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Abstract The paper focuses on oscillation and survival analysis for a class
of generalized stochastic logistic equations with piecewise constant argument.
The existence of global positive solution is proved firstly. Then the necessary
and sufficient conditions under which the population will be almost surely
extinct and persistent are investigated. Furthermore, we study the condition
for oscillation of the equation with constant coefficients, and the result shows
that the solution oscillates around a new positive point induced by the noise.
Finally, numerical experiments are given for several examples to support the
results.
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1. Introduction

Differential equations with piecewise constant argument were firstly considered by
Cooke and Wiener [7], and Shah and Wiener [30]. These equations combine the
properties of differential equations and difference equations and have the structure
of continuous dynamical systems within intervals of unit length; see [1–5, 14–16,
27, 28] and the references cited therein. Amongst them most papers focus on the
deterministic logistic equation with piecewise constant argument as a simpler special
model with harvesting from the viewpoint of application.

For the autonomous and nonautonomous differential equations, researchers
mainly studied the persistence and global stability of solutions. A classical logistic
equation with piecewise constant argument is like

x′(t) = rx(t) (1− ax(t)− bx ([t])) , (1.1)

where r, a, b ∈ R+. Gopalsamy and Liu [9] studied equation (1.1) and gave a
sufficient condition established for all positive solutions of the corresponding discrete
dynamic system to converge eventually to a positive equilibrium.
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Now stochastic noise has been considered as an important factor in modelling
population dynamics for the existence of random perturbation in almost all fields.
For example, in [23], Mao et al. considered an autonomous system driven by stochas-
tically environmental noise

dx (t) = x (t) {(r + ax(t)) dt+ σdB (t)} , (1.2)

where r, a, σ > 0 are all constants. They revealed that the environmental noise
may suppress the explosion, no matter how small the parameter σ > 0 is. While
[6,8,12,13,17–21,24,26,29,32,33] considered the persistence and stability of similar
population models with stochastic perturbations. To be a little concrete, [17, 21]
studied the population model perturbed by the white noises and regime switching
which was modeled by the finite states Markov chains. The existence of stationary
distribution and the ergodicity were also discussed for stochastic population model
(see [13] and references therein). In [33], Zu and Jiang studied the extinction and
strong persistence of a stochastic predator-prey system with Holling II functional
response. [29] investigated the threshold problem for stochastic SIR model with
saturated incidence rate and saturated treatment function.

Motivated by the above, an interesting and important question arises naturally,
that is, how will the population tend to be when the population is modeled by
(1.1) together with the stochastic perturbation. To the best of our knowledge,
the stochastic population model with piecewise constant argument has not been
investigated up to now. To fill this gap, we make the first attempt to study a
generalized logistic population model (1.3) in below for the existence, extinction,
persistence and oscillation of its solutions.

In this paper, we concern the following generalized stochastic logistic equations
with piecewise constant argument of the form

dx (t) = x (t)
{(
r (t)− a(t)xθ(t)− b(t)xγ ([t])

)
dt+ σ (t) dB (t)

}
(1.3)

and with initial condition x(0) = x0 > 0. x(t) means the population size at time
t, r(t) is called the intrinsic rate of growth, a(t) is about the carrying capacity
of environment, b(t)xγ ([t]) represents the control strategy made depending on the
size of its population at time [t] like the harvesting and so on, θ, γ ∈ R+, B(t) is a
standard Brown motion representing the effects induced by environmental noise on
the natural growth, σ(t) is the intensity of noise, and [·] denotes the greatest-integer
function.

In fact, equation (1.3) stems from the famous logistic equation

x′(t) = rx(t)

(
1− x(t)

K

)
, (1.4)

where r,K ∈ R+ denotes the growth rate and the carrying capacity of the environ-
ment, respectively. It is known that if r < 0, then x(t) → 0 as t → ∞; if r > 0,
then x(t) converges to K (see e.g. Murray [25]).

The remain part of this paper is organized as follows. In Section 2, we show
the existence of the global positive solution of (1.3). In Section 3, we discuss the
necessary and sufficient conditions for extinction and persistence of the popula-
tion modeled by (1.3). In Section 4, the oscillation of solution is studied under
assumption that all the coefficients are constants. Finally, examples with computer
simulations are given to illustrate the obtained results.
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For convenience, we introduce some notations.

R+ = [0,+∞); N = {0, 1, 2, 3, · · · · · · },

x∗ = sup
t∈R+

{x (t)} , x∗ = inf
t∈R+

{x (t)} ,

r− = lim inf
t→∞

1

t

∫ t

0

(
r (s)− 1

2
σ2 (s)

)
ds,

r+ = lim sup
t→∞

1

t

∫ t

0

(
r (s)− 1

2
σ2 (s)

)
ds,

x ∨ y = max {x, y} , x ∧ y = min {x, y} ,

where x, y ∈ R; IA is an indicator function.
Besides this, throughout this paper, we assume that:

r(t) ∈ C(R,R) and a(t), b(t), σ(t) ∈ C(R,R+)

are all bounded functions with b∗ > 0,

γ > 0.

(1.5)

2. Global positive solution

Let C(S1, S2) denote the set of all continuous functions ϕ : S1 → S2. B(t) is a

standard Brownian motion on
(

Ω, F,
(
FB (t)

)
t≥0

, P
)

, where FB(t) = σ(B(s) : 0 ≤
s ≤ t). E(X) is the expectation of X. For each x0 ∈ R+, a solution of (1.3) with
initial value x0 is denoted by x(t) = x(t, 0, x0).

Theorem 2.1. Suppose (1.5) holds and x(0) = x0 > 0, then there exists a unique
continuous positive solution of equation (1.3) on t ≥ 0 with probability 1. Further-
more, for any t ∈ R+ and k ∈ [0, [t]], the solution can be denoted by

x (t) = x (k) e

∫ t
k

(
r(s)−a(s)xθ(s)−b(s)xγ([s])−σ

2(s)
2

)
ds+

∫ t
k
σ(s)dB(s)

. (2.1)

Proof. Let τe be the explosion time (see e.g., [22, 31]), then τe > 0 a.s. since
x0 > 0. Denote

dx (t) = x (0) e

∫ t
0

(
r(s)−a(s)xθ(s)−b(s)xγ(0)−σ

2(s)
2

)
ds+

∫ t
0
σ(s)dB(s)

. (2.2)

One can check by the Itô formula that (2.2) is a continuous positive solution of
(1.3) for t ∈ [0, 1]

⋂
[0, τe). Note that the coefficients of the equation are local

Lipschitz continuous, thus there exists a unique continuous positive solution of (1.3)
for t ∈ [0, 1]

⋂
[0, τe) (see [22]), which can be represented by (2.2). Furthermore,

0 < x (1, ω) <∞ for all ω ∈ Ω0 = {ω| τe(ω) > 1}.
For all k ∈ N, similarly to the above, one can verify that there is a unique con-

tinuous positive solution of (1.3) for t ∈ [k, k+1]
⋂

[0, τe) by using the mathematical
induction method, and the solution can be expressed as

x (t) = x (k) e

∫ t
k

(
r(s)−a(s)xθ(s)−b(s)xγ(k)−σ

2(s)
2

)
ds+

∫ t
k
σ(s)dB(s)

. (2.3)
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Thus (2.1) holds for t ∈ [0, τe).
To show that the solution is global, we need to prove that τe = ∞ a.s.. Let

m0 ∈ N be sufficiently large such that 1
m0
≤ x0 ≤ m0. For any integer m > m0,

define the stopping time

τm = inf

{
t ∈ [0, τe) : x (t) /∈

(
1

m
,m

)}
,

where throughout this paper we set inf∅ =∞ (as usual ∅ denotes the empty set).
Clearly, τm is increasing as m → ∞. Set τ∞ = lim

m→∞
τm, then τ∞ ≤ τe a.s.. If

τ∞ = ∞ is true, then τe = ∞ a.s.. If τ∞ = ∞ a.s. is false, there are constants
T > 0 and ε ∈ (0, 1) such that P (τm ≤ T ) ≥ ε. For all 0 ≤ t ≤ τm ∧ T , define a
C2-function V : R+ → R+ by

V (x) = 4
√
x− 4− 2 ln (x) ,

which is not negative for x > 0.
Let k > k0 and T > 0 be arbitrary. For 0 ≤ t ≤ τk ∧ T , using the Itô formula to

(1.3), we get

dV (x) =2

(
1√
x
− 1

x

)
dx− 1

2

(
1√
x3
− 2

x2

)
(dx)

2

=

{
2
(√
x− 1

) (
r (t)− a(t)xθ (t)− b(t)xγ ([t])

)
+

1

2

(
2−

√
x(t)

)
σ2 (t)

}
dt

+ 2
(√

x(t)− 1
)
σ (t) dB (t)

≤
{
−2a∗x

θ+1/2 (t) + 2r∗
√
x (t) + 2a∗xθ (t) + 2b∗xγ ([t]) + (σ∗)

2
}
dt

+ 2
(√

x (t)− 1
)
σ (t) dB (t) .

Note that a∗ ≥ 0, it follows that

dV (x) ≤
{

2r∗
√
x (t) + 2a∗xθ (t) + 2b∗xγ ([t]) + (σ∗)

2
}
dt

+ 2
(√

x (t)− 1
)
σ (t) dB (t) .

Integrating both sides from 0 to τm ∧ T , and taking expectations, it yields

E (V (x (τm ∧ T )))

≤V (x (0)) + E

(∫ τm∧T

0

{
2r∗
√
x (s) + 2a∗xθ (s) + 2b∗xγ ([s]) + (σ∗)

2
}
ds

)

≤V (x (0)) + 2r∗E

(∫ T

0

√
x (s) · I{s<τm∧T}ds

)
+ (σ∗)

2
T

+ 2a∗E

(∫ T

0

xθ (s) · I{s<τm∧T}ds

)
+ 2b∗E

(∫ T

0

xγ ([s]) · I{s<τm∧T}ds

)
.

(2.4)



1526 T. Zhang, L. Qiu, D. Zhao & S. Yuan

The following estimations are useful for our proof. By (2.1), for s ∈ (0, 1] we get
that

E
(
xθ (s) · I{s<τm∧T}

)
=E

(
xθ (0) e

θ
∫ s
0

(
r(u)−a(u)xθ(u)−b(u)xγ(0)−σ

2(u)
2

)
du+θ

∫ s
0
σ(u)dB(u)

· I{s<τm∧T}

)

≤E
(
xθ (0) eθ

∫ 1
0
r(u)du+θ2

∫ s
0
σ2(u)

2 du−θ2
∫ s
0
σ2(u)

2 du+θ
∫ s
0
σ(u)dB(u) · I{s<τm∧T}

)

≤xθ (0) eθr
∗+θ2

(σ∗)2

2 E

(
e−θ

2
∫ s
0
σ2(u)

2 du+θ
∫ s
0
σ(u)dB(u) · I{s<τm∧T}

)

≤xθ (0) eθr
∗+θ2

(σ∗)2

2 E

(
e−θ

2
∫ s
0
σ2(u)

2 du+θ
∫ s
0
σ(u)dB(u)

)

≤xθ (0) eθr
∗+θ2

(σ∗)2

2 ,

(2.5)

which implies E
(
x

1
2 (s) · I{s<τm∧T}

)
≤ x 1

2 (0) e
1
2 r
∗+ 1

4

(σ∗)2

2 . As s ∈ (1, T ], there is

E
(
xθ (s) · I{s<τm∧T}

)
= E

(
xθ ([s]− 1) e

θ
∫ s
[s]−1

(
r(u)−a(u)xθ(u)−b(u)xγ([u])−σ

2(u)
2

)
du+θ

∫ s
[s]−1

σ(u)dB(u)

×I{s<τm∧T}
)

≤ E
(
xθ ([s]− 1) eθ

∫ s
[s]−1

r(u)du−θxγ([s]−1)
∫ s
[s]−1

b(u)du+θ
∫ s
[s]−1

σ(u)dB(u) · I{s<τm∧T}
)

≤ E
(
xθ ([s]− 1) e2θr∗−b∗θxγ([s]−1)+θ2(σ∗)2−θ2

∫ s
[s]−1

σ2(u)
2 du+θ

∫ s
[s]−1

σ(u)dB(u)

×I{s<τm∧T}
)
.

(2.6)

Let f (z) = ze−b∗z
γ

, then f ′ (z) = e−b∗z
γ

(1− b∗γzγ). Clearly, it follows that

max
z≥0
{f (z)} = f

( 1

b∗γ

)1/γ
 =

(
1

b∗γ

)1/γ
e−

1
γ .

By (2.6), we obtain

E
(
xθ (s) · I{s<τm∧T}

)
≤E

(
fθ [x ([s]− 1)] e2θr∗+θ2(σ∗)2−θ2

∫ s
[s]−1

σ2(u)
2 du+θ

∫ s
[s]−1

σ(u)dB(u) · I{s<τm∧T}
)
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≤
(

1

b∗γ

)θ/γ
e2θr∗− θγ+θ2(σ∗)2E

(
e−θ

2
∫ s
[s]−1

σ2(u)
2 du+θ

∫ s
[s]−1

σ(u)dB(u) · I{s<τm∧T}
)

≤
(

1

b∗γ

)θ/γ
e2θr∗− θγ+θ2(σ∗)2E

(
e−θ

2
∫ s
[s]−1

σ2(u)
2 du+θ

∫ s
[s]−1

σ(u)dB(u)

)

=

(
1

b∗γ

)θ/γ
e2θr∗− θγ+θ2(σ∗)2 ,

where the last term is derived by using the property of the exponential martingale.
Denote

Hθ =

(
xθ (0) eθr

∗+θ2
(σ∗)2

2

)
∨

((
1

b∗γ

)θ/γ
e2θr∗− θγ+θ2(σ∗)2

)
, (2.7)

then for s ∈ [0, T ],

E
(√

x (s) · I{s<τm∧T}
)
≤ H1/2. (2.8)

Now we consider the last formula in (2.4).

For s ∈ (0, 1),

E
(
xγ ([s]) · I{s<τm∧T}

)
= E

(
xγ (0) · I{s<τm∧T}

)
≤ xγ (0) . (2.9)

When s ∈ [1, T ), similarly to (2.6) we have

E
(
xγ ([s]) · I{s<τm∧T}

)
≤ E

(
xγ ([s]− 1) e

γ
∫ [s]

[s]−1

(
r(u)−b(u)xγ([u]−1)−σ

2(u)
2

)
du+γ

∫ [s]

[s]−1
σ(u)dB(u)

×I{s<τm∧T}
)

≤ E
(
xγ ([s]− 1) e

γ
∫ [s]

[s]−1
r(u)du−γxγ([s]−1)

∫ [s]

[s]−1
b(u)du+γ2

∫ [s]

[s]−1
σ2(u)

2 du

×e−γ
2
∫ [s]

[s]−1
σ2(u)

2 du+γ
∫ [s]

[s]−1
σ(u)dB(u)·I{s<τm∧T}

)

≤ E
(
xγ ([s]− 1) e

γr∗−b∗γxγ([s]−1)+ 1
2γ

2(σ∗)2−γ2
∫ [s]

[s]−1
σ2(u)

2 du+γ
∫ [s]

[s]−1
σ(u)dB(u)

×I{s<τm∧T}
)

≤ 1

b∗γ
eγr
∗−1+ 1

2γ
2(σ∗)2E

(
e
−γ2

∫ [s]

[s]−1
σ2(u)

2 du+γ
∫ [s]

[s]−1
σ(u)dB(u) · I{s<τm∧T}

)
≤ 1

b∗γ
eγr
∗−1+ 1

2γ
2(σ∗)2 .

(2.10)
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Denote

Gγ = xγ (0) ∨
(

1

b∗γ
eγr
∗−1+ 1

2γ
2(σ∗)2

)
. (2.11)

Substituting (2.5)-(2.11) into (2.4), we obtain

E (V (x (τm ∧ T ))) ≤ V (x (0)) + (σ∗)
2
T + 2

{
r∗H1/2 + a∗Hθ + b∗Gγ

}
T. (2.12)

Note that for every ω ∈ {ω : τm(ω) ≤ T} , x (τm, ω) = m or 1
m , then

E (V (x (τm ≤ T ))) =E
(
I{τm≤T}V (x (τm))

)
=

{
(4m− 4− 2 lnm) ∧

(
4

1

m
− 4 + 2 lnm

)}
P (τm ≤ T )

≥
{

(4m− 4− 2 lnm) ∧
(

4
1

m
− 4 + 2 lnm

)}
ε→∞

as k →∞, which contradicts with (2.12). Therefore, τ∞ =∞ a.s. holds, and hence
τe =∞ a.s.. The proof is complete.

From (2.5)-(2.11), one can also obtain the boundness result of the solution.

Theorem 2.2. Suppose that (1.5) holds and x(t) is a solution of equation (1.3)
with x(0) = x0 > 0.

(i) If p ∈ (0, 1), then E (xp (t)) ≤ max

{
xp0e

pr∗ ,
(

1
b∗γ

)p/γ
e2pr∗− pγ−

1
2 (p−p2)(σ∗)

2

}
.

(ii) If p ≥ 1, then

E (xp (t)) ≤ max

{
xp0e

pr∗+(p2−p)(σ∗)2 ,
(

1
b∗γ

)p/γ
e2pr∗− pγ+(p2−p)(σ∗)2

}
.

In particular, E (x (k)) ≤
(

1
b∗γ

)1/γ

er
∗− 1

γ for all integer number k ≥ 1.

Proof. It can be proved from (2.5)-(2.11), we omit the details here.

3. Survival analysis

In this section, we discuss the conditions for the extinction and persistence of the
population. We first list some definitions used below.

Definition 3.1.

(1) The population x(t) modeled by (1.3) is said to be extinct a.s. if lim
t→∞

x (t) = 0

a.s. (almost surely).

(2) The population x(t) modeled by (1.3) is said to be persistent a.s. if there exist
constants Λ0 and Λ1 such that 0 < Λ0 ≤ lim inf

t→∞
x (t) ≤ lim sup

t→∞
x (t) ≤ Λ1 <∞ a.s..

(3) Let p > 0 be a constant, the population x(t) modeled by (1.3) is said to be
p-persistent a.s. by time average if there exist constants H0 and H1 such that
0 < H0 ≤ lim inf

t→∞
1
t

∫ t
0
xp (s) ds ≤ lim sup

t→∞
1
t

∫ t
0
xp (s) ds ≤ H1 <∞ a.s..

Remark 3.1. In (3) of Definition 3.1, we call x(t) to be persistent a.s. by time
average if p = 1.
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3.1. Extinction

Theorem 3.1. Suppose that (1.5) holds and x(t) is a solution of equation (1.3)
with x(0) = x0 > 0. If r+ < 0, the population x(t) will be almost surely extinct, i.e.
lim
t→∞

x(t) = 0 a.s.. Moreover, x(t) converges exponentially to 0.

Proof. By using the Itô formula, we have from (1.3)

d lnx =
1

x
dx− 1

2x2
(dx)

2

=

{
r (t)− a(t)xθ (t)− b(t)xγ ([t])− 1

2
σ2 (t)

}
dt+ σ (t) dB (t)

≤
{
r (t)− 1

2
σ2 (t)

}
dt+ σ (t) dB (t) .

It follows that

lnx (t) ≤ lnx (0) +

∫ t

0

(
r (s)− 1

2
σ2 (s)

)
ds+

∫ t

0

σ (s) dB (s), (3.1)

where M(t) =
∫ t

0
σ (s) dB (s) is continuously local martingale with

〈M(t),M(t)〉 =

∫ t

0

σ2 (s) ds ≤ (σ∗)
2
t.

An application of the strong law of large numbers for Brownian motion gives that

lim
t→∞

M(t)

t
= 0 a.s. (3.2)

Then from (3.1), r+ < 0 implies that the population x(t) will almost surely die out
with exponential rate r+.

Theorem 3.2. Suppose that (1.5) holds and x(t) is a solution of equation (1.3)
with x(0) = x0 > 0. If r+ = 0, and one of the following two conditions is satisfied

(1) lim
t→∞

∫ t
0
σ2 (u) du =∞ and lim sup

t→∞

(∫ t
0

(
r (u)− σ2(u)

8

)
du
)
≤ 0;

(2) lim sup
t→∞

∫ t
0
r (u) du = −∞;

the population will be almost surely extinct.

Proof. Under the condition (1), the solution (2.1) shows that

√
x (t) =

√
x0e

1
2

∫ t
0

(
r(u)−a(u)xθ(u)−b(u)xγ([u])−σ

2(u)
2

)
du+ 1

2

∫ t
0
σ(u)dB(u)

≤
√
x0e

1
2

∫ t
0

(
r(u)−σ

2(u)
8

)
du− 1

2

∫ t
0
σ2(u)

8 du+

{
− 1

4

∫ t
0
σ2(u)

2 du+ 1
2

∫ t
0
σ(u)dB(u)

}
.

(3.3)

Denote M̃(t) = e−
1
4

∫ t
0
σ2(u)

2 du+ 1
2

∫ t
0
σ(u)dB(u) for t > 0, then M̃(t) is a nonnegative

martingale and converges to some finite random variable M̃∞ as t→∞ due to the
Doob’s martingale convergence theorem (see [11]). Therefore there exists an a.s.
finite random variable L = L(ω) > 0 such that

M̃(t)(ω) < L(ω) for all t > 0. (3.4)
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This, together with (1.1) and (3.3), gives that√
x (t) ≤

√
x0Le

− 1
2

∫ t
0
σ2(u)

8 du → 0 (3.5)

as t → ∞. Notice f (x) =
√
x is a continuous and increasing function for x ≥ 0,

(3.5) implies that
lim
t→∞

x (t) = 0 a.s.

Under the condition (2), now the solution (2.1) indicates

x (t) =x0e

∫ t
0

(
r(u)−a(u)xθ(u)−b(u)xγ([u])−σ

2(u)
2

)
du+

∫ t
0
σ(u)dB(u)

≤x0e
∫ t
0
r(u)du−

∫ t
0
σ2(u)

2 du+
∫ t
0
σ(u)dB(u).

The left proof is similar to that of (1), we omit it.

3.2. Persistence

Theorem 3.3. Suppose that (1.5) holds and x(t) is a solution of equation (1.3)
with x(0) = x0 > 0, then r+ > 0 is necessary for almost sure persistence of the
population.

Proof. From Theorem 3.1, it remains to prove that the population can not be
persistent under the assumption: r+ = 0. We prove it by the indirect method.
Suppose that the population is persistent a.s., that is, there exists a constant c > 0
such that lim

t→∞
inf x (t) ≥ c a.s., then by (2.1),

x (t) =x0e

∫ t
0

(
r(u)−a(u)xθ(u)−b(u)xγ([u])−σ

2(u)
2

)
du+

∫ t
0
σ(u)dB(u)

≤x0e

∫ t
0

(
r(u)−σ

2(u)
2

)
du−a∗

∫ t
0
xθ(u)du−b∗

∫ t
0
xγ(u)du+

∫ t
0
σ(u)dB(u)

.

Since (3.2) and r+ = 0 are valid, for any ε > 0, we have∫ t

0

(
r (u)− σ2 (u)

2

)
du+

∫ t

0

σ (u) dB (u) ≤ 2εt

for t sufficiently large. Recall (1.5), it follows

x (t) ≤ x0e
−(a∗cθ+b∗c

γ−2ε)t → 0

as t→∞. This is a contradiction with lim
t→∞

inf x (t) ≥ c > 0 a.s.

From Theorem 3.3, we immediately get,

Theorem 3.4. Suppose that (1.5) holds and x(t) is a solution of equation (1.3)
with x(0) = x0 > 0, then r+ > 0 is a necessary condition for the population to be
p-persistent a.s. by time average.

Theorem 3.5. Suppose that (1.5) holds and x(t) is a solution of equation (1.3)
with x(0) = x0 > 0. If r− > 0, the population x(t) will be p-persistent a.s. by time
average.
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Proof. Taking integration on formula (2.1) gives that for any k ∈ N,∫ k+1

k

xp (s) ds

=

∫ k+1

k

xp (k) e
p
∫ s
k

(
r(u)−a(u)xθ(u)−b(u)xγ(k)−σ

2(u)
2

)
du+p

∫ s
k
σ(u)dB(u)

ds

≤
(

1

b∗γ

)p/γ
epr
∗− pγ+p2(σ∗)2 ·

∫ k+1

k

e−p
2
∫ s
k
σ2(u)

2 du+p
∫ s
k
σ(u)dB(u)ds.

(3.6)

Denote Kp =
(

1
b∗γ

)p/γ
epr
∗− pγ and Mp (k) =

∫ k+1

k
e−p

2
∫ s
k
σ2(u)

2 du+p
∫ s
k
σ(u)dB(u)ds,

then Mp (k), k = 0, 1, 2 · · · are independent of each other, with

E (Mp (k)) =

∫ k+1

k

E

(
e−p

2
∫ s
k
σ2(u)

2 du+p
∫ s
k
σ(u)dB(u)

)
ds = 1.

Due to Cauchy inequality:
(∫ b

a
|f · g| ds

)2

≤
∫ b
a
f2ds ·

∫ b
a
g2ds, we have

E
(
M4
p (k)

)
=E

(∫ k+1

k

e−p
2
∫ s
k
σ2(u)

2 du+p
∫ s
k
σ(u)dB(u)ds

)4

≤E

(∫ k+1

k

e−2p2
∫ s
k
σ2(u)

2 du+2p
∫ s
k
σ(u)dB(u)ds

)2

≤E

(∫ k+1

k

e−4p2
∫ s
k
σ2(u)

2 du+4p
∫ s
k
σ(u)dB(u)ds

)

≤
∫ k+1

k

e12p2
∫ s
k
σ2(u)

2 duds

≤e6p2(σ∗)2 .

(3.7)

The strong law of large numbers indicates

lim
n→∞

1

n

n∑
k=0

Mp (k) = 1 a.s., (3.8)

which implies part of the desired result:

lim sup
t→∞

1

t

∫ t

0

xp (s) ds ≤ Kpe
p2(σ∗)2 lim sup

t→∞

1

t

[t]∑
k=0

Mp (k) =Kpe
p2(σ∗)2 a.s. (3.9)

On the other hand, for any t ∈ [k, k + 1], the solution (2.1) tells

xp (t) =xp (k) e
p
∫ t
k

(
r(u)−a(u)xθ(u)−b(u)xγ(k)−σ

2(u)
2

)
du+p

∫ t
k
σ(u)dB(u)

≤Kpe
−p
∫ t
k
σ2(u)

2 du+p
∫ t
k
σ(u)dB(u).

(3.10)
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Or,
1

xp (t)
≥ 1

Kp
ep
∫ t
k
σ2(u)

2 du−p
∫ t
k
σ(u)dB(u). (3.11)

Hence we have

xp (t) = xp (0) e
p
∫ t
0

(
r(u)−a(u)xθ(u)−b(u)xγ([u])−σ

2(u)
2

)
du+p

∫ t
0
σ(u)dB(u)

. (3.12)

Substituting (3.11) into (3.12),

ep
∫ t
0 (a(u)xθ(u)+b(u)xγ([u]))du =

xp (0)

xp (t)
e
p
∫ t
0

(
r(u)−σ

2(u)
2

)
du+p

∫ t
0
σ(u)dB(u)

≥x
p (0)

Kp
e
p
∫ k
0

(
r(u)−σ

2(u)
2

)
du+p

∫ k
0
σ(u)dB(u)

.

Compute that ∫ t

0

(
a(u)xθ(u) + b(u)xγ ([u])

)
du

≥1

p
ln
xp (0)

Kp
+

∫ k

0

(
r (u)− σ2 (u)

2

)
du+

∫ k

0

σ (u) dB (u). (3.13)

With (3.2) and take limits on both sides of (3.13), we can get

lim inf
t→∞

1

t

∫ t

0

(
a(u)xθ(u) + b(u)xγ ([u])

)
du ≥ lim inf

t→∞

1

t

∫ [t]

0

(
r (u)− σ2 (u)

2

)
du

= r− a.s. (3.14)

Next we will prove that there exist constants } > 0 and 0 < ξ < r−
2 such that

} lim inf
t→∞

1

t

∫ t

0

x (s) ds+ ξ ≥ lim inf
t→∞

1

t

∫ t

0

(
a(u)xθ(u) + b(u)xγ ([u])

)
du a.s., (3.15)

holds, which suffices to prove the left of the desired result.

Let q > 0 be a constant satisfying q > max
{

1, p, pθ ,
p
2γ

}
. Based on Young

inequality, we have that∫ t

0

a(u)xθ(u)du =

∫ t

0

a(u)

(
1

α
x
p
q (u)

)(
αxθ−

p
q (u)

)
du

≤
∫ t

0

a(u)

{
1

qαq
xp(u) +

q − 1

q
α

q
q−1x

θq−p
q−1 (u)

}
du

≤ a∗

qαq

∫ t

0

xp(u)du+
a∗ (q − 1)

q
α

q
q−1

∫ t

0

x
θq−p
q−1 (u)du,

(3.16)

where α > 0 is a constant to be chosen later, and it is the same for positive constants
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β and δ in the sequel. Now

∫ t

0

b(u)xγ ([u]) du

≤
[t]∑
k=0

xγ (k)

∫ k+1

k

b(u)du ≤ b∗
[t]∑
k=0

xγ (k) = b∗x0 + b∗
[t]∑
k=1

xγ (k)

≤ b∗x0 + b∗
[t]∑
k=1

∫ k

k−1

xγ (k) ds

= b∗x0 + b∗

×
[t]∑
k=1

∫ k

k−1

xγ (s) e
γ
∫ k
s

(
r(u)−σ

2(u)
2

)
du−γ

∫ k
s (a(u)xθ(u)+b(u)xγ([u]))du+γ

∫ k
s
σ(u)dB(u)

ds

≤ b∗x0 +
b∗

2

[t]∑
k=1

{∫ k

k−1

x2γ (s)

δ2
ds+ δ2

∫ k

k−1

e
2γ
∫ k
s

(
r(u)−σ

2(u)
2

)
du+2γ

∫ k
s
σ(u)dB(u)

ds

}

≤ b∗x0 +
b∗

2δ2

[t]∑
k=1

∫ k

k−1

x2γ (s) ds+
b∗δ2

2
e2γ{r∗+(σ∗)2}

[t]∑
k=1

M̂2γ(k),

(3.17)

where M̂2γ(k) =
∫ k
k−1

e−4γ2
∫ k
s
σ2(u)

2 du+2γ
∫ k
s
σ(u)dB(u)ds. Since

[t]∑
k=1

∫ k

k−1

x2γ (s) ds =

∫ [t]

0

x2γ (s) ds

≤
∫ [t]

0

{
1

qβq
xp (s) +

β
q
q−1 (q − 1)

q
x

2qγ−p
q−1 (s)

}
ds

≤ 1

qβq

∫ t

0

xp (s) ds+
β

q
q−1 (q − 1)

q

∫ [t]

0

x
2qγ−p
q−1 (s) ds

(3.18)

holds, combining (3.16)-(3.18) we obtain

∫ t

0

(
a(u)xθ(u) + b(u)xγ ([u])

)
du

≤
(
a∗

qαq
+

b∗

2qβqδ2

)∫ t

0

xp(u)du+
a∗ (q − 1)

q
α

q
q−1

∫ t

0

x
θq−p
q−1 (u)du+ b∗x0

+
b∗

2δ2

β
q
q−1 (q − 1)

q

∫ [t]

0

x
2qγ−p
q−1 (s) ds+

b∗δ2

2
e2γ{r∗+(σ∗)2}

[t]∑
k=1

M̂2γ(k).

(3.19)
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Similarly to the proof of (3.8) and (3.9), one may get the following results:

lim
t→∞

1

t

[t]∑
k=1

∫ k

k−1

e−4γ2
∫ k
s
σ2(u)

2 du+2γ
∫ k
s
σ(u)dB(u)ds = 1 a.s., (3.20)

lim sup
t→∞

1

t

∫ t

0

x
θq−p
q−1 (s) ds ≤ K θq−p

q−1
e(

θq−p
q−1 )

2
(σ∗)2 a.s., (3.21)

lim sup
t→∞

1

t

∫ [t]

0

x
2qγ−p
q−1 (s) ds ≤ K 2qγ−p

q−1
e(

2qγ−p
q−1 )

2
(σ∗)2 a.s. (3.22)

Put (3.20)-(3.22) into (3.19) and take limit, we have

lim inf
x→∞

1

t

∫ t

0

(
a(u)xθ(u) + b(u)xγ ([u])

)
du

≤} lim inf
x→∞

1

t

∫ t

0

xp(u)du+
a∗ (q − 1)

q
α

q
q−1K θq−p

q−1
e(

θq−p
q−1 )

2
(σ∗)2

+
b∗

2δ2

β
q
q−1 (q − 1)

q
K 2qγ−p

q−1
e(

2qγ−p
q−1 )

2
(σ∗)2 +

b∗δ2

2
e2γ{r∗+(σ∗)2} a.s.,

(3.23)

where } = a∗

qαq + b∗

2qβqδ2 . Choose α, δ, β small enough such that

r−
2
>
a∗ (q − 1)

q
α

q
q−1K θq−p

q−1
e(

θq−p
q−1 )

2
(σ∗)2

+
b∗

2δ2

β
q
q−1 (q − 1)

q
K 2qγ−p

q−1
e(

2qγ−p
q−1 )

2
(σ∗)2 +

b∗δ2

2
e2γ{r∗+(σ∗)2},

(3.24)

then (3.15) holds, and hence

lim inf
x→∞

1

t

∫ t

0

xp(u)du ≥ r−
2}

a.s.

Remark 3.2. Let r(t) ≡ r and σ(t) ≡ σ be constants. Theorem 3.1 shows that

if r < σ2

2 , the population modeled by (4.1) becomes a.s. extinct, and Theorem 3.5

shows that if r > σ2

2 , the population tends to be persistent by average. So σ2

2 is the
critical number between the extinction and persistence by average.

Remark 3.3. Let r(t) ≡ r and σ(t) ≡ σ be constants, and (1.5) holds. Theorem
3.4 and 3.5 indicate that the population becomes p-persistent a.s. by time average

if and only if r > σ2

2 .

4. Oscillation

In this section, we study the oscillation property about solutions of the stochastic
logistic equation with piecewise constant argument. For convenience, we suppose
that all of the coefficients are constants. The equation is of the form:

dx (t) = x (t)
{(
r − axθ (t)− bxγ ([t])

)
dt+ σdB (t)

}
, (4.1)
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where r, a, b, θ, γ and σ are all positive constants. One definition stemming from
the deterministic equation is given in the following.

Definition 4.1. Let v > 0 be a constant. Then the solution x(t) of (4.1) is said
to be oscillating around w a.s. if there exists Ω1 ⊂ Ω such that P (Ω1) = 1, and for
any ω ∈ Ω1 and T > 0, there are constants T1 = T1(ω) > T and T2 = T2(ω) > T
such that x(T1)(ω) < v and x(T2)(ω) > v.

Theorem 4.1. Let x(t) be a solution of (4.1) with x(0) = x0 > 0. If r > σ2

2 holds,
then x(t) oscillates around x̃, which is a unique solution of equation:

r − ax̃θ − bx̃γ =
σ2

2
. (4.2)

Proof. By Theorem 2.1, x(t) is the unique positive solution of (4.1). Define

f(x) = r − σ2

2 − ax
θ − bxγ , there is

f (0) = r − σ2

2
> 0, lim

x→∞
f(x) = −∞.

It means the existence of a solution of (4.2). Furthermore,

f ′ (x) = −aθxθ−1 − bγxγ−1 < 0

for all x > 0, and hence the solution of (4.2), denoted by x̃, is unique.
To prove that the solution of (4.1) oscillates around the positive point x̃. We

first assume that x(t) ≥ x̃ a.s. for some constant T = T (ω) ≥ 0. Denote ϕ (t) =
x (t) eσB(t), from (4.1) we get

ϕ (t) =ϕ (T + 1) e
∫ t
T+1

(
r−axθ(u)−bxγ([u])−σ22

)
du

≤ϕ (T + 1)

=x0e
∫ T+1
0

(
r−axθ(u)−bxγ([u])−σ22

)
du+2σB(T+1)

≤x0e
r(T+1)+2σB(T+1)

=x0e
(r+2σ2)(T+1)Q2(T + 1)

(4.3)

for all t ≥ T + 1, where function Qλ(t) = e−
λ2σ2

2 t+λσB(t) for t > 0 and λ > 0. So
there must be an a.s. finite random variable Γλ = Γλ(ω) > 0 satisfying Qλ(t)(ω) <
Γλ(ω) for all t > 0. It follows from (4.3) that

x (t) ≤ x0e
(r+2σ2)(T+1)Γ2e

−σB(t).

Therefore

lim inf
t→∞

x (t) ≤ lim inf
t→∞

x0e
(r+2σ2)(T+1)Γ2e

−σB(t) = 0 a.s., (4.4)

by the law of the iterated logarithm: lim sup
t→∞

B(t)√
t ln ln t

= 1 a.s.. Now we get a con-

tradiction between (4.4) and the assumption x(t) ≥ x̃ > 0 a.s. for T = T (ω).
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Secondly, we assume that x(t) ≤ x̃ a.s. for some constant T2 = T2(ω) ≥ 0.
Define

T̂ (ω) = inf
{
t|x (s, ω) ≤ x̃ for all s > t and t ∈ R+

}
.

It’s clear that 0 ≤ T̂ (ω) < ∞ a.s. and x
(
T̂ (ω)

)
=

 x̃ for T̂ (ω) > 0,

x0 for T̂ (ω) = 0.
There are

two cases. If T̂ (ω) = 0,

ϕ (t) = ϕ (0) e
∫ t
0

(
r−axθ(u)−bxγ([u])−σ22

)
du ≥ x0.

It follows that
x (t) ≥ x0e

−σB(t). (4.5)

If T̂ (ω) > 0, by (4.1)

xγ
([
T̂
])

=xγ
([
T̂ − 1

])
e
γ
∫ [T̂ ]
[T̂−1]

(
r−axθ(u)−bxγ([T̂−1])−σ

2

2

)
du+σγ(B([T̂ ])−B([T̂−1]))

≤ 1

bγ
eγr−1 · eσ

2γ2[T̂ ] · e
{
−σ

2γ2

2 [T̂ ]+σγB([T̂ ])
}

+
{
−σ

2γ2

2 [T̂−1]−σγB([T̂−1])
}

≤ 1

bγ
eγr−1+σ2γ2T̂Γ2

γ

:=Γ̃,

then Γ̃ <∞ a.s. and

ϕ (t) =ϕ
(
T̂
)
e
∫ t
T̂

(
r−axθ(u)−bxγ([u])−σ22

)
du

=ϕ
(
T̂
)
e
∫ [T̂ ]+1

T̂

(
r−axθ(u)−bxγ([T̂ ])−σ

2

2

)
du
e
∫ t
[T̂ ]+1

(
r−axθ(u)−bxγ([u])−σ22

)
du

≥ϕ
(
T̂
)
eb
∫ [T̂ ]+1

T̂
(xγ−xγ([T̂ ]))due

∫ [T̂ ]+1

T̂

(
r−axθ(u)−bxγ−σ22

)
du

≥x
(
T̂
)
e−

σ2

2 T̂+σ2

2 T̂+σB(T̂) · e−bΓ̃

≥x̃ 1

Γ1
e−

σ2

2 T̂−bΓ̃.

The last inequality obtained by using the formula: e−
σ2

2 T̂−σB(T̂) ≤ Γ1. Thus we
have

x (t) ≥ x̃ 1

Γ1
e−

σ2

2 T̂−bΓ̃e−σB(t). (4.6)

In general, from (4.5) and (4.6), there is

lim sup
t→∞

x (t) ≥
(
x0 ∧ x̃

1

Γ1
e−

σ2

2 T̂−bΓ̃
)

lim sup
t→∞

e−σB(t) =∞ a.s.,

which is false because of the assumption x(t) ≤ x̃ a.s. for all t > T2. The proof is
complete.
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Remark 4.1. Let θ = 1 with γ = 1, one can see that x̂ := r
a+b is the positive

equilibrium of the deterministic equation of (4.1) with σ = 0. From Theorem 4.1,
x̂ is not the equilibrium of the stochastic version (4.1), and the solution oscillates

around ̂̂x :=
r−σ22
a+b different from x̂.

5. Simulation and discussion

Three examples are given in this section for numerical experiments to illustrate our
results by employing the Milstein method (see [10]). To begin, equation (1.3) can
be discretized as follows: for k = 0, 1, 2, ......, L and j∆t ∈ (k, k + 1],

xj+1 =xj + xj

(
r (j∆t)− a (j∆t) (xj)

θ − b (j∆t) (xk)
γ
)

∆t

+ σ (j∆t)xj∆Bj +
1

2
σ2 (j∆t)xj

{
(∆Bj)

2 −∆t
}
,

(5.1)

where xj = x (j∆t), ∆t is the step size and ∆Bj = B ((j + 1) ∆t)−B (j∆t) is an
increments generated by using discretized Brownian paths like that in [10].

Example 5.1. Consider the stochastic logistic equation with piecewise constant
argument

dx(t) =x(t)

{(
0.4 + 0.2 sin

(π
2
t
)
−
(

0.6 +
1

t

)√
x(t)

−
(

0.4 + 0.1 cos
(π

2
t
))

x([t])
)
dt+ 0.96dB(t)

} (5.2)

with x(0) = 0.3 and it’s determined version

dx (t)

dt

=x (t)

{(
0.4 + 0.2 sin

(π
2
t
)
−
(

0.6 +
1

t

)√
x(t)−

(
0.4 + 0.1 cos

(π
2
t
))

x ([t])

)}
(5.3)

with y(0) = 0.4. The paths by Milstein method are as follows.
In Figure 1, from picture (a), the solution (denoted by green line) of (5.3) is

always greater than zero and oscillates in an interval induced by the coefficients.
Comparing the lines in picture (a) and (b), a result arises that noise induces the

population to die out. Note that lim sup
t→∞

1
t

∫ t
0

{
0.4 + 0.2 sin

(
π
2 s
)
− (0.96)2

2

}
ds =

−0.0608 < 0, Theorem 3.1 confirms this.

Example 5.2. Consider the stochastic logistic equation with piecewise constant
argument

dx(t) =x(t)

{(
0.4 + 0.2 sin

(π
2
t
)
−
(

0.6 +
1

t

)√
x(t)

−
(

0.4 + 0.1 cos
(π

2
t
))

x([t])
)
dt+ 0.26dB (t)

} (5.4)
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Figure 1. (a) : the trajectory of the determined equation (5.3). (b) : the trajectory of the stochastic
equation (5.2) with ∆t = 0.001.
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Figure 2. (c): the trajectory of equation (5.4) with ∆t = 0.001. (d): the trajectory of X(t).

with x(0) = 0.3. Define X(t) = 1
t

∫ t
0
x(s)ds. In Figure 2, the blue line in pic-

ture (c) represents the solution of (5.4), and the red line in picture (d) is the
path by time average of (5.4). The parameters in (5.2) and (5.4) are the same
except with the only difference on value σ(t). In (5.4), σ(t) = 0.26 means that

lim inf
t→∞

1
t

∫ t
0

{
0.4 + 0.2 sin

(
π
2 t
)
− (0.26)2

2

}
= 0.3662 > 0, and hence the population

will be persistent by time average because of Theorem 3.5. Picture (d) in Figure 2
confirms this.
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Example 5.3. Consider the stochastic logistic equation with constant coefficients

dx (t) = x (t)
{(

0.6− 0.2
√
x(t)− 0.6x ([t])

)
dt+ 0.4dB (t)

}
(5.5)

with x(0) = 0.4. x̃ ≈ 0.655 is the solution of 0.6x̃+ 0.2
√
x̃ = 0.6− (0.4)2

2 .
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Figure 3. The blue line in (e) is the trajectory of equation (5.5) with ∆t = 0.001. The red line in (f)
is the trajectory of X(t) defined as before. The black line represents the formula: x̃ = 0.655.

In Figure 3, the black line denotes the equilibrium level: x̃ ≈ 0.655. The blue
line in picture (e) represents the solution of (5.5), and the red line in picture (f) is
the path by time average of (5.5). From picture (e), the solution of (5.5) oscillates
around the point x̃, which is consistent with the result presented by Theorem 4.1

for r − σ2

2 = 0.52 > 0. From Remark 3.3, the solution of (5.5) is persistent a.s. by
time average. Figure 3(f) supports this.

Remark 5.1. The method in this paper can be extended to the following general
stochastic logistic equations with piecewise constant arguments:

dx(t)

=x(t)


r(t)− a(t)xθ(t)− b(t)xγ([t])−

K∑
j=1

bj(t)x
γj ([t− j])

 dt+ σ(t)dB(t)

 .

In this paper, we give the conditions for the existence of the global positive solu-
tion and some criteria established for the almost sure extinction and persistence of
the positive solutions about a stochastic population model with piecewise constant
argument. In sense of persistence, necessary conditions are also given. By supposing
that the coefficients are constants, we discuss the oscillation of the solution. The
above results are supported by the numerical simulations. However, there are still
some interesting problems needed to be studied, we list two of them for example.

Problem 5.1. Applying Theorem 3.3 on equation (4.1), it’s clear that r − σ2

2 > 0
is necessary for the solution of (4.1) to be a.s. persistent. The question is whether

r − σ2

2 > 0 can be a sufficient condition for almost sure persistence.
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Problem 5.2. A simulation for (5.5):
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Time

X(t)

Figure 4. Five paths of the trajectory for equation (5.5) by time average. The black line represents the
formula: x̃ = 0.655.

From the picture, it seems that the path by time average of (5.5) may converge
to a point x̃ defined as before. We wonder if the statement is true, and whether

r − σ2

2 > 0 is sufficient for the solution of (4.1) to be p-persistent a.s. by time
average.
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