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MULTIPLICITY OF SOLUTIONS FOR
FRACTIONAL k(X)-LAPLACIAN EQUATIONS
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Abstract In this present paper, we first discuss some results of the energy
functional on the Nehari manifold. Furthermore, we are interested in a com-
pactness result and in estimates involving minimax levels over the -fractional
space Hg(gw (€2). In this sense, the condition of Palais-Smale is discussed. In
other words, we are concerned with the multiplicity of solutions to a class
of quasilinear fractional problems with super-linear growth involving variable
exponents through the previously discussed results, in particular via the Lions

concentration-compaction principle.
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1. Introduction and motivation

Variational methods is one of the main tools used to tackle problems in the theory
of nonlinear ordinary and partial differential equations. The central idea is the for-
mulation of a variational problem equivalent, in a sense, to the differential equation
problem. The variational problem consists of obtaining critical points for an associ-
ated functional I, such that the Euler-Lagrange equation is the proposed problem.
It is interesting to observe that the problem of minimization of functionals is the
central objective of the classical calculus of variations, and that in its study, dif-
ferential equations naturally appear as sufficient conditions that the function that
minimizes the functional must satisfy. Thus, in the classical calculus of variations,
the issue of minimization of a functional is reduced to the study of a problem in the
theory of differential equations. The direct method of calculus of variations emerged
in the mid-nineteenth century, and consists of directly studying the functional and
seeking to obtain its minimum (or a critical point) without resorting to its differ-
ential equation. Here are some interesting and important works that emerge from
variational problems: [2,7,8,11,12,14,18,27,29,32,34] and the references therein.
Since the last decade of the last century, considerable attention has been given
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to problems involving the p(x)-Laplacian operator, i.e.,
Appyu = div (|Vu|p(““’)72 Vu) .

This differential operator is a natural generalization of the defined p-Laplacian
operator Ayu = div (|Vu[P™2 Vu), with p > 1 being a real constant. However, in
some situations the p(z)-Laplacian operator is more complex than the p-Laplacian
operator, due to the fact that A, is inhomogeneous.

In recent years, we have observed a growing interest in the study of equations and
systems of equations with growth conditions involving variable exponents. Interest
in studying such problems was stimulated by their applications in electrorheological
fluids (see Acerbi & Mingione [1], Ruzicka [38]), flow in porous media (see Antont-
seva & Shmarevb [9]). These physical problems were facilitated by the development
of Lebesgue and Sobolev spaces with variable exponents. Lebesgue spaces with vari-
able exponents appeared for the first time in the literature, as early as 1931, in an
article by Orlicz [37]. On image restoration problems, Y. Chen, S. Levine & R. Rao
in [16], proposed a model based on the p(x)-Laplacian. There are numerous other
works of great relevance in the area, see for example: [3-5,13,31,39,47] and the
references therein. We can highlight the work carried out by Nyamoradi [36], on
the existence and multiplicity of positive solutions for a singular elliptical problem
using variational methods. See also the interesting work [30] and the references
therein.

On the other hand, we highlight the fractional operators that over the last few
years have gained a lot of attention in several areas, in particular, involving problems
like p-Laplacian, p(z)-Laplacian and problems like Kirchhoff [10, 15, 26, 33, 48] and
the references therein. The study of the existence and multiplicity of solutions to
such problems via variational and topological methods, in fact, are of great relevance
both in the analytical aspect and in the applicable aspect. Although there is an
interesting range of work in this regard, it is still an area that is experiencing
exponential growth. In addition, we also highlight a class of fractional operators
so-called v-Hilfer, which plays a fundamental role in the study of Laplace problems.
Since 2019 Sousa and researchers have been using the fractional operator -Hilfer
and variational, topological and nonlinear analysis tools to discuss properties of
weak solutions of differential equations with p-Laplacian and p(x)-Laplacian [19,20,
28,40-42,44-46] and the references therein. Although there are interesting results,
the path is still unclear since it requires new results, new tools and care.

Before commenting on some work that motivated this paper, it is worth high-
lighting an interesting work on the existence of at least two non-trivial and non-
negative solutions to the fractional boundary value problem via the Nehari method,
i.e., the following problem

d (1 __ 1
~ g (507700 0) + 5D W) = AP + g0 ),
u(0) =u(T)=0
a.e. t € [0,T]. For more details, see [35].
Yin And Yang [47] consider the following problem

Apu A+ MulP~2u = 0y (2)|ul*"2u + h(z)|z|"u (1.1)



Multiplicity of solutions for fractional x(z)-Laplacian equations 1545

with u > 0, z € RY, w € WLP(RY).
Cao and Noussair [13], discussed the existence and multiplicity of solutions for
problem given by
—Au+u =0 (ez)|u|""2u, in RY,
(el "
u € HY2(RY).

In 2012, Hsu, Lin and Hu [31] investigated the multiple positive solutions of
quasilinear elliptic equations

—Apu+ [uP~2u = 0; (ex)|u|""%u + Ma(ex), in RY,

(1.3)
u € WHP(RN).
In 2016, Alves and Barreiro [4], discussed the multiplicity of solutions for a
problem involving variable exponents

Ay + [ufP® 20 = Ny (k=12) a7 20 + 0y (k)] )2,

(1.4)
u € WHPE)/(RN),
Motivated by the works (1.1)-(1.4), in this paper, we concern in the new class
of fractional differential equations with x(§)-Laplacian given by

.3 gy |F(E)2 .8
Hgaif <’H©3_’f’¢u‘ H@gf’wu) + |u|"O "2y = Ly ,u, (1.5)

where Ly, ¢u =: A0y (k7€) [u| 9O =240 (k=€) [u|"©~2u, BDEPY (-) and "D ()
are the right and left ¢-Hilfer fractional derivatives of order 0 < a < 1 and type 3
0<pB<) withl<akr(§) <3,uc Hz(gw(Q) (¢-fractional space, see Section 2),
where A, ¢ and k are non-negative parameters with £ € N and 2 = [0,7] x [0,T] x
[0,T] C R3.

Suppose that &, ¢, 7 : @ — R are Lipschitz functions, Z3-periodic and satisfying:

1<ho <k(E) <ky <qo <q(&) <r(€) < kL), ae. on Q. (1.6)

Furthermore, we assume that the functions x and ¢ satisfy the following condi-
tion:
(H1): There exists ¢ > 0 such that

L jugasw, [ _ 5(€) L
[ (g [Posea™ @i © ) de = o [ pureoae

The measurable function h : Q — R is Z3-periodic if

h(&+z) = h(€), V€ € Q and Vz € Z5.

To discuss what is the main result, we consider 61,05 : Q2 — R are functions:
continuous, positive and satisfy the following conditions:

(g3) limjg| 00 02(§) = 0.

(f1) limjg| 00 01(§) = 01,00
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(f2) There are [ points ay, as, ...,a; in Z* with a; = 0 such that

1=0+(a;) = max 01(¢), for 1 <i <.

Furthermore, we assume that 0 < 61 o, < 61(§) for all £ € Q.

The main result of this present paper is to investigate the multiplicity of solutions
to the problem (1.5), in other words, we are interested in discussing the proof of
the following result:

Theorem 1.1. Suppose the conditions (1.6), (g3), (f1) and (f2) are satisfied. Then,
there exists A* > 0 and k* € N such that the problem (1.5) admits at least | solutions
for 0 < A< A* and k > k*.

The idea of proof of Theorem 1.1 will be based on Ekeland’s variational
principle, some properties involving the Nehari manifold and Lions’ principle of
concentration-compactness.

Otherwise, the paper is organized as follows. Section 2, we present an approach
to fractional operators and some variational setting properties. In this sense, we
also investigated results of the energy functional related to the main problem of this
paper about the Nehari manifold. In Section 3, we covered a result of compactness.
In Section 4, we discuss estimates involving minimax levels. In Section 5, we inves-
tigate the Palais-Smale condition and the main result of this paper, i.e., the proof
of Theorem 1.1.

2. Mathematical background and variational set-
ting

Let Q C RY be an open set. We denote by |2| the N-dimensional Lebesgue measure
of Q. For this aim, let us introduce the space

Cy(Q) = {h € C(4R) : guelsfzh(g) > 1}.

The variable exponent Lebesgue space .2"()(Q) is defined by
2MQ) = {u Q=R measurable:/ lu(€)|"©de < oo} .
Q

£0) is a Banach space when endowed with the Luxemburg norm defined by

h(€)
lullg. o= inf )\>0:/ <1\
Q

The variable exponent Lebesgue space £ h(')(Q) is a special case of an Orlicz-
Musielak space.
For each h € Z{°(12), we define the numbers h_ and h given by

u(§)
A

h_ :=ess inf h(§) and hy = ess sup h(§).
£€eq e
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It is well known that for each hi, hy € C4(Q) such that hy < hy in Q, the
embedding .#"2()(Q) (—> Lt (Q) is continuous. Furthermore, For h(§) € C4(£2),
if we take h’ such that ( 5+ h,( y = = 1, then the Hélder inequality is given as follows

[ wde] < (G5 + 5= ) ilbo ol < 2ullao el

for any u € Z"9(Q) and v € Z" @ (Q).
On the space .Z"€)(Q), consider the modular function p(u / lu(€)[MEde.

Proposition 2.1. [21,22,24] Let u € £ (Q)

1. Ifu#0, [[ull e = A if and only ifp(%)=1;
2. |ullye) <1 (=1,>1) if and only if p(u) <1 (=1,>1).
3.

- +
lullne) =1 = Ilullhe S/Qlu(é)\h“)déﬁ [lullhge)-

. .
lullney <1 = lullhe < /Q [u(©)|"Ode < [[ullje).

Let 6 = (91, 92, 93), T = (T17T2,T3) and o« = (051, a9, Otg) where 0 < a1, 0, 03 <
1 with 0]' < Tj, for allj S {1,2,3} Also put A=1 x Iy x I3 = [91,T1] X [GQ,TQ] X
[03, T3], where Ty, T», T5 and 61, 04, 03 are positive constants. Let u,1) € C™(A) two
functions such that ¢ is increasing and ¢’(§;) # 0 with &; € [0;,T5], j € {1,2,3}.
The left and right-sided -Hilfer fractional partial derivative of 3-variables of u €
AC™(A) of order o = (a1, a9,3) (0 < ay,as,a3 < 1) and type 8 = (51, B2, 83)
where 0 < (31, B2, 83 < 1, are defined by

e, 6, 85)

_ B-a)y 1 93 (1)
v (W(fl)w'(@)W(ﬁ?’) (8518528§3>>I9 u(&1,82,83)

and

D5 u(e, 6, &)

=T - ! i (1-8)(1-0),v
=1, ( Y (&)Y (&)Y (€3) <a§15’§28§3>>IT u(&1,£2,83),

where Ig"wu(fl, &2,&3) and Iqa:d’u(fl, &2,&3) there are the 1)-Riemann-Liouville frac-
tional integrals of u € Z1(A) of order o (0 < a < 1) given

Iaw (&1,&2,63)

& pée pés
- 81 ! S 1) — S1 -l
= et L L L e e s wie) - )
X(Wﬁz) — (52))*2 7 ((E3) — ¥ (53)) > u(sy, s2, s3)dssdsadsy,
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to 01 < s1 <§1,02 < 8o <§2,03<83 <£3 and

(6%

T U(§1>§27§3

T T T3
! _ a;—1
T U 1 /E VeV eV () (hls) — (6)
X(Q/J(SZ) 1/)(52) az 1 53) w(é“g))as 1 (51a32783)d83d82d31,

with & < 51 < Th,& < s2 < To,&3 < s3 < T3, & € [01,T1], &
& € [03,T5]. For a study of N-variables, see [40].

Let 0 = (01,09,05), T = (T1,12,T3) and « = (a1, @2, a3). The relation

T Ty Ts
/ / / (Ig;wgo (51752753)) ¢ (€1, &2, E3) dEsdErdEy
0, Jo, Jo,

T pT2 T3
:/9 /9 /0 0 (61,8, &)V (&) ¥ (&)Y (&)IFY

@ (&1,&2,&3)
. (wf ©) w'@z)w’@s)) Ltz @1)

c [027 TQ} and

is valid.

On the other hand, let 1(-) be an increasing and positive monotone function on
[61,T1] % [02, T3] X [05, T3], having a continuous derivative ¢'(-) # 0 on (01,T}) X

(02, T2) x (03,T3). If 0 < @ = (g, 0, 03) < 1 and 0 < 8 = (B1, B2) < 1, then

T Ty T
/01 /02 /93 (Hggvﬁ;wga(fl,fmf?)))¢(£1,§2,§3)d§2d§1

Tn pTo T3
- /9 /0 /9 90(51362563) 1)[)/ (51)7,[1, (52)1/},(53)

o« Hpafiv ( b (&1,62,€3) ) dbndénd 9.9

T @ v ) 22

for any ¢ € AC! and ¢ € O satisfying the boundary conditions ¢ (61, 6,63) =0 =
2 (T17 T27 T3)

The 1)-fractional space is given by [46]

Hpft (@) = {ue 2MO() + P95 Vul e 24O ()}

with the norm

— _ Hpya,B5%
lull = Nl oy = ullzmoey + PR3], o

The space Hz(g)%((l) is defined as the closure of Cg°(Q) in HY2¥(Q) with

h(&)
respect to the above norm.
In H2 (0

he) (Q) let consider the modular function p; : Hz(gw(Q) — R given by

wpe |BE
pr(u) = /Q ()%of“"u +|u|h<€>> d€.
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Define
(‘ ’Dof wu‘ + |u|h(5))
=i : <
[lu|]s = inf t>0./Q ) déE <1y,
then || - HHzng(Q) and || - ||1 are equivalent in ’Hh&?)w(Q). In this paper, we will
consider the norm ||u|| = ||u]|;.

Next, we will present some results for the space v/-fractional Hz(?)d’(Q)

Proposition 2.2. [46] The spaces £ (Q) and 7—[2(5 Y(Q) are separable and

reflexive Banach spaces.

Theorem 2.1. [40] Let Q be a domain with the cone property, h : Q>R bea
Lipschitz function checking (Hy) and q € Z°(Q2) satisfying h(§) < q(§) < h*(€)
a.e. in Q. So there is a continuous embedding

Hi v () » 299(Q).

In the space w-fractional ’HZ(?)%(Q) let consider the modular function pg :

Ha’ﬁ;%(Q) — R given by
w= [ g e

h(&),
Proposition 2.3. Let u € H,); f)%(Q) and {u,} C 7—[2(?)7’%( ). Then, the same

conclusion of Proposition 2.1 occurs considering || - || and po.

Proposition 2.4. Letv € Hhé?)w( ). Then, the same conclusion as Proposition
2.1 occurs considering || - ||1 and p1.

Lemma 2.1. [21,22,24] Let h,r € Z°(Q) with h(§) < r(§) a.e. in Q and
u € L7E(Q). Then |uME), f%(ﬂ) and

h h—
[ wo <l o+l
) LT ) o

or yet

]| g
e

h h—
<maxqlull"e L lull" e g
; () LRE (Q) LrE (Q)

Lemma 2.2. [6,25] (Brezis-Lieb lemma) Let {u,} € Z™M9(Q,R™) with m € N,
verify
L (€)= (€, ace. in O

2. sup [pn|gne @rm) < 00.
neN

Then
Ly — pin .iﬂh(g)(Q,Rm).
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Lemma 2.3. [23] Suppose that h : RN — R is a uniformly continuous function

with 1 < k_ < Kk < N. If {u,} is bounded by Hg(?)lb((D and

lim sup / \un\q(g) d€=0
Br(y)

n—oo yeRN

for some r > 0 and some function q € .i”_f"(RN) satisfying K < q < K, then

Up — 0 in 258 (RYN) for every measurable function s : RN — R with k < s < K.

Lemma 2.4. [6,25] Let {u,} C ZMO(Q,R™) with m € N, such that

1. pn(€) = p(é), ae. in Q.

2. sup |pin|gne @ rmy < 0.
neN

Then,
_ _ oM (©)
a2 = = O o = ) = O d = 0,1,

Associated with the Problem (1.5), we have the energy functional @f\yf :
HAFY(Q) = R defined by

K(§)
1 T (S 0o (k1
O (u) = /Q (H(@\H@Sf’%\ +|u|"<f>) dg =\ /Q 22@5)|u|q<f>de
[0 ey
/Q @ e

No that 5 € C* (HZY(9), R) with

r(§)—2

02 (uyy = /Q (‘H@gf% o

—A / 03 (k™€) [ul1®)2uvdg — / 01 (k™) [u|"® Puvde,
Q Q

Hga,ﬁ;wu H@(c;f;wv + |u|“(§)2uv> d¢

for all u,v € H:(§)¢

to the Problem (1.5). Since @i,f is not bounded lower about 'Hg(g)w(Q), consider
the functional ®%’; restricted to the Nehari manifold Ny ’kﬂ7 given by

(©). Thus, the critical points of the functional @i\’f are solutions

Nz = {we gy o) (657) =
and the level

exp = inf ©Y2(u).
UEN;,’E ’

Note that c i is the mountain pass level of the functional @if .
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Choosing ¢; = 1 and A = 0 in the Problem (1.5), we have the fractional
problem given by

, o RO-2
Hayo i <’H®gjrﬁﬂ/)u

DG )+ O = O, u e HE (),

(2.3)
Consider energy functional %" : ’H:(’gw(ﬁ) — R associated the Problem
(2.3), given by

1 L |5(8) 1
0% (u) = / ( }H:o“’ﬁ*"u +|u *”~<f>> d¢ — / —Ju|"®de
= Jo g 208 . 0"
and the level
Coo = i fuen., O ().
Also, consider the Nehari manifold
NP = {u € HEZV(©Q)/{0} : (@%F) (wyu = o} . (2.4)

For 01 = 01, and A = 0, we also consider the following problem

=01 00 ul" U, w e HYEY(Q) (2.5)

(£)—2 .
Hgg:fawu) + |u"“f(f)_2u

and as above, denote by @(;l’ﬁoo ;o . and N i the energy functional, the level of
the mountain pass and the Nehari manifold associated with (2.5), respectively.

Lemma 2.5. (Local Property) Given A > 0, there exists positive constants 5

and o (independent of k), such that @‘;,’f(u) >3 > 0 for all A € (0,A) with
lul| = o

Proof. Using the definition of @i,f and the conditions (g3) and (f2), it results

1 TG A
03100 = = [ ([mo5 " s @ ) de - 2ol [ uoa
K+ Jo q- Q

1
,7/ |u|r(5)d§.
r-Ja

If ||u|| < 1, using the Proposition 2.4 and Theorem 2.1, yields
1

o5y (u) >
K+

A _  C2
™ = —=lballoccr|ul[*™ — =Ilull™

where ¢; and ¢ are positive constants. Since ky < q— < r_, setting ¢ > 0 small
enough such that

1 A 1
— o™ — —||02]|coC10? — 2 - > ——o"t.
Kt — r_ 2Kk 4
1
IfOo<A<A, @i‘,f(u) > 2—0”* =79 > 0 on 9B, (0) establishing the result. O
: K
The following result refers to the behavior of @i,’f over Ny ,f
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Lemma 2.6. The functional @;5 s bounded from below and coercive on Nf\xkﬁ

’

Proof. For every u € N}, we have (@i‘,’f) (u)u = 0. So,

o [FE)
A/%%lmw@%Q/F%f% +m“ﬁ&/m%1@w@@
Q Q Q
(2.6)
Using the definition of @?\‘If and Eq.(2.6), one has
o 1 wp KO A B
03100 = = [ (|05 | @) de - 2 [ oateuln e
K+ Jo q- Ja

1 PG
= [ o ol

1 1 LI
(-2) s
kv 4-/ Ja

11 1) 7O
(=) [t

By hypothesis k1 < ¢- <7r_, so
. 11 wgo PO
o = (= - 1) [ (Pogea ™ v @)ae e
kv 4-/ Ja
for all u € Nf‘kﬁ In this sense, we have that ©%;" is bounded from below by Nf,f
O
Corollary 2.1. If {u,} is a sequence in Nf‘kﬁ with @i’,f(un) — Cx ks then {u,} is
bounded in ’H:('g)d’(ﬂ) .

Proof. From (2.7), one has

1

w5 1\
/ (]H@g’fﬂ/ un| o+ |un|“<5)> dé < ( - ) (exk+1)  (28)
Q K4 q—

for n sufficiently great. Applying the Proposition 2.4 we conclude that {u,} is
bounded in Hz(gw(ﬂ) O

The next lemma states that the Nehari manifold N/ /\O‘ ,;B has a positive distance
from the origin.

Lemma 2.7. Given A > 0 there is § > 0 such that
lJul| > 6, (u, A\, k) € Nyl x [0,A] x N. (2.9)
So, using Proposition 2.4, there exists p > 0 such that
pr(u) > p,V(u, A\ k) € N3P % [0,A] x N. (2.10)

Proof. Assume by contradiction that the inequality (2.9) not hold. So there is a
sequence {u,} C N/\akﬁ such that ||u,|| — 0 when n — co. Since that {u,} C Nf‘kﬁ
and |[|01]|cc <1, from (2.6), one has

~(§)

") e < Nl [ o190+ [ O
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From Proposition 2.3 and Lemma 2.1, yields

k(&

. . . o8 )
win (a1 el 1+ < [ (P05 0] <€) e
< A6 loo max { a2 el 127 }
e {1l [ [unl 75, -
Using Sobolev embedding, there exists positive constants ¢; and ¢o such that

min {fu |7, [Jun ||} < Af]f2]]oocr max {{un|[*, [[un]|*+}

+cg max {{[un||", [Junl["} -
Therefore, for n large enough, yields
[un|[* < Acr||02]|oo|[unl["~ + collunl[™ < (Acr[f2]]o0 + c2)lfun]|*~
or equivalently,
(Acr][a][oo + €2) " < [fun]| 9",

from which we get an contradiction, since k1 < q_. Therefore, we complete the
proof. O

’

Corollary 2.2. Let 5:\)‘75(u)u = (@?\‘75) (u)u. Then, there exists po > 0 such that

’

(5;‘;,?) (u) < —po, Y(u, A k) € NOYP x [0,A] x N.

Proof. Note that
’ o |58
(e22) = [ w6 (05| 4 @ ) g =1 [ (oo g
Q Q
- [ 0 Ode

for all u € 7—[3(?)7’[}(9) From the definition of Nf‘kﬁ, it follows that

(5) @< s -0 |

1508
[ (g™ i ) s ¢

g —r) /Q 0, (k6)u]"© .

Since k1 < g— <r_ and f is a non-negative function, we get

(5‘;5) (wu < (ky — qi)/g (‘Hggf;wu n |u|n(§)> de.

Applying the Lemma 2.7, we conclude that

#(8)

’

(&57) ) < ~(a- — i)

Therefore, we conclude the proof. O
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Lemma 2.8. Ifu € Nf,f is a critical point of @?\‘If restricted to N/\a’,f, 50 u is

critical point of @?\‘,f in Hg(fﬂ’(ﬁ)

Proof. Let u € Ny} a critical point of @if restricted to the manifold N;\lkﬁ
Then, there exists 7 € R such that
(057) =7 (&%) .
Since (@i‘f)l(u)u = 0, we have that 7 <€f\xkﬁ> (u) = 0. From the Corollary
2.2, we know that (@if)/(u)u < 0, so we should have 7 = 0. Therefore,

(e57) (=0
implying that u is the critical point of @if in "H:(E)w(ﬂ) O

Theorem 2.2. Let u, a sequence in ’Hz(f)d’(Q) such that u, — w in ’H:(’g)w(ﬂ) and

(@if) (un) — 0 withn — 0o. So, for some subsequence, 105V u, — D5y

’

a.e. in Q. Also, (@if) (u) =0.
Proof. Let R > 0 and ¢ € C3°(£2) such that

¢ =0if |¢| > 2R,
p=1if|¢| <R

and 0 < ¢(§) <1, Ve € Q.
Using the same arguments as the proof of Lemma 13 (see [46]), considering
the sequence

P (6) (2.11)

W |FO-2 w62 : ;
- (i, 03 ) B ()

:Dgéf;wun _ ‘ng;i/)u

it is shown that

/ Pode
Br
S /

Q

From ((-)i,f)l (un)(dun) = on(1), (G‘)i,f) (w)(¢un) = on(1), and using the

triangular and Cauchy-Schwarz inequality, ones has

P gy (REO=2 .,
Hpafiy, [ gde — / ‘Hgofﬁwu‘ Hpofiy, Hpobygde 4 o, (1).
Q

P,d¢
Br
Hpya By, P72 HyaBi%,  Hoya,Bi
< op(1) — Q‘ Dol un (un —u) "D U, T D PdE
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7/ |t |* O~ 20, (1, — ) PdE + A/ 0o (k1) Jun |79 2wy, (uy, — u)pde
Q Q
[0 O — o

Q

<o,(1) + 01/

Bar

w(&)—1

H@S‘f;wun [ty — ul

[l O =+ Nl [ Junl O
Baor Bar

+/ ‘un|r(£)_1|un — ul
Bar

. w(§)—1
< on(1) +2¢ )ng’wun [un = ull v (B,
2" (€) (Bag)
r(§)—1 _
2 H‘Un| HSP’(£>(B2R) Hun u”‘zp,(&)(Bm%)
(©-1 _
2 H‘u"r] Hzp'(@(Bm) L PRI

—1
2[lunl O g i =l -

Since that ”Hg(g)w(Q) - .,Sﬂli(f)(Q) is compact embedding for every measurable

function s, satisfying k < s < &% and {u,} is a bounded sequence, we conclude
that

P,d¢ — 0 with n — oo.
Br

Consider the sets
Bf ={¢€Br:r(f) >2}and By ={{ € Bp: 1 < k() <2}
and proceeding as in the proof of Lemma 13 (see [46]), it is shown that @gf”pun —

C‘Dgf wun a.e. in Bg. Since R is arbitrary, it follows that for some subsequence

Z‘Dgf;wun — C‘Dgf;wun a.e. in Q.

b RO=2 o ,

Since {’z)g‘fﬁ’”un z)gf%n} is bounded in (£P©(Q))? and
GRS . o [RO=2 .

‘H%Yf’wun Hp ey, — ’Hbé‘,f”"u Hpofi¥y ae. in Q, from the

Lemma 2.2 implies

TG b RO-2 /
‘@f;f%n D0y, — ]sagf%‘ 5w in (27O ()3,

Analogously, we get
|up [5O 20, — [u*©2y in 25 ©(Q)

for every measurable function s checking x < s < k7.
Using the fact that ((—)i‘f) (up)v = 0,(1) for all v € ’Hz(f)w(Q) together with

/

the last two limits, we get that (@if) (un)v =0 for all v € ”H,:(?)w(ﬁ) O
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3. A result of compactness

Theorem 3.1. Suppose the condition (k3) holds and {u,} C NP is a sequence
with ©%8 (uy,) — coo. Then,

: @B .
Loup = win H (o (Q);

2. Exist {y,} C ZN with |y,| — +oo and w € H:(?)w( ) such that w,(§) =
B9 )

Un(E+Yn) m> W E ’Hﬁ(g) (Q) and @go’ﬁ(w) = Coo-

Proof. Similar to Corollary 2.1, we have that {u, } is a bounded sequence and,
from the reflexivity of H &f)w(Q), there exists u € ’Hz(?)w(ﬂ) and a subsequence
of {u,}, still denoted by {u,}, such that w, — w in "H:(gw(ﬁ) From Ekeland

variational principle, there is a sequence {w,} in N%# satisfying
Wy = Uy + 0, (1), O%P (w,) = coo,

and

’

(©29) () — 7 (£27) (wn) = 0,(1), (3.1)

where (7,,) C R and (8‘*76) w) = ( “’B) Jw, for all w € HH&?)‘/}(Q). Since that
{un} C NP, it follows from (3.1) th

’

o (EXP) (wn)wn = 0,(1).

Using arguments from the Lemma 2.2, there exists a § > 0 such that

‘(53(;5)’ (wp)wy| >3§  VneN.

Using (3.1), it follows that 7 — 0 when n — oco. Since {w,} is a bounded
sequence, {(Sggﬂ) (wn)} is also bounded, so we can say that

(©%7) (wa) = 0in (HIEY(2)
Without loss of generality assume that

02 (u,) — co and (G)ggﬂ)/ (wp) = 0in (7—[ (,g)w( ))* .

Next, we discuss the possibilities: u # 0 or v = 0.
First case. u # 0.
Similar to Theorem 2.2, u is shown to be the critical point of @g‘gg. Applying
the Fatou lemma, it follows that
1

oo < O (1) = = (O%) (uu

) (P () o
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1 1 w158
< lim inf ( - ) ()Hggf’% + |u|”<€>> dé
n—eo a \k(§) q-
1

1
+ lim inf ( — ) u|"®dg
2\ e )

. . a 1 o '
= 'n,h~>H;o inf {@of(un) . (6056) (un)un}
= Coo-
Consequently,

lim <’H©8f;wun

n—00 Q

K(€) . k(&)
+ |un|n(f)) dé’ _ /Q (‘H@&Fﬁywu‘ + |uﬁ(§)> df

Let

. L |F(8)
01,n = ‘HQSLf’wun — H@Sﬁf,’lﬁu + |Un — ’LL|K(§)
and

+ .8 K(E)
02’71 =2 (‘Hﬁof’wun

T3] .
+ DG "+ u|”(£)> :
So, it is immediate that 6; , < 03, 01, — 0 and

027,7, — 92 = 2n++1

TG
’Hggfywu‘ + |y (5)‘

a.e. in R. Applying Lebesgue dominated convergence theorem, we conclude that
01, = 0in ’H;"B”" (Q) from which follows the result.

Second case. u = 0.

Suppose that exists R, 7 > 0 and a sequence {y,} C Q satisfying

n— oo

lim sup/ \yn|“(5)d§ > T (3.2)
Br(yn
If the statement is false, yields

lim sup sup/ |y | € de = 0.
Br(yn)

n—oo yeN
So, using the Lemma 2.3, yields
U, — 0 in 259 (Q)

for every measurable function s : {2 = R with x < s < K},
Since (@gf), (tUn)un = 0, (1), the last bound implies that

[ (o

~(§)

+ |un|“(5)> d¢ = on(1),
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or equivalently
: a,B;y
u, — 0 in ’HH(&) Q)

resulting in ¢, = 0, which is absurd. Therefore, the inequality (3.2) is true.

Note that |y,| — oo when n — oo otherwise there would be a bounded sub-
sequence of {y,}, which we will denote further by {y,}. Let say that |y,| < M.
Hence

/ |u"&)d¢ = lim sup /BR+M\un|”(f)d§ > lim sup/ 9| de > 7 >0
Briwm n—o0 Br(yn)

n—oo

which contradicts the hypothesis u = 0.
Let 7, € Z3 such that

”yn 7%” < \/g

and

wn(g) = Un(§+yn), IS R3.

Then, from the translation invariance of R3 and & and r being Z3-periodic, we
deduce that @ (w,,) = ©%P(u,,). Now let 1) € ’Hz(f)w(Q) with ||| <1, so

(0%) (wa)| = |(0%) (w)u- = 7,)

implying

| (@27 (wn)

gy < (@) @

~(€) (Ha’giw(ﬂ))* )

w(&)

Analogously, yields

(©27) v| = | (@) (wa)v(- - +7,)|.

Therefore

(@) (wa)

= ©2) @)

(g @) (egr @)’

r(&)

showing that {w,} is a sequence (PS).._ for @%F. If w € Hz(f)w(ﬂ), denotes the
weak limit of {w,,}, considering R = R + /3, we get

/ |w|“(§)d§ > limsup/ |un|”(§)d§ >7>0
By n—oo JBp

which implies w # 0. Following the same steps as in the first case for the sequence
{wy}, it follows that w, — w in ’H:('g)w(ﬂ), w € NP and O%P (w) = coo. O

Lemma 3.1. If the function g satisfies (g3), then the functionals Uy, Uy : H:(g)w(ﬂ)

— R given by

_ 4(6) _ [0, e
¥i(w) = [ O and Ba(u) / 2 e
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are weakly continuous.

Proof. The proof will be done only for ¥, because the same arguments apply to
Uy, Let {u,} be a sequence in ’Hz(gd’(ﬂ) such that u,, — u in Hg(gw(Q) From
the assumption (gs), for every e > 0, IR > 0 such that |02(§)| < € for |£] > R. In
that sense, we have

/ 0(&)|u|1@dg < e/ |90 e
|€|>R

|€|>R

Since u, — u in Hz(gw(Q), we have that {u,} is bounded by "Hz(?)w(Q) It

follows from Sobolev embedding that the sequence {u,, } is also bounded in .Z%(€) (),
and therefore

/ 02(€)|un |1 de < e / lu|9®de < eM, ¥n € N, (3.3)
|§I>R |§I>R

for M a positive constant. Again, Sobolev embedding imply
U, — u in Z9%)(Bg). (3.4)

Using the inequalities (3.3) and (3.4), one has

/92(§)|un|Q(f)d£—>/92(5)|u\‘1(5)d5
@ Q

which completes the proof. O

4. Estimates involving minimax levels

In this present section, we investigate some estimates involving minimax levels
CA ks €0,k and Coo.
Firstly, note that

O (u) < O (u) and O (u) < OF (u), Yu € HE(Q)

which implies
ek < cok and coo < co k- (4.1)

Lemma 4.1. The minimaz levels co , and co,~ satisfy the inequality
Co,k < COy o -
Consequently, co < cg, -

Proof. In a similar way to Theorem 3.1, there exists V' € H:(g)w(Q)/ {0} check-
ing

/
@g{i(V) = ¢p, ,, and (@Z‘Ii) (V) =0.

It follows from Lemma 6.1 that there is ¢ > 0 such that tV € Ngf}f. Thus, we
have '

1 o RO 4r(©
Cok S/ ©) (‘H%f’wV‘ + IVI*‘(@> df—/el (k7¢) ~ VI ©de.
Q Q

#(£) ©)
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Since that 0 < 01 o < 61(€) for all £ € R, we get

cok < O5” (tV) < max 057 (sV)=05" (V) =cy, ...

Combining the last inequality with (4.1), it follows that co, < cp, . In this
sense, we conclude the proof. O
Proposition 4.1. The level cy ) is a critical value of @0 i i-€., there ewists v €
Hg(gd’(ﬂ) such that

o, _ a,B ! —
Oy (v) =cok and (O ) (v) =0.

Proof. In a similar way to Theorem 3.1, there is a sequence u,, in No i with

O 1.B(un) — co i and (@8‘7,66)/ (upn) — 0.

Asin Corollary 2.1, {u,} is a bounded sequence in Hp(’f)w(Q), and because the

1-fractional space Hz(gw(ﬂ) is reflexive, it follows that up to subsequence wu,, — u

B )
in Hn(g) (Q).

Affirmation: u # 0.

Assume by contradiction that w = 0. So u, — 0 in H:(g)w( ). We claim

that there are positive numbers R and 7 and a sequence {y,} in Q3 such that the
inequality (3.2) holds. Otherwise, by Lemma 2.3 it follows that v — 0 in .Z"(€)(Q).
From the definition of @8‘7’5 , it follows that

/ (‘H@&_ﬁ wun p(§)
Q

Therefore, u,, — 0 in Hz(f)d’(ﬁ) implying in ¢p; = 0, which is contradiction.
Therefore, the inequality (3.2) holds.

It follows from the same arguments as the Theorem 3.1 that the sequence
{yn} is unbounded. Now, define the function u,(§) = u, (£ + y,) for all £ € R3.

!/
Remembering that (@g,’f) (un)o(- + yn) = 0n(1) for all ¢ € H 0 d’( ), we get

K
/ OH@gf,wvn
Q

— [ 01(kHE + yn))|va| O 20, 0dE = 0,(1).
Q

+ |un|"‘(5)> de = 0,(1).

(6)—2 a, .8 (€)—
D +B d}v" Hgofyw(b + |Un‘ © 2'Un¢> dg§

Adapting the arguments used in the proof of Theorem 2.2, it is shown that
for some subsequence

Hgya. B Hggf;w

oL Un — v and v, — v a.e. in R>.

Taking the limit n — oo, yields

/ (‘H©g+’ v
Q

w(£)—2

ngf‘ﬂ/’v H@Sﬁf?d’¢> df
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f/ (91700|v|r(£)72 + |U|HZ(€)72) vp =0,
Q

proving that v is a weak solution to the Problem (2.5). Applying Fatou lemma,
one has

1
o, .. < 05" (v)— q—_@' (v)

— 91100 01,00

. . 1 1 a7ﬁ;
= /thangomf (H(f) — q_) <’H©0+ 1/11)"

im in 1L ! )
+/S1 f( T(Q)W’“ (€ + yu)) o7 O d

1 1 k(&)
< lim inf/ ( - = (’Hgaﬁ””vn + Jun ~<£>> d¢
™\ T - o [unl

+ lim inf (1 - 1) €01 (K726) Ju, |7 de
q

r(£)

+ Un|f<(£)> d¢

n—o00 — r(g)

. «a,B a,
= nhﬁngo inf <®O,k (up) — — (@075) (un)un)
= Co,k

Therefore, cp, . < co, which contradicts the Lemma 4.1. Therefore, u # 0.
/ li
Since (@g,?) (un) = on(1) it’s follows that (@8‘5) (un) = 0, ie., u € Noa,’f.
Applying Fatou Lemma again, we conclude that
(07 ]‘ (03 !
cok < @Of(u) - q—_ (90,}?) (u)u
1 /
. . o, a,p
< _
< nh%n;o inf ©7; (un) - (('-)07,6) (Un)un
= Co,k

from which it follows that ©F (u) = co k- O
a,B;

Throughout this section, we denote by U € Hn(&) (©)/{0} a minimum energy
solution of the problem (2.3), i.e.,
©%P(U) = coo and OLF(U) = 0.
For 1 <i < and k € N, consider the function U,i : Q= R by
U(§) = U(€ — kay).

The next result establishes an important relationship involving the energy of
functions U;, with cu.

Lemma 4.2. For everyt € 1,...,1, yields

lim sup (sup O (tU}) ) < o
e qup O3 () < e

Proof. Since the functions &, q, and r are Z3-periodic and a; € Z3, we get

o . t“(f) o8 k(&) n
oxiwp) - [ Lo ([moseu]™ + wie - ko) ae
o k()
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[ BT e ey ja©)
Y O (€~ k)

Q K

r(€)

‘/ 01 (k71€) T U (¢ — kay) " ©de
Q r(§)

(&) o .
[ (2o ) a

q
Y -1 ; a®) g
/ o (k 5+a>q(§)|v| ¢

N ey P e
/Q 7€+ a0) gy 10T e

Furthermore, by Lemma 6.1 there is t; > 0 such that

max O (1U}) = O3 (tU}) > 5, (4.2)

where § was given by Lemma 2.5. Note that if ¢4 — 0 when & — oo then
@?\",f(tkU,i) — 0 when & — oo, which contradicts (4.2). On the other hand if

ty — oo when k — oo, it shows that @a’ﬁ(tkUk) — —oo and again we have a
contradiction with (4.2). So, we can assume t;, — to > 0 (without loss of generality)
with & — oco. So, one has

w(§)
. @ i _ 2 HrDa,B;wU‘H(g) w(&)
s (f>a§{ (tUK)) - /Q K(€) (‘ - )

tq(ﬁ) "

— [ 01(a; t6° Ul"®de
< @48 (tyU) < max ©@%F (sU)
= 0%(U) = ¢
Consequently,
lim sup <sup @/\ . (tUk)> < oo for i € {1,...,1},
k——+oco >0

completing the proof of the result. O
Now, consider the positive numbers Ry and rg satisfying:

e Bp,(a;) N Bgy(a;) =0 for i # jand 4,5 € {1,....l};
o Ul_1Br,(a;) C Br,(0);
o Kny = Ul Bry(a:).

2 2

Consider the following barycenter function Qy, : Hz(?)w(Q)\{O} — R given by

/ Xk~ ul+ d
Q

| e

Qr(u) =
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where y : R? — R3 is given by

&, if [¢] < ro,
X(€) = (4.3)
%f, if [¢] > ro.

Lemma 4.3. There exist 5 > 0 and k; € N such that if u € N3* and ©3F (u) <
Coo + 10, then

Qk(u) € Kry, k> k.

Proof. Suppose the lemma is not true, then there are §,, — 0,k, — 400 and
Uup € N k[f  satisfying

OF 7 (un) < oo + 0

3

and
Qr,, (un) ¢ K@
Take ¢, > 0 in such a way that (,u, € N, yields

Coo < G)ggg(Cnun) < 63:5” (Crun) < 1{138( @gﬁi (tun) = 68:13 (un) < Coo + Op-

Therefore
{Cnun} C Nggﬁ and G&B(Cnun) — Coo-

Applying Ekeland variational principle, we can assume that {(,u,} C NP
(without loss of generality) is a sequence (PS)... to @7 i.e.,

OB (Cupn) — coo and (@gf)’ (Crtn) — 0.
Applying the Theorem 3.1, we have some cases to be considered, namely:
1. (o — U #0 in Hzﬁgw(Q);
2. There are {y,} C Z> with |y,| — 400 such that v, (£) = (,u(é+y,) converges
on Hz(f)w(Q) for some V € H:('g)d)(ﬂ)\{O}

Proceeding as in the Lemma 4.2, it is shown that (,, — (y for some (; > 0.
Therefore, we can assume that

Uy = U o1 vy =ty (- +yn) = V in HE S (Q).
Next, we will analyze (1) and (2).

1. Analysis of (1). By Lebesgue dominated convergence theorem it follows
that

/ (ki €) |+ / X(O) U]+ de
an(un): Q — Q :07
/\unl*’”+d€ /IU\“+d£
Q Q
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implying Q. (u,) € K% for n large, because 0 € K%.

2. Analysis of (2). Using Ekeland variational principle again, we assume that

/
(@3:5”) () = 0n(1). Hence (@3;,5”) $(-—yn) = on(1) for all ¢ € HYZY (w),
and so

on(1) :/ (’H@a By

/ 0y (k2 (€ + yn) [0a]© 20, bde. (4.4)

w(§)—2

It follows from the last limit that up to subsequence,
HDeliy, (€) — MD55YV(€) and v,(€) — V(€) ae. in Q.
Consider the following cases:
a) |k;1yn| — +o00;
(b) k, Yy, — vy, for some y € Q.

Assuming that (a) is valid, it follows that

/ (‘Hggf;wv

:/91,oo|V|’“<€>*2v¢d§.

w(§)—2

Hggjfﬂﬁv H@Sﬁfﬂb(b + V|n(f)—2v¢> dé-

In this sense, V' is a non-trivial weak solution to the Problem (2.5). Combining
the condition #; o < 1 with Fatou lemma, yields

«@ 1 « !
. <O (V)= = (99;,‘;) (v)v

< lim mf{@aﬁ(un) -z (©28) (u n)un}

n—oo

:COO

or equivalent, cg, .. < coo, Which contradicts the Lemma 4.1.
If k; ty, — y for some y € RV, then V is a weak solution of

DGOy ]SOy = 6, (y)[u]" O 2u, uw € HEE(Q).

Repeating the previous argument, we deduce that

Co,(y) < Coo (4.5)

where ¢y, (¢) is the mountain pass level of the functional @z‘l’?y): Hz(?)d’(Q) - R
given by

a,B _ [ L (|jugase, K(€) _ [0, e
05,1y (W) = /Q/.;(g) (’ Dule) +|u| )dg /Q r(£)| ure
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Note that
Coy(y) = inf @a"g (u)
1y weNs, (1) 01(y)

where
. . !/
oo = {u € ML (N0} : (05:7,)) (wu = 0} .
If 61(y) < 1, an argument similar to the one explored in the proof of Lemma

4.1 shows that cg, (y) > Coo, contradicting the inequality (4.5). Therefore, 6;(y) =1
and y = a; for some ¢ = 1,...,]. Then,

/ (ki 2€) fun |+ d /Q X (k€ + k) ol de

[ e [ ol e

In the previous equality passing to the limit when n — oo, one has

an (Un) -

[ xtwviag
lim Qp, (uy) =22 =,
. / V] dg
Q
which implies Qg, (un) € Kr, for n large enough, resulting in a contradiction,
2
because by hypothesis Qk, (un) & Kro - O
2

Lemma 4.4. There exists a constant R > 0 such that
o, . o, 60
Ave = ue Ny G)’()<coo+5 C Br

for k > kq, i.e. Axp is a bounded set, where ki was given in the Lemma 4.3.
Furthermore, R is independent of X\ and k.

1)
Proof. Letu € fo such that @f\‘f(u) < Coo + 50 for k > ky. Then,

/ (\H@a»wu " +|u|”<f)) dg = A / 02k €)|ul* < dg
Q
- [ ool @as 0 (16)

/% (’H@OﬂdJ ‘ +|u|/§(£)) e
QR
/\/Q Bl ujuorge - [ DDy pioge

< Cxo + 2 (4~7)

and
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From Eq.(4.6)-Eq(4.7), yields

Therefore,

K(€) 5 1 1\*!
Hao,B,% k(&) 0
) ‘ d o — .
/Q(‘ o+ B +|u‘ ) £< (C - 2) <H+ q)

In this sense, we concluded the proof. O

Lemma 4.5. Let u € Ay and t, > 0 such that t, u € Ny . Then, given A > 0,
there exists constants C > 0 and ko € N such that 0 < t,, < C for all (u,\, k) €
Ax g x [0,A] x ([k2, +00) NN).

Proof. Assume that the lemma is not true. Then there must be {u,} C Az, k.,
with A, — 0 and k,, — 400 such that t,, u, € /\/'Oo‘;fn and t,, — oo with n — oo.

We can assume that t,, > 1 (without loss of generality). Since t,, u, € Ny ki , it
follows that

K
(tu, )" / (‘Hsﬁf P
Q

or equivalent,

/ (‘H@Scjrﬁﬂl)un
Q

Affirmation: There is y; > 0 such that / [t |"©de > pq, Vn € N.
Q

(€)
+ |un|ﬁ(§)> dg§ > el,oo(tun)ri/ |Un|r(§)df
Q

(€

) .
+|un|n(€)) g > 01 ootl, +/|un|r<5>dg. (4.8)
Q

Indeed, arguing by contradiction, if / lun|"€)d€ — 0, by interpolation it follows
Q

that / |un\q(§)d§ — 0. Since u, € N &
Q

nykn?
K
Hoyo,B8,%
lx\%+“"

or yet, u,, — 0 in Hg(gw(ﬂ) which contradicts the Lemma 4.3, proving the state-
ment. Using the inequality (4.8), it follows that

ptn) = [ (|25,

Therefore, we have that {u,} is an unbounded sequence. However, this is impossi-
ble, because by Lemma 4.4 {u,} is bounded. O

(€3]
4«MWQ@<MMM/wm®%+/mwwﬁz%m,
Q Q

(6
+ |un|"(€)> d¢ — +o0.
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Lemma 4.6. Let 6 > 0 be given by Lemma 4.3 and k3 = max{k1, ka}. Then,
there exists A* > 0 such that

Qu(u) € Ky, V(u, A, k) € Ay i x [0,A%) x ([, +00) NN).

Proof. Note that

02 k1
o3 = o~ [ 2UE)

Consider ¢, > 0 with t,u € ./\/g"kﬁ So, get

| |q(§)d£a Yu € Ha(g)w( )

-1
@g,f(tuu) = (tyu +)\/ )5 )q(E)‘u|q(5)d£
02 (kilf)
< max O (tu —|—/\/ 2 53 )9O 90O gg
nax O (tu) +4 | == = (0) " ul1Od

Using the Lemma 2.8, yields
« « A
O (hu) < OF(u) + [allocC™ [ fufr e
Since u € A, i, we get
a,f 9 a()
Op % (tuu) < coo + ) + Ae2 A |u] 1S de.
Using Sobolev embedding and the Lemma 4.4, we obtain
a,f 60
®O,7k (tuu) < Coo+ — F+ 3\, Yu € .A)\,k

2

where c3 is a positive constant. Taking A* := §y/2c3 and A € [0, A*), we conclude
that t,u € Mgy and ©F (tyu) < coo + do.
So, by the Lemma 2.7, we have Qp(t,u) € Kry,. Note note that Qp(u) =
2

Q(tyu). Thus, we complete the proof. O

5. The Palais-Smale condition

In this section, we prove the existence of a sequence (PS)4: in 6% , for the func-
Bk Ak

tional @ij,f )

Before starting the discussion of some technical lemmas, essential for the inves-
tigation of the main result of this section. Consider the following notations:

o 03 ), ={u € Noi; |Qr(u) — ai| < Ro}s

o 005 ), = {u € Nakl|Qr(u) — a;| = Ro};

® Bkk_ inf @f\l;f( )i

uedy ,

o Yip= inf OF](u).
’ uGE)G;k
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Lemma 5.1. Setting 0 = 3(co, .. — Coo) exists k* € N such that ﬂ§\7k < Coo +0 and
Biks Tapr Jor all X € [0,A%),i € {1,..1} and k <k~ .

The next result establishes an important relationship between functionals @‘;,’f
and ©@%F°.

Lemma 5.2. Let {v,} be a sequence (PS)q for the functional @i‘f with v, — v
in Hz(f)w(ﬁ) Then

and
H (037) )~ (85) (wn) — (037) (@)

where w,, = v, — .

Proof. Proceeding as in the Theorem 2.2 | we have the following convergences:
(1) H@g’f’d’vn — H@g’f’wv a.e. in §;
(2) vy, — v a.e. in

(3)
HooBr, |"O72 Hoafi, Heof
Q‘ Dot Un Do v "D PdE
Heyo 8w, |97 moa e, Heya B
= Q‘ 25 D5y B0 g,
(4)

/01 (k7€) |vn|r(5)_2vn¢d£—>/91 (k7€) o] O 2ppde,
Q Q

for all ¢ € ’Hz(f)w(ﬂ) Applying the Brezis-Lieb lemma to variable exponents, one

has

1

el a w(§) "
a k(&)

1 w(§)
+/ — <‘H©a’5’¢v +|v “(5)> d¢
o H(f) 0+ | |

[T e [ 2T e
)\/Q q(&) fon[ " dE )\/Q q(¢) oI

[0 g [ e
g e e = [ e e Qe

SOOn
: , ( ) : o) ( ) : 7/6( ) 0 (1)
Ak Un 0,k Wn, Nk v n

proving (5.1).
Now, let’s prove (5.2). Consider ¢ € Hz(gw(ﬂ) with ||¢]| = 1. Carrying out
some calculations, one has

[(02) 00 - (652) - (052) )] o
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/ < ’H/ngrﬁﬂ/)vn
Q

w(£)—2

w(§)—2 w(§)—2

H 03
< 05w,

Hpo Sy, — ‘H@Séf;wwn

- Hggf;wv

H@S‘f%) Hggf;w<p d¢

+ / (lonl™© =20, =, [O~2w,, — o] =20) wdf‘
Q

#3] [ 82072) (120~ plO-20)
Q

| [ 0070 (joul 20, — o102, — o] O 20) sodf‘ .
Q
Applying Holder’s inequality, yields
(@5 wn) — 57 (wn) — €57 ()] ¢
w(€)—2

<9 ‘ Hggf;wwum(@ ‘Hggf;wvn Hggf;wvn
. K(§)—2 )
. H@Sf’wwn Hggf,wwn

L |5(6)—2 .
Hggfﬂﬁv‘ H@S:Lﬂﬂ/’v

p'(§)
2l ey |10l 2 0m — a2, — [o] -2

P’ (&)

216l 1ol 20 — O, — o] O 2

+A ‘/ 02 (k7€) (Joal© =20, = [o]20=20) gpdf’.
Q

Using the Proposition 2.4 and Proposition 2.1 it follows that the first three
terms on the right side of the previous inequality converge to 0 when n — co. To
conclude the proof, it remains to show that the last term of the above inequality is
0r(1). From Holder inequality, we have

02 (71 (j0l 20, = ol 20)

Q

— [0 (7€) 9 ([0 ~20, — o]0 2] 6, (k1) g
Q

<C ng (k—lg)ﬁ (‘vn|q(£)—2vn — |U|q(£)—2v)

(&)

4G
Note that |v,|9) — |v|9©) a.e. in Q with n — oo . As
‘|Un|q(£)—2vn _ |U|q(£)—2v||q’(€)‘ < 29+ 4 <|Un|q'(5)|v‘q'(€)> .

Applying Fatou lemma, and conclude that

/ 21 0y (k) v| 79 dg
Q
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/ / q'(¢)
_ / lim inf 0, (k™€) <2q+|vn|q<5> 20 [p]a6©) ‘|vn|‘I(5)’2vn - |U|Q<€>*%‘ > de
Q

n—oo

< timint [ [ 001711019+ (k0 o) d
Q

n—oo
q'(€)
~timint [ 030718) [Jon 20, — o920
n—oo Q
Using Lemma 5.1, we obtain

/ 21+q’+92 (k—lg) |v|q(€)d§

Q

< / 21+q’92 (k_lf) \v|q<f)d§
Q

~lim sup / bz (k€) [oa] 1O~ 2vadé — [o]71920|7 O dg
Q

n—oo

which implies

q'(€)
lim sup / 05 (k~1¢) ’|vn\q(§)_20n — Ju|1® 2y d¢ =0,
n—oo JO
since the function 5 is not negative and the theorem is proved. O

Lemma 5.3. The functional @ff satisfies the condition (PS), for d < co + 0,
where o is given in the Lemma 5.1.

Proof. Let {v,} C ’Hg(gw(ﬂ) be a sequence (PS)y for the functional (-)i,f with

d < ¢so + 0. Similar to Corollary 2.1, {v,} is a sequence bounded in {v,} C

"Hz(f)w(ﬂ) and therefore, for some subsequence {v,}, we have that v, — v in

w(€) +(8)
from (5.1) and (5.2) that w,, = v, — v is a sequence (PS)4~ for the functional @g”,’f

with d* = d — O3] < o + 0.

/
Ha,ﬁ;l/)(Q), for some v € HO«BW(Q) As (@i‘:g) =0 and (@i:g) Z O, it follows

Statement 1. There is R > 0 such that lim sup sup / lw,, &) de = 0.
Br(y)

n—oo yeRN

If the statement is true, then / lw,,|" ) dé — 0. On the other hand, by (5.2),
)

!/
we know that (@8‘5) = o,(1), so

. K
/ (‘H@&f@wn
Q

showing that w, — 0 in Hg(gw (), and therefore v,, — v in ’H:(gw(Q)
Let’s now prove Statement 1. If the assertion does not hold, given R > 0, we
can find p > 0 and {y,} C Z" by checking

©
+ |wn|“(5)> d¢ = on(1)

n—oo

limsup/ Jw,, O de > 1 > 0.
BR(yn)

Since w, — 0 in Hz(?)w (Q), it follows that {y,} is an unbounded sequence. It
is

Wn(§) = wn(§ +yn) for all &€ Q.
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Then, {w, } is also a sequence (PS4, for @gf , and therefore bounded. So there

are w € H (g)w(Q) and a subsequence {0, }, still denoted by {w,}, such that

W (§) = ® € HyysV ().

Arguing as in the proof of Theorem 3.1 we have that w # 0. Furthermore, since

/
(@g‘*,f) (Wn)B(- — yn) = 0n(1) for all ¢ € H5¥(Q) it is shown that D, —

K(8)
HDO”B Y a.e. in RY, and therefore

wpi [FO=2 y s w s ey
/Q (\%of’”’w\ N5 MGG + )t 2w¢>) dg
:/Ql’oom‘r(f)*?@(bdg
Q

from which it follows that @ is a weak solution to the Problem (2.5). Consequently,
we have

[e3 ~ ]- [N ! ~\ o~
er. <5 (1)~ — (057 ) (@)

1 !/
< lim inf {@g’g(wn) - (@85) (wn)wn} =d*
, ra ,

n— oo

implying cg, .. < coo +0, Which is contradiction, because o < cg, ., —co. Therefore,
Statement 1 is true. O
Lemma 5.4. For every u € 93,1@7 there is a constant > 0 and a differentiable
function ¢ : B, C ’HS(?)d)( ) = R such that

¢(0)=1, C¢(w)(u—wv)e 937,6, Vv € B,

and
CI(O)¢ _ (5;.\[:]55)/ (u , v¢ c Hz(?)d’( )’
(&38) (wyu

!
where Sikﬂ(u) = (@i‘fj) (u)u.

Proof. Let p: R x Ha(?)w( ) — R given by o(t,w) = Ef\],f(t(u —w)). So it’s easy
to see that

Digltw) = (€57 (o —w))(u— w)
and
Dagttw)o = ((£3£) ttu - w)) o, o e WV @)

It follows from Corollary 2.2, that there exists g > 0 such that D;p(1,0) =
4 1
(Ef,f) (uw)u < po. Since u € Nf‘f, then ¢(1,0) = Sf,f(u) = (@?\‘,f) (Wu =
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0. Applying the implicit function theorem, it follows that there exists an open

neighborhood B,, C ’Hg(gw(Q) and a differentiable function ¢ : B, — R™ such that

¢(0) =1 and ¢({(w),w) =0 for all w € B,,.
Deriving the above equation, we have

Dip(¢(w), w)¢ ()¢ + Dagp(C(w), w)¢' (w)e.

Therefore,

, —Dap(1,0)¢ (Eafﬁ)/(u)(b
0= 50 :(5£,£§)’<u)u.

Like v # 0, we can choose u small enough so that u ¢ B,,. Using the definition
of the function ¢ we conclude that ¢(w)(u —w) € J\/}f‘kﬁ for all w € B,. From the

continuity of the function Qg it follows that ((w)(u — w) € 6% ;. Therefore, we
concluded the proof. O

Lemma 5.5. For every 1 <1 <, there is a sequence (PS),@Z;M {u;k} C F)f\’k for
the functional ('-)‘j\‘,f2
Proof. For every 1 <i </, the Lemma 5.1 implies
Bik < Vs for all k > ko. (5.3)
So,
Bf\,k = inf {@i‘f(u) tu € Gf\’k U 89&),6} , for all k > k.

Let {u},} C 6}, U6}, a sequence minimally to 3 ,. Applying Ekeland vari-
ational principle, there exists a subsequence of {u!} still denoted by {uf} such
that

G))\:If(un) =Bkt -
and
. 1 . , .
@i‘f(u;) < @?\f(w) + - Hw —ul ’ for all w € 03 ;, U 00} . (5.4)

Using (5.3), we can assume that u!, € 93\’,6 for n is large enough. Indeed, if
ul C 80f\,k for an infinite number of terms, then @f\yf(u;) > ’%\,k > ﬁﬁ\k In this
there are 7, > 0 and a differentiable function ¢}, : B,; — R* with B,,; C Hz(gw (Q)
such that ¢},(0) = 1 and ¢}, (v)(u;, —v) € 6} , for all v € B . Let v, = ov with
|[v]| =1 and 0 < o < pj,. Then, v, € By and w} ,, := (§ 4 (vo)(uj, — v5) € 05 4.

Since @ig is C1, it follows from inequality (5.4) that

sense, we have a contradiction, because @i’f(uz) — By By the Lemma 5.4,

1, . ,
3 7
— [wgn — ua|
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> O5 (up) - @i»ﬁ’(wz‘,n)
= (O (ud) (ut, — wl )+ ([, — )
:a<;<va>ei‘,k( )v+<1fc<va>>@§,f< ) + o (||l — k)
— ¢ ()0 F (ul o + o (||ul, —wi,,|)
So,
a8) (i) < [Won =l (1 o(lun —wpnl])
(OR2) () = ey <n s, — wh, |
N Hu; (Cvlz(vo) - C:L(O)) _JUCZL(UU)H l o
- 7Ci(0) (o)
i 165 (o) = GA(O) + olleliciwo)]| (1,
: 73 (e) (5 o)
166 @) + ofeo)] + olvlici(es) (1
- oG (0) (7o)

Taking the limit ¢ — 0, we get
ro 1
@“*B) Do < =
( Ak (Un)’U - n
Consequently,

I(e32) i

s

S |-

/ .
= sup (@‘;,f) (up)v <
vEHN S ()

HvH 1

Therefore, (@i‘,f)/ (ui) — 0 in (Hz(gw(Q))* when n — oo proving the result.
O
Finally, we will prove the main result of this paper.
Proof. (Proof of Theorem 1.1). Let {uj} C 63 ; asequence (PS)g; for @?\‘f
(energy functional) given by Lemma 5.5. Since [} , < ¢ + 0, at Lemma 5.3
there exists u’ such that u!, — u’ in H ’ﬁw( )- So,

ui € 0 (O57) () = B, and (©57) () =0.

Now, we can infer that u’ # u/ for i # j with 1 <4, j <. To see why, it remains
to observe that

Qk(u’) S BRO(OJZ‘) and Qk(uj) S BRo(aj)~

Since

Br,(a;i) N Br,(a;) =0 toi # j

it follows that u® # u’ for i # j. Therefore, G)‘;‘,’f has at least ¢ non-trivial critical
points for A € [0, A*) and k > k*. O
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6. Appendix
Consider the following conditions:
(P) h: RN — R is a continuous Lipschitz function with 1 < h_ < hy < N.

(P)) 6: RN — R is a continuous function satisfying
026 1)] < C (Jt1<O7 + 7O
where C is a positive constant and ¢ € C(RY,R) with x < ¢ < &%.
(Py) 61(&,t) = o(]t|"+~1) with ¢+ — 0 uniformly in &;
(P3) There is a positive constant 8 > x4 such that

0 < BF(&,1) <t61(&,t), V& € RY and ¢ # 0;

¢
where F(€,t) :/ 01(&, s)ds.
0

01 (57 t)

|t Ky—1
Let 7 : H:(f)w(ﬂ) — R the class functional C! defined by

is increasing by ¢ in RY/{0}.

(Py) For each ¢ € RV the function

Z(u) = /Q (}%Sf;wu\ﬁ(%lul“@) dg — /Q F (&, u)dg

for all u € ’Hiigw(Q)
Consider the Nehari manifold given by

S = {u € HEZW ()/ {0} : T (upu = o} .

Lemma 6.1. Under the conditions (P)-(Ps), for every u € H:(?)w(ﬁ)/{()} there
exists a unique t,, > 0 such that t,u € S. Furthermore, the mazimum of Z(tu) for

t > 0 is reached at t = t,,.

Proof. Fixed u € H:(g)w (Q)/ {0} arbitrary, we consider the function ¢ : [0, 00) —
R given by ¢(t) = Z(tu). Note that ¢(0) = 0 and that ¢ verifies the geometry of
the mountain pass, i.e. () > 0 for ¢ > 0 small enough and ¢(t) < 0 for large
t > 0. Thus, the maximum of ¢(t) in [0, 00) is reached at some point ¢, = ¢(u) > 0.
Hence, yields

o(ty) =T’ (tyu)u = 0.

Making v = t,u, we have Z'(v)v = 0, therefore v € S. Now we will prove the
uniqueness of t,. Define the function ® : [0,00) — R given by ®(¢) = Z(tv). Note
that

O(1) =T = o(t,) = t) = T(st,
(1) e(tu) teﬁiﬁo)@() e (styu)
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= max Z(su)= max D(t).
te[0,4+00) t€[0,400)

Hence, 0 = ®'(1) = I'(v)v or equivalent

/Q(‘Hggf%‘“(o+|v|ﬂ@) dfz/@&l(f,v)vdf. (6.1)

Assuming ¢ > 1, one has
K(€)
(b ( ) I’(tv)v _ / tlﬂ(E) 1 (‘Hga,Bd} ‘ +| |K(§)> df / 91 g t’l))?]df

< tr+l (/ 01(€,v)vdé — /tﬁ 01 (¢, tv)vd§>

Statement: 6;(£,v)v < o 20, (¢, to)v.
Indeed, if v > 0 then tv > v and by (P,), we have

61 (57 t?}) > 01 (57 U)

ol 7 ol

> 01(&,v)v.

On the other hand if v < 0 then tv < v and by (P4) the statement follows.

Consequently, ®'(¢t) > 0 for t > 1. Analogously we conclude that ®'(t) < 0
if t € (0,1). This shows that the positive number ¢, satisfying ¢'(t,) = Z'(t,) =
T'(tyu)u = 0 is unique. In this sense, we complete the proof. O
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