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Abstract In this paper, notions related to transitivity in autonomous dis-
crete dynamical systems are generalized to non-autonomous discrete dynam-
ical systems. Some sufficient conditions or necessary conditions of transitive
were given. Then, it is obtained that the mapping sequence f1,∞ = (f1, f2, · · · )
is P-chaotic if and only if the mapping sequence fn,∞ = (fn, fn+1, · · · ),∀n ∈ N
(N = {1, 2, · · · }) would also be P-chaotic. Where P-chaos represents one of
the following six properties: transitive, mixing, weakly mixing, syndetically
transitive, strongly transitive, and Z-transitive. Finally, an example is given
to show that the condition ‘the space has no isolated point’ cannot be removed,
and a P-chaotic non-autonomous mapping sequence is provided.
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ing.
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1. Introduction

The application of dynamical systems in the cross field has achieved fruitful results,
and gradually developed into an important branch of mathematics. One of the main
contents of topological dynamical systems is the evolution process of the system.
The topological dynamical system theory is used to deal with the complexity, in-
stability, or chaoticity in the real world, such as in meteorology, ecology, celestial
mechanics, and other natural sciences. In recent years, more and more scholars and
experts have begun to devote themselves to the research in topological dynamical
systems, and have achieved many significant results (see [1,9–11,18,20] and others).

As we all know, topological transitivity (shortly, transitivity) has been an eter-
nal topic in the study of topological dynamical systems. The concept of transitivity
can be traced back to Birkhoff [4]. Since then, many studies have been devoted
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to this topic (see [5, 7]). Transitivity is another crucial measure of system com-
plexity. Liao [13] investigated transitivity, weak mixing, and mixing in hyperspace.
Moothathu [10] shows that, for multiple transitive systems, minimal is equivalent
to weak mixing. Kwietniak [8] raises some open questions about the connection
between transitivity and weak mixing. Chen [6] discussed multi-transitivity with
respect to a vector. It is shown that multi-transitivity can be characterized by the
hitting time sets of open sets, and multi-transitive systems are Li-Yorke chaotic.
Wu [19] proved that a dynamical system is weakly mixing if and only if its induced
Zadeh’s extension is transitive.

The above literatures study transitivity in autonomous discrete dynamical sys-
tems (ADDS). In this paper, non-autonomous discrete dynamical systems (NDDS)
as follows are discussed.

Let Z and N denote the sets of integers and positive integers, respectively. fn :
X → X (n ∈ N, (X, ρ) is a compact metric Hausdorff space) is a continuous
mapping sequence, and denoted by f1,∞ = (f1, f2, · · · ) = (fn)∞n=1. This mapping
sequence defines an NDDS, denoted by (X, f1,∞). Under this sequence, the orbit
of the point x ∈ X is Orbf1,∞(x) = {x, f1(x), f2 ◦ f1(x), · · · , fn1 (x), · · · } (n ∈ N),
where fn1 = fn ◦ · · · ◦ f2 ◦ f1. Similarly, fkn = fk ◦ · · · ◦ fn+1 ◦ fn (k ≥ n). Denoted
f−n1 = (fn ◦ · · · ◦ f2 ◦ f1)−1 = f−11 ◦ f−12 ◦ · · · ◦ f−1n . And f01 denotes the identity
mapping.

If fi = fj (i, j ∈ N : i 6= j), (X, f1,∞) is called an ADDS. Generally, it is
relatively more difficult to study the dynamic behavior of NDDSs than that in
ADDSs. However, many complex systems in the real world, such as physics, biology,
and economics, must be better described by NDDSs. Therefore, it is of great interest
to study the dynamic behavior of NDDSs (see [2, 12,14–17,21,22]).

This paper generalizes some notions of transitivity from ADDSs to NDDSs,
and then gives some necessary and sufficient conditions for transitivity in NDDSs.
Moreover, some examples are given to illustrate the conclusions.

2. Preliminaries

A subset T of N ∪ {0} is said to be syndetic if, there exists an M ∈ N, for every
m ∈ N satisfying {m,m+ 1, · · · ,m+M} ∩ T 6= ∅.

Let (X, f1,∞) be an NDDS. For any two nonempty open sets U, V ⊂ X, denote
the recurrent time set of U and V by

Nf1,∞(U, V ) = {n ∈ N : fn1 (U) ∩ V 6= ∅}.

Definition 2.1. Let (X, f1,∞) be an NDDS. f1,∞ is said to be
(1) transitive if for any two nonempty open sets U and V in X, Nf1,∞(U, V ) 6= ∅;
(2) mixing if for any two nonempty open sets U and V in X, there is an N > 0

such that fn1 (U) ∩ V 6= ∅ for all n ≥ N ;
(3) weakly mixing if f1,∞ × f1,∞ is transitive on X ×X, i.e., for any nonempty

open sets Ui, Vi (i = 1, 2) in X, there is an integer k ≥ 1 satisfying fk1 (U1)∩ V1 6= ∅
and fk1 (U2) ∩ V2 6= ∅;

(4) syndetically transitive if for two nonempty open sets U and V in X,
Nf1,∞(U, V ) is syndetic;

(5) strongly transitive if for any nonempty open set U ⊂ X, there exists a k > 0
such that ∪ki=1f

i
1(U) = X;
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(6) minimal if there is no proper subset U of X, which is nonempty, closed, and
invariant, i.e., fn(U) ⊂ U(n ∈ N);

(7) Z-transitive if for any two nonempty open sets U and V in X, there is a
m ∈ Z such that fm1 (U) ∩ V 6= ∅.

Remark 2.1. According to the definitions of Z-transitive and transitive, transitive
implies Z-transitive. While Z-transitive does not implies transitive. An example is
given below to illustrate this conclusion.

Example 2.1. Let X = {0, 1, 12 ,
1
3 , · · · ,

1
n , · · · }, defined

ω(x) =

0, x = 0;

1
1
x+1

, x ∈ X\{0},

φ(x) =

1, x = 0;

1
1
x+1

, x ∈ X\{0},

g1,∞ = {ω, φ, ω, φ, · · · }.
Obviously, for any m1,m2 ∈ N, there is a k ∈ Z such that gk1 ( 1

m1
) = 1

m2
. Then,

for any two nonempty open sets U and V in X, there is an m ∈ Z such that
gm1 (U) ∩ V 6= ∅. Thus, g1,∞ is Z-transitive. Let U0 = { 13 ,

1
4}, V0 = { 12}. Then,

gn1 (U0) ∩ V0 = ∅ for any n ∈ N. Therefore, g1,∞ is not transitive.

3. Main results

Banks [3] had proved that if an ADDS (X, f) is totally transitive with a dense set
of periodic points, then (X, f) is weakly mixing. Inspired by this, the following
conclusion have been obtained.

Theorem 3.1. Let (X, f1,∞) be an NDDS. If the following three conditions are
held, then f1,∞ is minimal.

(1) X has no isolated point;
(2) there exists an orbit of f1,∞, which is dense in X;
(3) for any x, y ∈ X and any k ∈ N,

ρ(fm1
1 (x), fm2

1 (y)) ≤ ρ(fm1−k
1 (x), fm2−k

1 (y)) (m1,m2 ∈ N).

Proof. By (1), there is a a0 ∈ X such that

Orbf1,∞(a0) = {a0, f1(a0), f21 (a0), · · · , fn1 (a0), · · · } (n ∈ N)

is dense in X. For any nonempty open set U ⊂ X, there is a m ∈ N such that
fm1 (a0) ∈ U .

Claim 1. Q = {n ∈ N : fn1 (a0) ∈ U} is an infinite set.

Let U1 = {a0, f1(a0), f21 (a0), · · · , fm1 (a0)}, W1 = U\U1. Since X has no isolated
point, then W1 is a nonempty open set. Since Orbf1,∞(a0) is dense in X, then
there is an m1 > m such that fm1

1 (a0) ∈ W1 ⊂ U . In the same way, let U2 =
{a0, f1(a0), f21 (a0), · · · , fm1

1 (a0)}, W2 = U\U2. Then, there is an m2 > m1 such



Further studies of topological transitivity 1511

that fm2
1 (a0) ∈W2 ⊂ U . Carry on like this, it is not hard to get that Q = {n ∈ N :

fn1 (a0) ∈ U} is an infinite set.
For any a, b ∈ X and ε > 0, there exist n1, n2 ∈ N such that

fn1
1 (a0) ∈ B(a,

ε

2
) and fn2

1 (a0) ∈ B(b,
ε

2
).

Without loss of generality, assume that n1 ≥ n2. According to condition (3),

ρ(fn1
1 (a0), fn1−n2

1 (a)) = ρ(fn2+n1−n2
1 (a0), fn1−n2

1 (a)) ≤ ρ(fn2
1 (a0), a) <

ε

2
.

By the triangle inequality,

ρ(fn1−n2
1 (a), b) ≤ ρ(fn1

1 (a0), fn1−n2
1 (a)) + ρ(fn1

1 (a0), b) < ε.

This implies that fn1−n2
1 (a) ∈ B(b, ε). So, Orbf1,∞(a) is dense in X.

Claim 2. f1,∞ is minimal.

If not, there is a nonempty open set U∗ ⊂ X such that U∗ is invariant. That is
to say, fn(U∗) ⊂ U∗(n ∈ N). Then, fn1 (a∗) ∈ U∗ for any a∗ ∈ U∗ and n ∈ N. Let
V = X\U∗, then Orbf1,∞(a∗) ∩ V = ∅. This contradicts that Orbf1,∞(a) is dense
in X. So, f1,∞ is minimal.

In [8], the author discusses the relationship between strong transitivity and
∆-transitivity in ADDSs. Next, we will discuss strong transitivity in NDDSs (The-
orems 3.2-3.4).

Theorem 3.2. f1,∞ = (f1, f2, · · · , fn, · · · ) is strongly transitive if and only if
∪∞m=0f

−m
1 ({a}) is dense in X for any a ∈ X.

Proof. (Necessity) Assume that f1,∞ is strongly transitive, then for any nonempty
open set U ⊂ X, there exists a k > 0 such that ∪ki=1f

i
1(U) = X. So, for any a ∈ X,

there must be an m > 0 such that a ∈ fm1 (U). Then there is a a∗ ∈ U , such that
a = fm1 (a∗). Then, a∗ ∈ fm1 ({a}). Thus, a∗ ∈ ∪∞m=0f

−m
1 ({a}) ∩ U 6= ∅. Due to the

arbitrariness of U , ∪∞n=0f
−n
1 ({a}) is dense in X for any a ∈ X.

(Sufficiency) Assume that ∪∞m=0f
−m
1 ({a}) is dense in X for any a ∈ X. Then,

for any nonempty open set U ⊂ X, there exist an M ∈ N∪{0} such that a ∈ fM1 (U).
So, ∪∞i=0f

i
1(U) = X. Due to X being a compact metric space, X is covered by finite

subsets in {f i1(U)}∞i=0. That is to say, there is an M > 0 such that ∪Mi=0f
i
1(U) = X.

So, f1,∞ is strongly transitive.

Theorem 3.3. Let int(fn(U)) 6= ∅ for any nonempty open set U ⊂ X and any n ∈
N, where int(U) is the interior of the set U . If f1,∞ is strongly transitive, then for

any nonempty open set U , there exists an M > 0 such that f1(U)∩(∪Mj=2f
j
1 (U)) 6= ∅.

Proof. Assuming that there exists a nonempty open set U0 inX such that f1(U0)∩
(∪Mj=2f

j
1 (U0)) = ∅ for any M > 0.

Claim. For any nonempty open set U in X, there exist u, v ∈ U and λ > 0
satisfying that

B(u, λ) ∩B(v, λ) = ∅ and B(u, λ) ∪B(v, λ) ⊂ U.

Since U is a nonempty open set, for any u ∈ U , there is a ε > 0 such that
B(u, ε) ⊂ U . There exist u1, v1 ∈ B(u, ε) with the distance ρ(u1, v1) = l, then

B(u1,
l

4
) ∩B(v1,

l

4
) = ∅.
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If not, B(u, ε) is a single-point set. This contradicts the condition that X has no
isolated point. Therefore, for any nonempty open set U in X, there exist u, v ∈ U
and λ > 0 satisfying that

B(u, λ) ∩B(v, λ) = ∅ and B(u, λ) ∪B(v, λ) ⊂ U.

Since int(f1(U0)) is a nonempty open set, then there exist u∗, v∗ ∈ int(f1(U0))
and λ∗ > 0 such that

B(u∗, λ∗) ∩B(v∗, λ∗) = ∅ and B(u∗, λ∗) ∪B(v∗, λ∗) ⊂ int(f1(U0)).

According to the hypothesis, for any M > 0, f1(U0) ∩ (∪Mj=2f
j
1 (U0)) = ∅.

Since f1 is continuous mapping, then f−11 (B(u∗, λ∗)) is a nonempty open set,
and f−11 (B(u∗, λ∗)) ⊂ U0. Due to B(v∗, λ∗) ⊂ f1(U0), then for any M > 0,

B(v∗, λ∗) ∩ (∪Mj=1f
j
1 (B(u∗, λ∗))) = ∅.

However, f1,∞ is strongly transitive, then for f−11 (B(u∗, λ∗)), there is an M1 > 0
such that

∪M1
j=1f

j
1 (f−11 (B(u∗, λ∗))) = X.

So they contradict each other. Thus, for any nonempty open set U , there exists
an M > 0 such that f1(U) ∩ (∪Mj=2f

j
1 (U)) 6= ∅.

Theorem 3.4. Let int(fn(U)) 6= ∅ for any nonempty open set U ⊂ X and n ∈ N.
If f1,∞ is strongly transitive, then ∪∞j=n+1f

j
1 (U) = X for every nonempty open set

U in X and any n ∈ N.

Proof. Hypothesis that there exist an x0 ∈ X, a nonempty open set U1 in X, and
an n0 ∈ N such that x0 /∈ ∪∞j=n0+1f

j
1 (U1). Since f1,∞ is strongly transitive, then for

the above U1, there is an M > 0 such that ∪Mj=1f
j
1 (U1) = X. So, ∪∞j=1f

j
1 (U1) = X.

Then, x0 ∈ ∪n0
j=1f

j
1 (U1).

Let U2 = int(fn0
1 (U1)). Due to fn(n ∈ N) being continuous mappings, then

f−1n0
(U2) and f−n0

1 (U2) are open sets. Since fn (n ∈ N) are surjections, then

fn0
(f−1n0

(U2)) = U2. Due to f−n0
1 (U2) ⊂ U1, then x0 /∈ ∪∞j=n0+1f

j
1 (f−n0

1 (U2)).

And because f1,∞ is strongly transitive, then for f−n0
1 (U2), there is an M1 > 0 such

that ∪M1
j=1f

j
1 (f−n0

1 (U2)) = X. Then, x0 ∈ ∪n0
j=1f

j
1 (f−n0

1 (U2)).
Let U3 ⊂ U2 and U3 be nonempty open set. By similar proof, x0 ∈

∪n0
j=1f

j
1 (f−n0

1 (U3)). Continuing like this, the nonempty open sets Uk (k ∈ N) can be
found, and

x0 ∈ ∪n0
j=1f

j
1 (f−n0

1 (Uk)) and lim
k→+∞

ρ

n0∑
j=1

(f j1 (f−n0
1 (Uk))) = 0.

Since X has no isolated point, then x0 ∈ ∩∞k=2 ∪
n0
j=1 f

j
1 (f−n0

1 (Uk)) = ∅. It
is a contradiction. Thus, for every nonempty open set U in X and any n ∈ N,
∪∞j=n+1f

j
1 (U) = X.

In order to discuss the relationship between (X, f1,∞) and (X, fn,∞) (n ∈ N)
regarding various types of transitivity, the following lemma is necessary first.

Lemma 3.1. If X has no isolated point. Then f1,∞ is transitive if and only if
Nf1,∞(U, V ) is an infinite set for any nonempty open set U, V ⊂ X.
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Proof. (Necessity) Hypothesis that Nf1,∞(U, V ) is not an infinite set for some
U, V ⊂ X, i.e., there exist an m > 0 and nonempty open sets U0, V0 ⊂ X such
that fn1 (U0) ∩ V0 = ∅ for any n > m. And there must be a i0 ≤ m satisfying
f i01 (U0) ∩ V0 6= ∅ for the reason that f1,∞ is transitive.

Case 1. f i01 (U0) ⊂ V0 and f i01 (U0) 6= V0.

In this case, there exists a v1 in V0, but v1 /∈ f i01 (U0). Then there is a ς1 > 0
such that

B(v1, ς1) ⊂ V0 and B(v1, ς1) ∩ f i01 (U0) = ∅.

So, one can find a point u1 ∈ U0 such that

B(v1, ς1) ∩B(f i01 (u1), ς1) = ∅.

According to the continuity of f i01 , there exists a δ1 > 0 such that B(u1, δ1) of
u1 such that

f i01 (B(u1, δ1)) ⊂ B(f i01 (u1), ς1).

Then, f i01 (B(u1, δ1)) ∩B(v1,
ς1
2 ) = ∅.

Case 2. f i01 (U0) = V0.

In this case, one can take two points u1 ∈ U0, v1 ∈ V0 and a ς1 > 0 such that

B(v1, ς1) ∩B(f i01 (u1), ς1) = ∅.

Similarly, it can be obtained that

f i01 (B(u1, δ1)) ∩B(v1,
ς1
2

) = ∅

for some δ1 > 0.

Case 3. There exists an x1 ∈ f i01 (U0) but x1 /∈ V0.

In this case, there exist a u1 ∈ U0 and a δ1 > 0 such that

B(u1, δ1) ⊂ U0 and f i01 (B(u1, δ1)) ∩ V0 = ∅.

Then, there exists a v1 ∈ V0 and a ς1 > 0 such that

f i01 (B(u1, δ1)) ∩B(v1,
ς1
2

) = ∅.

In summary, whether case 1, case 2, or case 3, it can be obtained that
f i01 (B(u1, δ1)) ∩B(v1,

ς1
2 ) = ∅, where B(u1, δ1) ⊂ U0, B(v1,

ς1
2 ) ⊂ V0.

For any nonempty open sets U, V ⊂ X, denote

M(U, V ) = {i ≤ m | f i1(U) ∩ V 6= ∅}.

Let

U1 = B(u1, δ1) ⊂ U0, V1 = B(v1,
ς1
2

) ⊂ V0,

Q1(U1, V1) = {i ∈M(U0, V0) | f i1(U1) ∩ V1 = ∅}.

Obviously, #(Q1(U1, V1)) ≥ 1.
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Since f1,∞ is transitive, then #(M(U1, V1)) = {i ≤ m | f i1(U1) ∩ V1 6= ∅} ≥ 1.
For U1, V1, similar to U0, V0, one can get that there exist i1 ∈ M(U1, V1), u2 ∈

U1, v2 ∈ V1, ς2 > 0, and δ2 > 0 such that f i11 (B(u2, δ2)) ∩ B(v2,
ς2
2 ) = ∅, where

B(u2, δ2) ⊂ U1, B(v2,
ς2
2 ⊂ V1).

Let

U2 = B(u2, δ2), V2 = B(v2,
ς2
2

),

Q2(U2, V2) = {i ∈M(U1, V1) | f i1(U2) ∩ V2 = ∅}.

Obviously, #(Q2(U2, V2)) ≥ 1.
And because Q2(U2, V2) ⊂M(U1, V1), then Q2(U2, V2) ∩Q1(U1, V1) = ∅.
Repeat m+ 2 times like this, one can get that

m+2∑
i=1

#(Qi(Ui, Vi)) > m and Qi(Ui, Vi) ∩Qj(Uj , Vj) = ∅ (i 6= j),

where

Qn(Un, Vn) = {i ∈M(Un−1, Vn−1) | f i1(Un) ∩ Vn = ∅} (n ∈ N).

Therefore,

#(M(U0, V0)) ≥ #(∪m+2
j=1 Qj(Uj , Vj)) =

m+2∑
i=1

#(Qi(Ui, Vi)) > m.

It contradicts that

#(M(U0, V0)) = #({i ≤ m | f i1(U0) ∩ V0 6= ∅}) ≤ m.

So, Nf1,∞(U, V ) is an infinite set.
(Sufficiency) By the definition of transitivity, it is clear.
In Lemma 3.1, the condition ‘X has no isolated point’ can not be cut. We give

an example as follows.

Example 3.1. Let X = {1, 2}. The open sets on X are ∅, {1}, {2}, {1, 2}.
{∅, {1}, {2}, {1, 2}} is induced by metric

ρ(x, y) =| x− y |,∀x, y ∈ X.

Let f1(x) = 1, fi(x) = 2,∀i ≥ 2,∀x ∈ X. Take U = {2}, V = {1}, then
Nf1,∞(U, V ) = {1} is a finite set.

Now, we give the relationship between (X, f1,∞) and (X, fn,∞) (n ∈ N) regarding
various types of transitivity and mixing.

Theorem 3.5. Let fn (n ∈ N) are surjections, and X has no isolated point. If
int(fn(U)) 6= ∅ for any nonempty open set U ⊂ X and n ∈ N, then

(1) f1,∞ is transitive if and only if for any n ≥ 2 (n ∈ N), fn,∞ is transitive;
(2) f1,∞ is mixing if and only if for any n ≥ 2 (n ∈ N), fn,∞ is mixing;
(3) f1,∞ is weakly mixing if and only if for any n ≥ 2 (n ∈ N), fn,∞ is weakly

mixing;
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(4) f1,∞ is syndetically transitive if and only if for any n ≥ 2 (n ∈ N). fn,∞ is
syndetically transitive;

(5) f1,∞ is strongly transitive if and only if for any n ≥ 2 (n ∈ N), fn,∞ is
strongly transitive;

(6) f1,∞ is Z-transitive if and only if for any n ≥ 2 (n ∈ N), fn,∞ is Z-transitive.

Proof. Just prove the case n = 2. The other cases are similar.

(1) It is the special case of (2).

(2) (Necessity) For any two nonempty open sets U, V ⊂ X, let U∗ = f
−(n−1)
1 (U).

Since fn is continuous, then U∗ is an open set. And because fn is a surjection,
then U∗ 6= ∅. Assume that f1,∞ is mixing, then there is an M > 0 such that
fm1 (U∗) ∩ V 6= ∅ for all m ≥M . Due to

fm1 (U∗) = fm1 (f
−(n−1)
1 (U)) = fmn ◦ fn−11 (f

−(n−1)
1 (U))

= fmn (fn−11 ◦ f−(n−1)1 (U)) = fmn (U),

then, for any two nonempty open sets U, V ⊂ X, there exists an M∗ = max{n +
1,M} satisfying that fm

∗

n (U)∩V 6= ∅ for all m∗ > M∗. This means fn,∞ is mixing.
(Sufficiency) For any two nonempty open sets U, V ⊂ X, since int(fn(U ′)) 6= ∅

for any nonempty open set U ′ ⊂ X, then there exists a nonempty open set U∗

such that U∗ ⊂ fn1 (U). Since fn,∞ is mixing, there is an M > 0 satisfying that
fmn (U∗) ∩ V 6= ∅ for any m > M . While, (fm1 (U) ∩ V ) ⊃ (fmn (U∗) ∩ V ), then
fm1 (U) ∩ V 6= ∅ for any two nonempty open sets U, V ⊂ X and all m ≥ M . This
means f1,∞ is mixing.

(3) (Necessity) For any four nonempty open subsets Ui, Vi (i = 1, 2) of X, let
U∗i = f−n+1

1 (Ui)(i = 1, 2). Similar to the above proof, U∗i is an open set. By
Lemma 3.1, for any n ∈ N, there is an m > n, such that fmn (Ui) ∩ Vi 6= ∅ (i = 1, 2).
Thus, fn,∞ is weakly mixing.

(Sufficiency) For any four nonempty open subsets Ui, Vi (i = 1, 2) of X. There
exist U∗i ⊂ int(fn1 (Ui)) (i = 1, 2). So, one can find ai ∈ U∗i and some m ∈ N : m > n
satisfies fm1 (ai) ∈ Vi. Thus, fm1 (ai) ∈ fmn (Ui)∩ Vi. This means that f1,∞ is weakly
mixing.

(4) (Necessity) Assume that f1,∞ is syndetically transitive. Then for any two
nonempty open sets U and V in X, Nf1,∞(U, V ) is syndetic. That is to say, there
exists an M ∈ N, for every m ∈ N such that {m,m+1, · · · ,m+M}∩Nf1,∞(U, V ) 6=
∅, where Nf1,∞(U, V ) = {n ∈ N : fn1 (U) ∩ V 6= ∅}.

For any nonempty open set U ∈ X, due to f1 being a continuous map, f−11 (U)
is an open set. Then,

Nf2,∞(U, V ) = Nf1,∞(f−11 (U), V )\{1}.

Since Nf1,∞(f−11 (U), V ) is syndetic, then Nf2,∞(U, V ) is syndetic. Therefore,
f2,∞ is syndetically transitive.

(Sufficiency) For any two nonempty open sets U and V in X, take U∗ =
int(fn(U)). Then,

Nf1,∞(U, V )\{1} = Nf2,∞(f1(U), V ) ⊃ Nf2,∞(U∗, V ).
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Since f2,∞ is syndetically transitive, then for any two nonempty open sets U and
V in X, Nf2,∞(U, V ) is syndetic. Then Nf2,∞(U∗, V ) is syndetic. So Nf1,∞(U, V ) is
syndetic. Therefore, f1,∞ is syndetically transitive.

(5) (Necessity) Since int(f1(U)) 6= ∅ for any nonempty open set U ⊂ X, then
there exist u, v ∈ int(f1(U)) and λ > 0 such that

B(u, λ), B(v, λ) ⊂ U∗ and B(u, λ) ∩B(v, λ) = ∅,

where U∗ = int(f1(U)).
Since f1 is a continuous map, then f−11 (B(u, λ)), f−11 (B(v, λ)) are open sets.

Due to f1,∞ being strongly transitive, then for f−11 (B(u, λ)), there is a Mu > 0
satisfying that

∪Mu
j=1f

j
1 (f−11 (B(u, λ))) = ∪Mu

j=1f
j
2 (B(u, λ)) = X.

And for f−11 (B(v, λ)), there is a Mv > 0 satisfying that

∪Mv
j=1f

j
1 (f−11 (B(v, λ))) = ∪Mv

j=1f
j
2 (B(v, λ)) = X.

Since

f1(U\f−11 (B(u, λ))) ∩B(u, λ) = ∅ and f1(U\f−11 (B(v, λ))) ∩B(v, λ) = ∅,

then
f1(U\f−11 (B(u, λ))) ⊂ ∪Mu

j=2f
j
2 (B(u, λ))

and
f1(U\f−11 (B(v, λ))) ⊂ ∪Mv

j=2f
j
2 (B(v, λ)).

Take M = max{Mu,Mv}, then

∪Mu
j=2f

j
2 (B(u, λ)) ⊂ ∪Mj=2f

j
2 (U∗) ⊂ ∪Mj=2f

j
2 (f1(U)) = ∪Mj=2f

j
1 (U);

∪Mv
j=2f

j
2 (B(v, λ)) ⊂ ∪Mj=2f

j
2 (U∗) ⊂ ∪Mj=2f

j
2 (f1(U)) = ∪Mj=2f

j
1 (U).

So,
f1(U) = (f1(U\f−11 (B(u, λ))) ∪ f1(U\f−11 (B(v, λ)))) ⊂ ∪Mj=2f

j
1 (U).

Thus,

X = ∪Mv
j=1f

j
2 (B(v, λ)) ⊂ ∪Mj=1f

j
2 (U∗) ⊂ ∪Mj=1f

j
1 (U) = ∪Mj=2f

j
1 (U).

For any U
′ ∈ X, due to f1 being a continuous mapping, then f−11 (U

′
) is an open

set. Take f−11 (U
′
) = U , then, ∪Mj=2f

j
2 (U

′
) = X. Thus, f2,∞ is strongly transitive.

(Sufficiency) Since int(f1(U)) 6= ∅ for any nonempty open set U ⊂ X, then, one
can take a nonempty open subset U∗ ⊂ X. Due to f2,∞ being strongly transitive,

then for the above U∗ of X, there is an M > 0 satisfying that ∪Mj=2f
j
2 (U∗) = X.

Thus,
∪Mj=1f

j
1 (U) = ∪Mj=1 f

j
2 (f1(U))

=f1(U) ∪ f21 (U) ∪ f31 (U) ∪ · · · ∪ fM1 (U)

⊃U∗ ∪ f2(U∗) ∪ f32 (U∗) ∪ · · · ∪ fM2 (U∗)

⊃f2(U∗) ∪ f32 (U∗) ∪ · · · ∪ fM2 (U∗)

= ∪Mj=2 f
j
2 (U∗).
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So,
∪Mj=1f

j
1 (U) ⊃ ∪Mj=2f

j
2 (U∗) = X.

Therefore, f1,∞ is strongly transitive.

(6) Similar to the proof of weakly mixing.

Remark 3.1. The necessity in the proof for strongly transitive can also be proved
as follows.

Proof. It follows from Theorem 3.4 that, for any nonempty open sets U in X
and any n ∈ N, ∪∞j=n+1f

j
1 (U) = X. Since X is a compact metric space, then

X is covered by finite sets in {f j1 (U)}∞j=n+1. That is to say, there is an M > 0

such that ∪Mj=n+1f
j
1 (U) = X. Obviously, for any nonempty open sets U ∈ X,

∪Mj=1f
j
1 (U) = X. So, fn,∞ is strongly transitive.

The following constructs an example which satisfies Theorem 3.5.

Example 3.2. Let X = [0, 1],

fi(x) =



ix for x ∈
[
0, 1i
]

;

2− ix for x ∈
[
1
i ,

2
i

]
;

i(x− 2
i ) for x ∈

[
2
i ,

3
i

]
;

2− i(x− 2
i ) for x ∈

[
3
i ,

4
i

]
;

ix− 4 for x ∈
[
4
i ,

5
i

]
;

4− i(x− 2
i ) for x ∈

[
5
i ,

6
i

]
;

...

ix− (i− 3) for x ∈
[
i−3
i , i−2i

]
;

(i− 3)− i(x− 2
i ) for x ∈

[
i−2
i , i−1i

]
;

ix− (i− 1) for x ∈
[
i−1
i , 1

]
,

(i is a positive odd number),

fi(x) =



ix for x ∈
[
0, 1i
]

;

2− ix for x ∈
[
1
i ,

2
i

]
;

i(x− 2
i ) for x ∈

[
2
i ,

3
i

]
;

2− i(x− 2
i ) for x ∈

[
3
i ,

4
i

]
;

ix− 4 for x ∈
[
4
i ,

5
i

]
;

4− i(x− 2
i ) for x ∈

[
5
i ,

6
i

]
;

...

ix− (i− 2) for x ∈
[
i−2
i , i−1i

]
;

(i− 2)− i(x− 2
i ) for x ∈

[
i−1
i , 1

]
.

(i is a positive even number).
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For the mapping sequence f1,∞ = {f1, f2, · · · }, the function images of f21 , f
3
1

and f41 are shown in Figure 1. The function image of f i1 can be inferred. Then the
following conclusions (Propositions 3.1-3.6) are obtained.

Figure 1. The function images of f2
1 , f

3
1 and f4

1

Proposition 3.1. The mapping sequence fn,∞ is transitive for any n ∈ N.

Proof. From Figure 1, it can be seen that, if x is in [0, 1
i! ], [ 2i! ,

3
i! ], [ 4i! ,

5
i! ], · · · , or

[ i!−2i! ,
i!−1
i! ], the function values of f i1(x) rise monotonically from 0 to 1; if x is in

[ 1i! ,
2
i! ], [ 3i! ,

4
i! ], · · · , or [ i!−1i! , 1], the function values of f i1(x) decrease monotonically

from 1 to 0. As i ∈ N increases, [0, 1] is infinitely subdivided. Then for any
U, V ⊂ X, there always exist an i∗ ∈ N and a k ∈ N such that w = [ 2k

(i∗)! ,
2k+1
(i∗)! ] ⊂ U

(or w = [ 2k−1(i∗)! ,
2k

(i∗)! ] ⊂ U). So

[0, 1] = f i
∗

1 (w) ⊂ f i
∗

1 (U) ⊂ [0, 1].

Thus, f i
∗

1 (U) ∩ V 6= ∅. Therefore, f1,∞ is transitive.
Similar to the above proof, fn,∞ is transitive for any n ∈ N.

Proposition 3.2. The mapping sequence fn,∞ is Z-transitive for any n ∈ N.

Proof. By the proof of Proposition 3.1, it is obvious.

Proposition 3.3. The mapping sequence fn,∞ is mixing for any n ∈ N.

Proof. Since [0, 1] is infinitely subdivided along with the increase of i ∈ N, and
each cell is mapped to [0, 1], then, for any n ∈ N and any U, V ⊂ X, there exists an
i∗ ∈ N such that fpn(U) ∩ V 6= ∅ for all p > i∗. So, fn,∞ is mixing.
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Proposition 3.4. The mapping sequence fn,∞ is weakly mixing for any n ∈ N.

Proof. For any nonempty open sets Ui, Vi (i = 1, 2) inX, by Proposition 3.3, there
exist N1 ≥ 1, N2 ≥ 1 such that f in (U1)∩V1 6= ∅ for any i ≥ N1 and f in (U2)∩V2 6= ∅
for any i ≥ N2. Take N = max {N1, N2}, then f in (U1)∩V1 6= ∅ and f in (U2)∩V2 6= ∅
for any i ≥ N . So, fn,∞ is weakly mixing.

Proposition 3.5. The mapping sequence fn,∞ is syndetically transitive for any
n ∈ N.

Proof. For any nonempty open sets U, V ⊂ X, by Proposition 3.3, there exist an
i∗ ∈ N such that f in(U)∩V 6= ∅ for any i > i∗. Then, Nfn,∞(U, V ) = {i∗, i∗+1, · · · }.
So, there exists an M ∈ N, for every m ∈ N satisfying {m,m + 1, · · · ,m + M} ∩
Nfn,∞(U, V ) 6= ∅. Thus, Nfn,∞(U, V ) is a syndetic set, i.e. fn,∞ is syndetically
transitive.

Proposition 3.6. The mapping sequence fn,∞ is strongly transitive for any n ∈ N.

Proof. By the proof of Proposition 3.1, for any nonempty open set U ⊂ X, there
exists an i∗ ∈ N such that f i

∗

n (U) = [0, 1]. Then, ∪i∗i=1f
i
n(U) = [0, 1]. This means

that fn,∞ is strongly transitive.
According to the proof of Theorem 3.5, the following results can be obtained.

Theorem 3.6. Assumed that fn (n ∈ N) are surjections and X has no isolated
point. If int(fn(U)) 6= ∅ for any nonempty open set U ⊂ X and n ∈ N, then

(1) f1,∞ is transitive if and only if there exists an n ∈ N, fn,∞ is transitive;
(2) f1,∞ is mixing if and only if there exists an n ∈ N, fn,∞ is mixing;
(3) f1,∞ is weakly mixing if and only if there exists an n ∈ N, fn,∞ is weakly

mixing;
(4) f1,∞ is syndetically transitive if and only if there exists an n ∈ N, fn,∞ is

syndetically transitive;
(5) f1,∞ is strongly transitive if and only if there exists an n ∈ N, fn,∞ is

strongly transitive;
(6) f1,∞ is Z-transitive if and only if there exist an n ∈ N, fn,∞ is Z-transitive.

Remark 3.2. In Theorems 3.5 and 3.6, the condition ‘X has no isolated point’ can
not be removed. The following gives an example for strongly transitive.

Example 3.3. In Example 3.1, obviously, for any nonempty open set U ⊂ X,

∪3j=1f
j
1 (U) = X, ∪∞j=2f

j
2 (U) = {2}.

So, f1,∞ is strongly transitive, but f2,∞ is not strongly transitive.

Remark 3.3. In Theorems 3.5 and 3.6, the condition ‘int(fn(U)) 6= ∅ for any
nonempty open set U ⊂ X and n ∈ N’ can not be removed. The following gives an
example for weakly mixing.

Example 3.4. Let X = [0, 1]. Hypothesis that there is a nonempty open set
U1 ⊂ X such that int(f1(U1)) = ∅. Assume that f2,∞ is weakly mixing. Since
U1 is a nonempty open set, then there exist a1, b1 ∈ [0, 1] : (a1, b1) ⊂ U1. So,
int(f1(a1, b1)) = ∅. That is to say, there is a α ∈ [0, 1] such that f1(a1, b1) = {α}.

The following proves that f1,∞ is not weakly mixing by using the counterproof
method.
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If f1,∞ is weakly mixing. Then for nonempty open sets U1 = U2 = (a1, b1), V1 =
(0, 13 ), V2 = ( 2

3 , 1), there is a n0 ≥ 1 such that

fn0
1 (a1, b1) ∩ V1 6= ∅ and fn0

1 (a1, b1) ∩ V2 6= ∅.

Since fn0
1 (a1, b1) = fn0

2 (α) is a single point set, then,

fn0
2 (α) ∈ V1 and fn0

2 (α) ∈ V2.

This contradicts to V1 ∩ V2 = ∅. Therefore, f1,∞ is not weakly mixing.
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