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MULTIPLICITY OF SOLUTIONS FOR
FRACTIONAL κ(X)-LAPLACIAN EQUATIONS
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Abstract In this present paper, we first discuss some results of the energy
functional on the Nehari manifold. Furthermore, we are interested in a com-
pactness result and in estimates involving minimax levels over the ψ-fractional
space Hα,β;ψ

κ(ξ) (Ω). In this sense, the condition of Palais-Smale is discussed. In
other words, we are concerned with the multiplicity of solutions to a class
of quasilinear fractional problems with super-linear growth involving variable
exponents through the previously discussed results, in particular via the Lions
concentration-compaction principle.
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1. Introduction and motivation

Variational methods is one of the main tools used to tackle problems in the theory
of nonlinear ordinary and partial differential equations. The central idea is the for-
mulation of a variational problem equivalent, in a sense, to the differential equation
problem. The variational problem consists of obtaining critical points for an associ-
ated functional I, such that the Euler-Lagrange equation is the proposed problem.
It is interesting to observe that the problem of minimization of functionals is the
central objective of the classical calculus of variations, and that in its study, dif-
ferential equations naturally appear as sufficient conditions that the function that
minimizes the functional must satisfy. Thus, in the classical calculus of variations,
the issue of minimization of a functional is reduced to the study of a problem in the
theory of differential equations. The direct method of calculus of variations emerged
in the mid-nineteenth century, and consists of directly studying the functional and
seeking to obtain its minimum (or a critical point) without resorting to its differ-
ential equation. Here are some interesting and important works that emerge from
variational problems: [2, 7, 8, 11,12,14,18,27,29,32,34] and the references therein.

Since the last decade of the last century, considerable attention has been given
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mariavictoriadesousa03@gmail.com(Maria V. S. Sousa),
reginaamalia679@gmail.com(Amália R. E. Pereira)
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to problems involving the p(x)-Laplacian operator, i.e.,

∆p(x)u = div
(
|∇u|p(x)−2 ∇u

)
.

This differential operator is a natural generalization of the defined p-Laplacian
operator ∆pu = div

(
|∇u|p−2 ∇u

)
, with p > 1 being a real constant. However, in

some situations the p(x)-Laplacian operator is more complex than the p-Laplacian
operator, due to the fact that ∆p(x) is inhomogeneous.

In recent years, we have observed a growing interest in the study of equations and
systems of equations with growth conditions involving variable exponents. Interest
in studying such problems was stimulated by their applications in electrorheological
fluids (see Acerbi & Mingione [1], Ruzicka [38]), flow in porous media (see Antont-
seva & Shmarevb [9]). These physical problems were facilitated by the development
of Lebesgue and Sobolev spaces with variable exponents. Lebesgue spaces with vari-
able exponents appeared for the first time in the literature, as early as 1931, in an
article by Orlicz [37]. On image restoration problems, Y. Chen, S. Levine & R. Rao
in [16], proposed a model based on the p(x)-Laplacian. There are numerous other
works of great relevance in the area, see for example: [3–5, 13, 31, 39, 47] and the
references therein. We can highlight the work carried out by Nyamoradi [36], on
the existence and multiplicity of positive solutions for a singular elliptical problem
using variational methods. See also the interesting work [30] and the references
therein.

On the other hand, we highlight the fractional operators that over the last few
years have gained a lot of attention in several areas, in particular, involving problems
like p-Laplacian, p(x)-Laplacian and problems like Kirchhoff [10, 15, 26, 33, 48] and
the references therein. The study of the existence and multiplicity of solutions to
such problems via variational and topological methods, in fact, are of great relevance
both in the analytical aspect and in the applicable aspect. Although there is an
interesting range of work in this regard, it is still an area that is experiencing
exponential growth. In addition, we also highlight a class of fractional operators
so-called ψ-Hilfer, which plays a fundamental role in the study of Laplace problems.
Since 2019 Sousa and researchers have been using the fractional operator ψ-Hilfer
and variational, topological and nonlinear analysis tools to discuss properties of
weak solutions of differential equations with p-Laplacian and p(x)-Laplacian [19,20,
28,40–42,44–46] and the references therein. Although there are interesting results,
the path is still unclear since it requires new results, new tools and care.

Before commenting on some work that motivated this paper, it is worth high-
lighting an interesting work on the existence of at least two non-trivial and non-
negative solutions to the fractional boundary value problem via the Nehari method,
i.e., the following problem

− d

dt

(
1

2
D−βt (u′(t)) +

1

2
D−βT (u′(t))

)
= λf(t)(u(t))p−1 + g(t)(u(t))q−1,

u(0) = u(T ) = 0

a.e. t ∈ [0, T ]. For more details, see [35].
Yin And Yang [47] consider the following problem

∆pu+ λ|u|p−2u = θ1(x)|u|s−2u+ h(x)|x|r−2u (1.1)
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with u > 0, x ∈ RN , u ∈W 1,p(RN ).
Cao and Noussair [13], discussed the existence and multiplicity of solutions for

problem given by −∆u+ u = θ1(εx)|u|r−2u, in RN ,

u ∈ H1,2(RN ).
(1.2)

In 2012, Hsu, Lin and Hu [31] investigated the multiple positive solutions of
quasilinear elliptic equations−∆pu+ |u|p−2u = θ1(εx)|u|r−2u+ λθ2(εx), in RN ,

u ∈W 1,p(RN ).
(1.3)

In 2016, Alves and Barreiro [4], discussed the multiplicity of solutions for a
problem involving variable exponents−∆p(x)u+ |u|p(x)−2u = λθ2(k−1x)|u|q(x)−2u+ θ1(k−1x)|u|r(x)−2u,

u ∈W 1,p(x)(RN ).
(1.4)

Motivated by the works (1.1)-(1.4), in this paper, we concern in the new class
of fractional differential equations with κ(ξ)-Laplacian given by

HDα;β;ψ
T

(∣∣∣HDα;β;ψ
0+ u

∣∣∣κ(ξ)−2
HDα;β;ψ

0+ u

)
+ |u|κ(ξ)−2u = Lk,xu, (1.5)

where Lk,ξu =: λθ1(k−1ξ)|u|q(ξ)−2u+θ2(k−1ξ)|u|r(ξ)−2u, HDα;β;ψ
T (·) and HDα;β;ψ

0+ (·)
are the right and left ψ-Hilfer fractional derivatives of order 0 < α < 1 and type β
(0 ≤ β ≤ 1) with 1 < ακ(ξ) < 3, u ∈ Hα,β;ψ

κ(ξ) (Ω) (ψ-fractional space, see Section 2),

where λ, ξ and k are non-negative parameters with k ∈ N and Ω = [0, T ]× [0, T ]×
[0, T ] ⊂ R3.

Suppose that κ, q, r : Ω→ R are Lipschitz functions, Z3-periodic and satisfying:

1 < κ− ≤ κ(ξ) ≤ κ+ < q− ≤ q(ξ) ≤ r(ξ)� κ∗α(ξ), a.e. on Ω. (1.6)

Furthermore, we assume that the functions κ and q satisfy the following condi-
tion:

(H1): There exists ι > 0 such that∫
Ω

(
1

κ(ξ)

∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

− a(ξ)|u|κ(ξ)

)
dξ ≥ ι

∫
Ω

1

κ(ξ)
|u|κ(ξ)dξ.

The measurable function h : Ω→ R is Z3-periodic if

h(ξ + z) = h(ξ), ∀ξ ∈ Ω and ∀z ∈ Z3.

To discuss what is the main result, we consider θ1, θ2 : Ω → R are functions:
continuous, positive and satisfy the following conditions:

(g3) lim|ξ|→∞ θ2(ξ) = 0.
(f1) lim|ξ|→∞ θ1(ξ) = θ1,∞.
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(f2) There are l points a1, a2, ..., al in Z3 with a1 = 0 such that

1 = θ1(ai) = max
RN

θ1(ξ), for 1 ≤ i ≤ l.

Furthermore, we assume that 0 < θ1,∞ < θ1(ξ) for all ξ ∈ Ω.

The main result of this present paper is to investigate the multiplicity of solutions
to the problem (1.5), in other words, we are interested in discussing the proof of
the following result:

Theorem 1.1. Suppose the conditions (1.6), (g3), (f1) and (f2) are satisfied. Then,
there exists Λ∗ > 0 and k∗ ∈ N such that the problem (1.5) admits at least l solutions
for 0 ≤ λ < Λ∗ and k ≥ k∗.

The idea of proof of Theorem 1.1 will be based on Ekeland’s variational
principle, some properties involving the Nehari manifold and Lions’ principle of
concentration-compactness.

Otherwise, the paper is organized as follows. Section 2, we present an approach
to fractional operators and some variational setting properties. In this sense, we
also investigated results of the energy functional related to the main problem of this
paper about the Nehari manifold. In Section 3, we covered a result of compactness.
In Section 4, we discuss estimates involving minimax levels. In Section 5, we inves-
tigate the Palais-Smale condition and the main result of this paper, i.e., the proof
of Theorem 1.1.

2. Mathematical background and variational set-
ting

Let Ω ⊂ RN be an open set. We denote by |Ω| the N -dimensional Lebesgue measure
of Ω. For this aim, let us introduce the space

C+(Ω) =

{
h ∈ C(Ω;R) : inf

ξ∈Ω
h(ξ) > 1

}
.

The variable exponent Lebesgue space L h(·)(Ω) is defined by

L h(·)(Ω) =

{
u : Ω→ R measurable:

∫
Ω

|u(ξ)|h(ξ)dξ <∞
}
.

L h(·) is a Banach space when endowed with the Luxemburg norm defined by

||u||h(·) := inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(ξ)

λ

∣∣∣∣h(ξ)

dξ ≤ 1

}
.

The variable exponent Lebesgue space L h(·)(Ω) is a special case of an Orlicz-
Musielak space.

For each h ∈ L∞+ (Ω), we define the numbers h− and h+ given by

h− := ess inf
ξ∈Ω

h(ξ) and h+ := ess sup
ξ∈Ω

h(ξ).
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It is well known that for each h1, h2 ∈ C+(Ω) such that h1 ≤ h2 in Ω, the
embedding L h2(·)(Ω) ↪→ L h1(·)(Ω) is continuous. Furthermore, For h(ξ) ∈ C+(Ω),
if we take h′ such that 1

h(ξ) + 1
h′(ξ) = 1, then the Hölder inequality is given as follows∣∣∣∣∫

Ω

uvdξ

∣∣∣∣ ≤ ( 1

h−
+

1

h′−

)
||u||h(ξ)||v||h′(ξ) ≤ 2||u||h(ξ)||v||h′(ξ),

for any u ∈ L h(ξ)(Ω) and v ∈ L h′(ξ)(Ω).

On the space L h(ξ)(Ω), consider the modular function ρ(u) :=

∫
Ω

|u(ξ)|h(ξ)dξ.

Proposition 2.1. [21, 22,24] Let u ∈ L h(ξ)(Ω)

1. If u 6= 0, ‖u‖h(ξ) = λ if and only if ρ
(
u
λ

)
= 1;

2. ‖u‖h(ξ) < 1 (= 1, > 1) if and only if ρ(u) < 1 (= 1, > 1).

3.

||u||h(ξ) ≥ 1 ⇒ ||u||h
−

h(ξ) ≤
∫

Ω

|u(ξ)|h(ξ)dξ ≤ ||u||h
+

h(ξ).

4.

||u||h(ξ) < 1 ⇒ ||u||h
+

h(ξ) ≤
∫

Ω

|u(ξ)|h(ξ)dξ ≤ ||u||h
−

h(ξ).

Let θ = (θ1, θ2, θ3), T = (T1, T2, T3) and α = (α1, α2, α3) where 0 < α1, α2, α3 <
1 with θj < Tj , for all j ∈ {1, 2, 3}. Also put Λ = I1 × I2 × I3 = [θ1, T1]× [θ2, T2]×
[θ3, T3], where T1, T2, T3 and θ1, θ2, θ3 are positive constants. Let u, ψ ∈ Cn(Λ) two
functions such that ψ is increasing and ψ′(ξj) 6= 0 with ξj ∈ [θj , Tj ], j ∈ {1, 2, 3}.
The left and right-sided ψ-Hilfer fractional partial derivative of 3-variables of u ∈
ACn(Λ) of order α = (α1, α2, α3) (0 < α1, α2, α3 ≤ 1) and type β = (β1, β2, β3)
where 0 ≤ β1, β2, β3 ≤ 1, are defined by

HD
α,β;ψ

θ u(ξ1, ξ2, ξ3)

= I
β(1−α),ψ
θ

(
1

ψ′(ξ1)ψ′(ξ2)ψ′(ξ3)

(
∂3

∂ξ1∂ξ2∂ξ3

))
I
(1−β)(1−α),ψ
θ u(ξ1, ξ2, ξ3)

and

HD
α,β;ψ

T u(ξ1, ξ2, ξ3)

= I
β(1−α),ψ
T

(
− 1

ψ′(ξ1)ψ′(ξ2)ψ′(ξ3)

(
∂3

∂ξ1∂ξ2∂ξ3

))
I
(1−β)(1−α),ψ
T u(ξ1, ξ2, ξ3),

where Iα,ψθ u(ξ1, ξ2, ξ3) and Iα,ψT u(ξ1, ξ2, ξ3) there are the ψ-Riemann-Liouville frac-
tional integrals of u ∈ L 1(Λ) of order α (0 < α < 1) given

Iα,ψθ u(ξ1, ξ2, ξ3)

=
1

Γ(α1)Γ(α2)Γ(α3)

∫ ξ1

θ1

∫ ξ2

θ2

∫ ξ3

θ3

ψ′(s1)ψ′(s2)ψ′(s3)(ψ(ξ1)− ψ(s1))α1−1

×(ψ(ξ2)− ψ(s2))α2−1(ψ(ξ3)− ψ(s3))α3−1u(s1, s2, s3)ds3ds2ds1,
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to θ1 < s1 < ξ1, θ2 < s2 < ξ2, θ3 < s3 < ξ3 and

Iα,ψT u(ξ1, ξ2, ξ3)

=
1

Γ(α1)Γ(α2)Γ(α3)

∫ T1

ξ1

∫ T2

ξ2

∫ T3

ξ3

ψ′(s1)ψ′(s2)ψ′(s3)(ψ(s1)− ψ(ξ1))α1−1

×(ψ(s2)− ψ(ξ2))α2−1(ψ(s3)− ψ(ξ3))α3−1u(s1, s2, s3)ds3ds2ds1,

with ξ1 < s1 < T1, ξ2 < s2 < T2, ξ3 < s3 < T3, ξ1 ∈ [θ1, T1], ξ2 ∈ [θ2, T2] and
ξ3 ∈ [θ3, T3]. For a study of N -variables, see [40].

Let θ = (θ1, θ2, θ3), T = (T1, T2, T3) and α = (α1, α2, α3). The relation∫ T1

θ1

∫ T2

θ2

∫ T3

θ3

(
Iα;ψ
θ ϕ (ξ1, ξ2, ξ3)

)
φ (ξ1, ξ2, ξ3) dξ3dξ2dξ1

=

∫ T1

θ1

∫ T2

θ2

∫ T3

θ3

ϕ (ξ1, ξ2, ξ3)ψ′ (ξ1)ψ′(ξ2)ψ′(ξ3)Iα;ψ
T

×
(

φ (ξ1, ξ2, ξ3)

ψ′ (ξ1)ψ′(ξ2)ψ′(ξ3)

)
dξ3dξ2dξ1 (2.1)

is valid.

On the other hand, let ψ(·) be an increasing and positive monotone function on
[θ1, T1] × [θ2, T2] × [θ3, T3], having a continuous derivative ψ′(·) 6= 0 on (θ1, T1) ×
(θ2, T2)× (θ3, T3). If 0 < α = (α1, α2, α3) < 1 and 0 ≤ β = (β1, β2) ≤ 1, then∫ T1

θ1

∫ T2

θ2

∫ T3

θ3

(
HDα,β;ψ

θ ϕ (ξ1, ξ2, ξ3)
)
φ (ξ1, ξ2, ξ3) dξ2dξ1

=

∫ T1

θ1

∫ T2

θ2

∫ T3

θ3

ϕ (ξ1, ξ2, ξ3)ψ′ (ξ1)ψ′ (ξ2)ψ′(ξ3)

× HDα,β;ψ
T

(
φ (ξ1, ξ2, ξ3)

ψ′ (ξ1)ψ′ (ξ2)ψ′(ξ3)

)
dξ3dξ2dξ1 (2.2)

for any ϕ ∈ AC1 and φ ∈ C1 satisfying the boundary conditions ϕ (θ1, θ2, θ3) = 0 =
ϕ (T1, T2, T3).

The ψ-fractional space is given by [46]

Hα,β;ψ
h(ξ) (Ω) =

{
u ∈ L h(ξ)(Ω) :

∣∣∣HDα,β;ψ
0+ u

∣∣∣ ∈ L h(ξ)(Ω)
}

with the norm

||u|| = ||u||Hα,β;ψ
h(ξ)

(Ω) = ||u||L h(ξ)(Ω) +
∥∥∥HDα,β;ψ

0+ u
∥∥∥

L h(ξ)(Ω)
.

The space Hα,β;ψ
h(ξ),0(Ω) is defined as the closure of C∞0 (Ω) in Hα,β;ψ

h(ξ) (Ω) with

respect to the above norm.

In Hα,β;ψ
h(ξ) (Ω) let consider the modular function ρ1 : Hα,β;ψ

h(ξ) (Ω)→ R given by

ρ1(u) =

∫
Ω

(∣∣∣HDα,β;ψ
0+ u

∣∣∣h(ξ)

+ |u|h(ξ)

)
dξ.
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Define

||u||1 = inf

t > 0 :

∫
Ω

(∣∣∣HDα,β;ψ
0+ u

∣∣∣h(ξ)

+ |u|h(ξ)

)
th(ξ)

dξ ≤ 1

 ,

then || · ||Hα,β;ψ
h(ξ)

(Ω) and || · ||1 are equivalent in Hα,β;ψ
h(ξ) (Ω). In this paper, we will

consider the norm ||u|| = ||u||1.

Next, we will present some results for the space ψ-fractional Hα,β;ψ
h(ξ) (Ω).

Proposition 2.2. [46] The spaces L h(ξ)(Ω) and Hα,β;ψ
h(ξ) (Ω) are separable and

reflexive Banach spaces.

Theorem 2.1. [40] Let Ω be a domain with the cone property, h : Ω̃ → R be a
Lipschitz function checking (H1) and q ∈ L∞+ (Ω) satisfying h(ξ) ≤ q(ξ) ≤ h∗(ξ)

a.e. in Ω̃. So there is a continuous embedding

Hα,β;ψ
h(ξ) (Ω)→ L q(ξ)(Ω).

In the space ψ-fractional Hα,β;ψ
h(ξ),0(Ω) let consider the modular function ρ0 :

Hα,β;ψ
h(ξ),0(Ω)→ R given by

ρ0(u) =

∫
Ω

∣∣∣HDα,β;ψ
0+ u(ξ)

∣∣∣h(ξ)

dξ.

Proposition 2.3. Let u ∈ Hα,β;ψ
h(ξ),0(Ω) and {un} ⊂ Hα,β;ψ

h(ξ),0(Ω). Then, the same

conclusion of Proposition 2.1 occurs considering || · || and ρ0.

Proposition 2.4. Let v ∈ Hα,β;ψ
h(ξ) (Ω). Then, the same conclusion as Proposition

2.1 occurs considering || · ||1 and ρ1.

Lemma 2.1. [21, 22, 24] Let h, r ∈ L∞+ (Ω) with h(ξ) ≤ r(ξ) a.e. in Ω and

u ∈ L r(ξ)(Ω). Then |u|h(ξ), L
r(ξ)
h(ξ) (Ω) and∣∣∣∣∣∣|u|h(ξ)

∣∣∣∣∣∣
L

r(ξ)
h(ξ) (Ω)

≤ ||u||h+

L
r(ξ)
h(ξ) (Ω)

+ ||u||h−
L

r(ξ)
h(ξ) (Ω)

or yet ∣∣∣∣∣∣|u|h(ξ)
∣∣∣∣∣∣

L
r(ξ)
h(ξ) (Ω)

≤ max

{
||u||h+

L
r(ξ)
h(ξ) (Ω)

, ||u||h−
L

r(ξ)
h(ξ) (Ω)

}
.

Lemma 2.2. [6, 25] (Brezis-Lieb lemma) Let {µn} ⊂ L h(ξ)(Ω,Rm) with m ∈ N,
verify

1. µn(ξ)→ µ(ξ), a.e. in Ω;

2. sup
n∈N
|µn|L h(ξ)(Ω,Rm) <∞.

Then

µn ⇀ µ in L h(ξ)(Ω,Rm).



1550 J. Vanterler da C. Sousa, G. L. Araújo, M. V. S. Sousa& A. R. E. Pereira

Lemma 2.3. [23] Suppose that h : RN → R is a uniformly continuous function

with 1 < κ− ≤ κ+ < N . If {un} is bounded by Hα,β;ψ
κ(ξ) (Ω) and

lim sup
n→∞ y∈RN

∫
Br(y)

|un|q(ξ) dξ = 0

for some r > 0 and some function q ∈ L∞+ (RN ) satisfying κ ≤ q � κ∗α, then

un → 0 in L s(ξ)(RN ) for every measurable function s : RN → R with κ� s� κ∗α.

Lemma 2.4. [6, 25] Let {µn} ⊂ L h(ξ)(Ω,Rm) with m ∈ N, such that

1. µn(ξ)→ µ(ξ), a.e. in Ω.

2. sup
n∈N
|µn|L h(ξ)(Ω,Rm) <∞.

Then,∫
Ω

∣∣∣|µn|h(ξ)−2µn| − |µn − µ|h(ξ)−2
(µn − µ)− |µ|h(ξ)−2

∣∣∣h′(ξ) dξ = on(1).

Associated with the Problem (1.5), we have the energy functional Θα,β
λ,k :

Hα,β;ψ
κ(ξ) (Ω) → R defined by

Θα,β
λ,k (u) =

∫
Ω

(
1

κ(ξ)

∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ − λ

∫
Ω

θ2(k−1ξ)

q(ξ)
|u|q(ξ)dξ

−
∫

Ω

θ1(k−1ξ)

r(ξ)
|u|r(ξ)dξ.

No that Θα,β
λ,k ∈ C1

(
Hα,β;ψ
κ(ξ) (Ω),R

)
with

Θα,β
λ,k (u)v =

∫
Ω

(∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)−2
HDα,β;ψ

0+ u HDα,β;ψ
0+ v + |u|κ(ξ)−2uv

)
dξ

−λ
∫

Ω

θ2(k−1ξ)|u|q(ξ)−2uvdξ −
∫

Ω

θ1(k−1ξ)|u|r(ξ)−2uvdξ,

for all u, v ∈ Hα,β;ψ
κ(ξ) (Ω). Thus, the critical points of the functional Θα,β

λ,k are solutions

to the Problem (1.5). Since Θα,β
λ,k is not bounded lower about Hα,β;ψ

κ(ξ) (Ω), consider

the functional Θα,β
λ,k restricted to the Nehari manifold Nα,β

λ,k , given by

Nα,β
λ,k =

{
u ∈ Hα,β;ψ

κ(ξ) (Ω)/ {0} :
(
Θα,β
λ,k

)′
(u)u = 0

}
and the level

cλ,k = inf
u∈Nα,βλ,k

Θα,β
λ,k (u).

Note that cλ,k is the mountain pass level of the functional Θα,β
λ,k .
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Choosing θ1 = 1 and λ = 0 in the Problem (1.5), we have the fractional
problem given by

HDα,β;ψ
T

(∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)−2
HDα,β;ψ

0+ u

)
+ |u|κ(ξ)−2u = |u|r(ξ)−2u, u ∈ Hα,β;ψ

κ(ξ) (Ω).

(2.3)

Consider energy functional Θα,β
∞ : Hα,β;ψ

κ(ξ) (Ω) → R associated the Problem

(2.3), given by

Θα,β
∞ (u) =

∫
Ω

(
1

κ(ξ)

∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ −

∫
Ω

1

r(ξ)
|u|r(ξ)dξ

and the level

c∞ = infu∈N∞Θα,β
∞ (u).

Also, consider the Nehari manifold

Nα,β
∞ =

{
u ∈ Hα,β;ψ

κ(ξ) (Ω)/ {0} :
(
Θα,β
∞
)′

(u)u = 0
}
. (2.4)

For θ1 ≡ θ1,∞ and λ = 0, we also consider the following problem

HDα,β;ψ
T

(∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)−2
HDα,β;ψ

0+ u

)
+ |u|κ(ξ)−2u

=θ1,∞|u|r(ξ)−2u, u ∈ Hα,β;ψ
κ(ξ) (Ω) (2.5)

and as above, denote by Θα,β
θ1,∞

, cθ1,∞ and Nα,β
θ1,∞

the energy functional, the level of

the mountain pass and the Nehari manifold associated with (2.5), respectively.

Lemma 2.5. (Local Property) Given Λ > 0, there exists positive constants γ

and σ (independent of k), such that Θα,β
λ,k (u) > γ > 0 for all λ ∈ (0,Λ) with

||u|| = σ.

Proof. Using the definition of Θα,β
λ,k and the conditions (g3) and (f2), it results

Θα,β
λ,k (u) ≥ 1

κ+

∫
Ω

(∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ − λ

q−
||θ2||∞

∫
Ω

|u|q(ξ)dξ

− 1

r−

∫
Ω

|u|r(ξ)dξ.

If ||u|| < 1, using the Proposition 2.4 and Theorem 2.1, yields

Θα,β
λ,k (u) ≥ 1

κ+
||u||κ+ − λ

q−
||θ2||∞c1||u||q− −

c2
r−
||u||r−

where c1 and c2 are positive constants. Since κ+ < q− ≤ r−, setting σ > 0 small
enough such that

1

κ+
σκ+ − Λ

q−
||θ2||∞c1σq− −

c2
r−
σr− ≥ 1

2κ+
σκ+ .

If 0 < λ < Λ, Θα,β
λ,k (u) ≥ 1

2κ+
σκ+ = γ > 0 on ∂Bσ(0) establishing the result.

The following result refers to the behavior of Θα,β
λ,k over Nα,β

λ,k .
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Lemma 2.6. The functional Θα,β
λ,k is bounded from below and coercive on Nα,β

λ,k .

Proof. For every u ∈ Nα,β
λ,k , we have

(
Θα,β
λ,k

)′
(u)u = 0. So,

λ

∫
Ω

θ2(k−1ξ)|u|q(ξ)dξ =

(∫
Ω

∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ −

∫
Ω

θ1(k−1ξ)|u|r(ξ)dξ.

(2.6)

Using the definition of Θα,β
λ,k and Eq.(2.6), one has

Θα,β
λ,k (u) ≥ 1

κ+

∫
Ω

(∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ − λ

q−

∫
Ω

θ2(k−1ξ)|u|q(ξ)dξ

− 1

r−

∫
Ω

θ1(k−1ξ)|u|r(ξ)dξ

=

(
1

κ+
− 1

q−

)∫
Ω

(∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ

+

(
1

q−
− 1

r−

)∫
Ω

θ1(k−1ξ)|u|r(ξ)dξ.

By hypothesis κ+ < q− ≤ r−, so

Θα,β
λ,k (u) ≥

(
1

κ+
− 1

q−

)∫
Ω

(∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ (2.7)

for all u ∈ Nα,β
λ,k . In this sense, we have that Θα,β

λ,k is bounded from below by Nα,β
λ,k .

Corollary 2.1. If {un} is a sequence in Nα,β
λ,k with Θα,β

λ,k (un)→ cλ,k, then {un} is

bounded in Hα,β;ψ
κ(ξ) (Ω) .

Proof. From (2.7), one has∫
Ω

(∣∣∣HDα,β;ψ
0+ un

∣∣∣κ(ξ)

+ |un|κ(ξ)

)
dξ ≤

(
1

κ+
− 1

q−

)−1

(cλ,k + 1) (2.8)

for n sufficiently great. Applying the Proposition 2.4 we conclude that {un} is

bounded in Hα,β;ψ
κ(ξ) (Ω).

The next lemma states that the Nehari manifold Nα,β
λ,k has a positive distance

from the origin.

Lemma 2.7. Given Λ > 0 there is δ > 0 such that

||u|| > δ, ∀(u, λ, k) ∈ Nα,β
λ,k × [0,Λ]× N. (2.9)

So, using Proposition 2.4, there exists µ > 0 such that

ρ1(u) ≥ µ,∀(u, λ, k) ∈ Nα,β
λ,k × [0,Λ]× N. (2.10)

Proof. Assume by contradiction that the inequality (2.9) not hold. So there is a

sequence {un} ⊂ Nα,β
λ,k such that ||un|| → 0 when n→∞. Since that {un} ⊂ Nα,β

λ,k

and ||θ1||∞ ≤ 1, from (2.6), one has∫
Ω

(∣∣∣HDα,β;ψ
0+ un

∣∣∣κ(ξ)

+ |un|κ(ξ)

)
dξ ≤ λ||θ2||∞

∫
Ω

|un|q(ξ)dξ +

∫
Ω

|un|r(ξ)dξ.
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From Proposition 2.3 and Lemma 2.1, yields

min {||un||κ− , ||un||κ+} ≤
∫

Ω

(∣∣∣HDα,β;ψ
0+ un

∣∣∣κ(ξ)

+ |un|κ(ξ)

)
dξ

≤ λ||θ2||∞max
{
||un||q−q(ξ), ||un||

q+
q(ξ)

}
+ max

{
||un||r−r(ξ), ||un||

r+
r(ξ)

}
.

Using Sobolev embedding, there exists positive constants c1 and c2 such that

min {||un||κ− , ||un||κ+} ≤ Λ||θ2||∞c1 max {||un||q− , ||un||q+}
+c2 max {||un||r− , ||un||r+} .

Therefore, for n large enough, yields

||un||κ+ ≤ Λc1||θ2||∞||un||q− + c2||un||r− ≤ (Λc1||θ2||∞ + c2)||un||q−

or equivalently,

(Λc1||θ2||∞ + c2)
−1 ≤ ||un||q−−κ+ ,

from which we get an contradiction, since κ+ < q−. Therefore, we complete the
proof.

Corollary 2.2. Let Eα,βλ,k (u)u =
(
Θα,β
λ,k

)′
(u)u. Then, there exists µ0 > 0 such that

(
Eα,βλ,k

)′
(u) < −µ0, ∀(u, λ, k) ∈ Nα,β

λ,k × [0,Λ]× N.

Proof. Note that(
Eα,βλ,k

)′
(u)u =

∫
Ω

κ(ξ)

(∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ − λ

∫
Ω

q(ξ)θ2(k−1ξ)|u|q(ξ)dξ

−
∫

Ω

r(ξ)θ1(k−1ξ)|u|r(ξ)dξ

for all u ∈ Hα,β;ψ
κ(ξ) (Ω). From the definition of Nα,β

λ,k , it follows that(
Eα,βλ,k

)′
(u)u ≤ (κ+ − q−)

∫
Ω

(∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ /∈

+(q− − r−)

∫
Ω

θ1(k−1ξ)|u|r(ξ)dξ.

Since κ+ < q− ≤ r− and f is a non-negative function, we get(
Eα,βλ,k

)′
(u)u ≤ (κ+ − q−)

∫
Ω

(∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ.

Applying the Lemma 2.7, we conclude that(
Eα,βλ,k

)′
(u) < −(q− − κ+)µ.

Therefore, we conclude the proof.
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Lemma 2.8. If u ∈ Nα,β
λ,k is a critical point of Θα,β

λ,k restricted to Nα,β
λ,k , so u is

critical point of Θα,β
λ,k in Hα,β;ψ

κ(ξ) (Ω).

Proof. Let u ∈ Nα,β
λ,k a critical point of Θα,β

λ,k restricted to the manifold Nα,β
λ,k .

Then, there exists τ ∈ R such that(
Θα,β
λ,k

)′
(u) = τ

(
Eα,βλ,k

)′
(u).

Since (Θα,β
λ,k )

′
(u)u = 0, we have that τ

(
Eα,βλ,k

)′
(u) = 0. From the Corollary

2.2, we know that (Θα,β
λ,k )

′
(u)u < 0, so we should have τ = 0. Therefore,(

Θα,β
λ,k

)′
(u) = 0

implying that u is the critical point of Θα,β
λ,k in Hα,β;ψ

κ(ξ) (Ω).

Theorem 2.2. Let un a sequence in Hα,β;ψ
κ(ξ) (Ω) such that un ⇀ u in Hα,β;ψ

κ(ξ) (Ω) and(
Θα,β
λ,k

)′
(un)→ 0 with n→∞. So, for some subsequence, HDα,β;ψ

0+ un → HDα,β;ψ
0+ u

a.e. in Ω. Also,
(
Θα,β
λ,k

)′
(u) = 0.

Proof. Let R > 0 and φ ∈ C∞0 (Ω) such thatφ ≡ 0 if |ξ| ≥ 2R,

φ ≡ 1 if |ξ| ≤ R

and 0 ≤ φ(ξ) ≤ 1, ∀ξ ∈ Ω.
Using the same arguments as the proof of Lemma 13 (see [46]), considering

the sequence

Pn(ξ) (2.11)

=

(∣∣∣HDα,β;ψ
0+ un

∣∣∣κ(ξ)−2

Dα,β;ψ
0+ un −

∣∣∣Dα,β;ψ
0+ u

∣∣∣κ(ξ)−2

Dα,β;ψ
0+ u

)
Dα,β;ψ

0+ (un − u)

it is shown that∫
BR

Pndξ

≤
∫

Ω

∣∣∣HDα,β;ψ
0+ un

∣∣∣κ(ξ)

φdξ −
∫

Ω

∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)−2
HDα,β;ψ

0+ un
HDα,β;ψ

0+ uφdξ + on(1).

From
(
Θα,β
λ,k

)′
(un)(φun) = on(1),

(
Θα,β
λ,k

)′
(u)(φun) = on(1), and using the

triangular and Cauchy-Schwarz inequality, ones has∫
BR

Pndξ

≤ on(1)−
∫

Ω

∣∣∣HDα,β;ψ
0+ un

∣∣∣κ(ξ)−2

(un − u) HDα,β;ψ
0+ un

HDα,β;ψ
0+ φdξ
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−
∫

Ω

|un|κ(ξ)−2un(un − u)φdξ + λ

∫
Ω

θ2(k−1ξ)|un|q(ξ)−2un(un − u)φdξ

+

∫
Ω

θ1(k−1ξ)|un|r(ξ)−2un(un − u)φdξ

≤ on(1) + c1

∫
B2R

∣∣∣HDα,β;ψ
0+ un

∣∣∣κ(ξ)−1

|un − u|

+

∫
B2R

|un|κ(ξ)−1|un − u|+ λ||θ2||∞
∫
B2R

|un|q(ξ)−1|un − u|

+

∫
B2R

|un|r(ξ)−1|un − u|

≤ on(1) + 2c1

∥∥∥∥∣∣∣Dα,β;ψ
0+ un

∣∣∣κ(ξ)−1
∥∥∥∥

L p′(ξ)(B2R)

‖un − u‖L p′(ξ)(B2R)

+2
∥∥∥|un|κ(ξ)−1

∥∥∥
L p′(ξ)(B2R)

‖un − u‖L p′(ξ)(B2R)

+2
∥∥∥|un|q(ξ)−1

∥∥∥
L p′(ξ)(B2R)

‖un − u‖L p′(ξ)(B2R)

+2
∥∥∥|un|r(ξ)−1

∥∥∥
L p′(ξ)(B2R)

‖un − u‖L p′(ξ)(B2R) .

Since that Hα,β;ψ
κ(ξ) (Ω) ⇀ L

s(ξ)
loc (Ω) is compact embedding for every measurable

function s, satisfying κ ≤ s � κ∗α and {un} is a bounded sequence, we conclude
that ∫

BR

Pndξ → 0 with n→∞.

Consider the sets

B+
R = {ξ ∈ BR : κ(ξ) ≥ 2} and B−R = {ξ ∈ BR : 1 < κ(ξ) < 2}

and proceeding as in the proof of Lemma 13 (see [46]), it is shown that Dα,β;ψ
0+ un →

Dα,β;ψ
0+ un a.e. in BR. Since R is arbitrary, it follows that for some subsequence

Dα,β;ψ
0+ un → Dα,β;ψ

0+ un a.e. in Ω.

Since

{∣∣∣Dα,β;ψ
0+ un

∣∣∣κ(ξ)−2

Dα,β;ψ
0+ un

}
is bounded in (L p′(ξ)(Ω))3 and∣∣∣HDα,β;ψ

0+ un

∣∣∣κ(ξ)−2
HDα,β;ψ

0+ un →
∣∣∣HDα,β;ψ

0+ u
∣∣∣κ(ξ)−2

HDα,β;ψ
0+ u a.e. in Ω, from the

Lemma 2.2 implies∣∣∣Dα,β;ψ
0+ un

∣∣∣κ(ξ)−2

Dα,β;ψ
0+ un ⇀

∣∣∣Dα,β;ψ
0+ u

∣∣∣κ(ξ)−2

Dα,β;ψ
0+ u in (L p′(ξ)(Ω))3.

Analogously, we get

|un|s(ξ)−2un ⇀ |u|s(ξ)−2u in L s′(ξ)(Ω)

for every measurable function s checking κ ≤ s ≤ κ∗α.

Using the fact that
(
Θα,β
λ,k

)′
(un)v = on(1) for all v ∈ Hα,β;ψ

κ(ξ) (Ω) together with

the last two limits, we get that
(
Θα,β
λ,k

)′
(un)v = 0 for all v ∈ Hα,β,ψκ(ξ) (Ω).
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3. A result of compactness

Theorem 3.1. Suppose the condition (κ3) holds and {un} ⊂ Nα,β
∞ is a sequence

with Θα,β
∞ (un)→ c∞. Then,

1. un → u in Hα,β;ψ
κ(ξ) (Ω);

2. Exist {yn} ⊂ ZN with |yn| → +∞ and w ∈ Hα,β;ψ
κ(ξ) (Ω) such that wn(ξ) =

un(ξ + yn)→ w ∈ Hα,β;ψ
κ(ξ) (Ω) and Θα,β

∞ (w) = c∞.

Proof. Similar to Corollary 2.1, we have that {un} is a bounded sequence and,

from the reflexivity of Hα,β;ψ
κ(ξ) (Ω), there exists u ∈ Hα,β;ψ

κ(ξ) (Ω) and a subsequence

of {un}, still denoted by {un}, such that un ⇀ u in Hα,β;ψ
κ(ξ) (Ω). From Ekeland

variational principle, there is a sequence {wn} in Nα,β
∞ satisfying

wn = un + on(1), Θα,β
∞ (wn)→ c∞,

and (
Θα,β
∞
)′

(wn)− τn
(
Eα,β∞

)′
(wn) = on(1), (3.1)

where (τn) ⊂ R and
(
Eα,β∞

)′
(w) =

(
Θα,β
∞
)′

(w)w, for all w ∈ Hα,β;ψ
κ(ξ) (Ω). Since that

{un} ⊂ Nα,β
∞ , it follows from (3.1) that

τn
(
Eα,β∞

)′
(wn)wn = on(1).

Using arguments from the Lemma 2.2, there exists a δ > 0 such that∣∣∣(Eα,β∞ )′
(wn)wn

∣∣∣ > δ ∀n ∈ N.

Using (3.1), it follows that τ → 0 when n → ∞. Since {wn} is a bounded

sequence,
{(
Eα,β∞

)′
(wn)

}
is also bounded, so we can say that

(
Θα,β
∞
)′

(wn)→ 0 in
(
Hα,β;ψ
κ(ξ) (Ω)

)∗
.

Without loss of generality assume that

Θα,β
∞ (un)→ c∞ and

(
Θα,β
∞
)′

(wn)→ 0 in
(
Hα,β;ψ
κ(ξ) (Ω)

)∗
.

Next, we discuss the possibilities: u 6= 0 or u = 0.

First case. u 6= 0.

Similar to Theorem 2.2, u is shown to be the critical point of Θα,β
∞ . Applying

the Fatou lemma, it follows that

c∞ ≤ Θα,β
∞ (u)− 1

q−

(
Θα,β
∞
)′

(u)u

=

∫
Ω

(
1

κ(ξ)
− 1

q−

)(∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ +

∫
Ω

(
1

q−
− 1

r(ξ)

)
|u|r(ξ)dξ
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≤ lim
n→∞

inf

∫
Ω

(
1

κ(ξ)
− 1

q−

)(∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ

+ lim
n→∞

inf

∫
Ω

(
1

q−
− 1

r(ξ)

)
|u|r(ξ)dξ

= lim
n→∞

inf

{
Θα,β
∞ (un)− 1

q−

(
Θα,β
∞
)′

(un)un

}
= c∞.

Consequently,

lim
n→∞

∫
Ω

(∣∣∣HDα,β;ψ
0+ un

∣∣∣κ(ξ)

+ |un|κ(ξ)

)
dξ =

∫
Ω

(∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ.

Let

θ1,n =
∣∣∣HDα,β;ψ

0+ un − HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |un − u|κ(ξ)

and

θ2,n = 2κ
+

(∣∣∣HDα,β;ψ
0+ un

∣∣∣κ(ξ)

+
∣∣∣HDα,β;ψ

0+ u
∣∣∣κ(ξ)

+ |un|κ(ξ)
+ |u|κ(ξ)

)
.

So, it is immediate that θ1,n ≤ θ2,n, θ1,n → 0 and

θ2,n → θ2 = 2κ++1

∣∣∣∣∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

∣∣∣∣
a.e. in R. Applying Lebesgue dominated convergence theorem, we conclude that
θ1,n → 0 in Hα,β;ψ

p (Ω) from which follows the result.

Second case. u = 0.

Suppose that exists R, τ > 0 and a sequence {yn} ⊂ Ω satisfying

lim sup
n→∞

∫
BR(yn)

|yn|κ(ξ)dξ ≥ τ. (3.2)

If the statement is false, yields

lim sup
n→∞

sup
y∈Ω

∫
BR(yn)

|yn|κ(ξ)dξ = 0.

So, using the Lemma 2.3, yields

un → 0 in L s(ξ)(Ω)

for every measurable function s : Ω→ R with κ� s� κ∗α.

Since
(
Θα,β
∞
)′

(un)un = on(1), the last bound implies that∫
Ω

(∣∣∣HDα,β;ψ
0+ un

∣∣∣κ(ξ)

+ |un|κ(ξ)

)
dξ = on(1),



1558 J. Vanterler da C. Sousa, G. L. Araújo, M. V. S. Sousa& A. R. E. Pereira

or equivalently

un → 0 in Hα,β;ψ
κ(ξ) (Ω)

resulting in c∞ = 0, which is absurd. Therefore, the inequality (3.2) is true.
Note that |yn| → ∞ when n → ∞ otherwise there would be a bounded sub-

sequence of {yn}, which we will denote further by {yn}. Let say that |yn| ≤ M .
Hence∫
BR+M

|u|κ(ξ)dξ = lim sup
n→∞

∫
BR+M |un|κ(ξ)dξ ≥ lim sup

n→∞

∫
BR(yn)

|yn|κ(ξ)dξ ≥ τ > 0

which contradicts the hypothesis u = 0.
Let yn ∈ Z3 such that

‖yn − yn‖ <
√

3

and

wn(ξ) = un(ξ + yn), ∀ξ ∈ R3.

Then, from the translation invariance of R3 and κ and r being Z3-periodic, we
deduce that Θα,β

∞ (wn) = Θα,β
∞ (un). Now let ψ ∈ Hα,β;ψ

κ(ξ) (Ω) with ‖ψ‖ ≤ 1, so∣∣∣(Θα,β
∞
)′

(wn)ψ
∣∣∣ =

∣∣∣(Θα,β
∞
)′

(un)ψ(· − yn)
∣∣∣

implying ∥∥∥(Θα,β
∞
)′

(wn)
∥∥∥(
Hα,β;ψ
κ(ξ)

(Ω)
)∗ ≤ ∥∥∥(Θα,β

∞
)′

(un)
∥∥∥(
Hα,β;ψ
κ(ξ)

(Ω)
)∗ .

Analogously, yields∣∣∣(Θα,β
∞
)′
ψ
∣∣∣ =

∣∣∣(Θα,β
∞
)′

(wn)ψ(· −+yn)
∣∣∣ .

Therefore∥∥∥(Θα,β
∞
)′

(wn)
∥∥∥(
Hα,β;ψ
κ(ξ)

(Ω)
)∗ =

∥∥∥(Θα,β
∞
)′

(wn)
∥∥∥(
Hα,β;ψ
κ(ξ)

(Ω)
)∗

showing that {wn} is a sequence (PS)c∞ for Θα,β
∞ . If w ∈ Hα,β;ψ

κ(ξ) (Ω), denotes the

weak limit of {wn}, considering R = R+
√

3, we get∫
BR

|w|κ(ξ)dξ ≥ lim sup
n→∞

∫
BR

|un|κ(ξ)dξ ≥ τ > 0

which implies w 6= 0. Following the same steps as in the first case for the sequence
{wn}, it follows that wn → w in Hα,β;ψ

κ(ξ) (Ω), w ∈ Nα,β
∞ and Θα,β

∞ (w) = c∞.

Lemma 3.1. If the function g satisfies (g3), then the functionals Ψ1,Ψ2 : Hα,β;ψ
κ(ξ) (Ω)

→ R given by

Ψ1(u) =

∫
Ω

θ2(ξ)|u|q(ξ)dξ and Ψ2(u) =

∫
Ω

θ2(ξ)

q(ξ)
|u|q(ξ)dξ
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are weakly continuous.

Proof. The proof will be done only for Ψ1, because the same arguments apply to
Ψ2. Let {un} be a sequence in Hα,β;ψ

κ(ξ) (Ω) such that un ⇀ u in Hα,β;ψ
κ(ξ) (Ω). From

the assumption (g3), for every ε > 0, ∃R > 0 such that |θ2(ξ)| < ε for |ξ| > R. In
that sense, we have ∫

|ξ|>R
θ2(ξ)|u|q(ξ)dξ ≤ ε

∫
|ξ|>R

|u|q(ξ)dξ.

Since un ⇀ u in Hα,β;ψ
κ(ξ) (Ω), we have that {un} is bounded by Hα,β;ψ

κ(ξ) (Ω). It

follows from Sobolev embedding that the sequence {un} is also bounded in L q(ξ)(Ω),
and therefore∫

|ξ|>R
θ2(ξ)|un|q(ξ)dξ ≤ ε

∫
|ξ|>R

|u|q(ξ)dξ ≤ εM, ∀n ∈ N, (3.3)

for M a positive constant. Again, Sobolev embedding imply

un → u in L q(ξ)(BR). (3.4)

Using the inequalities (3.3) and (3.4), one has∫
Ω

θ2(ξ)|un|q(ξ)dξ →
∫

Ω

θ2(ξ)|u|q(ξ)dξ

which completes the proof.

4. Estimates involving minimax levels

In this present section, we investigate some estimates involving minimax levels
cλ,k, c0,k and c∞.

Firstly, note that

Θα,β
λ,k (u) ≤ Θα,β

0,k (u) and Θα,β
∞ (u) ≤ Θα,β

0,k (u), ∀u ∈ Hα,β;ψ
κ(ξ) (Ω)

which implies
cλ,k ≤ c0,k and c∞ ≤ c0,k. (4.1)

Lemma 4.1. The minimax levels c0,k and cθ1∞ satisfy the inequality

c0,k < cθ1,∞ .

Consequently, c∞ < cθ1,∞ .

Proof. In a similar way to Theorem 3.1, there exists V ∈ Hα,β;ψ
κ(ξ) (Ω)/ {0} check-

ing

Θα,β
θ1,∞

(V ) = cθ1,∞ and
(
Θα,β
θ1,∞

)′
(V ) = 0.

It follows from Lemma 6.1 that there is t > 0 such that tV ∈ Nα,β
0,k . Thus, we

have

c0,k ≤
∫

Ω

tκ(ξ)

κ(ξ)

(∣∣∣HDα,β,ψ
0+ V

∣∣∣κ(ξ)

+ |V |κ(ξ)

)
dξ −

∫
Ω

θ1

(
k−1ξ

) tr(ξ)
r(ξ)
|V |r(ξ)dξ.
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Since that 0 < θ1,∞ < θ1(ξ) for all ξ ∈ R3, we get

c0,k < Θα,β
θ1,∞

(tV ) ≤ max
s≤0

Θα,β
θ1,∞

(sV ) = Θα,β
θ1,∞

(V ) = cθ1,∞ .

Combining the last inequality with (4.1), it follows that c∞ < cθ1,∞ . In this
sense, we conclude the proof.

Proposition 4.1. The level c0,k is a critical value of Θα,β
0,k , i.e., there exists v ∈

Hα,β;ψ
κ(ξ) (Ω) such that

Θα,β
0,k (v) = c0,k and

(
Θα,β

0,k

)′
(v) = 0.

Proof. In a similar way to Theorem 3.1, there is a sequence un in Nα,β
0,k with

Θα
0,kβ(un)→ c0,k and

(
Θα

0,kβ
)′

(un)→ 0.

As in Corollary 2.1, {un} is a bounded sequence in Hα,β;ψ
p(ξ) (Ω), and because the

ψ-fractional space Hα,β;ψ
κ(ξ) (Ω) is reflexive, it follows that up to subsequence un ⇀ u

in Hα,β;ψ
κ(ξ) (Ω).

Affirmation: u 6= 0.

Assume by contradiction that u = 0. So un ⇀ 0 in Hα,β;ψ
κ(ξ) (Ω). We claim

that there are positive numbers R and τ and a sequence {yn} in Ω3 such that the
inequality (3.2) holds. Otherwise, by Lemma 2.3 it follows that u→ 0 in L r(ξ)(Ω).

From the definition of Θα,β
0,k , it follows that∫

Ω

(∣∣∣HDα,β;ψ
0+ un

∣∣∣p(ξ) + |un|κ(ξ)

)
dξ = on(1).

Therefore, un → 0 in Hα,β;ψ
κ(ξ) (Ω) implying in c0,k = 0, which is contradiction.

Therefore, the inequality (3.2) holds.
It follows from the same arguments as the Theorem 3.1 that the sequence

{yn} is unbounded. Now, define the function un(ξ) = un(ξ + yn) for all ξ ∈ R3.

Remembering that
(
Θα,β

0,k

)′
(un)φ(·+ yn) = on(1) for all φ ∈ Hα,β;ψ

κ(ξ) (Ω), we get∫
Ω

(∣∣∣HDα,β,ψ
0+ vn

∣∣∣κ(ξ)−2
HDα,β;ψ

0+ vn
HDα,β;ψ

0+ φ+ |vn|κ(ξ)−2vnφ

)
dξ

−
∫

Ω

θ1(k−1(ξ + yn))|vn|τ(ξ)−2vnφdξ = on(1).

Adapting the arguments used in the proof of Theorem 2.2, it is shown that
for some subsequence

HDα,β;ψ
0+ vn → HDα,β;ψ

0+ v and vn → v a.e. in R3.

Taking the limit n→∞, yields∫
Ω

(∣∣∣HDα,β;ψ
0+ v

∣∣∣κ(ξ)−2

Dα,β;ψ
0+ v HDα,β;ψ

0+ φ

)
dξ
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−
∫

Ω

(
θ1,∞|v|r(ξ)−2 + |v|κ

∗
α(ξ)−2

)
vφ = 0,

proving that v is a weak solution to the Problem (2.5). Applying Fatou lemma,
one has

cθ1,∞ ≤ Θα,β
θ1,∞

(v)− 1

q−
Θ′θ1,∞(v)

=

∫
Ω

lim
n→∞

inf

(
1

κ(ξ)
− 1

q−

)(∣∣∣HDα,β;ψ
0+ vn

∣∣∣κ(ξ)

+ |vn|κ(ξ)

)
dξ

+

∫
Ω

lim
n→∞

inf

(
1

q−
− 1

r(ξ)

)
ξθ1(k−1(ξ + yn))|vn|r(ξ)dξ

≤ lim
n→∞

inf

∫
Ω

(
1

κ(ξ)
− 1

q−

)(∣∣∣HDα,β,ψ
0+ vn

∣∣∣κ(ξ)

+ |un|κ(ξ)

)
dξ

+ lim
n→∞

inf

(
1

q−
− 1

r(ξ)

)
ξθ1(k−1ξ)|un|r(ξ)dξ

= lim
n→∞

inf

(
Θα,β

0,k (un)− 1

q−

(
Θα,β

0,k

)
(un)un

)
= c0,k.

Therefore, cθ1,∞ ≤ c0,k, which contradicts the Lemma 4.1. Therefore, u 6= 0.

Since
(
Θα,β

0,k

)′
(un) = on(1) it’s follows that

(
Θα,β

0,k

)′
(un) = 0, i.e., u ∈ Nα,β

0,k .

Applying Fatou Lemma again, we conclude that

c0,k ≤ Θα,β
0,k (u)− 1

q−

(
Θα,β

0,k

)′
(u)u

≤ lim
n→∞

inf Θα,β
0,k (un)− 1

q−

(
Θα,β

0,k

)′
(un)un

= c0,k

from which it follows that Θα,β
0,k (u) = c0,k.

Throughout this section, we denote by U ∈ Hα,β;ψ
κ(ξ) (Ω)/ {0} a minimum energy

solution of the problem (2.3), i.e.,

Θα,β
∞ (U) = c∞ and Θα,β

∞ (U) = 0.

For 1 ≤ i ≤ and k ∈ N, consider the function U ik : Ω→ R by

U ik(ξ) = U(ξ − kai).

The next result establishes an important relationship involving the energy of
functions U ik with c∞.

Lemma 4.2. For every i ∈ 1,...,l, yields

lim
k→+∞

sup

(
sup
t≥0

Θα,β
λ,k

(
tU ik
))
≤ c∞.

Proof. Since the functions κ, q, and r are Z3-periodic and ai ∈ Z3, we get

Θα,β
λ,k (tU ik) =

∫
Ω

tκ(ξ)

κ(ξ)

(∣∣∣HDα,β;ψ
0+ U

∣∣∣κ(ξ)

+ |U(ξ − kai)|κ(ξ)

)
dξ
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−λ
∫

Ω

θ2(k−1ξ)

κ(ξ)
tq(ξ)|U(ξ − kai)|q(ξ)dξ

−
∫

Ω

θ1

(
k−1ξ

) tr(ξ)
r(ξ)

|U(ξ − kai)|r(ξ)dξ

=

∫
Ω

tκ(ξ)

κ(ξ)

(∣∣∣HDα,β;ψ
0+ U

∣∣∣κ(ξ)

+ |U |κ(ξ)

)
dξ

−λ
∫

Ω

θ2(k−1ξ + ai)
tq(ξ)

q(ξ)
|U |q(ξ)dξ

−
∫

Ω

θ1(k−1ξ + ai)
tr(ξ)

r(ξ)
|U |r(ξ)dξ.

Furthermore, by Lemma 6.1 there is tk > 0 such that

max
t≥0

Θα,β
λ,k

(
tU ik
)

= Θα,β
λ,k

(
tkU

i
k

)
≥ β, (4.2)

where β was given by Lemma 2.5. Note that if tk → 0 when k → ∞ then
Θα,β
λ,k (tkU

i
k) → 0 when k → ∞, which contradicts (4.2). On the other hand if

tk → ∞ when k → ∞, it shows that Θα,β
λ,k (tkU

i
k) → −∞ and again we have a

contradiction with (4.2). So, we can assume tk → t0 > 0 (without loss of generality)
with k →∞. So, one has

lim
k→∞

(
max
t≥0

Θα,β
λ,k

(
tU iK

))
=

∫
Ω

t
κ(ξ)
0

κ(ξ)

(∣∣∣HDα,β;ψ
0+ U

∣∣∣κ(ξ)

+ |U |κ(ξ)

)
dξ

−λ
∫

Ω

θ2(ai)
t
q(ξ)
0

q(ξ)
|U |q(ξ)dξ

−
∫

Ω

θ1(ai)
t
r(ξ)
0

r(ξ)
|U |r(ξ)dξ

≤ Θα,β
∞ (t0U) ≤ max Θα,β

∞ (sU)

= Θα,β
∞ (U) = c∞.

Consequently,

lim
k→+∞

sup

(
sup
t≥0

Θα,β
λ,k

(
tU ik
))
≤ c∞ for i ∈ {1,...,l},

completing the proof of the result.
Now, consider the positive numbers R0 and r0 satisfying:

• BR0(ai) ∩BR0(aj) = ∅ for i 6= j and i, j ∈ {1,...,l};
• U li=1BR0(ai) ⊂ BR0(0);

• KR0
2

= U li=1BR0
2

(ai).

Consider the following barycenter function Qk : Hα,β,ψκ(ξ) (Ω)\{0} → R given by

Qk(u) =

∫
Ω

χ(k−1ξ)|u|κ+dξ∫
Ω

|u|κ+dξ
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where χ : R3 → R3 is given by

χ(ξ) =


ξ, if |ξ| ≤ r0,

r0

|ξ|
ξ, if |ξ| > r0.

(4.3)

Lemma 4.3. There exist δ0 > 0 and k1 ∈ N such that if u ∈ Nα,β
0,k and Θα,β

0,k (u) ≤
c∞ + r0, then

Qk(u) ∈ KR0
2
, k ≥ k1.

Proof. Suppose the lemma is not true, then there are δn → 0, kn → +∞ and
un ∈ Nα,β

0,kn
satisfying

Θα,β
0,kn

(un) ≤ c∞ + δn

and

Qkn(un) /∈ KR0
2

.

Take ζn > 0 in such a way that ζnun ∈ Nα,β
∞ , yields

c∞ ≤ Θα,β
∞ (ζnun) ≤ Θα,β

0,kn
(ζnun) ≤ max

t≥0
Θα,β

0,kn
(tun) = Θα,β

0,kn
(un) ≤ c∞ + δn.

Therefore

{ζnun} ⊂ Nα,β
∞ and Θα,β

∞ (ζnun)→ c∞.

Applying Ekeland variational principle, we can assume that {ζnun} ⊂ Nα,β
∞

(without loss of generality) is a sequence (PS)c∞ to Θα,β
∞ , i.e.,

Θα,β
∞ (ζnun)→ c∞ and

(
Θα,β
∞
)′

(ζnun)→ 0.

Applying the Theorem 3.1, we have some cases to be considered, namely:

1. ζnun → U 6= 0 in Hα,β;ψ
κ(ξ) (Ω);

2. There are {yn} ⊂ Z3 with |yn| → +∞ such that vn(ξ) = ζnu(ξ+yn) converges

on Hα,β;ψ
κ(ξ) (Ω) for some V ∈ Hα,β;ψ

κ(ξ) (Ω)\{0}.

Proceeding as in the Lemma 4.2, it is shown that ζn → ζ0 for some ζ0 > 0.
Therefore, we can assume that

un → U or vn = un(·+ yn)→ V in Hα,β;ψ
κ(ξ) (Ω).

Next, we will analyze (1) and (2).

1. Analysis of (1). By Lebesgue dominated convergence theorem it follows
that

Qkn(un) =

∫
Ω

χ(k−1
n ξ)|un|κ+dξ∫

Ω

|un|κ+dξ
→

∫
Ω

χ(0)|U |κ+dξ∫
Ω

|U |κ+dξ
= 0,
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implying Qkn(un) ∈ KR0
2

for n large, because 0 ∈ KR0
2

.

2. Analysis of (2). Using Ekeland variational principle again, we assume that(
Θα,β

0,kn

)′
(un) = on(1). Hence

(
Θα,β

0,kn

)
φ(·−yn) = on(1) for all φ ∈ Hα,β;ψ

κ(ξ) (ω),

and so

on(1) =

∫
Ω

(∣∣∣HDα,β;ψ
0+ vn

∣∣∣κ(ξ)−2

+ HDα,β;ψ
0+ vn

HDα,β;ψ
0+ φ + |vn|κ(ξ)−2vnφ

)
dξ

−
∫

Ω

θ1

(
k−1
n (ξ + yn)

)
|vn|r(ξ)−2vnφdξ. (4.4)

It follows from the last limit that up to subsequence,

HDα,β;ψ
0+ vn(ξ)→ HDα,β;ψ

0+ V (ξ) and vn(ξ)→ V (ξ) a.e. in Ω.

Consider the following cases:

(a)
∣∣k−1
n yn

∣∣→ +∞;

(b) k−1
n yn → y, for some y ∈ Ω.

Assuming that (a) is valid, it follows that∫ (∣∣∣HDα,β;ψ
0+ V

∣∣∣κ(ξ)−2
HDα,β;ψ

0+ V HDα,β;ψ
0+ φ+ |V |κ(ξ)−2V φ

)
dξ

=

∫
θ1,∞|V |r(ξ)−2V φdξ.

In this sense, V is a non-trivial weak solution to the Problem (2.5). Combining
the condition θ1,∞ < 1 with Fatou lemma, yields

cθ1,∞ ≤Θα,β
θ1,∞

(V )− 1

q−

(
Θα,β
θ1,∞

)′
(V )V

≤ lim
n→∞

inf

{
Θα,β
∞ (un)− 1

q−
(
Θα,β
∞
)′

(un)un

}
=c∞

or equivalent, cθ1,∞ ≤ c∞, which contradicts the Lemma 4.1.
If k−1

n yn → y for some y ∈ RN , then V is a weak solution of

HDα,β;ψ
0 u+ |u|κ(ξ)−2u = θ1(y)|u|r(ξ)−2u, u ∈ Hα,β;ψ

κ(ξ) (Ω).

Repeating the previous argument, we deduce that

cθ1(y) ≤ c∞ (4.5)

where cθ1(ξ) is the mountain pass level of the functional Θα,β
θ1(y): H

α,β;ψ
κ(ξ) (Ω) → R

given by

Θα,β
θ1(y)(u) =

∫
Ω

1

κ(ξ)

(∣∣∣HDα,β;ψ
κ(ξ) u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ −

∫
Ω

θ1(y)

r(ξ)
|u|r(ξ)dξ.
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Note that

cθ1(y) = inf
u∈Nθ1(y)

Θα,β
θ1(y)(u)

where

Nα,β
θ1(ξ) =

{
u ∈ Hα,β;ψ

κ(ξ) (Ω)\{0} :
(
Θα,β
θ1(y)

)′
(u)u = 0

}
.

If θ1(y) < 1, an argument similar to the one explored in the proof of Lemma
4.1 shows that cθ1(y) > c∞, contradicting the inequality (4.5). Therefore, θ1(y) = 1
and y = ai for some i = 1, ..., l. Then,

Qkn(un) =

∫
Ω

χ
(
k−1
n ξ

)
|un|κ+dξ∫

Ω

|un|κ+dξ

=

∫
Ω

χ
(
k−1
n ξ + k−1

n yn
)
|vn|κ+dξ∫

Ω

|vn|κ+dξ

.

In the previous equality passing to the limit when n→∞, one has

lim
n→∞

Qkn(un) =

∫
Ω

χ(y)|V |κ+dξ∫
Ω

|V |κ+dξ

= ai

which implies Qkn(un) ∈ KR0
2

for n large enough, resulting in a contradiction,

because by hypothesis Qkn(un) /∈ KR0
2

.

Lemma 4.4. There exists a constant R > 0 such that

Aλ,k =

{
u ∈ Nα,β

λ,k : Θα,β
λ,k (u) < c∞ +

δ0
2

}
⊂ BR

for k ≥ k1, i.e. Aλ,k is a bounded set, where k1 was given in the Lemma 4.3.
Furthermore, R is independent of λ and k.

Proof. Let u ∈ Nα,β
λ,k such that Θα,β

λ,k (u) < c∞ +
δ0
2

for k ≥ k1. Then,

∫
Ω

(∣∣∣HDα,β,ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ − λ

∫
Ω

θ2(k−1ξ)|u|q(ξ)dξ

−
∫

Ω

θ1(k−1ξ)|u|r(ξ)dξ = 0 (4.6)

and ∫
Ω

1

κ(ξ)

(∣∣∣HDα,β,ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ

−λ
∫

Ω

θ2(k−1ξ)

q(ξ)
|u|q(ξ)dξ −

∫
Ω

θ1(k−1ξ)

r(ξ)
|u|r(ξ)dξ

< c∞ +
δ0
2
. (4.7)
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From Eq.(4.6)-Eq(4.7), yields(
1

κ+
− 1

κ−

)∫
Ω

(∣∣∣HDα,β,ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ

+

(
1

q+
− 1

r−

)∫
Ω

θ1(k−1ξ)|u|r(ξ)dξ

< c∞ +
δ0
2
.

Therefore,∫
Ω

(∣∣∣HDα,β,ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ <

(
c∞ +

δ0
2

)(
1

κ+
− 1

q−

)−1

.

In this sense, we concluded the proof.

Lemma 4.5. Let u ∈ Aλ,k and tu > 0 such that tu u ∈ N0,k. Then, given Λ > 0,
there exists constants C > 0 and k2 ∈ N such that 0 ≤ tu ≤ C for all (u, λ, k) ∈
Aλ,k × [0,Λ]× ([k2,+∞) ∩ N).

Proof. Assume that the lemma is not true. Then there must be {un} ⊂ Aλn,kn
with λn → 0 and kn → +∞ such that tunun ∈ N

α,β
0,kn

and tun → ∞ with n → ∞.

We can assume that tun ≥ 1 (without loss of generality). Since tunun ∈ N
α,β
0,kn

, it
follows that

(tun)κ+

∫
Ω

(∣∣∣HDα,β,ψ
0+ un

∣∣∣κ(ξ)

+ |un|κ(ξ)

)
dξ ≥ θ1,∞(tun)r−

∫
Ω

|un|r(ξ)dξ

or equivalent,∫
Ω

(∣∣∣HDα,β,ψ
0+ un

∣∣∣κ(ξ)

+ |un|κ(ξ)

)
dξ ≥ θ1,∞t

r−
un

−κ+

∫
Ω

|un|r(ξ)dξ. (4.8)

Affirmation: There is µ1 > 0 such that

∫
Ω

|un|r(ξ)dξ > µ1, ∀n ∈ N.

Indeed, arguing by contradiction, if

∫
Ω

|un|r(ξ)dξ → 0, by interpolation it follows

that

∫
Ω

|un|q(ξ)dξ → 0. Since un ∈ Nλn,kn ,

∫
Ω

(∣∣∣HDα,β,ψ
0+ un

∣∣∣κ(ξ)

+ |un|κ(ξ)

)
dξ ≤ λ||θ2||∞

∫
Ω

|un|q(ξ)dξ +

∫
Ω

|un|r(ξ)dξ = on(1),

or yet, un → 0 in Hα,β,ψκ(ξ) (Ω) which contradicts the Lemma 4.3, proving the state-

ment. Using the inequality (4.8), it follows that

ρ1(un) =

∫
Ω

(∣∣∣HDα,β,ψ
0+ un

∣∣∣κ(ξ)

+ |un|κ(ξ)

)
dξ → +∞.

Therefore, we have that {un} is an unbounded sequence. However, this is impossi-
ble, because by Lemma 4.4 {un} is bounded.
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Lemma 4.6. Let δ0 > 0 be given by Lemma 4.3 and k3 = max{k1, k2}. Then,
there exists Λ∗ > 0 such that

Qk(u) ∈ KR0
2
,∀(u, λ, k) ∈ Aλ,k × [0,Λ∗)× ([k3,+∞) ∩ N).

Proof. Note that

Θα,β
λ,k (u) = Θα,β

0,k (u)− λ
∫

Ω

θ2

(
k−1ξ

)
q(ξ)

|u|q(ξ)dξ, ∀u ∈ Hα,β;ψ
κ(ξ) (Ω).

Consider tu > 0 with tuu ∈ Nα,β
0,k . So, get

Θα,β
0,k (tuu) = Θα,β

λ,k (tuu) + λ

∫
Ω

θ2

(
k−1ξ

)
q(ξ)

(tu)q(ξ)|u|q(ξ)dξ

≤ max
t≥0

Θα,β
λ,k (tu) + λ

∫
Ω

θ2

(
k−1ξ

)
q(ξ)

(tu)q(ξ)|u|q(ξ)dξ.

Using the Lemma 2.8, yields

Θα,β
0,k (tuu) ≤ Θα,β

λ,k (u) +
λ

q−
||θ2||∞Cq+

∫
Ω

|u|q(ξ)dξ.

Since u ∈ Aλ,k, we get

Θα,β
0,k (tuu) < c∞ +

δ0
2

+ λc2

∫
Ω

|u|q(ξ)dξ.

Using Sobolev embedding and the Lemma 4.4, we obtain

Θα,β
0,k (tuu) < c∞ +

δ0
2

+ c3λ, ∀u ∈ Aλ,k

where c3 is a positive constant. Taking Λ∗ := δ0/2c3 and λ ∈ [0,Λ∗), we conclude

that tuu ∈Mα,β
0,k and Θα,β

0,k (tuu) < c∞ + δ0.
So, by the Lemma 2.7, we have Qk(tuu) ∈ KR0

2
. Note note that Qk(u) =

Qk(tuu). Thus, we complete the proof.

5. The Palais-Smale condition

In this section, we prove the existence of a sequence (PS)βiλ,k in θiλ,k for the func-

tional Θα,β
λ,k .

Before starting the discussion of some technical lemmas, essential for the inves-
tigation of the main result of this section. Consider the following notations:

• θiλ,k = {u ∈ Nλ,k; |Qk(u)− ai| < R0};

• ∂θiλ,k = {u ∈ Nλ,k|Qk(u)− ai| = R0};

• βiλ,k = inf
u∈θiλ,k

Θα,β
λ,k (u);

• γ̃iλ,k = inf
u∈∂θiλ,k

Θα,β
λ,k (u).
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Lemma 5.1. Setting % = 1
2 (cθ1,∞ − c∞) exists k∗ ∈ N such that βiλ,k < c∞+ % and

βiλ,k, γ̃
i
λ,k, for all λ ∈ [0,Λ∗), i ∈ {1, ...l} and k ≤ k∗ .

The next result establishes an important relationship between functionals Θα,β
λ,k

and Θα,β
∞ .

Lemma 5.2. Let {vn} be a sequence (PS)d for the functional Θα,β
λ,k with vn ⇀ v

in Hα,β,ψκ(ξ) (Ω). Then

Θα,β
λ,k (vn)−Θα,β

0,k (wn)−Θα,β
λ,k (v) = on(1) (5.1)

and ∥∥∥∥(Θα,β
λ,k

)′
(vn)−

(
Θα,β

0,k

)′
(wn)−

(
Θα,β
λ,k

)′
(v)

∥∥∥∥ = on(1) (5.2)

where wn = vn − v.

Proof. Proceeding as in the Theorem 2.2 , we have the following convergences:
(1) HDα,β,ψ

0+ vn → HDα,β,ψ
0+ v a.e. in Ω;

(2) vn → v a.e. in Ω;
(3) ∫

Ω

∣∣∣HDα,β,ψ
0+ vn

∣∣∣κ(ξ)−2
HDα,β,ψ

0+ vn
HDα,β,ψ

0+ φdξ

→
∫

Ω

∣∣∣HDα,β,ψ
0+ v

∣∣∣κ(ξ)−2
HDα,β,ψ

0+ v HDα,β,ψ
0+ φdξ;

(4) ∫
Ω

θ1

(
k−1ξ

)
|vn|r(ξ)−2vnφdξ →

∫
Ω

θ1

(
k−1ξ

)
|v|r(ξ)−2vφdξ,

for all φ ∈ Hα,β,ψκ(ξ) (Ω). Applying the Brezis-Lieb lemma to variable exponents, one

has

Θα,β
λ,k (vn) = on(1) +

∫
Ω

1

κ(ξ)

(∣∣∣HDα,β,ψ
0+ wn

∣∣∣κ(ξ)

+ |wn|κ(ξ)

)
dξ

+

∫
Ω

1

κ(ξ)

(∣∣∣HDα,β,ψ
0+ v

∣∣∣κ(ξ)

+ |v|κ(ξ)

)
dξ

−λ
∫

Ω

θ2

(
k−1ξ

)
q(ξ)

|wn|κ(ξ)dξ − λ
∫

Ω

θ2

(
k−1ξ

)
q(ξ)

|v|q(ξ)dξ

−
∫

Ω

θ1

(
k−1ξ

)
r(ξ)

|wn|r(ξ)dξ −
∫

Ω

θ1

(
k−1ξ

)
r(ξ)

|v|r(ξ)dξ.

Soon

Θα,β
λ,k (vn) = Θα,β

0,k (wn) + Θα,β
λ,k (v) + on(1)

proving (5.1).

Now, let’s prove (5.2). Consider ϕ ∈ Hα,β;ψ
κ(ξ) (Ω) with ||ϕ|| = 1. Carrying out

some calculations, one has∣∣∣∣[(Θα,β
λ,k

)′
(vn)−

(
Θα,β
λ,k

)′
(wn)−

(
Θα,β
λ,k

)′
(v)

]
ϕ

∣∣∣∣
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≤

∣∣∣∣∣
∫

Ω

(∣∣∣HDα,β;ψ
0+ vn

∣∣∣κ(ξ)−2
HDα,β;ψ

0+ vn −
∣∣∣HDα,β;ψ

0+ wn

∣∣∣κ(ξ)−2
HDα,β;ψ

0+ wn

−
∣∣∣∣HDα,β;ψ

0+ v

∣∣∣∣κ(ξ)−2
HDα,β;ψ

0+ v

)
HDα,β;ψ

0+ ϕdξ

∣∣∣∣∣
+

∣∣∣∣∫
Ω

(
|vn|κ(ξ)−2vn − |wn|κ(ξ)−2wn − |v|κ(ξ)−2v

)
ϕdξ

∣∣∣∣
+ λ

∣∣∣∣∫
Ω

θ2(k−1ξ)
(
|vn|q(ξ)−2vn − |v|q(ξ)−2v

)
ϕdξ

∣∣∣∣
+

∣∣∣∣∫
Ω

θ1(k−1ξ)
(
|vn|r(ξ)−2vn − |vn|r(ξ)−2vn − |v|r(ξ)−2v

)
ϕdξ

∣∣∣∣ .
Applying Holder’s inequality, yields∣∣∣[Θα,β

λ,k (vn)−Θα,β
λ,k (wn)−Θα,β

λ,k (v)
]
ϕ
∣∣∣

≤ 2
∥∥∥HDα,β;ψ

0+ ϕ
∥∥∥
κ(ξ)

∥∥∥∥∥∣∣∣HDα,β;ψ
0+ vn

∣∣∣κ(ξ)−2
HDα,β;ψ

0+ vn

−
∣∣∣HDα,β;ψ

0+ wn

∣∣∣κ(ξ)−2
HDα,β;ψ

0+ wn

−
∣∣∣HDα,β;ψ

0+ v
∣∣∣κ(ξ)−2

HDα,β;ψ
0+ v

∥∥∥∥∥
p′(ξ)

+2 ‖ϕ‖κ(ξ)

∥∥∥|vn|κ(ξ)−2vn − |wn|κ(ξ)−2wn − |v|κ(ξ)−2v
∥∥∥
p′(ξ)

+2ξ||ϕ||r(ξ)
∥∥∥|vn|r(ξ)−2vn − |wn|r(ξ)−2wn − |v|r(ξ)−2v

∥∥∥
r(ξ)

+λ

∣∣∣∣∫
Ω

θ2

(
k−1ξ

) (
|vn|q(ξ)−2vn − |v|q(ξ)−2v

)
ϕdξ

∣∣∣∣ .
Using the Proposition 2.4 and Proposition 2.1 it follows that the first three

terms on the right side of the previous inequality converge to 0 when n → ∞. To
conclude the proof, it remains to show that the last term of the above inequality is
on(1). From Holder inequality, we have∫

Ω

θ2

(
k−1ξ

) (
|vn|q(ξ)−2vn − |v|q(ξ)−2v

)
ϕdξ

=

∫
Ω

θ2

(
k−1ξ

) 1
q′(ξ)

[
|vn|q(ξ)−2vn − |v|q(ξ)−2v

]
θ2

(
k−1ξ

) 1
q(ξ) ϕdξ

≤ C
∥∥∥θ2

(
k−1ξ

) 1
q′(ξ)

(
|vn|q(ξ)−2vn − |v|q(ξ)−2v

)∥∥∥
q′(ξ)

.

Note that |vn|q(ξ) → |v|q(ξ) a.e. in Ω with n→∞ . As∣∣∣|vn|q(ξ)−2vn − |v|q(ξ)−2v||q
′(ξ)
∣∣∣ ≤ 2q

′
+ +

(
|vn|q

′(ξ)|v|q
′(ξ)
)
.

Applying Fatou lemma, and conclude that∫
Ω

21+q′+θ2(k−1ξ)|v|q(ξ)dξ
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=

∫
Ω

lim inf
n→∞

θ2(k−1ξ)

(
2q
′
+ |vn|q(ξ) + 2q

′
+ |v|q(ξ) −

∣∣∣|vn|q(ξ)−2vn − |v|q(ξ)−2v
∣∣∣q′(ξ)) dξ

≤ lim inf
n→∞

∫
Ω

[
2q
′
+ θ2(k−1ξ)|vn|q(ξ) + θ2(k−1ξ)|v|q(ξ)

]
dξ

− lim inf
n→∞

∫
Ω

θ2(k−1ξ)
∣∣∣|vn|q(ξ)−2vn − |v|q(ξ)−2v

∣∣∣q′(ξ) .
Using Lemma 5.1, we obtain∫

Ω

21+q′+θ2

(
k−1ξ

)
|v|q(ξ)dξ

≤
∫

Ω

21+q′θ2

(
k−1ξ

)
|v|q(ξ)dξ

− lim sup
n→∞

∫
Ω

θ2

(
k−1ξ

)
|vn|q(ξ)−2vndξ − |v|q(ξ)−2v|q

′(ξ)dξ

which implies

lim sup
n→∞

∫
Ω

θ2

(
k−1ξ

) ∣∣∣|vn|q(ξ)−2vn − |v|q(ξ)−2v
∣∣∣q′(ξ) dξ = 0,

since the function θ2 is not negative and the theorem is proved.

Lemma 5.3. The functional Θα,β
λ,k satisfies the condition (PS)d for d ≤ c∞ + %,

where % is given in the Lemma 5.1.

Proof. Let {vn} ⊂ Hα,β;ψ
κ(ξ) (Ω) be a sequence (PS)d for the functional Θα,β

λ,k with

d ≤ c∞ + %. Similar to Corollary 2.1, {vn} is a sequence bounded in {vn} ⊂
Hα,β;ψ
κ(ξ) (Ω) and therefore, for some subsequence {vn}, we have that vn → v in

Hα,β;ψ
κ(ξ) (Ω), for some v ∈ Hα,β;ψ

κ(ξ) (Ω). As
(
Θα,β
λ,k

)′
= 0 and

(
Θα,β
λ,k

)
≥ 0, it follows

from (5.1) and (5.2) that wn = vn− v is a sequence (PS)d∗ for the functional Θα,β
0,k

with d∗ = d−Θα,β
λ,k ≤ c∞ + %.

Statement 1. There is R > 0 such that lim sup
n→∞

sup
y∈RN

∫
BR(y)

|wn|κ(ξ)dξ = 0.

If the statement is true, then

∫
Ω

|wn|r(ξ)dξ → 0. On the other hand, by (5.2),

we know that
(
Θα,β

0,k

)′
= on(1), so∫

Ω

(∣∣∣HDα,β;ψ
0+ wn

∣∣∣κ(ξ)

+ |wn|κ(ξ)

)
dξ = on(1)

showing that wn → 0 in Hα,β;ψ
κ(ξ) (Ω), and therefore vn → v in Hα,β;ψ

κ(ξ) (Ω).

Let’s now prove Statement 1. If the assertion does not hold, given R > 0, we
can find µ > 0 and {yn} ⊂ ZN by checking

lim sup
n→∞

∫
BR(yn)

|wn|κ(ξ)dξ ≥ µ > 0.

Since wn ⇀ 0 in Hα,β;ψ
κ(ξ) (Ω), it follows that {yn} is an unbounded sequence. It

is

w̃n(ξ) = wn(ξ + yn) for all ξ ∈ Ω.
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Then, {w̃n} is also a sequence (PS)d∗ for Θα,β
0,k , and therefore bounded. So there

are w̃ ∈ Hα,β;ψ
κ(ξ) (Ω) and a subsequence {w̃n}, still denoted by {w̃n}, such that

w̃n(ξ)→ w̃ ∈ Hα,β;ψ
κ(ξ) (Ω).

Arguing as in the proof of Theorem 3.1 we have that w 6= 0. Furthermore, since(
Θα,β

0,k

)′
(wn)φ(·− yn) = on(1) for all φ ∈ Hα,β;ψ

κ(ξ) (Ω) it is shown that HDα,β;ψ
0+ w̃n →

HDα,β;ψ
0+ w̃ a.e. in RN , and therefore∫

Ω

(∣∣∣HDα,β;ψ
0+ w̃

∣∣∣κ(ξ)−2
HDα,β;ψ

0+ w̃ HDα,β;ψ
0+ φ+ |w̃|κ(ξ)−2w̃φ

)
dξ

=

∫
Ω

θ1,∞|w̃|r(ξ)−2w̃φdξ

from which it follows that w̃ is a weak solution to the Problem (2.5). Consequently,
we have

cf∞ ≤ Θα,β
θ1,∞

(w̃)− 1

q−

(
Θα,β
θ1,∞

)′
(w̃)w̃

≤ lim inf
n→∞

{
Θα,β

0,k (wn)− 1

q−

(
Θα,β

0,k

)′
(wn)wn

}
= d∗

implying cθ1,∞ ≤ c∞+%, which is contradiction, because % < cθ1,∞−c∞. Therefore,
Statement 1 is true.

Lemma 5.4. For every u ∈ θiλ,k, there is a constant µ > 0 and a differentiable

function ζ : Bµ ⊂ Hα,β;ψ
κ(ξ) (Ω)→ R+ such that

ζ(0) = 1, ζ(v)(u− v) ∈ θiλ,k, ∀v ∈ Bµ

and

ζ ′(0)φ =

(
Eα,βλ,k,ξ

)′
(u)φ(

Eα,βλ,k

)′
(u)u

, ∀φ ∈ Hα,β;ψ
κ(ξ) (Ω),

where Eα,βλ,k (u) =
(
Θα,β
λ,k

)′
(u)u.

Proof. Let ϕ : R×Hα,β;ψ
κ(ξ) (Ω)→ R given by ϕ(t, w) = Eα,βλ,k (t(u−w)). So it’s easy

to see that

D1ϕ(t, w) =
(
Eα,βλ,k

)′
(t(u− w))(u− w)

and

D2ϕ(t, w)φ = −
((
Eα,βλ,k

)′
t(u− w)

)
φ, ∀φ ∈ Hα,β;ψ

κ(ξ) (Ω).

It follows from Corollary 2.2, that there exists µ > 0 such that D1ϕ(1, 0) =(
Eα,βλ,k

)′
(u)u < µ0. Since u ∈ Nα,β

λ,k , then ϕ(1, 0) = Eα,βλ,k (u) =
(
Θα,β
λ,k

)′
(u)u =
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0. Applying the implicit function theorem, it follows that there exists an open
neighborhood Bµ ⊂ Hα,β;ψ

κ(ξ) (Ω) and a differentiable function ζ : Bµ → R+ such that

ζ(0) = 1 and ϕ(ζ(w), w) = 0 for all w ∈ Bµ.
Deriving the above equation, we have

D1ϕ(ζ(w), w)ζ ′(w)φ+D2ϕ(ζ(w), w)ζ ′(w)φ.

Therefore,

ζ ′(0)φ =
−D2ϕ(1, 0)φ

D1ϕ(1, 0)
=

(
Eα,βλ,k

)′
(u)φ(

Eα,βλ,k,ξ

)′
(u)u

.

Like u 6= 0, we can choose µ small enough so that u 6∈ Bµ. Using the definition

of the function ϕ we conclude that ζ(w)(u − w) ∈ Nα,β
λ,k for all w ∈ Bµ. From the

continuity of the function QK it follows that ζ(w)(u − w) ∈ θiλ,k. Therefore, we
concluded the proof.

Lemma 5.5. For every 1 ≤ i ≤ l, there is a sequence (PS)βiα,k , {u
i
α,k} ⊂ θiλ,k for

the functional Θα,β
λ,k .

Proof. For every 1 ≤ i ≤ l, the Lemma 5.1 implies

βiλ,k < γ̃iλ,k, for all k ≥ k0. (5.3)

So,

βiλ,k = inf
{

Θα,β
λ,k (u) : u ∈ θiλ,k ∪ ∂θiλ,k

}
, for all k ≥ k0.

Let {uin} ⊂ θiλ,k ∪ ∂θiλ,k a sequence minimally to βiλ,k. Applying Ekeland vari-

ational principle, there exists a subsequence of {uin} still denoted by {uin} such
that

Θα,β
λ,k (uin) = βiλ,k +

1

n

and

Θα,β
λ,k (uin) ≤ Θα,β

λ,k (w) +
1

n

∥∥w − uin∥∥ for all w ∈ θiλ,k ∪ ∂θiλ,k. (5.4)

Using (5.3), we can assume that uin ∈ θiλ,k for n is large enough. Indeed, if

uin ⊂ ∂θiλ,k for an infinite number of terms, then Θα,β
λ,k (uin) ≥ γ̃iλ,k > βiλ,k. In this

sense, we have a contradiction, because Θα,β
λ,k (uin) → βiλ,k. By the Lemma 5.4,

there are µin > 0 and a differentiable function ζin : Bnin → R+ with Bnin ⊂ H
α,β;ψ
κ(ξ) (Ω)

such that ζin(0) = 1 and ζin(v)(uin − v) ∈ θiλ,k for all v ∈ Bµin . Let vσ = σv with

||v|| = 1 and 0 < σ < µin. Then, vσ ∈ Bnin and wiσ,n := ζiλ,k(vσ)(uin − vσ) ∈ θiλ,k.

Since Θα,β
λ,k is C1, it follows from inequality (5.4) that

1

n

∥∥wiσ,n − uin∥∥
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≥ Θα,β
λ,k (uin)−Θα,β

λ,k

(
wiσ,n

)
=
(
Θα,β
λ,k

)′ (
uin
)

(uin − wiσ,n) + o
(∥∥uin − wiσ,n∥∥)

= σζin(vσ)Θα,β
λ,k

(
uin
)
v + (1− ζin(vσ))Θα,β

λ,k (uin)(uin) + o
(∥∥uin − wiσ,n∥∥)

= σζin(vσ)Θα,β
λ,k (uin)v + o

(∥∥uin − wiσ,n∣∣) .
So,

(
Θα,β
λ,k

)′ (
uin
)
≤
∥∥wiσ,n − uin∥∥
σζin(vσ)

(
1

n
−
o
(∥∥uin − wiσ,n∥∥)∥∥uin − wiσ,n∥∥

)

=

∥∥uin (ζin(vσ)− ζin(0)
)
− σvζin(vσ)

∥∥
σζin(vσ)

(
1

n
+ oσ(1)

)
≤
∥∥uin|||ζin(vσ)− ζin(0) + σ||v||ζin(vσ)

∥∥
σζin(vσ)

(
1

n
+ oσ(1)

)
=

∥∥uin∥∥ ∣∣(ζin)′(0)vσ + o(vσ)
∣∣+ σ||v||ζin(vσ)

σζin(vσ)

(
1

n
+ oσ(1)

)
.

Taking the limit σ → 0, we get(
Θα,β
λ,k

)′
(uin)v ≤ 1

n
.

Consequently,∥∥∥∥(Θα,β
λ,k

)′
(uin)

∥∥∥∥ = sup
v∈Hα,β;ψ

κ(ξ)
(Ω)

||v||=1

(
Θα,β
λ,k

)′
(uin)v ≤ 1

n
.

Therefore,
(
Θα,β
λ,k

)′
(uin)→ 0 in

(
Hα,β;ψ
κ(ξ) (Ω)

)∗
when n→∞ proving the result.

Finally, we will prove the main result of this paper.

Proof. (Proof of Theorem 1.1). Let {uin} ⊂ θiλ,k a sequence (PS)βiλ,k for Θα,β
λ,k

(energy functional) given by Lemma 5.5. Since βiλ,k < c∞ + %, at Lemma 5.3

there exists ui such that uin → ui in Hα,β;ψ
κ(ξ) (Ω). So,

ui ∈ θiλ,k,
(
Θα,β
λ,k

)′
(ui) = βiλ,k and

(
Θα,β
λ,k

)′
(ui) = 0.

Now, we can infer that ui 6= uj for i 6= j with 1 ≤ i, j ≤ l. To see why, it remains
to observe that

Qk(ui) ∈ BR0(ai) and Qk(uj) ∈ BR0(aj).

Since

BR0(ai) ∩BR0(aj) = ∅ to i 6= j

it follows that ui 6= uj for i 6= j. Therefore, Θα,β
λ,k has at least ` non-trivial critical

points for λ ∈ [0,Λ∗) and k ≥ k∗.
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6. Appendix

Consider the following conditions:

(P ) h : RN → R is a continuous Lipschitz function with 1 < h− ≤ h+ < N .

(P1) θ : RN → R is a continuous function satisfying

|θ1(ξ, t)| ≤ C
(
|t|κ(ξ)−1 + |t|q(ξ)−1

)
,

where C is a positive constant and q ∈ C(RN ,R) with κ ≤ q � κ∗α.

(P2) θ1(ξ, t) = o(|t|κ+−1) with t→ 0 uniformly in ξ;

(P3) There is a positive constant β > κ+ such that

0 < βF (ξ, t) ≤ tθ1(ξ, t), ∀ξ ∈ RN and t 6= 0;

where F (ξ, t) =

∫ t

0

θ1(ξ, s)ds.

(P4) For each ξ ∈ RN , the function
θ1(ξ, t)

|t|κ+−1
is increasing by t in RN/ {0}.

Let I : Hα,β;ψ
κ(ξ) (Ω)→ R the class functional C1 defined by

I(u) =

∫
Ω

(∣∣∣HDα,β;ψ
0+ u

∣∣∣κ(ξ)

+ |u|κ(ξ)

)
dξ −

∫
Ω

F (ξ, u)dξ

for all u ∈ Hα,β;ψ
κ(ξ) (Ω).

Consider the Nehari manifold given by

S =
{
u ∈ Hα,β;ψ

κ(ξ) (Ω)/ {0} : I ′(u)u = 0
}
.

Lemma 6.1. Under the conditions (P )-(P3), for every u ∈ Hα,β;ψ
κ(ξ) (Ω)/ {0} there

exists a unique tu > 0 such that tuu ∈ S. Furthermore, the maximum of I(tu) for
t > 0 is reached at t = tu.

Proof. Fixed u ∈ Hα,β;ψ
κ(ξ) (Ω)/ {0} arbitrary, we consider the function ϕ : [0,∞)→

R given by ϕ(t) = I(tu). Note that ϕ(0) = 0 and that ϕ verifies the geometry of
the mountain pass, i.e. ϕ(t) > 0 for t > 0 small enough and ϕ(t) < 0 for large
t > 0. Thus, the maximum of ϕ(t) in [0,∞) is reached at some point tu = t(u) > 0.
Hence, yields

ϕ(tu) = I ′(tuu)u = 0.

Making v = tuu, we have I ′(v)v = 0, therefore v ∈ S. Now we will prove the
uniqueness of tu. Define the function Φ : [0,∞) → R given by Φ(t) = I(tv). Note
that

Φ(1) =I = ϕ(tu) = max
t∈[0,+∞)

ϕ(t) = max
t∈[0,+∞)

I(stuu)
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= max
t∈[0,+∞)

I(su) = max
t∈[0,+∞)

Φ(t).

Hence, 0 = Φ′(1) = I ′(v)v or equivalent∫
Ω

(∣∣∣HDα,β;ψ
0+ v

∣∣∣κ(ξ)

+ |v|κ(ξ)

)
dξ =

∫
Ω

θ1(ξ, v)vdξ. (6.1)

Assuming t ≥ 1, one has

Φ′(t) = I ′(tv)v =

∫
Ω

tκ(ξ)−1

(∣∣∣HDα,β;ψ
0+ v

∣∣∣κ(ξ)

+ |v|κ(ξ)

)
dξ −

∫
Ω

θ1(ξ, tv)vdξ

≤ tκ+−1

(∫
Ω

θ1(ξ, v)vdξ −
∫

Ω

1

tκ+−1
θ1(ξ, tv)vdξ

)
.

Statement: θ1(ξ, v)v < 1
tκ+−1 θ1(ξ, tv)v.

Indeed, if v > 0 then tv > v and by (P4), we have

θ1(ξ, tv)

|tv|κ+−1
>
θ1(ξ, v)

|v|κ+−1
> θ1(ξ, v)v.

On the other hand if v < 0 then tv < v and by (P4) the statement follows.

Consequently, Φ′(t) > 0 for t > 1. Analogously we conclude that Φ′(t) < 0
if t ∈ (0, 1). This shows that the positive number tu satisfying ϕ′(tu) = I ′(tu) =
I ′(tuu)u = 0 is unique. In this sense, we complete the proof.
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Linéaire., 1984, 1, 223–283.

[33] O. H. Miyagaki, D. Motreanu and F. R. Pereira, Multiple solutions for a frac-
tional elliptic problem with critical growth, J. Diff. Equ., 2020, 269(6), 5542–
5572.

[34] P. Montecchiari, Multiplicity results for a class of semilinear elliptic equations
on RN , Rend. Sem. Mat. Univ. Padova., 1996, 95, 217–252.

[35] N. Nyamoradi, The Nehari manifold and its application to a fractional bound-
ary value problem, Diff. Equ. Dyn. Sys., 2013, 21, 323–340.



1578 J. Vanterler da C. Sousa, G. L. Araújo, M. V. S. Sousa& A. R. E. Pereira

[36] N. Nyamoradi, Existence and multiplicity of solutions to a singular elliptic sys-
tem with critical Sobolev–Hardy exponents and concave–convex nonlinearities,
J. Math. Anal. Appl., 2012, 396(1), 280–293.

[37] W. Orlicz, Uber konjugierte exponentenfolgen, Studia Math., 1931, 3, 200–211.

[38] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Vol.
1748 of Lecture Notes in Math. Springer-Verlag, 2000.

[39] X. Shang and Z. Wang, Existence of solutions for discontinuous p(x)-Laplacian
problems with critical exponents, Electron. J. Diff. Equ., 2012, 2012(25), 1–12.

[40] H. M. Srivastava and J. Vanterler da C. Sousa, Multiplicity of solutions for
fractional-order differential equations via the κ(x)-Laplacian operator and the
genus theory, Fractal Frac., 2022, 6(9), 481.

[41] J. Vanterler da C. Sousa, Nehari manifold and bifurcation for a ψ-Hilfer frac-
tional p-Laplacian, Math. Meth. Appl. Sci., 2021. DOI: 10.1002/mma.7296.

[42] J. Vanterler da C. Sousa, Existence and uniqueness of solutions for the frac-
tional differential equations with p-Laplacian in Hν,µ;ψ

p , J. Appl. Anal. Com-
put., 2022, 12(2), 622–661.

[43] J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the ψ-Hilfer fractional
derivative, Commun. Nonlinear Sci. Numer. Simul., 2018, 60, 72–91.

[44] J. Vanterler da C. Sousa, C. T. Ledesma, M. Pigossi and J. Zuo, Nehari Man-
ifold for Weighted Singular Fractional p-Laplace Equations, Bull. Braz. Math.
Soc., 2022, 1–31.

[45] J. Vanterler da C. Sousa, L. S. Tavares and C. E. T. Ledesma, A variational
approach for a problem involving a ψ-Hilfer fractional operator, J. Appl. Anal.
Comput., 2021, 11(3), 1610–1630.

[46] J. Vanterler da C. Sousa, J. Zuo and D. O’Regan, The Nehari manifold for a
ψ-Hilfer fractional p-Laplacian, Applicable Anal., 2021, 1–31.

[47] H. Yin and Z. Yang, Existence of multiple solutions for quasilinear elliptic
equations in RN , Electr. J. Diff. Equ., 2014, 2014(17), 1–22.

[48] C. Zhang and X. Zhang, Renormalized solutions for the fractional p(x)-
Laplacian equation with L1 data, Nonlinear Anal., 2020, 190, 111610.


	Introduction and motivation
	Mathematical background and variational setting
	A result of compactness
	Estimates involving minimax levels
	The Palais-Smale condition
	Appendix

