = δ1(1− e−δ2a).
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We also assume that e0(a) = e(0)µe−µa.
Next, we simulate the following parameters and initial condition of system (2.1)

Θ̂ = (α1, α2, δ1, δ2, p, β, ρ, ω, V (0)).

We use P (t, Θ̂) to represent the number of new tuberculosis patients at the tth year,
then P (t, Θ̂) can be expressed as follows:

P (t, Θ̂) = X(t)−X(t− 1),

here X(t) denotes the cumulative number of patients with TB disease by the tth

year. We can derive the expression for X(t) as:

dX(t)

dt
=

∫ +∞

0

α(a)e(t, a)da+ ωR(t).

Next, we will use P (t, Θ̂) to simulate the annual tuberculosis patients data of
China. We use MATLAB 2018b software to estimate Θ̂. In this study, we employ
the Delayed Rejection and Adaptive Metropolis (DRAM) algorithm to carry out the
Markov chain Monte Carlo (MCMC) procedure [20]. We estimate the convergence
of the Markov chain by using Geweke’s Z-scores [3]. The expectations, standard
deviations, and confidence intervals of the parameters and initial values are listed
in Table 3. Based on the expectations of parameters in Table 3, we find that China
will not achieve the WHO target of 2035 without a new control strategy (see Figure
2).

Table 3. The parameters values and initial values of the system (1).

Parameters Mean Std 95% CI Gewekes Z-score Source

Λ 16289670 - - - [4]

µ 1/76.34 - - - [4]

S(0) 0.75*1314480000 - - - [4]

e(0) 0.25*1314480000 - - - [4]

I(0) 5011912 - - - [19]

R(0) 7493719 - - - [19]

µI 0.015599 - - - [19]

η 0.85 - - - [35]

ρ 0.41 - - - [5]

α1 0.021253299 0.002457035 [0.02124, 0.02126] 0.99532217 MCMC

α2 0.060170011 0.006924137 [0.0601, 0.0602] 0.988589519 MCMC

δ1 0.367737936 0.042197186 [0.3675, 0.3679] 0.993649912 MCMC

δ2 0.052697579 0.006082301 [0.0526, 0.0527] 0.998609138 MCMC

p 0.092698114 0.010674527 [0.0926, 0.0927] 0.997274947 MCMC

β 1.70853×10−9 1.97 × 10−10 [1.707 × 10−9, 1.709 × 10−9] 0.997600778 MCMC

ω 0.000358884 4.127×10−5 [0.000358, 0.000359] 0.997742014 MCMC

γ 0.195569335 0.022714474 [0.1954, 0.1956] 0.998434275 MCMC

V (0) 1.917110131×108 22247154.49 [1.916 × 108, 1.918 × 108] 0.995765272 MCMC

5.2. Sensitivity analysis

Sensitivity analysis (SA) is to find the most sensitive parameter relative to R0.
We are going to use the partial rank correlation coefficient (PRCC) to analyze
sensitivity, which is based on Latin hypercube sampling(LHS). For the parameters
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Figure 2. The comparison chart of the data of new TB cases in the China and simulation results by
system (2.1).

in Table 3, we let V (0) take the expectation value, and we assume that other
parameters are normal distributions, the expectations and standard deviations are
the estimated values in Table 3. Figure 3 shows the values of PRCC for R0. It
follows from the values of PRCC that β, α(a), δ(a), γ have significant influence on
R0.

6. Optimal control analysis

China is a country with a high TB burden. Although the treatment coverage in
China is very high in recent years, according to the analysis above in this paper, it
is difficult for China to achieve the WHO target of 2035. To do this, we should ex-
plore more mitigation measures that may curb the spread of TB. In the sensitivity
analysis, we found that β, α(a), δ(a), γ have important influence on TB trans-
mission. Based on the actual controllability, we choose the transmission coefficient
of TB β and the treatment rate of infectious population γ as controlled parame-
ters. Apart from that, the rate α(a) of latent class entering infectious class and the
rate δ(a) of latent individuals entering recovered class are very sensitive. But we
think it difficult to take control measures on these two parameters in China’s public
health at present. Now we consider the following two mitigation measures: one
is TB prevention and control education and the other is the treatment of patients
with TB disease. These two mitigation measures are implemented in system (2.1)
by decreasing β and increasing γ. Our goal is one that the control cost is as low
as possible and the final number of infectious individuals falls to the given goal as
much as possible.

Therefore, after considering the above two mitigation measures, the system (2.1)
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Figure 3. The PRCC values.

is rewritten as the following system:



dS(t)

dt
= Λ− β(1− u1(t))SI − µS − pS,

dV (t)

dt
= pS − ρβ(1− u1(t))V I − µV,

∂e(t, a)

∂t
+
∂e(t, a)

∂a
= −(µ+ δ(a) + α(a))e(t, a),

dI(t)

dt
=

∫ A

0

α(a)e(t, a)da+ ωR− µII − γ(1 + u2(t))I,

dR(t)

dt
= γ(1 + u2(t))ηI +

∫ A

0

δ(a)e(t, a)da− µR− ωR,

e(t, 0) = β(1− u1(t))SI + ρβ(1− u1(t))V I,

e(0, a) = e0(a), S(0) = s0, V (0) = v0, I(0) = i0, R(0) = r0,

(6.1)

where (t, a) ∈ Q = (0, T )× (0, A), A is the maximum latent age and T is the length
of the control period. u1(t), u2(t) are the control variables and belong to

U = {(u1(t), u2(t)) ∈ (L∞+ (0, T ))2 : 0 ≤ u1(t) ≤ u1 < 1, 0 ≤ u2(t) ≤ u2},

a.e. in (0, T ).

The control variable u1(t) implies the effort of preventing susceptible population
from becoming TB latent population, including paying attention to personal protec-
tion, accepting TB treatment and prevention education, avoiding unhealthy living
habits, and so on. The control variable u2(t) represents the effort of treatment of
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patients with TB disease. The objective function is defined as:

min
(u1(t),u2(t))∈U

J(u1(t), u2(t)) =
1

2
(

∫ A

0

α(a)e(T, a)da+ ωR(T )− ū(T ))2

+
ρ1

2

∫ T

0

u1(t)2dt+
ρ2

2

∫ T

0

u2(t)2dt,

(6.2)

subject to the system (6.1). Here ρ1 and ρ2 are positive weights that balance the

relative importance of the terms in J .
∫ A

0
α(a)e(T, a)da + ωR(T ) represents the

number of new tuberculosis patients at the T th year, ū(T ) is a specified-in-advance

target value.
ρ1u1(t)2

2
and

ρ2u2(t)2

2
denote costs of disease prevention and treat-

ment programs. Prevention and treatment are considered nonlinear functions since
any public health intervention does not have a linear cost, but rather, implemen-
tation costs increase with reaching higher population fractions [7]. In this paper, a
quadratic function is taken by reference to many papers on epidemic control [13,39].
Hence, our goal is one that the control cost is as low as possible and the number of
infectious individuals at the T th year is close to the target value ū(T ) as much as
possible.

Remark 6.1. Similar to the method in [18], we can prove the well-posedness of the
system (6.1), including non-negativity, existence, and uniqueness of the solution as
well as the continuous dependence of system state variables S(t), V (t), e(t, a), I(t),
R(t) concerning control variables (u1(t), u2(t)).

6.1. The solution of the optimal control problem

The sensitivity equations of system (6.1) can be derived from the following theorem:

Theorem 6.1. For each u = (u1(t), u2(t)) ∈ U and v = (l(t), h(t)) ∈ (L∞(0, T ))2

such that u + εv ∈ U for sufficiently small ε > 0, we have
xε − x
ε

→ z, as ε →
0+, where xε and x are the solutions of system (6.1) corresponding to u + εv and
u, respectively. And sensitivity functions z ∈ (L∞(0, T ))2 × L∞(0, T ;L1(0, A)) ×
(L∞(0, T ))2 satisfy

dz1(t)

dt
= βl(t)SI − β(1− u1(t))z1(t)I − β(1− u1(t))z4(t)S − (µ+ p)z1(t),

dz2(t)

dt
= pz1(t) + ρβl(t)V I− ρβ(1− u1(t))z2(t)I− ρβ(1− u1(t))z4(t)V − µz2(t),

∂z3(t, a)

∂t
+
∂z3(t, a)

∂a
= −(µ+ α(a) + δ(a))z3(t, a),

dz4(t)

dt
=

∫ A

0

α(a)z3(t, a)da− µIz4(t)− γh(t)I − γ(1 + u2(t))z4(t) + ωz5(t),

dz5(t)

dt
=

∫ A

0

δ(a)z3(t, a)da− (µ+ ω)z5(t) + ηγh(t)I + ηγ(1 + u2(t))z4(t),

z3(t, 0) = −βl(t)SI + β(1− u1(t))z1(t)I + β(1− u1(t))z4(t)S

− ρβl(t)V I + ρβ(1− u1(t))z2(t)I + ρβ(1− u1(t))z4(t)V,

z3(0, a) = 0, z1(0) = 0, z2(0) = 0, z4(t) = 0, z5(0) = 0 t ∈ (0, T ), a ∈ (0, A).
(6.3)



1458 Z.-K. Guo, H.-F. Huo & H. Xiang

Proof. Since the map (u1(t), u2(t)) ∈ U → (S(t), V (t), e(t, a), I(t), R(t)) is Lips-
chitz in L∞, we have the existence of the Gâteaux derivatives z by Barbu [6] and
Fister et al. [15]. Passing to the limit in the representation of the quotients, the
sensitivity functions z = (z1(t), z2(t, a), z3(t, θ), z4(t)) satisfy system (6.3), where

z1(t) = lim
ε→0+

Sε − S
ε

, z2(t) = lim
ε→0+

V ε − V
ε

, z3(t, a) = lim
ε→0+

eε(t, a)− e(t, a)

ε
,

z4(t) = lim
ε→0+

Iε − I
ε

, z5(t) = lim
ε→0+

Rε −R
ε

.

To derive an adjoint system, we define a Lagrangian L as follows:

L(S, V, e, I, R, λ1, λ2, λ3, λ4, λ5)

=J(u1(t), u2(t))

−
∫ T

0

λ1(t)(
dS(t)

dt
− Λ + β(1− u1(t))SI + (µ+ p)S)dt

−
∫ T

0

λ2(t)(
dV (t)

dt
− pS + ρβ(1− u1(t))V I + µV )dt

−
∫ T

0

∫ A

0

λ3(t, a)(
∂e(t, a)

∂t
+
∂e(t, a)

∂a
+ (µ+ δ(a) + α(a))e(t, a))dadt

−
∫ T

0

λ4(t)(
dI(t)

dt
−
∫ A

0

α(a)e(t, a)da− ωR+ µII + γ(1 + u2(t))I)dt

−
∫ T

0

λ5(t)(
dR(t)

dt
− γ(1 + u2(t))ηI −

∫ A

0

δ(a)e(t, a)da+ (µ+ ω)R)dt

−
∫ T

0

λ3(t, 0)(e(t, 0)− β(1− u1(t))SI − ρβ(1− u1(t))V I)dt.

The adjoint system can be got by solving ∂L
∂S = 0, ∂L∂V = 0, ∂L∂e = 0, ∂L

∂I = 0, and
∂L
∂R = 0. That is

− d(λ1(t))

dt
= (−β(1− u1(t))I − µ− p)λ1(t) + pλ2(t) + λ3(t, 0)β(1− u1(t))I,

− d(λ2(t))

dt
= (−ρβ(1− u1(t))I − µ)λ2(t) + λ3(t, 0)βρ(1− u1(t))I,

− ∂λ3(t, a)

∂t
− ∂λ3(t, a)

∂a
= −(µ+ α(a) + δ(a))λ3(t, a) + α(a)λ4(t) + δ(a)λ5(t),

− dλ4(t)

dt
= −β(1− u1(t))Sλ1(t)− βρ(1− u1(t))V λ2(t)

− (µI + γ(1 + u2(t)))λ4(t) + γ(1 + u2(t))ηλ5(t)

+ β(1− u1(t))Sλ3(t, 0) + ρβ(1− u1(t))V λ3(t, 0),

− dλ5(t)

dt
= ωλ4(t)− (µ+ ω)λ5(t),

(6.4)
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with transversality conditions

λ1(T ) = 0, λ2(T ) = 0, λ4(T ) = 0, λ3(t, A) = 0,

λ3(T, a) = (

∫ A

0

α(a)e(T, a)da+ ωR(T )− ū(T ))α(a),

λ5(T ) = (

∫ A

0

α(a)e(T, a)da+ ωR(T )− ū(T ))ω.

(6.5)

Similar to the proof of Theorem 3.4 of [31], we can prove the existence of solutions
to the adjoint equations (6.4). Similar results for the adjoint equations can also be
seen in [6].

Next, we present the optimality conditions of the control problem (6.2).

Theorem 6.2. Assume there is an optimal control pair (u∗1(t), u∗2(t)) ∈ U which
minimizes (6.2), and the corresponding optimal state solution is (S∗(t), V ∗(t),
e∗(t, a), I∗(t), R∗(t)), and (λ1(t), λ2(t), λ3(t, a), λ4(t), λ5(t)) is the solution of ad-
joint system (6.4) corresponding to (S∗(t), V ∗(t), e∗(t, a), I∗(t), R∗(t)), then the op-
timal control pair (u∗1(t), u∗2(t)) can be written in the following expressions:

u∗1(t) = F1(
(−λ1(t)βS∗I∗ − λ2(t)βρV ∗I∗ + λ3(t, 0)ρβV ∗I∗ + λ3(t, 0)βS∗I∗)

ρ1
),

u∗2(t) = F2(
λ4(t)γI∗ − λ5(t)γηI∗

ρ2
), a. e. in (0, T ),

(6.6)
where

Fi(x) =


0, x ≤ 0,

x, 0 ≤ x ≤ ui,
ui, x ≥ ui.

i = 1, 2.

Proof. Using the sensitivity equations (6.3), adjoint system (6.4), transversality
condition (6.5), and integration by parts, we get∫ T

0

0 · z1(t) + 0 · z2(t) +

∫ A

0

0 · z3(t, a)da+ 0 · z4(t) + 0 · z5(t)dt

=

∫ T

0

z1(t)× {−d(λ1(t))

dt
− (−β(1− u1(t))I − µ− p)λ1(t)

− pλ2(t)− λ3(t, 0)β(1− u1(t))I}dt

+

∫ T

0

z2(t){−d(λ2(t))

dt
− (−ρβ(1− u1(t))I − µ)λ2(t)− λ3(t, 0)βρ(1− u1(t))I}dt

+

∫ T

0

∫ A

0

z3(t, a){−∂λ3(t, a)

∂t
− ∂λ3(t, a)

∂a
+ (µ+ α(a) + δ(a))λ3(t, a)

− α(a)λ4(t)− δ(a)λ5(t)}dadt

+

∫ T

0

z4(t){−dλ4(t)

dt
+ β(1− u1(t))Sλ1(t) + βρ(1− u1(t))V λ2(t)

+ (µI + γ(1 + u2(t)))λ4(t)− γ(1 + u2(t))ηλ5(t)− β(1− u1(t))Sλ3(t, 0)

− ρβ(1− u1(t))V λ3(t, 0)}dt
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+

∫ T

0

z5(t){−dλ5(t)

dt
− ωλ4(t) + (µ+ ω)λ5(t)}dt

=

∫ T

0

λ1(t){dz1(t)

dt
− (−β(1− u1(t))I − µ− p)z1(t) + β(1− u1(t))Sz4(t)}dt

+

∫ T

0

λ2(t){dz2(t)

dt
− (−βρ(1− u1(t))I − µ)z2(t)− pz1(t)

+ ρβ(1− u1(t))V z4(t)}dt

+

∫ T

0

∫ A

0

λ3(t, a){∂z3(t, a)

∂t
+
∂z3(t, a)

∂a
+ (µ+ α(a) + δ(a))z3(t, a)}dadt

+

∫ T

0

λ4(t){dz4(t)

dt
+ (µI + γ(1 + u2(t))z4(t)−

∫ A

0

α(a)z3(t, a)da− ωz5(t)}dt

+

∫ T

0

λ5(t){dz5(t)

dt
+ (µ+ ω)z5(t)−

∫ A

0

δ(a)z3(t, a)da− γη(1 + u2(t))z4(t)}dt

−
∫ T

0

λ3(t, 0)(β(1− u1(t))z1(t)I + β(1− u1(t))z4(t)S + ρβ(1− u1(t))z2(t)I

+ ρβ(1− u1(t))z4(t)V )dt

−
∫ A

0

λ3(T, a)z3(T, a)da− λ5(T )z5(T ) +

∫ T

0

λ3(t, 0)z3(t, 0)dt

=

∫ T

0

λ1(t)βl(t)SIdt+

∫ T

0

λ2(t)βρl(t)V Idt−
∫ A

0

λ3(T, a)z3(T, a)da− λ5(T )z5(T )

−
∫ T

0

λ4(t)γh(t)Idt+

∫ T

0

λ5(t)ηγh(t)Idt−
∫ T

0

λ3(t, 0)ρβl(t)V Idt

−
∫ T

0

λ3(t, 0)βl(t)SIdt.

Since (u∗1(t), u∗2(t)) ∈ U is an optimal control strategy that minimizes the control
problem (6.2), and we omit the asterisks for simplicity in subsequent calculations,
then we have

0 ≤ lim
ε→0+

J(u∗1 + εl, u∗2 + εh)− J(u∗1, u
∗
2)

ε

=(

∫ A

0

α(a)e(T, a)da+ ωR(T )− ū(T ))(

∫ A

0

α(a)z3(T, a)da+ ωz5(T ))

+ ρ1

∫ T

0

u1(t)l(t)dt+ ρ2

∫ T

0

u2(t)h(t)dt

=(

∫ A

0

α(a)e(T, a)da+ ωR(T )− ū(T ))(

∫ A

0

α(a)z3(T, a)da+ ωz5(T ))

+ ρ1

∫ T

0

u1(t)l(t)dt+ ρ2

∫ T

0

u2(t)h(t)dt

+

∫ T

0

0 · z1(t) + 0 · z2(t) +

∫ A

0

0 · z3(t, a)da+ 0 · z4(t) + 0 · z5(t)dt

=

∫ T

0

l(t)(ρ1u1 + λ1(t)βSI + λ2(t)βρV I − λ3(t, 0)ρβV I − λ3(t, 0)βSI)dt
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+

∫ T

0

h(t)(ρ2u2(t)− λ4(t)γI + λ5(t)γηI)dt.

By standard optimality arguments, we get the expressions in (6.6).

6.2. Numerical simulations

We use the algorithm in [18], which is based on finite-difference schemes for ordinary
differential equations and partial differential equations. Next, we present numerical
experiments of optimal control. The optimal control measures were taken from 2023
to 2035. In addition, we take A = 100, T = 13, u1 = 0.3, and u2 = 3, and use the
expectation values in Table 3 as parameter values in the system (6.1).

In Figure 4, we depict the optimal control and the corresponding optimal solu-
tion for new tuberculosis cases. It follows from Figure 4 that the number of new
tuberculosis patients was reduced to 30% by 2035 compared to 2015 in the case
of optimal control. Without control, the number of new tuberculosis patients was
reduced to 44%. Therefore, it is easy to conclude that optimal control is essential
for curbing TB in China. When this control strategy is applied, the effort of treat-
ment of people with TB disease decreases gradually from 2023 to 2035 and has not
reached the upper limit of the effort. The effort of preventing susceptible population
from becoming TB latent population increases gradually and almost full effort is
applied between 2032 and 2035.

The assignment of weight coefficients ρ1 and ρ2 are directly related to the budget
for TB control. Regrettably, this relation is not specific, but it is easy to know
that the weights ρ1 and ρ2 should decrease if the available budget is plentiful, and
the weights ρ1 and ρ2 should increase if the available budget is scarce. It can be
observed from Figure 5 that when the weight ρ1 and ρ2 are reduced, which implies
that there is a sufficient budget for TB control, a full effort of treatment of people
with TB disease is applied from 2023 and 2035. The effort of preventing susceptible
population from becoming TB latent population decreases gradually from 2023 to
2026 then increases gradually. The final number of new tuberculosis patients is also
reduced compared with Figure 4. This shows that the available budget is important
to TB control. Table 4 provides a summary of the two different control schemes.
Through this table, we can also find that the control effectiveness of the second
group of weight coefficients is more satisfactory.

In fact, in both control schemes, at the beginning of the simulated time, the effort
of treatment of people with TB disease u2 is staying at a high level to isolate as
many patients as possible with TB disease (I) to prevent the increase of the number
of the infected individuals. In the case of insufficient budget shown in Figure 4,
the steady decrease of u2 is determined by the balance between the number of new
tuberculosis patients and the cost of treatment programs.

Remark 6.2. The weight coefficients ρ1 and ρ2 are very hard to obtain in practice.
It needs a lot of work on data mining, analyzing, and fitting. Hence, the acquisition
of appropriate practical weights is a difficult problem and it remains for further
investigation. It should be pointed out that the weights in the simulations here
are of only theoretical interest to illustrate the control strategies proposed in this
paper.
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Figure 4. Optimal controls of the system (6.1) with the weight coefficients ρ1 = 1010, ρ2 = 1010. (a)
The number of new tuberculosis patients with and without control. (b),(c) Diagrams of time-varying
control variables. (d) The number of iterations for the forward-backward sweep method
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Figure 5. Optimal controls of the system (6.1) with the weight coefficients ρ1 = 2×109, ρ2 = 1.1×107.
(a) The number of new tuberculosis patients with and without control from 2023 to 2035. (b),(c)
Diagrams of time-varying control variables. (d) The number of iterations for the forward-backward
sweep method

7. Conclusion

In this paper, based on the characteristics of TB transmission, we proposed and an-
alyzed an age-structured TB infection mathematical model for understanding the
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Table 4. Summary of the two different control schemes.

weight coefficients
The new TB
cases in 2035

The value of
objective functional

ρ1 = 1010 without control 3.8934× 105 4.5887× 1010

ρ2 = 1010 control 2.5968× 105 2.0739× 1010

ρ1 = 2× 109 without control 3.8934× 105 4.5887× 1010

ρ2 = 1.1× 107 control 1.4713× 105 2.5195× 109

spread of TB in China. The goal of our research was to propose control strategies
for mitigating the risk of TB. We defined the basic reproduction number R0 and
showed that R0 completely determines the global dynamics of the proposed model.
Based on the annual data of TB in China from 2007 to 2020, we estimated model
parameters by the MCMC method and concluded that, by using the current TB
control measures, it is difficult for China to achieve the WHO target of 2035. To do
this, we should explore more mitigation measures that may help to curb the spread
of TB. We calculated the PRCC between the parameters and the basic reproduction
number R0. From the PRCC values, we can know that β, α(a), δ(a), γ have the
most important influence on R0. In light of the actual controllability, we chose the
transmission coefficient of TB and the treatment rate of infectious population as
controlled parameters to study the least cost-deviation problem. Using Pontrya-
gin’s maximum principle, we got the necessary conditions for optimal control. To
demonstrate the effectiveness of the control strategies, we used forward-backward
finite difference approximation and iterative methods to solve the optimality system
numerically. We assigned different values to the weight coefficients to indicate the
different budget levels. Our study provides guidance for public health authorities
on how to utilize limited resources effectively to mitigate the spread of TB.

TB is still spreading in many developing countries, and the characteristics of
TB transmission in these countries are the same, so our model and the research
framework will also be of value to the mitigation of the risk of TB in other developing
countries.
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