
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com

Volume 14, Number 3, June 2024, 1485–1507 DOI:10.11948/20230259

SOME NOVEL INERTIAL BALL-RELAXED CQ
ALGORITHMS FOR SOLVING THE SPLIT
FEASIBILITY PROBLEM WITH MULTIPLE

OUTPUT SETS

Nguyen Thi Thu Thuy1,† and Nguyen Trung Nghia2

Abstract The split feasibility problem with multiple output sets (SFPMOS)
is a generalization of the well-known split feasibility problem (SFP), which
has gained significant research attention due to its applications in theoretical
and practical problems. However, the original CQ method for solving the SFP
seems less efficient when the involved subsets are general convex sets since the
method requires calculating projection onto the given sets directly. The re-
laxed CQ method was introduced to overcome this difficulty when the subsets
are level sets of convex functions, where the projections onto the constructed
half-spaces were used instead of the projections onto the original subsets. In
this paper, we propose and investigate new algorithms for solving the SFPMOS
when the involved subsets are given as the level sets of strongly convex func-
tions. In this situation, we replace the half-spaces in the relaxed CQ method
with balls constructed in each iteration. The algorithms are accelerated using
the inertial technique and eliminate the need for calculating or estimating the
norms of linear operators by employing self-adaptive step size criteria. We then
analyze the strong convergence of the algorithms under some mild conditions.
Some applications to the split feasibility problem are also reported. Finally,
we present three numerical results, including an application to the LASSO
problem with elastic net regularization, illustrating the better performance of
our algorithms compared to the relevant ones.

Keywords Split feasibility problems, CQ algorithm, inertial technique, self-
adaptive step size, metric projection.

MSC(2010) 47J25, 47J20, 49N45, 65J15.

1. Introduction

Let C and Qj be nonempty closed convex subsets of real Hilbert spaces H and Hj ,
j = 1, . . . , N , respectively, and let Fj : H → Hj , j = 1, . . . , N , be a bounded
linear operator. The split feasibility problem with multiple output sets (SFPMOS)

†The corresponding author.
1School of Applied Mathematics and Informatics, Hanoi University of Science
and Technology, Hanoi, Vietnam

2Department of Statistics and Operations Research, University of North Car-
olina at Chapel Hill, Chapel Hill, 27599-3260, North Carolina, USA
Email: thuy.nguyenthithu2@hust.edu.vn (N. T. T. Thuy),
nghiant@unc.edu(N. T. Nghia)

http://www.jaac-online.com
http://dx.doi.org/10.11948/20230259


1486 N. T. T. Thuy & N. T. Nghia

[1, 8, 9, 18–23] can be formulated as follows:

Find u∗ ∈ C such that Fju∗ ∈ Qj ∀j = 1, . . . , N. (1.1)

Throughout this paper, we denote by I the identity operator in H or Hj , j =
1, . . . , N , and denote by Ω = {u∗ ∈ C | Fju∗ ∈ Qj ,∀j = 1, . . . , N} the solution set
of the SFPMOS. In [18], Reich et al. proposed the following algorithm

x0 ∈ C, xk+1 = αkf(xk) + (1− αk)PC
[
xk − γk

N∑

j=1

F∗j (I − PQj )Fjxk
]
, k ≥ 0,

(1.2)

that can be used to find u∗ ∈ Ω, which is the unique solution to the following
variational inequality,

〈(I − f)u∗, u− u∗〉 ≥ 0 ∀u ∈ Ω, (1.3)

where f is a contraction mapping, {αk} ⊂ (0, 1) and {γk} satisfy the following
conditions

lim
k→∞

αk = 0,

∞∑

k=0

αk =∞, (α)

0 < γk <
2

N maxj=1,...,N{‖Fj‖2}
. (γR)

Wang [23] introduced a stepsize sequence {γk} for (1.2) with x0 ∈ H as follows

γk =





∑N
j=1‖(I−PQj

)Fjx
k‖2

‖∑N
j=1 F∗j (I−PQj

)Fjxk‖2 , if ‖∑N
j=1 F∗j (I − PQj

)Fjxk‖ 6= 0,

0, otherwise.
(γW)

In [9], given an arbitrary initial point x0 ∈ H, Cuong et al. proposed the following
iterative scheme

xk+1 = PCy
k − αkA

[
PC
(
xk − γk

N∑

j=1

F∗j (I − PQj
)Fjxk

)]
, k ≥ 0, (1.4)

where A : H → H be η-strongly monotone and `-Lipschitz continuous on H. They
proved the strong convergence of the iterative sequence {xk} generated by (1.4) to
u∗ ∈ Ω, which is the unique solution to the VIP (1.3), with I − f replaced by A,
under the condition (α) and

γk =





∑N
j=1‖(I−PQj

)Fjx
k‖2

2
(∑N

j=1‖F∗j (I−PQj
)Fjxk‖

)2 , if
∑N
j=1 ‖F∗j (I − PQj

)Fjxk‖ 6= 0,

0, otherwise.

(γC)

When N = 1, the SFPMOS (1.1) becomes the split feasibility problem (SFP).
The SFP introduced by Censor and Elfving [7] has been receiving much attention
due to its applications in signal processing and image reconstruction [16]. The SFP
requires to find a point u∗ ∈ H satisfying the property:

u∗ ∈ C and Fu∗ ∈ Q, (1.5)



Inertial ball-relaxed CQ algorithms... 1487

where C and Q are nonempty closed convex subsets of real Hilbert spaces H and
H1, respectively, and F : H → H1 is a bounded linear operator. To solve the SFP,
Censor and Elfving [7] proposed an iterative algorithm based on the multidistance
idea. But their algorithm involves matrix inverses at each iteration. Later, in [5,6],
Byrne introduced a projection method called the CQ algorithm which does not
involve matrix inverses. Denoting by PC and PQ the metric projections onto C and
Q, respectively. Then the CQ algorithm is formulated as follows:

xk+1 = PC
(
xk − γF∗(I − PQ)Fxk

)
, k ≥ 0, (1.6)

where F∗ is the adjoint operator of F and γ ∈
(
0, 2/‖F‖2

)
. It is worth noting

that Byrne’s CQ algorithm is a special case of the gradient-projection method in
constrained convex minimization problems. The CQ algorithm (1.6) has been now
widely studied since it is more easily performed. However, the computation of
a projection onto a closed convex subset is generally difficult. To overcome this
difficulty, Fukushima [12] suggested a way to calculate the projection onto a level
set of a convex function by computing a sequence of projections onto half-spaces
containing the original level set. This idea is followed by Yang [24], who introduced
a relaxed CQ algorithm in a finite-dimensional Hilbert space, in which C and Q
are level sets of convex functions g : H → (−∞,∞] and h : H1 → (−∞,∞],
respectively. The relaxed CQ algorithm is given as follows:

xk+1 = PCk
(
xk − γF∗(I − PQk

)Fxk
)
, k ≥ 0, (1.7)

where γ ∈
(
0, 2/‖F‖2

)
and

Ck = {x ∈ H | g(xk) + 〈ξk, x− xk〉 ≤ 0}, ξk ∈ ∂g(xk), (Ck)

Qk = {y ∈ H1 | h(Fxk) + 〈ηk, y −Fxk〉 ≤ 0}, ηk ∈ ∂h(Fxk). (Qk)

In (1.7), since Ck and Qk are both halfspaces, then the projections PCk and PQk

have closed-form expressions. Thus they are easily to be computed. However, to
implement the relaxed CQ algorithm, one has to calculate or estimate the opera-
tor norm ‖F‖, which is generally not an easy task in practice. To overcome this
difficulty, López et al. [16] improved Yang’s relaxed CQ algorithm as follows:

xk+1 = PCk
(
xk − γkF∗(I − PQk

)Fxk
)
, k ≥ 0, (1.8)

where

γk = ρk
‖(I − PQk

)Fxk‖2
‖F∗(I − PQk

)Fxk‖2 , 0 < ρk < 2. (γL)

Li et al. [15] and Yu and Wang [25] proposed some new relaxed CQ algorithms. The
main idea of the algorithms is to replace the projections to the half-spaces Ck and
Qk with the projections to the intersection of Ck and Ck−1, and the intersection of
Qk and Qk−1, respectively.

Yu et al. [26] introduced another ball-relaxed CQ method for solving the SFP
under the condition that the functions g and h are β and β1-strongly convex func-
tions, respectively. The ball-relaxed CQ algorithm is formulated as follows:

xk+1 = PCbk
(
xk − γbkF∗(I − PQb

k
)Fxk

)
, k ≥ 0, (1.9)



1488 N. T. T. Thuy & N. T. Nghia

where

γbk = ρk
‖(I − PQb

k
)Fxk‖2

‖F∗(I − PQb
k
)Fxk‖2 , 0 < ρk < 2 (γY)

and

Cbk =
{
x ∈ H | g(xk) + 〈ξk, x− xk〉+

β

2
‖x− xk‖2 ≤ 0

}
, ξk ∈ ∂g(xk), (Cbk)

Qbk =
{
y ∈ H1 | h(Fxk) + 〈ηk, y −Fxk〉+

β1

2
‖y −Fxk‖2 ≤ 0

}
, ηk ∈ ∂h(Fxk).

(Qbk)

In order to improve the convergence rate of the algorithms, the idea of inertial
acceleration is widely applied. It was first proposed by Polyak in 1964 [17] for solving
the smooth convex minimization problems. Based on the heavy ball methods of
the two-order time dynamical system, the inertial algorithm is a two-step iterative
method and the next iterative is defined by utilizing the previous two iterates. In [2],
Alvarez and Attouch employed the inertial extrapolation technique for improving
the performance of the proximal point algorithm. In [11], Dang et al. proposed an
inertial relaxed CQ algorithm by applying the inertial extrapolation technique in
(1.7):

{
wk = xk + θk(xk − xk−1),

xk+1 = PCk
(
wk − γF∗(I − PQk

)Fwk
)
,

(1.10)

where γ ∈ (0, 2/‖F‖2) and θ ∈ [0, θk], θk = min
{
θ, (max{k2‖xk − xk−1‖2, k2‖xk −

xk−1‖})−1
}

, θ ∈ [0, 1). It is proved that the iterative sequence generated by (1.9)
is weakly convergent to a solution of the SFP.

Motivated and inspired by the aforementioned works, in the present manuscript,
we consider three ball-relaxed CQ algorithms for solving the SFPMOS (1.1) in real
Hilbert spaces. In our algorithms, under the condition that g : H → (−∞,∞]
or hj : Hj → (−∞,∞], j = 1, . . . , N , is strongly convex function, we replace the
halfspace by a ball at the k-th iterate and the projections onto ball is easily executed.
Meanwhile, to speed up convergence, we still use the variable stepsize and inertial
acceleration in our algorithms.

The remaining part of this paper is organized as follows: Section 2 displays
some lemmas that will be used for the validity and convergence of the algorithms.
Section 3 gives three ball-relaxed CQ algorithms with inertial procedure and variable
stepsize, and then proves the convergence of our algorithms. Section 4 gives some
applications in the split feasibility problem. Finally, we present some numerical
experiments to testify to the better performance of our algorithms in Section 5.

2. Preliminaries

In this section, we introduce some mathematical symbols, definitions, and lemmas
which can be used in the proof of our main result. Let H be a real Hilbert space
with inner product 〈·, ·〉 and norm ‖ · ‖. In what follows, we write xk ⇀ x to
indicate that the sequence {xk} converges weakly to x, while xk → x indicates that
the sequence {xk} converges strongly to x. Let ωw(xk) denotes the weak ω-limit



Inertial ball-relaxed CQ algorithms... 1489

set of {xk}, that is, the set of all those points x such that xkl ⇀ x as l → ∞ for
some subsequence {xkl} of {xk}.
Definition 2.1 (see [4], [13] Section 1.11). Let C be a nonempty closed convex
subset of a real Hilbert space H. An operator T : C → H is called

(1) nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C;
(2) firmly nonexpansive if ‖Tx − Ty‖2 ≤ ‖x − y‖2 − ‖(I − T )x − (I − T )y‖2 for

all x, y ∈ C;
(3) η-inverse strongly monotone if exists η > 0 such that 〈Tx − Ty, x − y〉 ≥

η‖Tx− Ty‖2 for all x, y ∈ C.

Readers can refer to [13, Section 11] for more information about firmly nonex-
pansive mappings. For any x ∈ H, the projection onto a nonempty closed convex
subset C is defined as PCx = arg min{‖u − x‖ | u ∈ C}. The projection PC has the
following well-known properties.

Lemma 2.1 (see [4]). Let C ⊆ H be a nonempty closed convex subset. Then for all
x ∈ H and u ∈ C,

(1) 〈x− PCx, u− PCx〉 ≤ 0;

(2) PC and I − PC are both nonexpansive;

(3) PC and I − PC are both firmly nonexpansive;

(4) PC and I − PC are both 1-inverse strongly monotone.

Definition 2.2. Let λ ∈ (0, 1) and f : H → (−∞,∞] be a proper function.

(1) f is convex if f [λx+ (1− λy)] ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ H.

(2) f is strongly convex with constant β, where β > 0, if

f [λx+ (1− λy)] +
β

2
λ(1− λ)‖x− y‖2 ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ H.

(3) A vector ξ ∈ H is called a subgradient of f at a point x ∈ H if

f(y) ≥ f(x) + 〈ξ, y − x〉 ∀y ∈ H. (2.1)

The set of all subgradients of f at x, denoted by ∂f(x), is called the subdiffer-
ential of f at x. If ∂f(x) is nonempty, then we say that f is subdifferentiable
at x.

(4) f is said to be weakly lower semi-continuous (w-lsc) at a point x if xk ⇀ x
implies

f(x) ≤ lim inf
k→∞

f(xk).

Lemma 2.2. Let f : H → (−∞,∞] be a strongly convex function with constant β.
Then for all x, y ∈ H,

f(y) ≥ f(x) + 〈ξ, y − x〉+
β

2
‖y − x‖2, ξ ∈ ∂f(x).



1490 N. T. T. Thuy & N. T. Nghia

Lemma 2.3 (see [14, Lemma 8]). Assume {sk} is a sequence of nonnegative real
numbers such that

sk+1 ≤ (1− ak)sk + akbk and sk+1 ≤ sk − ck + dk, k ≥ 1,

where {ak} is a sequence in (0, 1), {ck} is a sequence of nonnegative real numbers,
and {bk} and {dk} are two real sequences in R such that

(1)
∑∞
k=0 ak =∞;

(2) limk→∞ dk = 0;

(3) liml→∞ ckl = 0 implies lim supl→∞ bkl ≤ 0 for any subsequence {kl} ⊂ {k}.
Then limk→∞ sk = 0.

3. Main results

3.1. The proposed algorithms

In this section, we first introduce a ball-relaxed CQ algorithm for the SFPMOS (1.1),
in which the closed convex subsets C and Qj , j = 1, . . . , N , satisfy the following
assumptions.

(A1) The solution set Ω = {x ∈ C | Fjx ∈ Qj , ∀j = 1, . . . , N} is nonempty.

(A2) The sets C and Qj , j = 1, . . . , N , are given by

C = {x ∈ H | g(x) ≤ 0} and Qj = {yj ∈ Hj | hj(yj) ≤ 0},

where g : H → ( − ∞,∞] and hj : Hj → ( − ∞,∞] are β and βj-strongly
convex, subdifferentiable, and w-lsc functions on H and Hj , respectively.

(A3) For any x ∈ H, at least one subgradient ξ ∈ ∂g(x) can be calculated. For
any yj ∈ Hj , at least one subgradient ηj ∈ ∂hj(yj), j = 1, . . . , N , can be
calculated. We assume also that the subdifferential operators ∂g and ∂hj are
bounded on bounded sets.

Remark 3.1. It is worth noting that every convex function defined on a finite-
dimensional Hilbert space automatically satisfies assumption (A3) (see [3], Corollary
7.9).

In our algorithm, given the k-th iterative point xk, we construct N + 1 closed
balls Cbk and Qbj,k, j = 1, . . . , N , which contain C and Qj , respectively. Since g and
hj are strongly convex functions with constants β and βj , respectively, it follows
from Lemma 2.2 that

g(x) ≥ g(xk) + 〈ξk, x− xk〉+
β

2
‖x− xk‖2, ξk ∈ ∂g(xk), (3.1)

hj(yj) ≥ hj(Fjxk) + 〈ηkj , yj −Fjxk〉+
βj
2
‖yj −Fjxk‖2, ηkj ∈ ∂hj(Fjxk). (3.2)

Define the set Cbk at point xk by (Cbk) and the sets Qbj,k, j = 1, . . . , N , at point xk

by

Qbj,k =
{
yj ∈ Hj | hj(Fjxk) + 〈ηkj , yj −Fjxk〉+

βj
2
‖yj −Fjxk‖2 ≤ 0

}
. (Qbj,k)



Inertial ball-relaxed CQ algorithms... 1491

From (Cbk) and (Qbj,k), we have Cbk is a ball whose centre and radius are xk− (1/β)ξk

and
√

(1/β2)‖ξk‖2 − (2/β)g(xk), respectively and Qbj,k is a ball whose centre and

radius are Fjxk − (1/βj)η
k
j and

√
(1/β2

j )‖ηkj ‖2 − (2/βj)hj(Fjxk), j = 1, . . . , N ,

respectively (see [26]).
Now we give our ball-relaxed CQ algorithm for solving the SFPMOS (1.1), where

C and Qj , j = 1, . . . , N , are given in (A2).

Algorithm 3.1.

Initial Step. Select a sequence {αk} ⊂ (0, 1) satisfies the condition (α), a sequence
{ηk} such that limk→∞

ηk
αk

= 0, {ρk} ⊂ (0, 2), {ek} ⊂ (0, c], where c > 0 is a

constant, and θ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary. Input k := 1.

Iterative Step. Given the iterates xk−1 and xk (k ≥ 1), calculate xk+1 as follows.

Step 1. Compute wk = xk + θk
(
xk − xk−1

)
, where

θk =

{
min

{
ηk

‖xk−xk−1‖ , θ
}
, if xk 6= xk−1,

θ, otherwise.
(θ)

Step 2. Compute yk = PCbkw
k. Let `k = ‖yk − wk‖.

Step 3. Compute vkj = PQb
j,k
Fjwk, j = 1, . . . , N .

Let jk ∈ arg max
{
‖vkj −Fjwk‖

∣∣ j = 1, 2, . . . , N
}

, `jk := ‖vkjk −Fjkwk‖.

Step 4. Let Lk = max
{
`k, `jk

}
.

If Lk = `k, then compute zk = wk − γk(I − PCbk)wk, where

γk = ρk
`2k

‖(I − PCbk)wk‖2 + ek
. (γCT)

If Lk = `jk , then compute zk = wk − γkF∗jk(I − PQb
jk,k

)Fjkwk, where

γk = ρk
`2jk

‖F∗jk(I − PQb
jk,k

)Fjkwk‖2 + ek
. (γQT)

Step 5. Compute xk+1 = αkf(xk) + (1− αk)PCbkz
k. Set k := k+ 1 and go to Step

1.

Remark 3.2. 1. From (3.1) and (3.2), we get C ⊆ Cbk and Qj ⊆ Qbj,k for all

j = 1, . . . , N and k ≥ 1. Since Cbk and Qbj,k, j = 1, . . . , N , are balls, then the

orthogonal projections onto Cbk and Qbj,k can be directly calculated. Thus the
proposed algorithm is easily implemented.

2. The inertial calculation criterion (θ) is easy to implement since the term∥∥xk − xk−1
∥∥ is known before calculating θk. Moreover, it follows from (α) and

(θ) that limk→∞
θk
αk

∥∥xk − xk−1
∥∥ = 0. Indeed, we obtain θk

∥∥xk − xk−1
∥∥ ≤ ηk

for all k ≥ 1 which together with limk→∞
ηk
αk

= 0 implies that

limk→∞
θk
αk

∥∥xk − xk−1
∥∥ ≤ limk→∞

ηk
αk

= 0.



1492 N. T. T. Thuy & N. T. Nghia

In Algorithm 3.1, we assume that g and hj , j = 1, . . . , N , are strongly convex
functions. When g is strongly convex function and hj is only convex function, we
modify Algorithm 3.1 to the following algorithm.

Algorithm 3.2.

Initial Step. Select a sequence {αk} ⊂ (0, 1) satisfies the condition (α), a sequence
{ηk} such that limk→∞

ηk
αk

= 0, {ρk} ⊂ (0, 2), {ek} ⊂ (0, c], where c > 0 is a

constant, and θ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary. Input k := 1.

Iterative Step. Given the iterates xk−1 and xk (k ≥ 1), calculate xk+1 as follows.

Step 1. Compute wk = xk + θk
(
xk − xk−1

)
, where θk is defined by (θ).

Step 2. Compute yk = PCbkw
k. Let `k = ‖yk − wk‖.

Step 3. Compute vkj = PQj,k
Fjwk, j = 1, . . . , N , where Qj,k is defined as

Qj,k =
{
yj ∈ Hj | hj(Fjxk) + 〈ηkj , yj −Fjxk〉 ≤ 0

}
, j = 1, . . . , N. (Qj,k)

Let jk ∈ arg max
{
‖vkj −Fjwk‖

∣∣ j = 1, 2, . . . , N
}

, `jk := ‖vkjk −Fjkwk‖.

Step 4. Let Lk = max
{
`k, `jk

}
.

If Lk = `k, then compute zk = wk − γk(I − PCbk)wk, where γk is defined by

(γCT).
If Lk = `jk , then compute zk = wk − γkF∗jk(I − PQjk,k

)Fjkwk, where γk is
defined by

γk = ρk
`2jk

‖F∗jk(I − PQjk,k
)Fjkwk‖2 + ek

. (γQ2T)

Step 5. Compute xk+1 = αkf(xk) + (1− αk)PCbkz
k. Set k := k+ 1 and go to Step

1.

If g is convex function and hj is strongly convex function, then we use the
following algorithm to solve the SFPMOS.

Algorithm 3.3.

Initial Step. Select a sequence {αk} ⊂ (0, 1) satisfies the condition (α), a sequence
{ηk} such that limk→∞

ηk
αk

= 0, {ρk} ⊂ (0, 2), {ek} ⊂ (0, c], where c > 0 is a

constant, and θ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary. Input k := 1.

Iterative Step. Given the iterates xk−1 and xk (k ≥ 1), calculate xk+1 as follows.

Step 1. Compute wk = xk + θk
(
xk − xk−1

)
, where θk is defimed by (θ).

Step 2. Compute yk = PCkw
k, where Ck is defined by (Ck). Let `k = ‖yk − wk‖.

Step 3. Compute vkj = PQb
j,k
Fjwk, j = 1, . . . , N .

Let jk ∈ arg max
{
‖vkj −Fjwk‖

∣∣ j = 1, 2, . . . , N
}

, `jk := ‖vkjk −Fjkwk‖.

Step 4. Let Lk = max
{
`k, `jk

}
.



Inertial ball-relaxed CQ algorithms... 1493

If Lk = `k, then compute zk = wk − γk(I − PCk)wk, where γk is defined by

γk = ρk
`2k

‖(I − PCk)wk‖2 + ek
. (γC2T)

If Lk = `jk , then compute zk = wk − γkF∗jk(I − PQb
jk,k

)Fjkwk, where γk is

defined by (γQT).

Step 5. Compute xk+1 = αkf(xk) + (1− αk)PCkz
k. Set k := k+ 1 and go to Step

1.

3.2. Convergence analysis

In this section, we will establish the convergence of the proposed algorithms. We
only give the convergence proof of Algorithm 3.1, since the convergence of Algo-
rithms 3.2 and 3.3 can be obtained by the same method.

Theorem 3.1. Assume that the conditions (A1), (A2), and (A3) are satisfied,
infk ρk(2 − ρk) > 0, and f : H → H is a contraction mapping with the contraction
coefficient τ ∈ [0, 1). Then the sequence {xk} generated by Algorithm 3.1 converges
strongly to a point u∗ ∈ Ω, which is the unique solution to the VIP (1.3).

Proof. Since PΩf is a contraction mapping, Banach’s fixed point theorem guaran-
tees that PΩf has a unique fixed point u∗, which is the unique solution to the vari-
ational inequality problem (1.3). In particular u∗ ∈ Ω, i.e., u∗ ∈ C and Fju∗ ∈ Qj
for all j = 1, . . . , N . We divide the proof into two claims.

Claim 1. The sequences {xk} is bounded.

Let us consider two cases.

Case 1 (Lk = `k). Since u∗ ∈ C and C ⊆ Cbk, then u∗ = PCbku
∗. It follows from the

1-inverse strong monotonicity of I − PCbk that

〈(I − PCbk)wk, wk − u∗〉 = 〈(I − PCbk)wk − (I − PCbk)u∗, wk − u∗〉 ≥ ‖(I − PCbk)wk‖2.

From this inequality and Step 4 in Algorithm 3.1, we have

‖zk − u∗‖2 = ‖wk − u∗‖2 + γ2
k‖(I − PCbk)wk‖2 − 2γk〈(I − PCbk)wk, wk − u∗〉

≤ ‖wk − u∗‖2 + γ2
k‖(I − PCbk)wk‖2 − 2γk‖(I − PCbk)wk‖2

≤ ‖wk − u∗‖2 − ρk(2− ρk)
`4k

‖(I − PCbk)wk‖2 + ek
. (3.3)

Case 2 (Lk = `jk). From Fju∗ ∈ Qj and Qj ⊆ Qbj,k for all j = 1, . . . , N , we

get Qjk ⊆ Qbjk,k and Fjku∗ = PQb
jk,k
Fjku∗. It follows from the 1-inverse strong

monotonicity of I − PQb
jk,k

that

〈(I − PQb
jk,k

)Fjkwk,Fjkwk −Fjku∗〉

=
〈
(I − PQb

jk,k
)Fjkwk − (I − PQb

jk,k
)Fjku∗,Fjkwk −Fjku∗

〉



1494 N. T. T. Thuy & N. T. Nghia

≥‖(I − PQb
jk,k

)Fjkwk‖2.

From this inequality, Step 4 in Algorithm 3.1, and the property of the adjoint
operator F∗jk , we get

‖zk − u∗‖2 = ‖wk − u∗‖2 + γ2
k‖F∗jk(I − PQb

jk,k
)Fjkwk‖2

− 2γk
〈
(I − PQb

jk,k
)Fjkwk,Fjkwk −Fjku∗

〉

≤ ‖wk − u∗‖2 + γ2
k‖F∗jk(I − PQb

jk,k
)Fjkwk‖2 (3.4)

− 2γk‖(I − PQb
jk,k

)Fjkwk‖2

≤ ‖wk − u∗‖2 − ρk(2− ρk)
`4jk

‖F∗jk(I − PQb
jk,k

)Fjkwk‖2 + ek
. (3.5)

It follows from ρk ∈ (0, 2), (3.3) and (3.4) that

‖zk − u∗‖2 ≤ ‖wk − u∗‖2. (3.6)

Now, from Step 1 in Algorithm 3.1, we get

‖wk − u∗‖ ≤ ‖xk − u∗‖+ θk‖xk − xk−1‖ ≤ ‖xk − u∗‖+ αkM1, (3.7)

where M1 is a positive number such that θk
αk
‖xk − xk−1‖ ≤M1 for all k ≥ 1.

Since f is a contraction with a contraction coefficient τ ∈ [0, 1), PCbk is a nonex-

pansive mapping, it follows from Step 5 in Algorithm 3.1, the convexity of the ‖ · ‖,
{αk} ⊂ (0, 1), (3.6), and (3.7) that

‖xk+1 − u∗‖ =
∥∥αk(f(xk)− u∗) + (1− αk)

(
PCbkz

k − PCbku
∗)∥∥

≤ αk‖f(xk)− f(u∗) + f(u∗)− u∗‖+ (1− αk)‖zk − u∗‖

≤ αkτ‖xk − u∗‖+ αk‖f(u∗)− u∗‖+ (1− αk)
(
‖xk − u∗‖+ αkM1

)

≤
[
1− αk(1− τ)

]
‖xk − u∗‖+ αk(1− τ)

‖f(u∗)− u∗‖+ (1− αk)M1

1− τ
≤ max

{
‖xk − u∗‖, ‖f(u∗)− u∗‖+ (1− αk)M1

1− τ
}

...

≤ max
{
‖x1 − u∗‖, ‖f(u∗)− u∗‖+ (1− α1)M1

1− τ
}
, k ≥ 1. (3.8)

Hence, the sequence {xk} is bounded and so are the sequences {wk}, {Fjwk}, and
{f(xk)} thanks to (3.7), the boundedness of Fj , and the contraction property of f .

Claim 2. The sequence {xk} converges strongly to u∗.



Inertial ball-relaxed CQ algorithms... 1495

It follows from Step 1 in Algorithm 3.1 that

‖wk − u∗‖2 ≤ ‖xk − u∗‖2 + θ2
k‖xk − xk−1‖2 + 2θk‖xk − u∗‖‖xk − xk−1‖

≤ ‖xk − u∗‖2 + ηkM2, (3.9)

where M2 = supk≥1{2‖xk − u∗‖ + αkM1}. From Step 5 in Algorithm 3.1 and the
nonexpansiveness of PCbk , we obtain

‖xk+1 − u∗‖2

=〈αk(f(xk)− u∗) + (1− αk)(PCbkz
k − PCbku

∗), xk+1 − u∗〉

=αk〈f(xk)− f(u∗), xk+1 − u∗〉+ αk〈f(u∗)− u∗, xk+1 − u∗〉

+ (1− αk)〈PCbkz
k − PCbku

∗, xk+1 − u∗〉

≤αk
2

(
‖f(xk)− f(u∗)‖2 + ‖xk+1 − u∗‖2

)
+ αk〈f(u∗)− u∗, xk+1 − u∗〉

+
1− αk

2

(
‖zk − u∗‖2 + ‖xk+1 − u∗‖2

)
.

Since f is a contraction with a contraction coefficient τ ∈ [0, 1), it follows from this
inequality, (3.6) and (3.9) that

‖xk+1 − u∗‖2 ≤ αkτ2‖xk − u∗‖2 + 2αk〈f(u∗)− u∗, xk+1 − u∗〉

+ (1− αk)‖xk − u∗‖2 + (1− αk)ηkM2

=
[
1− αk(1− τ2)

]
‖xk − u∗‖2 + 2αk〈f(u∗)− u∗, xk+1 − u∗〉

+ (1− αk)ηkM2

= (1− ak)‖xk − u∗‖2 + akbk, (3.10)

where,

ak = αk(1− τ2) and bk =
1

1− τ2

[
(1− αk)

ηk
αk
M2 + 2〈f(u∗)− u∗, xk+1 − u∗〉

]
.

Consider two possible cases.

Case 1 (Lk = `k). Since PCbk is firmly nonexpansive, from Step 5 in Algorithm 3.1,

the convexity of the ‖ · ‖2, {αk} ⊂ (0, 1), (3.3), and (3.9), we have

‖xk+1 − u∗‖2 ≤ αk‖f(xk)− u∗‖2 + (1− αk)‖PCbkz
k − PCbku

∗‖2

≤ αk‖f(xk)− u∗‖2 + (1− αk)
[
‖zk − u∗‖2 − ‖(I − PCbk)zk‖2

]

≤ ‖xk − u∗‖2 − ρk(2− ρk)
`4k

‖(I − PCbk)wk‖2 + ek
− ‖(I − PCbk)zk‖2

+ αk‖f(xk)− u∗‖2 + ηkM2



1496 N. T. T. Thuy & N. T. Nghia

= ‖xk − u∗‖2 − ck + dk, (3.11)

where

ck = ρk(2− ρk)
`4k

‖(I − PCbk)wk‖2 + ek
+ ‖(I − PCbk)zk‖2

and

dk = αk‖f(xk)− u∗‖2 + ηkM2.

Putting sk = ‖xk − u∗‖2, then (3.10) and (3.11) can be rewritten as

sk+1 ≤ (1− ak)sk + akbk and sk+1 ≤ sk − ck + dk. (3.12)

From (α) and τ ∈ [0, 1), it is easy to know that {ak} ⊂ (0, 1) and
∑∞
k=0 ak = ∞.

From the boundedness of sequence {f(xk)}, ηk/αk → 0 as k → ∞, and αk → 0,
we get limk→∞ dk = 0. So, from Lemma 2.3, limk→∞ sk = 0 if we can show that
lim supl→∞ bkl ≤ 0 whenever liml→∞ ckl = 0 for any {kl} ⊂ {k}. Indeed, for any
{kl} ⊂ {k}, by the boundedness of {wkl} and ek ∈ (0, c], we have the sequence
{‖(I − PCbkl

)wkl‖2 + ekl} is bounded. It then follows from liml→∞ ckl = 0 and

ρk ∈ (0, 2) that

lim
l→∞

‖(I − PCbkl

)wkl‖ = 0, (3.13)

lim
l→∞

‖(I − PCbkl

)zkl‖ = 0. (3.14)

Since the sequence {xkl} is bounded, ωw(xkl) 6= ∅. Taking û ∈ ωw(xkl), there exist
subsequences {xklm} of {xkl} such that it is weakly convergent to û as m → ∞.
Since each Fj is a bounded linear operator, it follows that Fjxklm ⇀ Fj û for all
j = 1, . . . , N . The main purpose of the remaining proof is to show that û is a
solution of the SFPMOS (1.1).

First we show û ∈ C. Indeed, from Step 1 in Algorithm 3.1, αk → 0, and
ηk/αk → 0 as k →∞, we get

‖wk − xk‖ = θk‖xk − xk−1‖ ≤ ηk → 0 as k →∞. (3.15)

By the definition of Cbk and the fact that PCbklm

wklm ∈ Cbklm , we obtain

g(xklm ) ≤ 〈ξklm , xklm − PCbklm

wklm 〉 − β

2
‖PCbklm

wklm − xklm‖2

≤ ‖ξklm‖
(
‖xklm − wklm‖+ ‖(I − PCbklm

)wklm ‖
)
.

This together with g is ω-lsc, ∂g is bounded on bounded sets, (3.13), and (3.15),
implies that

g(û) ≤ lim inf
m→∞

g(xklm ) ≤ lim
m→∞

‖ξklm ‖
(
‖xklm − wklm ‖+ ‖(I − PCbklm

)wklm‖
)

= 0,

which means that û ∈ C.



Inertial ball-relaxed CQ algorithms... 1497

We next turn to prove Fj û ∈ Qj for all j = 1, . . . , N . Indeed, since Lk = `k,
(3.13), and Steps 2–4 in Algorithm 3.1, we get

lim
l→∞

‖(I − PQb
jk,kl

)Fjkwkl‖ = 0

and then

lim
m→∞

‖(I − PQb
j,klm

)Fjwklm‖ = 0 for all j = 1, . . . , N. (3.16)

From the definition of Qbj,klm and the fact that PQb
j,klm

Fjwklm ∈ Qbj,klm , we get

hj(Fjxklm )

≤〈ηklmj ,Fjxklm − PQb
j,klm

Fjwklm 〉 −
βj
2
‖PQb

j,klm

Fjwklm −Fjxklm‖2

≤‖ηklmj ‖
(
‖Fj‖‖xklm − wklm ‖+ ‖(I − PQb

j,klm

)Fjwklm ‖
)
∀j = 1, . . . , N.

Combining this inequality with Fj is a bounded linear operator, ∂hj is bounded on
bounded sets, hj is ω-lsc, (3.15), and (3.16), we obtain

hj(Fj û) ≤ lim inf
m→∞

hj(Fjxklm )

≤ lim
m→∞

‖ηklmj ‖
(
‖Fj‖‖xklm − wklm‖+ ‖(I − PQb

j,klm

)Fjwklm‖
)

= 0,

for all j = 1, . . . , N , which means that Fj û ∈ Qj for all j = 1, . . . , N . Hence, we
conclude that û ∈ Ω.

Now, we prove that lim supl→∞ bkl ≤ 0. Indeed, let {xkl′} be a subsequence of
{xkl} such that

lim sup
l→∞

〈f(u∗)− u∗, xkl − u∗〉 = lim
l′→∞

〈f(u∗)− u∗, xkl′ − u∗〉. (3.17)

Since {xkl′} is bounded, there exists a subsequence of {xkl′} which converges weakly
to ũ. We may assume, without any loss of generality, that xkl′ ⇀ ũ. Similar to the
proof of û ∈ Ω, we have ũ ∈ Ω. Thus, by (1.3) and (3.17), we obtain

lim sup
l→∞

〈f(u∗)− u∗, xkl − u∗〉 = 〈(f − I)u∗, ũ− u∗〉 ≤ 0. (3.18)

In order to show that lim supl→∞ bkl ≤ 0, we need to prove that

lim
l→∞

‖xkl+1 − xkl‖ = 0.

Indeed, from the boundedness of the sequences {wk}, {f(xk)} and {‖(I−PCbkw
k)‖2+

ek}, αk → 0, ρk ∈ (0, 2), (3.13), and (3.14), it follows from Steps 4 and 5 in
Algorithm 3.1 that

‖xk+1 − zk‖ = ‖αk(f(xk)− wk + wk − zk) + (1− αk)(PCbkz
k − zk)‖



1498 N. T. T. Thuy & N. T. Nghia

≤ αk
(
‖f(xk)‖+ ‖wk‖+ ρk‖(I − PCbk)wk‖

)

+ (1− αk)‖(I − PCbk)zk‖ → 0 as k →∞. (3.19)

From Step 4 in Algorithm 3.1, ρk ∈ (0, 2), and (3.13), we also have

‖zk − wk‖ ≤ ρk‖(I − PCbk)wk‖ → 0 as k →∞. (3.20)

It follows from (3.15), (3.19), and (3.20) that

‖xkl+1 − xkl‖ ≤ ‖xkl+1 − zkl‖+ ‖zkl − wkl‖+ ‖wkl − xkl‖ → 0 as l→∞. (3.21)

From (3.18) and (3.21), we get

lim sup
l→∞

bkl =
2

1− τ2
lim sup
l→∞

〈f(u∗)− u∗, xkl+1 − u∗〉

=
2

1− τ2
lim sup
l→∞

[
〈f(u∗)− u∗, xkl+1 − xkl〉+ 〈f(u∗)− u∗, xkl − u∗〉

]

= lim sup
l→∞

〈f(u∗)− u∗, xkl − u∗〉

≤ 0.

Case 2 (Lk = `jk). Similarly as (3.11), since PCbk is firmly nonexpansive, from Step

5 in Algorithm 3.1, the convexity of ‖ · ‖2, and (3.4), we have

‖xk+1 − u∗‖2 ≤ ‖xk − u∗‖2 − ρk(2− ρk)
`4jk

‖F∗jk(I − PQb
jk,k

)Fjkwk‖2 + ek

− ‖(I − PCbk)zk‖2 + αk‖f(xk)− u∗‖2 + ηkM2

= ‖xk − u∗‖2 − ĉk + dk, (3.22)

where

ĉk = ρk(2− ρk)
`4jk

‖F∗jk(I − PQb
jk,k

)Fjkwk‖2 + ek
+ ‖(I − PCbk)zk‖2,

and then (3.10) and (3.22) can also be rewritten as

sk+1 ≤ (1− ak)sk + akbk and sk+1 ≤ sk − ĉk + bk. (3.23)

Arguing similarly as in the first case, for any {kl} ⊂ {k} and liml→∞ ĉkl = 0, we
have

lim
l→∞

‖(I − PQb
j,kl

)Fjwkl‖ = 0 for all j = 1, . . . , N,

lim
l→∞

‖(I − PCbkl

)zkl‖ = 0,

and lim supl→∞ bkl ≤ 0.



Inertial ball-relaxed CQ algorithms... 1499

Therefore, it follows from (3.12), (3.23), and Lemma 2.3 that limk→∞ sk = 0,
that is

lim
k→∞

‖xk − u∗‖ = 0.

Thus, the sequence {xk} generated by Algorithm 3.1 converges strongly to u∗ ∈ Ω
which is the unique solution of the VIP (1.3).

Theorem 3.2. Assume that all the conditions in Theorem 3.1 are satisfied. Then
the sequence {xk} generated by Algorithm 3.2 converges strongly to a point u∗ ∈ Ω,
which is the unique solution to the variational inequality (1.3).

Theorem 3.3. Assume that all the conditions in Theorem 3.1 are satisfied. Then
the sequence {xk} generated by Algorithm 3.3 converges strongly to a point u∗ ∈ Ω,
which is the unique solution to the variational inequality (1.3).

4. Corollaries

If N = 1, then the SFPMOS reduces to the SFP. In what follows, from Algorithms
3.1, 3.2 and 3.3, we get some methods to SFP, where Cbk and Qbk are defined by (Cbk)
and (Qbk), respectively.

Corollary 4.1. Assume that all the conditions in Theorem 3.1 are satisfied when
N = 1. Then the sequence {xk} generated by





wk = xk + θk
(
xk − xk−1

)
,

yk = PCbkw
k, `k = ‖yk − wk‖,

vk = PQb
k
Fwk, ˜̀k = ‖vk −Fwk‖,

if `k ≥ ˜̀k, then zk = wk − ρk `2k
‖(I−PCb

k
)wk‖2+ek

(I − PCbk)wk,

if ˜̀k > `k, then zk = wk − ρk
˜̀2
k

‖F∗(I−PQb
k

)Fwk‖2+ek
F∗(I − PQb

k
)Fwk,

xk+1 = αkf(xk) + (1− αk)PCbkz
k,

(4.1)

strongly converges to u∗ ∈ ΩSFP, the unique solution to the VIP (1.3) with Ω replaced
by ΩSFP, provided that the solution set ΩSFP = {x ∈ C | Fx ∈ Q} of the SFP is
nonempty.

When Qbk replaced by Qk in (Qk), we obtain the following result.

Corollary 4.2. Assume that all the conditions in Theorem 3.1 are satisfied when
N = 1. Then the sequence {xk} generated by





wk = xk + θk
(
xk − xk−1

)
,

yk = PCbkw
k, `k = ‖yk − wk‖,

vk = PQk
Fwk, ˜̀k = ‖vk −Fwk‖,

if `k ≥ ˜̀k, then zk = wk − ρk `2k
‖(I−PCb

k
)wk‖2+ek

(I − PCbk)wk,

if ˜̀k > `k, then zk = wk − ρk
˜̀2
k

‖F∗(I−PQk
)Fwk‖2+ek

F∗(I − PQk
)Fwk,

xk+1 = αkf(xk) + (1− αk)PCbkz
k,

(4.2)



1500 N. T. T. Thuy & N. T. Nghia

strongly converges to u∗ ∈ ΩSFP, the unique solution to the VIP (1.3) with Ω replaced
by ΩSFP, provided that the solution set ΩSFP of the SFP is nonempty.

When Cbk replaced by Ck in (Ck), we obtain the following result.

Corollary 4.3. Assume that all the conditions in Theorem 3.1 are satisfied when
N = 1. Then the sequence {xk} generated by





wk = xk + θk
(
xk − xk−1

)
,

yk = PCkw
k, `k = ‖yk − wk‖,

vk = PQb
k
Fwk, ˜̀k = ‖vk −Fwk‖,

if `k ≥ ˜̀k, then zk = wk − ρk `2k
‖(I−PCk )wk‖2+ek

(I − PCk)wk,

if ˜̀k > `k, then zk = wk − ρk
˜̀2
k

‖F∗(I−PQb
k

)Fwk‖2+ek
F∗(I − PQb

k
)Fwk,

xk+1 = αkf(xk) + (1− αk)PCkz
k,

(4.3)

strongly converges to u∗ ∈ ΩSFP, the unique solution to the VIP (1.3) with Ω replaced
by ΩSFP, provided that the solution set ΩSFP of the SFP is nonempty.

5. Numerical experiments

This section presents three numerical experiments, where all the iterative schemes
are implemented in Python 3.7 running on a laptop with Intel(R) Core(TM) i5-
5200U CPU @ 2.20GHz, 12 GB RAM. In the following tables, we denote by Iter.
(k) and CPU (s) the number of iterations and the computational time needed to
reach the stopping condition of each algorithm, respectively.

Example 5.1. Firstly, we study the following instance of the split feasibility prob-
lem with multiple output sets. Let H = R2, Hj = Rj+2, j = 1, 2, 3. The subsets C
and Qj are determined as follows

C =
{
x ∈ R2 | ‖x− (1, 1)>‖2 ≤ 1

}
,

Q1 =
{
y ∈ R3 | ‖y − (2, 2,

√
2)>‖2 ≤ 2

}
,

Q2 =
{
y ∈ R4 | ‖y − (

√
3, 2, 2, 2)>‖2 ≤ 3

}
,

Q3 =
{
y ∈ R5 | ‖y − (2, 2, 4, 2, 2)>‖2 ≤ 8

}
.

The bounded linear operators Fj : R2 → Rj+2, j = 1, 2, 3, are determined as

F1 : R2 → R3, F1(x) = (x1, x1,
√

2x2)>,

F2 : R2 → R4, F2(x) = (
√

3x1, x2, x2, x2)>,

F3 : R2 → R5, F3(x) = (x2, x2, 2x1, x2, x2)>.

Then, the solution set of this (1.1) is given by

Ω = C ∩




x ∈ R2

∣∣∣∣∣∣∣





(x1 − 2)2 + (x2 − 1)2 ≤ 1

(x1 − 1)2 + (x2 − 2)2 ≤ 1

(x1 − 2)2 + (x2 − 2)2 ≤ 2




.



Inertial ball-relaxed CQ algorithms... 1501

Table 1. Numerical results of Algorithm 3.1 in Example 5.1 with different initial guesses

x? xk1 xk2 ‖xk − u∗‖ Iter. (k) CPU (s)

(−15,−20)> 1.0000069 0.9999008 9.9470756× 10−5 45 0.03398

(0, 0)> 1.0000705 1.0000705 9.9766478× 10−5 75 0.04497

(5, 5)> 0.9999171 0.9999820 8.4885202× 10−5 589 0.32381

Choosing the contraction mapping f(x) = τx with τ ∈ [0, 1), it is not difficult to
see that u∗ = (1, 1)> is the unique solution to the problem VIP (1.3).

Now, we consider Algorithm 3.1 with αk = 1/(k + 1), ηk = 1/(k2 + 1), ρk =
1.99, ek = 10−7 for all k ≥ 1, f(x) = 0.95x for all x ∈ R2, and θ = 0.5. Let x? be
a given point in C, and let x0 = x?/2, x1 = x?. Then, under the stopping criterion
‖xk − u∗‖ ≤ 10−4, we obtain Table 1 of numerical results. It can be seen that the
iterative sequences {xk} converge to the unique solution u∗ = (1, 1)> of the VIP
(1.3).

In what follows, we demonstrate the efficiency of our algorithm through compar-
ing it with (1.4) denoted by Cuong’s Alg. [9], and the two versions of the relevant
iterative scheme (1.2): (1.2) with the step size criterion (γR) and (1.2) with the step
size criterion (γW), which are denoted by Reich’s Alg. [18] and Wang’s Alg. [23],
respectively. The parameters and mappings are chosen as follows:

• In our algorithm: αk = 1
k+1 , ηk = 1

k2+1 , ρk = 1.99, ek = 10−7 for all k ≥ 1,

f(x) = 0.95x for all x ∈ R2, θ = 0.5, and x0 = 1
2x

?, x1 = x?, where x? ∈ R2

is a given initial point.

• In Reich’s Alg.: αk = 1
k+1 , γk = 1.5

3 maxj=1,2,3 ‖Fj‖2 for all k ≥ 1, f(x) = 0.95x

for all x ∈ R2, and x1 = x?, where x? ∈ R2 is a given initial point.

• In Wang’s Alg.: αk = 1
k+1 for all k ≥ 1, f(x) = 0.95x for all x ∈ R2, and

x1 = x?, where x? ∈ R2 is a given initial point.

• In Cuong’s Alg.: αk = 1
k+1 for all k ≥ 1, A = I − f where f(x) = 0.95x for

all x ∈ R2, and x1 = x?, where x? ∈ R2 is a given initial point.

Then, using the stopping criterion ‖xk−u∗‖ ≤ 10−4, we obtain Table 2 and Figure
1 of numerical results. From Table 2 and Figure 1, our algorithm presents better
performance than the three related ones.

Example 5.2. It is especially significant when C and Qj , j = 1, . . . , N , are gen-
eral closed convex sets, where the metric projection onto these sets might not be
computed efficiently. The Example 5.2 demonstrates one such case.

Consider the following split feasibility problem with multiple output sets. Let
H = RL, Hj = RL(j+1), j = 1, . . . , N . Let

C =
{
x ∈ RL

∣∣∣
L∑

i=1

10(i−1)/(L−1)x2
i ≤ 1

}
,

Qj =
{
y ∈ RL(j+1)

∣∣∣
L(j+1)∑

i=1

10(i−1)/(L(j+1)−1)y2
i ≤ 1

}
, j = 1, . . . , N.



1502 N. T. T. Thuy & N. T. Nghia

Table 2. Numerical results of the algorithm (3.1), Reich’s Alg [18], Wang’s Alg. [23], and Cuong’s
Alg. [9] in Example 5.1 with different initial guesses

x? Algorithm Iter. (k) CPU (s)

x? = (0.5, 0.5)> Our algorithm 49 0.03298

Reich’s Alg. 2709 0.52870

Wang’s Alg. 723 0.19791

Cuong’s Alg. 1927 0.60965

x? = (1.8, 0.8)> Our algorithm 482 0.23686

Reich’s Alg. 8103 1.39522

Wang’s Alg. 5267 1.33923

Cuong’s Alg. 5454 1.50514

x? =
(

2−
√

2
2 , 2−

√
2

2

)>
Our algorithm 15 0.01299

Reich’s Alg. 2709 0.51572

Wang’s Alg. 723 0.18492

Cuong’s Alg. 1927 0.59264

The matrix Fj = (apq)L(j+1)×L, apq ∈ [0, 5] are generated randomly. It is obvious

that C and Qj are ellipsoids [10]. Furthermore, g(x) =
∑L
i=1 10(i−1)/(L−1)x2

i −1 is a

strongly convex function with constant 2, and hj(y) =
∑L
i=1 10(i−1)/(L(j+1)−1)y2

i −1
is also a strongly convex function with constant 2. So such an SFPMOS can be
solved by the proposed algorithms.

Now, we consider the convergence of Algorithm 3.1 with L = 100, N = 10. The
parameters and mappings are chosen as follows: αk = 1

k+1 , ηk = 1
k2+1 , ek = 10−5

for all k ≥ 1, θ = 0.5, f(x) = 0.1x for all x ∈ R2. Let x? ∈ R100 be a given point,
and let x0 = 1

2x
?, x1 = x?. Then, using the stopping condition ‖xk−xk−1‖ ≤ 10−6,

we obtain Table 3 of numerical results.

Remark 5.1. In this example, the sets C and Qj , j = 1, . . . , N are ellipsoids, where
an explicit form for the metric projection onto these sets as in Example 5.1 does not
exist anymore. Although there exist some methods for approximating the metric
projection onto ellipsoids, implementing algorithms that directly rely on projecting
onto the original subsets, like Reich’s Alg., Wang’s Alg., and Cuong’s Alg., remains
challenging due to the potential errors associated with projection approximation.

Example 5.3 (see [26]). In statistics and, in particular, in the fitting of linear or
logistic regression models, the elastic net is a regularized regression method that
linearly combines the L1 and L2 penalties of the LASSO (least absolute shrinkage
and selection operator) and ridge methods [27]. The elastic net method overcomes
the limitations of the LASSO method which uses a penalty function based on ‖x‖1 =∑L
i=1 |xi|. The estimates from the elastic net method are defined by

x∗ = arg min
x

{
‖y −Fx‖2 + λ1‖x‖1 + λ2‖x‖2

}
, (5.1)

where F is an K×L real matrix, y ∈ RK is a vector of observation, and x ∈ RL is a
vector of estimating parameters. Let λ = λ2/(λ1 +λ2), then solving x∗ in Equation



Inertial ball-relaxed CQ algorithms... 1503

0 500 1000 1500 2000 2500

Iter. (k)

10−4

10−3

10−2

10−1

100

‖x
k
−
u
∗ ‖

x? = (0.5, 0.5)>

Our algorithm

Reich’s Alg.

Wang’s Alg.

Cuong’s Alg.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

CPU (s)

10−4

10−3

10−2

10−1

100

‖x
k
−
u
∗ ‖

x? = (0.5, 0.5)>

Our algorithm

Reich’s Alg.

Wang’s Alg.

Cuong’s Alg.

0 2000 4000 6000 8000

Iter. (k)

10−4

10−3

10−2

10−1

100

‖x
k
−
u
∗ ‖

x? = (1.8, 0.8)>

Our algorithm

Reich’s Alg.

Wang’s Alg.

Cuong’s Alg.

0.00 0.25 0.50 0.75 1.00 1.25 1.50

CPU (s)

10−4

10−3

10−2

10−1

100

‖x
k
−
u
∗ ‖

x? = (1.8, 0.8)>

Our algorithm

Reich’s Alg.

Wang’s Alg.

Cuong’s Alg.

0 500 1000 1500 2000 2500

Iter. (k)

10−4

10−3

10−2

10−1

100

‖x
k
−
u
∗ ‖

x? =
(

2−
√

2
2
, 2−

√
2

2

)>

Our algorithm

Reich’s Alg.

Wang’s Alg.

Cuong’s Alg.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

CPU (s)

10−4

10−3

10−2

10−1

100

‖x
k
−
u
∗ ‖

x? =
(

2−
√

2
2
, 2−

√
2

2

)>

Our algorithm

Reich’s Alg.

Wang’s Alg.

Cuong’s Alg.

Figure 1. The behaviors of the algorithm (3.1), Reich’s Alg [18], Wang’s Alg. [23], and Cuong’s Alg. [9]
in Example 5.1 with different initial guesses

(5.1) is equivalent to the optimization problem

x∗ = arg min
x

{
‖y −Fx‖2

}
such that (1− λ)‖x‖1 + λ‖x‖2 ≤ t for some t > 0.

(5.2)

The function (1−λ)‖x‖1 +λ‖x‖2 is called the elastic net penalty, which is a convex
combination of the LASSO and ridge penalty. Let g(x) = (1− λ)‖x‖1 + λ‖x‖2 − t,
then (5.2) is a particular case of the SFP, where C = {x ∈ RL | g(x) ≤ 0} and
Q = {y}, i.e. find x∗ ∈ C such that Fx∗ = y. Moreover, when λ > 0, g(x) is a
strongly convex function with constant 2λ, since g(x)−(2λ/2)‖x‖2 = (1−λ)‖x‖1−t
is a convex function. Therefore, our algorithm can be applied to solve (5.2).



1504 N. T. T. Thuy & N. T. Nghia

Table 3. Numerical results of Algorithm 3.1 in Example 5.2 with different choices of ρk and initial
guesses

x? ρk Iter. (k) CPU (s)

x? = (1, 1, . . . , 1)> ρk = 0.1 474 6.69064

ρk = 0.5 349 5.00825

ρk = 1.0 133 1.87854

ρk = 1.5 93 1.35527

ρk = 1.9 78 1.10713

x? = (10, 10, . . . , 10)> ρk = 0.1 941 13.17145

ρk = 0.5 693 9.89138

ρk = 1.0 371 5.12882

ρk = 1.5 401 5.56881

ρk = 1.9 340 4.86921

x? = (100, 100, . . . , 100)> ρk = 0.1 1467 21.38174

ρk = 0.5 867 12.36122

ρk = 1.0 467 6.46011

ρk = 1.5 600 8.44477

ρk = 1.9 1092 15.12869

In this experiment, we set K = 1500, L = 2000. The matrix F is randomly
generated by a standardized normal distribution, and the vector x ∈ RL is also
randomly generated with n nonzero coordinates taking values randomly in [−2, 2]
for some n > 0. Then, the observation vector y is generated as y = Fx. We
provided some comparisons to the algorithm (1.7) of Yang [24], the algorithm (1.8)
of López et al. [16], the algorithm (1.9) of Yu et al. [26], and the algorithm (1.10)
of Dang et al. [10]. The involving parameters and operators are chosen as follows:

• In our algorithm: ρk = 0.5, αk = 1
k+1 , ηk = 1

k1.1+1 , ek = 10−3 for all k ≥ 1,
θ = 0.1, f(x) = 0.9999x.

• In Yu’s Alg.: ρk = 0.5 for all k ≥ 1.

• In López’s Alg: ρk = 0.5 for all k ≥ 1.

• In Yang’s Alg.: γ = 1.95
‖F‖2 .

• In Dang’s Alg.: γ = 1.95
‖F‖2 , θ = 0.1, θk = 1

2 θ̄k for each k ≥ 1.

In all algorithms, the initial points are x0 = 1
2x

? (if needed), x1 = x?, where
x? = (1, 1, . . . , 1)>, and the stopping criteria is εk ≤ 10−6, where εk := ‖xk−xk−1‖.
We tested the algorithms with different values of t and n. The numerical results
are listed in Table 4.

From Table 4, it can be seen that our algorithm has better performance than the
relevant methods, in terms of number of iteration (k) and the CPU time (s). This
advantage of our method is especially significant when we are working in large-scale
problems. In that case, our algorithm is highly faster than Yang’s Alg. and Dang’s
Alg.



Inertial ball-relaxed CQ algorithms... 1505

Table 4. Numerical results of the algorithm (4.1), Yu’s Alg. [26], López’s Alg. [16], Yang’s Alg. [24],
and Dang’s Alg. [10] for Example 5.3 with different values of t and n

t = 50 t = 75

n Algorithm Iter. (k) CPU (s) Iter. (k) CPU (s)

n = 20 Our Alg. 280 4.17062 299 5.35194

Yu’s Alg. 288 8.28327 300 14.58467

López’s Alg. 350 9.54555 347 13.13750

Yang’s Alg. 153641 1641.72481 170096 1991.93037

Dang’s Alg. 153628 1709.61426 170054 1973.73857

n = 30 Our Alg. 330 5.38993 313 5.45788

Yu’s Alg. 341 10.21217 332 10.91377

López’s Alg. 419 12.89763 383 11.67734

Yang’s Alg. 142416 1506.89022 156907 1804.71479

Dang’s Alg. 142372 1551.33575 156905 1907.00519

n = 40 Our Alg. 515 8.7879 304 5.68875

Yu’s Alg. 534 16.30069 307 12.83835

López’s Alg. 611 19.85566 345 12.80099

Yang’s Alg. 142097 1582.04282 151415 1824.85440

Dang’s Alg. 142005 1599.88914 151414 1760.53157

6. Conclusion

This paper has presented novel ball-relaxed CQ algorithms for efficiently solving the
split feasibility problem with multiple output sets. The algorithms are enhanced by
incorporating an inertial term within the iterative scheme to accelerate the conver-
gence. Furthermore, they eliminate the need for computing norms of the involved
bounded linear operators, thanks to the utilization of self-adaptive step size crite-
ria. Strong convergence theorems of the proposed methods have been proved under
some feasible assumptions widely used in the optimization theory. Some applica-
tions relating to the solution of the split feasibility problem were also reported.
The efficiency and advantages of our algorithms were confirmed by three numeri-
cal experiments, including an application to the LASSO problem with elastic net
regularization.

Acknowledgements

The authors are very grateful to the reviewers and the editors for their valuable
suggestions and comments on improving the presentation of this paper.

References

[1] T. O. Alakoya, O. T. Mewomo and A. Gibali, Solving split inverse problems,
Carpathian J. Math., 2023, 39(3), 583–603.



1506 N. T. T. Thuy & N. T. Nghia

[2] F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone
operators via discretization of a nonlinear oscillator with damping, Set-Valued
Anal., 2001, 9, 3–11.

[3] H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex
feasibility problems, SIAM Rev., 1996, 38, 367–426.

[4] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator
Theory in Hilbert Spaces, 2011, Springer, Berlin.

[5] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility
problem, Inverse Probl., 2002, 18, 441–453.

[6] C. Byrne, A unified treatment of some iterative algorithms in signal processing
and image reconstruction, Inverse Probl., 2004, 20, 103–120.

[7] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projec-
tions in a product space, Numer. Algorithms, 1994, 8, 221–239.

[8] H. Cui and F. Wang, The split common fixed point problem with mul-
tiple output sets for demicontractive mappings, Optimization, 2023. DOI:
10.1080/02331934.2023.2181081.

[9] T. L. Cuong, T. V. Anh and T. H. M Van, A self-adaptive step size algorithm
for solving variational inequalities with the split feasibility problem with multiple
output sets constraints, Numer. Funct. Anal. Optim., 2022, 43(9), 1009–1026.

[10] Y. H. Dai, Fast algorithms for projection on an ellipsoid, SIAM J. Optim.,
2006, 16, 986–1006.

[11] Y. Z. Dang, J. Sun and H. L. Xu, Inertial accelerated algorithms for solving a
split feasibility problems, J. Ind. Manag. Optim., 2017, 13, 1383–1394.

[12] M. Fukushima, A relaxed projection method for variational inequalities, Math.
Program, 1986, 35, 58–70.

[13] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Non-
expansive Mappings, 1984, Marcel Dekker, New York and Base.

[14] S. He and C. Yang, Solving the variational inequality problem defined on inter-
section of finite level sets, Abstr. Appl. Anal., 2013, Article ID 942315.

[15] T. Ling, X. Tong and L. Shi, Modified relaxed CQ methods for the split fea-
sibility problems in Hilbert spaces with applications, J. Appl. Math. Comput.,
2023. DOI: 10.1007/s12190-023-01875-7.

[16] G. López, V. Mart́ın-Márquez, F. Wang and H. K. Xu, Solving the split feasi-
bility problem without prior knowledge of matrix norms, Inverse Probl., 2012,
28(8), 085004.

[17] B. T. Polyak, Some methods of speeding up the convergence of iteration meth-
ods, USSR Comput. Math. Math. Phys., 1964, 4, 1–17.

[18] S. Reich, M. T. Truong and T. N. H. Mai, The split feasibility problem with
multiple output sets in Hilbert spaces, Optim. Lett., 2020, 14, 2335–2353.

[19] S. Reich and T. M. Tuyen, Two new self-adaptive algorithms for solving the
split common null point problem with multiple output sets in Hilbert spaces, J.
Fixed Point Theory Appl., 2021, 23, 1–19.



Inertial ball-relaxed CQ algorithms... 1507

[20] S. Reich and T. M. Tuyen, Regularization methods for solving the split feasibility
problem with multiple output sets in Hilbert spaces, Topol. Methods Nonlinear
Anal., 2022, 60(2), 547–563.

[21] S. Reich and T. M. Tuyen, Two new self-adaptive algorithms for solving the
split feasibility problem in Hilbert space, Numerical Algorithms, 2023. DOI:
10.1007/s11075-023-01597-8.

[22] S. Reich, T. M. Tuyen, N. T. T. Thuy and M. T. N. Ha, A new self-adaptive
algorithm for solving the split common fixed point problem with multiple output
sets in Hilbert spaces, Numer. Algorithms, 2022, 89, 1031–1047.

[23] F. Wang, The split feasibility problem with multiple output sets for demicon-
tractive mappings, J. Optim. Theory Appl., 2022, 195(3), 837–853.

[24] Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse
Probl., 2004, 20(4), 1261–1266.

[25] H. Yu and F. Wang, A new relaxed method for the split feasibility problem in
Hilbert spaces, Optimization, 2022. DOI: 10.1080/02331934.2022.2158036.

[26] H. Yu, W. R. Zhan and F. H. Wang, The ball-relaxed CQ algorithms for the
split feasibility problem, Optimization, 2018, 67, 1687–1699.

[27] H. Zou and T. Hastie, Regularization and variable selection via the elastic net,
J. R. Stat. Soc. B., 2005, 67, 301–320.


	Introduction
	Preliminaries
	Main results
	The proposed algorithms
	Convergence analysis

	Corollaries
	Numerical experiments
	Conclusion

