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Abstract In this paper, we investigate the existence and uniqueness of solu-
tions with prescribed L2-norm for a class of fractional Kirchhoff type problems.
Firstly, we prove the existence of global constraint minimizers for the exponent
2 < p < 2+ 4θs

N
. Secondly, we obtain the existence of solutions with prescribed

L2-norm for the exponent 2 + 4θs
N

≤ p < 2∗s by mountain pass theorem. Fur-
thermore, all these solutions are unique up to translations and our methods
only rely on scaling transformations and simply energy estimates. We point
out that these obtained results extend the previous results for 0 < s < 1 and
θ = 2 or s = 1 and θ = 2 in low dimensions. To the best of our knowledge,
with respect to the L2-subcritical or L2-critical constrained variational prob-
lem for fractional Kirchhoff type problems, the critical exponent p = 2 + 4θs

N

is properly established for the first time.
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1. Introduction

In this paper, we discuss the existence and uniqueness of solutions with prescribed
L2-norm for the following fractional Kirchhoff type problems[
a+ b

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)θ−1]
(−∆)su− |u|p−2u = λu, x ∈ RN , (1.1)

where a, b > 0, θ > 1, 1 ≤ N < 2θ
θ−1 , s ∈ (0, 1), 2 < p < 2∗s = 2N

N−2s with

2∗s =


2N
N−2s , if 0 < s < N

2 ,

+∞, if s ≥ N
2 ,
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and (−∆)s is the fractional Laplacian operator which is defined as

(−∆)su(x) = CN,sP.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN ,

where CN,s is a constant depending only on N, s and P.V. is the Cauchy principal
value.

Notice that if θ = 2 and s = 1, equation (1.1) is related to the stationary
solutions of equation

utt − (a+ b

∫
RN
|∇u|2dx)∆u = f(x, u), (1.2)

where f(x, u) is a general nonlinearity. Equation (1.2) models free vibrations of
elastic strings by taking into account the changes in length of the string produced
by transverse vibrations. After the pioneering works of [20, 27], equation (1.1) has
attracted considerable attention. For instance, if we take θ = 2 and s = 1, then
(1.1) turns into

−(a+ b

∫
RN
|∇u|2dx)∆u− |u|p−2u = λu, x ∈ RN . (1.3)

In [33,34], Ye firstly obtained the existence of normalized solutions for equation (1.3)
with L2-subcritical or L2-critical growth. Subsequently, Zeng and Zhang [37] proved
the existence and uniqueness of normalized solutions for equation (1.3) by simple
energy estimates and avoiding the concentration compactness principles. For the
Kirchhoff equations involving critical growth, please see [11,19,38] and the references
therein. Moreover, the supercritical growth problems were studied in [7, 8].

Additionally, if we take θ = 2 and 0 < s < 1, then (1.1) is reduced to the
following fractional Kirchhoff equation

(a+ b

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy)(−∆)su− |u|p−2u = λu, x ∈ RN . (1.4)

In [14], Huang and Zhang obtained the existence and uniqueness of normalized
solutions for equation (1.4) by some simple energy estimates. In what following,
Liu, Chen and Yang [21] considered the following fractional Kirchhoff equations
with a perturbation

(a+ b

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy)(−∆)su

=λu+ µ|u|q−2u+ |u|p−2u, x ∈ R3.

(1.5)

They obtained the existence and properties of normalized ground states for equation
(1.5) with prescribed L2-norm by decomposing Pohozaev set and constructing fiber
map. Other critical results for fractional Kirchhoff problems, please see [9, 18] and
the references therein.

In recent years, finding the existence, uniqueness, multiplicity of normalized
solutions and properties of normalized solutions is one of the hot topics, which has
attracted much attention from physics and mathematics. For example, Schrödinger
equations [1,2,4,6,15,17,29], quasilinear Schrödinger equations [25,31,35], fractional
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Schrödinger equations [10,22,24], Schrödinger-Poisson equations [5,16,26], Kirchhoff
equations [13,28,36,39], the related to Choquard equations [3, 12,23,32].

Motivated by the aforementioned works, in particular by [14, 28, 33, 34, 37], we
study the existence and uniqueness of normalized solutions for equation (1.1). As
far as we know, there is no work concerning fractional Kirchhoff type problems with
a L2-subcritical or L2-critical growth in high dimensions.

In order to obtain the existence and uniqueness of normalized solutions for equa-
tion (1.1), we consider the following minimization problem

φ(c) := inf
u∈Sc

Φ(u), (1.6)

where

Φ(u) =
a

2

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

+
b

2θ

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)θ
− 1

p

∫
RN
|u|pdx,

(1.7)

and

Sc = {u ∈ Hs(RN ) :

∫
RN
|u|2dx = c2}.

The fractional Sobolev space Hs(RN ) is defined by

Hs(RN ) =
{
u ∈ L2(RN ) :

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy < +∞

}
.

Clearly, it is easy to see that for any c > 0, (uc, λc) ∈ Hs(RN )×R is a solution
of equation (1.1) if and only if uc is a critical point of Φ(u)|Sc and λc is a Lagrange
multiplier.

Inspired by [30], we state the well-known Gagliardo-Nirenberg inequality of frac-
tional Laplacian type, which is given as follows: set p ∈ (2, 2∗s), then∫

RN
|u|pdx

≤ pαpβp
|Q|p−2

2

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)N(p−2)
4s

(∫
RN
|u|2dx

) 2ps−Np+2N
4s

,

(1.8)

where αp = 2s
2ps−Np+2N , βp = ( 2ps−Np+2N

N(p−2) )
N(p−2)

4s . Similar to [30], we can prove

that all optimizers of (1.8) are the scalings and translations of Q(x), i.e., belong to
the following set

{kQ(lx+m) : k, l,m ∈ R+, x ∈ RN}. (1.9)

Moreover, the function Q(x) is the unique ground state solution of the following
equation

(−∆)su+ u− |u|p−2u = 0, x ∈ RN . (1.10)

Equation (1.10) combining with the Pohozaev and Nehari identity, we have∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy =

N(p− 2)

2N + 2ps−Np

∫
RN
|u|2dx,∫

RN
|u|pdx =

2ps

2N + 2ps−Np

∫
RN
|u|2dx.

(1.11)
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From (1.7) and (1.8), we can obtain the L2-critical exponent for (1.6) as

p = 2 +
4θs

N
,

i.e. for any c > 0,

φ(c) > −∞, if p ∈ (2, 2 +
4θs

N
),

φ(c) = −∞, if p ∈ (2 +
4θs

N
, 2∗s).

However, in the case of p = 2 + 4θs
N , we can not get that φ(c) > −∞ or φ(c) =

−∞.
Now, we first describe a complete classification with respect to the exponent p

with the L2-normalized solutions of problem (1.6).
Set

c∗ :=
[ |Q|p−2

2

αpβp

( 2as(θ − 1)

4θs−Np+ 2N

) 4θs−Np+2N
4s(θ−1)

×
( 2bs(θ − 1)

θ(Np− 2N − 4s)

)Np−2N−4s
4s(θ−1)

] 2s
2ps−Np+2N

. (1.12)

Theorem 1.1. (i) When 2 < p < 2 + 2s
N , problem (1.6) has a unique minimizer uc

(up to translations). Moreover, the function uc has the following form

uc =
c1−

N
2s

|Q|2

( (2N + 2ps−Np)tp
N(p− 2)

) N
4s

Q
([ (2N + 2ps−Np)tp

N(p− 2)c2

] 1
2s

x
)
,

where tp is the unique minimum point of the following function

ϕ(t) =
a

2
t+

b

2θ
tθ − αpβpc

2ps−Np+2N
2s

|Q|p−2
2

t
N(p−2)

4s , t ∈ (0,+∞). (1.13)

(ii) When p = 2 + 4s
N , if c > a

N
4s |Q|2, problem (1.6) has a unique minimizer (up to

translations)

uc =
c

|Q|22

(2s(c
4s
N − a|Q|

4s
N
2 )

Nbc2

) N
4s

Q
([2s(c

4s
N − a|Q|

4s
N
2 )

Nbc2|Q|
4s
N
2

] 1
2s

x
)
.

In addition, problem (1.6) has no minimizer if c ≤ a N4s |Q|2.

(iii) When 2 + 4s
N < p < 2 + 4θs

N and s > N(θ−1)
2θ , problem (1.6) has no minimizer

if

c < c∗.

On the contrary, if c ≥ c∗, problem (1.6) has a unique minimizer (up to translations)

uc =
c1−

N
2s

|Q|2

( (2N + 2ps−Np)tp
N(p− 2)

) N
4s

Q
([ (2N + 2ps−Np)tp

N(p− 2)c2

] 1
2s

x
)
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with tp =
[
θa(Np−2N−4s)
b(4θs−Np+2N)

] 1
θ−1

and

φ(c) =
αpβp

|Q|p−2
2

(
c

2ps−Np+2N
2s

∗ − c
2ps−Np+2N

2s

)[θa(Np− 2N − 4s)

b(4θs−Np+ 2N)

]N(p−2)
4s(θ−1)

.

(iv) When p ≥ 2 + 4θs
N , problem (1.6) has no minimizer for all c > 0.

Note that if 2 < p < 2 + 4θs
N , equation (1.1) has a unique normalized solution

(up to translations), i.e., problem (1.6) has a unique minimizer. But if p ≥ 2 + 4θs
N ,

equation (1.1) has no normalized solution for all c > 0, i.e., problem (1.6) has no
minimizer. Inspired by [5, 15], we search the mountain pass solution for Φ(·) on Sc
for p ≥ 2 + 4θs

N . For this reason, we give the following definition [15,37].

Definition 1.1.3 Given c > 0, there exists K(c) > 0 such that

ρ(c) := inf
h∈Υ(c)

max Φ(h(t))t∈[0,1] > max{Φ(h(0)),Φ(h(1))}, (1.14)

where Υ(c) = {h ∈ C([0, 1];Sc)|h(0) ∈ AK(c),Φ(h(1)) < 0} and

AK(c) =
{
u ∈ Sc :

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy ≤ K(c)

}
,

then the functional Φ(·) satisfies the mountain pass geometry on the constraint set
Sc.

Theorem 1.2. Assume p > 2 + 4θs
N or p = 2 + 4θs

N and c > c∗ :=(
b|Q|

4θs
N

2

2θαpβp

) N
4θs+2N−2Nθ

, then equation (1.1) has a unique solution (up to translations)

uc =
c1−

N
2s

|Q|2

( (2N + 2ps−Np)t̄p
N(p− 2)c2

) N
4s

Q
([ (2N + 2ps−Np)t̄p

N(p− 2)c2

] 1
2s

x
)
,

where t̄p is the maximum value of the function ϕ(t) and ρ(c) = ϕ(t̄p).

Remark 1.1. In theorem 1.2, u ∈ Sc is the unique solution of (1.14) in the following
sense: if u ∈ Sc is a critical point of Φ(u) on the constraint set Sc and its energy
equals to ρ(c), that is,

Φ′(u)|Sc = 0 and Φ(u) = ρ(c). (1.15)

Remark 1.2. On the one hand, in [14,33,37], the dimension demands 1 ≤ N < 4,
but here it can be greater than 4 dimension. Since 1 ≤ N < 2θ

θ−1 (θ > 1), when θ = 2,
we get that 1 ≤ N < 4. But when θ = 1.2, we have that 1 ≤ N < 12. So our results
extend the existing results [14,33,37], where 0 < s < 1 and θ = 2 or s = 1 and θ = 2
in low dimensions. On the other hand, the main difficulty lies in that a minimizing
sequence of φ(c) may lack of the compactness. The usual approach [33] is to apply
concentration compactness principle to obtain the compactness of a minimizing
sequence by excluding the cases of vanishing and dichotomy. But there are some
difficulties in ruling out the cases of vanishing and dichotomy, it is necessary to
set up some functional inequalities, which needs to be more complex analysis. To
avoid the complexity of concentration compactness principle, we adopt the method
used in [14, 37] to obtain the existence and uniqueness of normalized solutions for
equation (1.1)

Throughout this paper, Lp(RN )(1 ≤ p < +∞) is usual Lebesgue space with the
standard norm | · |p.
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2. Some Lemmas

Lemma 2.1. Assume u ∈ Sc and 2 < p < 2∗s, then the following facts hold:
(i) If 2 < p < 2 + 4θs

N , then φ(c) is well defined, φ(c) > −∞ and φ(c) ≤ 0 for any
c > 0;
(ii) If 2 < p < 2 + 4s

N , then we have φ(c) < 0 for any c > 0;

(iii) If 2 + 4s
N ≤ p < 2 + 4θs

N and s > N(θ−1)
2θ , then there is φ(c) < 0 for c large

enough;
(iv) In the case of p = 2 + 4θs

N , if c ≤ c∗, we have φ(c) > −∞ and if c > c∗, we get
φ(c) = −∞;
(v) In the case of p > 2 + 4θs

N , we have φ(c) = −∞ for any c > 0.

Proof. From (1.7) and (1.8) , we deduce that for any u ∈ Sc,

Φ(u) ≥ a

2

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy +

b

2θ

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)θ
− αpβpc

2ps−Np+2N
2s

|Q|p−2
2

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)N(p−2)
4s

= ϕ(t),
(2.1)

where ϕ(·) is given by (1.13) and let t =
∫
RN
∫
RN
|u(x)−u(y)|2
|x−y|N+2s dxdy.

In addition, set ut = t
N
2 u(tx), t > 0, by direct computations, we have that∫

RN
|ut|2dx = c2,

∫
RN
|ut|pdx = t

N(p−2)
2

∫
RN
|u|pdx,

and ∫
RN

∫
RN

|ut(x)− ut(y)|2

|x− y|N+2s
dxdy = t2s

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

Therefore, ut ∈ Sc for all c and

Φ(ut) =
at2s

2

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

+
bt2θs

2θ

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)θ
− t

N(p−2)
2

p

∫
RN
|u|pdx.

(2.2)

(i) If 2 < p < 2 + 4θs
N , then 0 < N(p−2)

4s < θ. By (2.1), we have

Φ(u) ≥ b

2θ

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)θ
− αpβpc

2ps−Np+2N
2s

|Q|p−2
2

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)N(p−2)
4s

.

Clearly, it is easy to see that Φ(u) is bounded below on Sc. Moreover, we deduce
that φ(c) > −∞ for any c > 0. Using again (2.2), we get that Φ(ut)→ 0 as t→ 0,
which implies that φ(c) < 0 for all c > 0.



1604 S. Zhang & H. Jin

(ii) If 2 < p < 2 + 4s
N , then 0 < N(p−2)

4s < 1. By (2.2), it is not hard to find that

t
N(p−2)

2

p

∫
RN |u|

pdx is the dominant term in (2.2) as t → 0+. Thus we deduce that

φ(c) < 0 for any c > 0.

(iii) If 2 + 4s
N ≤ p < 2 + 4θs

N , then 1 ≤ N(p−2)
4s < θ. In view of the fact that

Φ(ut) → 0 as t → 0+, by (2.2), we get that φ(c) ≤ 0 for any c > 0. Moreover, for

any u ∈ S1, set uη(x) = u(η−
1
N x), we have∫

RN
|uη|2dx = η,

∫
RN
|uη|pdx = η

∫
RN
|u|pdx,

and ∫
RN

∫
RN

|uη(x)− uη(y)|2

|x− y|N+2s
dxdy = η1− 2s

N

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

Then

Φ(uη) =
aη1− 2s

N

2

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

+
bηθ−

2θs
N

2θ

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)θ
− η

p

∫
RN
|u|pdx.

Thus, Φ(uη)→ −∞ as η → +∞ because s > N(θ−1)
2θ . This means that φ(c) < 0 for

some c large enough.
(iv) In the case of p = 2 + 4θs

N , αp = N
2N+4θs−2Nθ , βp = (N+2θs−Nθ

Nθ )θ, by (2.1),
we have

Φ(u) ≥ a

2

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

+
( b

2θ
− αpβpc

4θs+2N−2Nθ
N

|Q|
4θs
N

2

)(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)θ
,

which implies that φ(c) > −∞ if c ≤ c∗ and φ(c) = −∞ if c > c∗, where c∗ is
defined in Theorem 1.2.

(v) If p > 2 + 4θs
N , then N(p−2)

4s > θ. We know that t
N(p−2)

2

p

∫
RN |u|

pdx is the

dominant term in (2.2) as t→ +∞ and Φ(ut)→ −∞ as t→ +∞. This means that
φ(c) = −∞ for c > 0.

Lemma 2.2. Assume p > 2 + 4θs
N or p = 2 + 4θs

N and c > c∗, then there exists
K(c) ∈ (0, 1) such that (1.14) holds.

Proof. For any u ∈ Sc and
∫
RN
∫
RN
|u(x)−u(y)|2
|x−y|N+2s dxdy small enough, by (2.1), we

have

Φ(u) ≥ a

2

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy +

b

2θ

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)θ
− αpβpc

2ps−Np+2N
2s

|Q|p−2
2

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)N(p−2)
4s

≥ a

4

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

(2.3)



Fractional Kirchhoff type problems in high dimensions 1605

Additionally, if
∫
RN
∫
RN
|u(x)−u(y)|2
|x−y|N+2s dxdy ≤ ( θab )

1
θ−1 , we obtain

Φ(u) ≤ a

2

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy +

b

2θ

(∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)θ
≤ a

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

(2.4)
Combining (2.3) and (2.4), it is easy to know that

Φ(u)→ 0 as

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy → 0,

and for K(c) small enough. Furthermore, K(c) ≤ ( θab )
1
θ−1 , we deduce that

sup
u∈AK(c)

Φ(u) ≤ a
∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy ≤ aK(c)

=
a

4
· 4K(c) ≤ inf

u∈∂A4K(c)

Φ(u),

where ∂A4K(c) = {u ∈ Sc :
∫
RN
∫
RN
|u(x)−u(y)|2
|x−y|N+2s dxdy = 4K(c)}. Moreover, for all

u ∈ A4K(c), by (2.3), we have

Φ(u) ≥ 0. (2.5)

Next we prove that γ(c) 6= ∅. Set

uε(x) =
cε

N
2

|Q|2
Q(εx), (2.6)

where ε > 0 will be determined later. Then uε ∈ Sc and by simple computations,
we have ∫

RN

∫
RN

|uε(x)− uε(y)|2

|x− y|N+2s
dxdy =

N(p− 2)c2ε2s

2N + 2ps−Np
,∫

RN
|uε|pdx =

2pscpε
N(p−2)

2

(2N + 2ps−Np)|Q|p−2
2

,

(2.7)

and

Φ(uε) =
a

2

N(p− 2)c2ε2s

2N + 2ps−Np
+

b

2θ
(
N(p− 2)c2ε2s

2N + 2ps−Np
)θ

− αpβpc
2ps−Np+2N

2s

|Q|p−2
2

(
N(p− 2)c2ε2s

2N + 2ps−Np
)
N(p−2)

4s .

(2.8)

By (2.7), we get that∫
RN

∫
RN

|uε1(x)− uε1(y)|2

|x− y|N+2s
dxdy ≤ K(c), if ε1 ≤

(K(c)(2N + 2ps−Np)
Nc2(p− 2)

) 1
2s

.

From (2.8), if N(p−2)
4s > θ, that is, p > 2 + 4θs

N , then we deduce that Φ(uε) → −∞
as ε→ +∞. If N(p−2)

4s = θ, that is, p = 2 + 4θs
N , then by (2.8), we get that

Φ(uε) =
a

2

N(p− 2)c2ε2s

2N + 2ps−Np
+
( b

2θ
− αpβpc

2ps−Np+2N
2s

|Q|
4θs
N

2

)( N(p− 2)c2ε2s

2N + 2ps−Np

)θ
,
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which implies that Φ(uε) → −∞ as ε → +∞ and c > c∗. Thus, there is a ε2 > 0
large enough such that Φ(uε2) < 0.

Taking h(t) = u(1−t)ε1+tε2 , then we get h(0) = uε1 ∈ AK(c), h(1) = uε2 and
Φ(uε2) < 0, which implies that h(t) ∈ Υ(c) 6= ∅.

For any h(t) ∈ Υ(c), we show that h(0) ∈ AK(c) and Φ(h(1)) < 0. Thus, there
is a t0 ∈ (0, 1) such that h(t0) ∈ ∂A4K(c) since h(t) is continuous and (2.5) holds.
Moreover,

max
t∈[0,1]

Φ(h(t)) ≥ Φ(h(t0)) > max{Φ(h(0)),Φ(h(1))}.

We complete the proof.

3. Proof of main results

Proof of Theorem 1.1. (i) Since 2 < p < 2 + 4s
N , it is easy to check that ϕ(t) has

a unique minimum point, denoted by tp. Thus, by (2.1), we have

φ(c) = inf
u∈Sc

Φ(u) ≥ ϕ(tp). (3.1)

In addition, choosing tp = N(p−2)c2ε2s

2N+2ps−Np , i.e., ε = (
(2N+2ps−Np)tp

N(p−2)c2 )
1
2s , by (2.8), we

conclude that

φ(c) ≤ Φ(uε) = ϕ(tp). (3.2)

Combining with (3.1) and (3.2), we get that

φ(c) = ϕ(tp) = inf
t∈R+

ϕ(t). (3.3)

Therefore, problem (1.6) has a minimizer when 2 < p < 2 + 4s
N . Moreover, the

minimizer of (1.6) has the following form

uε = uc =
c1−

N
2s

|Q|2

( (2N + 2ps−Np)tp
N(p− 2)

) N
4s

Q
([ (2N + 2ps−Np)tp

N(p− 2)c2

] 1
2s

x
)
.

Next, we prove that uε is the unique minimizer of problem (1.6) in the sense of
translation. Indeed, if u0 ∈ Sc is a minimizer of problem (1.6), by (2.1), we have

φ(c) = Φ(u0) ≥ ϕ(t0), t0 =

∫
RN

∫
RN

|u0(x)− u0(y)|2

|x− y|N+2s
dxdy,

where the second “ = ” if and only if u0 is an optimizer of (1.8). Together with
(3.3), we have

ϕ(tp) = φ(c) = Φ(u0) ≥ ϕ(t0).

Thus, we conclude that t0 = tp, ϕ(t0) = Φ(u0) and u0 is an optimizer of (1.8).
Moreover, by (1.9), we see that u0 must be the form of u0(x) = αQ(βx). Utilizing∫

RN
|u0|2dx = c2,

∫
RN

∫
RN

|u0(x)− u0(y)|2

|x− y|N+2s
dxdy = tp,
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and combining with (1.11), we get

α =
c1−

N
2s

|Q|2
(
(2N + 2ps−Np)tp

N(p− 2)
)
N
4s , β = (

(2N + 2ps−Np)tp
N(p− 2)c2

)
1
2s ,

which implies that u0 = uc.
(ii) In the case of p = 2 + 4s

N , αp = N
4s , βp = 2s

N by (2.1), we have

ϕ(t) = (
a

2
− c

4s
N

2|Q|
4s
N
2

)t+
b

2θ
tθ. (3.4)

If c ≤ a N4s |Q|2, by (2.1), we have

Φ(u) ≥ ϕ(

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy) > 0 for any u ∈ Sc,

which implies that φ(c) = infu∈Sc Φ(u) > 0 for c ≤ a N4s |Q|2. By Lemma 2.1-(i), we
know that φ(c) ≤ 0 for any c > 0. Thus problem (1.6) has no minimizer on Sc for

c ≤ a N4s |Q|2.

On the other hand, if c > a
N
4s |Q|2, it is also easy to know from (3.4) that ϕ(t)

attains its minimum at the unique point tp =
c
4s
N −a|Q|

4s
N
2

b|Q|
4s
N
2

. Similar to the case (i),

set uε(x) = cε
N
2

|Q|2 Q(εx), ε > 0 is given later, then Φ(uε) = ϕ(Nc
2ε2s

2s ). Taking

tp = Nc2ε2s

2s , that is, ε = [
2s(c

4s
N −a|Q|

4s
N
2 )

Nbc2|Q|
4s
N
2

]
1
2s . Thus, we deduce that

uε = uc =
c

|Q|22

(2s(c
4s
N − a|Q|

4s
N
2 )

Nbc2

) N
4s

Q
([2s(c

4s
N − a|Q|

4s
N
2 )

Nbc2|Q|
4s
N
2

] 1
2s

x
)
.

The uniqueness of the minimizer of problem (1.6) is similar to (i).
(iii) If 2 + 4s

N < p < 2 + 4θs
N , set τ = 4θs−Np+2N

4s(θ−1) , σ = 1− τ = Np−2N−4s
4s(θ−1) , then

using Yong’s inequality, for any t > 0,

a

2
t+

b

2θ
tθ = τ(

a

2τ
t) + σ(

b

2θσ
tθ)

≥ (
a

2τ
)τ (

b

2θσ
)σtτ+θσ

= (
2as(θ − 1)

4θs−Np+ 2N
)

4θs−Np+2N
4s(θ−1) (

2bs(θ − 1)

θ(Np− 2N − 4s)
)
Np−2N−4s

4s(θ−1) t
N(p−2)

4s ,

(3.5)
where the “=” in the second inequality holds if and only if

a

2τ
t =

b

2θσ
tθ, i.e., tp = [

θa(Np− 2N − 4s)

b(4θs−Np+ 2N)
]

1
θ−1 .

From (2.1) and c∗ is defined by (1.12), we have

Φ(u) ≥ αpβp

|Q|p−2
2

(
c

2ps−Np+2N
2s

∗ − c
2ps−Np+2N

2s

)
t
N(p−2)

4s
p = ϕ(tp), for all u ∈ Sc. (3.6)
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If c < c∗, by (3.5) and (3.6), we know that Φ(u) > 0 for all u ∈ Sc, which means that
φ(c) > 0. This contradicts with Lemma 2.1-(iii) because φ(c) ≤ 0. Thus, problem
(1.6) has no minimizer for c < c∗. If c ≥ c∗, by (3.6), we have φ(c) ≥ ϕ(tp). Besides,

taking uε(x) = cε
N
2

|Q|2 Q(εx), then Φ(uε) = ϕ(N(p−2)c2ε2s

2N+2ps−Np ). Set tp = N(p−2)c2ε2s

2N+2ps−Np , that

is, ε =
[

(2N+2ps−Np)tp
N(p−2)c2

] 1
2s

. Furthermore, we deduce that φ(c) ≤ Φ(uε) = ϕ(tp).

This means that uε is a minimizer of problem (1.6) and

φ(c) = ϕ(tp) =
αpβp

|Q|p−2
2

(
c

2ps−Np+2N
2s

∗ − c
2ps−Np+2N

2s

)[θa(Np− 2N − 4s)

b(4θs−Np+ 2N)

]N(p−2)
4s(θ−1)

for any c ≥ c∗. The uniqueness of minimizers can be proved by the same argument
of the case (i).

(iv) If p > 2 + 4θs
N or p = 2 + 4θs

N and c > c∗, by Lemma 2.1-(iv), (v), we have

φ(c) = −∞. Thus, problem (1.6) has no minimizer. If p = 2 + 4θs
N and c ≤ c∗, from

(2.1), we deduce that Φ(u) > 0 for any u ∈ Sc. It is easy to know that problem
(1.6) also has no minimizer.

Proof of Theorem 1.2. In the case of p > 2 + 4θs
N or p = 2 + 4θs

N and c > c∗, by
lemma 2.2, there exists K(c) > 0 such that Φ(u) satisfying mountain pass geometry
on Sc. Moreover, it is easy to find that ϕ(t) gets its maximun in (0,+∞), denoted
by t̄p. In what follows, we always assume that K(c) < t̄p.

For any h(t) ∈ Υ(c), by (2.1), we get that

Φ(h(t)) ≥ ϕ(

∫
RN

∫
RN

|(h(t))(x)− (h(t))(y)|2

|x− y|N+2s
dxdy), (3.7)

where “=” holds if and only if h(t) ∈ Sc is an optimizer of (1.8), i.e., up to transla-
tions,

(h(t))(x) =
cα

N
2

|Q|2
Q(αx) for some α > 0. (3.8)

Since h(0) ∈ AK(c), K(c) < t̄p, and note that ϕ(t) > 0,∀t ∈ [0, t̄p], we have∫
RN

∫
RN

|(h(0))(x)− (h(0))(y)|2

|x− y|N+2s
dxdy

<t̄p

<

∫
RN

∫
RN

|(h(1))(x)− (h(1))(y)|2

|x− y|N+2s
dxdy. (3.9)

In view of (3.7) and (3.9), we have that

max
t∈[0,1]

Φ(h(t)) ≥ ϕ(t̄p) = max
t∈R+

ϕ(t). (3.10)

Thus,

ρ(c) ≥ ϕ(t̄p). (3.11)

On the other hand, let uε(x) be the test function given by (2.6) with

ε = (
(2N + 2ps−Np)t̄p

N(p− 2)c2
)

1
2s .
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Set h(r) = r
N
4suε(r

1
2sx), it is not hard to know that Φ(h(r)) = ϕ(t̄pr). We can

choose 0 < t̂ < t̄p small enough such that h(t̂/t̄p) ∈ AK(c) and t̃ > t̄p such that

ϕ(t̃) < 0. Set h(r) = h((1 − r)t̂/t̄p + t̃r/t̄p), then h(0) = h(t̂/t̄p) ∈ AK(c) and

Φ(h(1)) = Φ(h(t̃/t̄p)) = ϕ(t) < 0. This means that h ∈ Υ(c) and

ρ(c) ≤ max
r∈[0,1]

Φ(h(r)) = Φ(uε) = ϕ(t̄p).

Moreover, we conclude from (3.11) that ρ(c) = ϕ(t̄p) and

uε = uc =
c1−

N
2s

|Q|2

( (2N + 2ps−Np)t̄p
N(p− 2)c2

) N
4s

Q
([ (2N + 2ps−Np)t̄p

N(p− 2)c2

] 1
2s

x
)
,

is a solution of problem (1.14).
Next, we prove that uε is a solution of equation (1.1) for some λ ∈ R−. Indeed,

in view of ϕ′(t̄p) = 0, we obtain

a+ b
(∫

RN

∫
RN

|uε(x)− uε(y)|2

|x− y|N+2s
dxdy

)θ−1

=a+ bt̄θ−1
p

=
N(p− 2)αpβpc

2ps−Np+2N
2s

2s|Q|p−2
2

t̄
Np−2N−4s

4s
p

=
c

2ps−Np+2N
2s

|Q|p−2
2

(2ps−Np+ 2N

N(p− 2)

)Np−2N−4s
4s

t̄
Np−2N−4s

4s
p .

(3.12)

Since uε(x) = cε
N
2

|Q|2 Q(εx), we have Q(x) = |Q|2
cε
N
2
u(xε ). According to (1.10), the

function uε satisfies the following equation

cp−2ε
Np−2N−4s

2

|Q|p−2
2

(−∆)suε − |uε|p−2uε = −c
p−2ε

N(p−2)
2

|Q|p−2
2

uε. (3.13)

Due to ε = (
(2N+2ps−Np)t̄p

N(p−2)c2 )
1
2s , we can get that

cp−2ε
Np−2N−4s

2

|Q|p−2
2

=
c

2ps−Np+2N
2s

|Q|p−2
2

(
2ps−Np+ 2N

N(p− 2)
)
Np−2N−4s

4s t̄
Np−2N−4s

4s
p . (3.14)

From (3.12)-(3.14), we know that uε is a solution of equation (1.1) with

λ = −c
p−2ε

N(p−2)
2

|Q|p−2
2

.

Finally, we prove that uε is the uniqueness of solution for problem (1.14). As-
sume u is a solution of (1.14) and satisfies (1.15), then there exists a λ ∈ R such
that Φ′(u) = λu. We adopt some ideas used in [22] to obtain the following Nehari-
Pohozaev identities

as

∫
RN

∫
RN

|ū(x)− ū(y)|2

|x− y|N+2s
dxdy + bs

(∫
RN

∫
RN

|ū(x)− ū(y)|2

|x− y|N+2s
dxdy

)θ
− N(p− 2)

2p

∫
RN
|ū|pdx = 0.

(3.15)
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Set ĥ(r) = r
N
4su(r

1
2sx), then we get that

Φ(ĥ(r)) =
ar

2

∫
RN

∫
RN

|ū(x)− ū(y)|2

|x− y|N+2s
dxdy +

brθ

2θ

(∫
RN

∫
RN

|ū(x)− ū(y)|2

|x− y|N+2s
dxdy

)θ
− r

N(p−2)
4s

p

∫
RN
|u|pdx.

From (3.15), we know that the function Φ(ĥ(r)) has its maximum at the unique

point r = 1 and Φ(ĥ(r)) → −∞ as r → +∞. Choosing 0 < r̃ < 1 < r̂ such that

ĥ(r̃) ∈ AK(c) and Φ(ĥ(r̂)) < 0, we deduce that h0(r) := ĥ((1− r)r̃+ rr̂) ∈ Υ(c) and
maxr∈[0,1] Φ(h0(r)) = Φ(u). Similar to the arguments of (3.7) and (3.10), we have
that

ϕ(t̄p) = γ(c) = Φ(u) = max
r∈[0,1]

Φ(h0(r)) ≥ max
t∈R+

ϕ(t) = ϕ(t̄p).

By (3.8), this implies that u must be the form of cα
N
2

|Q|2 Q(αx) for some α > 0. Since

ϕ(tp) = Φ(u), we deduce that α = ε and u = uε.
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[12] X. He, V. Rădulescu and W. Zou, Normalized ground states for the critical
fractional Choquard equation with a local perturbation, J. Geom. Anal., 2022,
32, 252.

[13] T. Hu and C. Tang, Limiting behavior and local uniqueness of normalized so-
lutions for mass critical Kirchhoff equations, Calc. Var., 2021, 60, 210.

[14] X. Huang and Y. Zhang, Existence and uniqueness of minimizers for L2-
constrained problems related to fractional Kirchhoff equation, Math. Models
Methods Appl. Sci., 2020, 43(15), 8763–8775.

[15] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic
equations, Nonlinear Anal., 1997, 28(10), 1633–1659.

[16] L. Jeanjean and T. Luo, Sharp nonexistence results of prescribed L2-norm so-
lutions for some class of Schrödinger-Poisson and quasi-linear equations, Z.
Angew. Math. Phys., 2013, 64, 937–954.

[17] G. Li and X. Luo, Normalized solutions for the Chern-Simons-Schrödinger
equation in R2, Ann. Acad. Sci. Fenn. Math., 2017, 42, 405–428.

[18] M. Li, J. He, H. Xu and M. Yang, Ground state solution for a critical fractional
Kirchhoff equation with L2-constraint, Bull. Sci. Math., 2022, 179, 103170.

[19] Q. Li, J. Nie and W. Zhang, Existence and asymptotics of normalized ground
states for a Sobolev critical Kirchhoff equation, J. Geom. Anal., 2023, 33(4),
126.

[20] J. L. Lions, On some quations in boundary value problems of mathematical
physics, North-Holland Math. Stud., 1978, 30, 284–346.

[21] L. Liu, H. Chen and J. Yang, Normalized solutions to the fractional Kirchhoff
equations with a perturbation, Appl. Anal., 2023, 102(4), 1229–1249.

[22] M. Liu and Z. Tang, Multiplicity and concentration of solutions for a fractional
Schrödinger equation via Nehari method and pseudo-index theory, J. Math.
Phys., 2019, 60, 053502.

[23] Z. Liu, Multiple normalized solutions for Choquard equations involving Kirch-
hoff type perturbation, Topol. Meth. Nonlinear Anal., 2019, 54(1), 297–319.

[24] H. Luo and Z. Zhang, Normalized solutions to the fractional Schrödinger equa-
tions with combined nonlinearities, Calc. Var., 2020, 59, 143.

[25] Q. Lou, Y. Qin and F. Liu, The existence of constrained minimizers related to
fractional p-Laplacian equations, Topol. Meth. Nonlinear Anal., 2021, 58(2),
657–676.



1612 S. Zhang & H. Jin

[26] Q. Lou, L. Zhang and G. Dai, Existence and concentration of positive solutions
for non-autonomous Schrödinger-Poisson systems, Complex Var. Ellip. Equ.,
2020, 65(10), 1672–1697.

[27] S. I. Pohozaev, A certain class of quasilinear hyperbolic equations, Mat. Sb.,
1975, 96, 152–168.

[28] L. Wang, H. Chen and L. Yang, Ground state solutions for fractional p-
Kirchhoff equation, Electron. J. Differential Equations, 2022, 61, 1–14.

[29] J. Wei and Y. Wu, Normalized solutions for Schrödinger equations with crit-
ical Sobolev exponent and mixed nonlinearities, J. Func. Anal., 2022, 283(6),
109574.

[30] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation es-
timates, Comm. Math. Phys., 1983, 87, 567–576.

[31] X. Yang, X. Tang and B. Cheng, Multiple radial and nonradial normalized
solutions for a quasilinear Schrödinger equation, J. Math. Anal. Appl., 2021,
501(2), 125122.
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