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1. Introduction

In the past few decades, there has been shown a considerable interest in studying
differential equations on a half-line, for instance, see the papers [8,9,11,13,16] and
the references cited therein. In [10], Liu applied the Schauder fixed point theorem
to prove the existence of at least one positive solution for the following boundary
value problem of fractional differential equations:

Dζ1
0+J1(ς) = f1(ς,J2(ς), Dp

0+J2(ς)), ς ∈ (0,∞),

Dζ2
0+J2(ς) = f2(ς,J1(ς), Dq

0+J1(ς)), ς ∈ (0,∞),

lim
t→0

ς2−ζ1J1(ς) = a0, lim
ς→0

ς2−ζ2J2(ς) = b0,

lim
ς→0

Dζ1−1
0+ J1(ς) = a1, lim

ς→0
Dζ2−1

0+ J2(ς) = b1,

where ζ1, ζ2 ∈ (1, 2), p ∈ (ζ2 − 1, ζ2), q ∈ (ζ1 − 1, ζ1), a0, b0, a1, b1 ∈ R, D
(.)
0+ is

the Riemann-Liouville (R-L) fractional derivative operator of order (.), and f1, f2 ∈
C((0,∞)× R2,R).

In [15], the authors obtained the sufficient conditions for the existence of solu-
tions to a system of R-L type fractional differential equations on a infinite interval
by using the Banach contraction mapping theorem and Schauder’s fixed point the-
orem.
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In 1892, Hadamard [6] introduced a fractional derivative with its kernel de-
pending on a logarithmic function with an arbitrary exponent, which is known as
Hadamard fractional derivative in the literature. One can find a useful information
on Hadamard-type fractional differential equations and inclusions supplemented
with different kinds of initial and boundary conditions in the text [3]. In [14], the
authors studied a class of Hadamard fractional differential equations equipped with
Hadamard integral and multipoint discrete boundary conditions on a half-line by
using monotone iterative method. By using fixed point theorems, the existence re-
sults for fractional differential equations on bounded as well as unbounded domains
were obtained in [2, 4, 12,15].

Inspired by aforementioned works, in this article, we consider the following
Hadamard fractional differential equation on the half-line with with logarithmic
type initial data:{

HD
ζ1Q(ω) = g(ω,Q(ω), (SQ)(ω), (HQ)(ω)), ω ∈ (1,∞),

lim
ω→1

(logω)2−ζ1Q(ω) = η1, lim
ω→1

HD
ζ1−1Q(ω) = η2,

(1.1)

where 1 < ζ1 ≤ 2, η1, η2 ∈ R, HD
ζ1 is the Hadamard fractional derivative of order

ζ1, g ∈ C((1,∞)× R3;R) and

(SQ)(ω) =

∫ ω

1

K(ω, s)Q(s)
ds

s
, (HQ)(ω) =

∫ ∞
1

U(ω, s)Q(s)
ds

s
,

with K,U : (1,∞)× (1,∞)→ [0,∞).
The objective of this article is to establish the existence and uniqueness of solu-

tions to the problem (1.1). We make use of the Leray-Schauder nonlinear alternative
and contraction mapping principle to derive the desired results, which are new in
the given configuration and enhance the related literature on the topic.

The rest of the manuscript is organized as follows. Section 2 contains some
preliminary concepts related to the problem investigated in this work. The main
results together with an illustrative example are presented in Section 3. The paper
concludes with some interesting observations.

2. Preliminaries

In this section, we set our notation and present basic definitions and lemmas.

Definition 2.1. ( [7]) For a function h : [1,∞) −→ R, the Hadamard derivative of
fractional order ζ1 is defined as

HD
ζ1h(ω) =

1

Γ(n− ζ1)

(
ω
d

dω

)n ∫ ω

1

(
log

ω

ϑ

)n−ζ1−1h(ϑ)

ϑ
dϑ, n− 1 ≤ ζ1 < n,

where log(·) = loge(·).

Definition 2.2. ( [7]) For a function h, the Hadamard fractional integral of order
ζ1 is defined as

HI
ζ1h(ω) =

1

Γ(ζ1)

∫ ω

1

(
log

ω

ϑ

)ζ1−1h(ϑ)

ϑ
dϑ, ζ1 > 0.
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Lemma 2.1. ( [7]). If 0 < z0 <∞ and ζ1, ν > 0, then(
HI

ζ1
z0+

(
log

ω

z0

)ν−1)
(Q) =

Γ(ν)

Γ(ν + ζ1)

(
log
Q
z0

)ν+ζ1−1

,(
HD

ζ1
z0+

(
log

ω

z0

)ν−1)
(Q) =

Γ(ν)

Γ(ν − ζ1)

(
log
Q
z0

)ν−ζ1−1

.

Choosing σ > −1, we define a real Banach space

X :=

{
Q ∈ C(1,∞) :

(logω)2−ζ1

1 + (logω)σ+2
Q(ω) is bounded on (1,∞)

}
,

endowed with the norm

‖Q‖X := sup
ω∈(1,∞)

(
(logω)2−ζ1

1 + (logω)σ+2
|Q(ω)|

)
.

Lemma 2.2. Suppose that ξ : (1,∞)→ R is a given function such that |ξ(ω)| ≤M
when there exists a numbers M > 0 and 1 < ζ1 < 2, η1, η2 ∈ R. Then, the solution
of the following problem:{

HD
ζ1Q(ω) = ξ(ω), ω ∈ (1,∞),

lim
ω→1

(logω)2−ζ1Q(ω) = η1, lim
ω→1

HD
ζ1−1Q(ω) = η2,

(2.1)

is given by

Q(ω) =
1

Γ(ζ1)

∫ ω

1

(
log

ω

ϑ

)ζ1−1 ξ(ϑ)

ϑ
dϑ+

η2

Γ(ζ1)
(logω)ζ1−1 + η1(logω)ζ1−2. (2.2)

Proof. By employing an argument similar to the one used in [3], we can write the
solution of (2.1)as

Q(ω) = HI
ζ1ξ(ω) + c1(logω)ζ1−1 + c2(logω)ζ1−2, (2.3)

for constants c1, c2 ∈ R. Since∣∣∣∣(logω)2−ζ1
∫ ω

1

(
log

ω

ϑ

)ζ1−1 ξ(ϑ)

ϑ
dϑ

∣∣∣∣
≤ M(logω)2−ζ1

∫ ω

1

(
log

ω

ϑ

)ζ1−1 1

ϑ
dϑ

=
M

ζ1
(logω)2−ζ1(logω)ζ1

=
M

ζ1
(logω)2 → 0 as ω → 1,

therefore, it follows by the condition limω→1(logω)2−ζ1Q(ω) = η1 that c2 = η1.
Also, by Lemma 2.1, we have

HD
ζ1−1Q(ω) =

∫ ω

1

ξ(ϑ)

ϑ
dϑ+ c1Γ(ζ1). (2.4)

Observe that ∣∣∣∣∫ ω

1

ξ(ϑ)

ϑ
dϑ

∣∣∣∣ ≤ M

∫ ω

1

dϑ

ϑ
= M logω → 0 as ω → 1. (2.5)

Using (2.4), (2.5) and limω→1 HD
ζ1−1Q(ω) = η2, we get c1 =

η2

Γ(ζ1)
. This finishes

the proof.
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3. Main results

This section is concerned with the existence and uniqueness results for the problem
(1.1). In the subsequent analysis, we need the following assumptions:

(G1) l0 := sup
ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2

∫ ω

1

1 + (log ϑ)σ+2

(log ϑ)2−ζ1
K(ω, ϑ)

dϑ

ϑ
<∞ and

k0 := sup
ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2

∫ ∞
1

U(ω, ϑ)
1 + (log ϑ)σ+2

(log ϑ)2−ζ1
dϑ

ϑ
<∞;

(G2) There exist three positive functions $i(ω), i = 1, 2, 3 such that∣∣∣∣∣g
(
ω,

1 + (logω)σ+2

(logω)2−ζ1
Q(ω), (S

1 + (logω)σ+2

(logω)2−ζ1
Q)(ω), (H

1 + (logω)σ+2

(logω)2−ζ1
Q)(ω)

)

−g
(
ω,

1 + (logω)σ+2

(logω)2−ζ1
G(ω), (S

1 + (logω)σ+2

(logω)2−ζ1
G)(ω), (H

1 + (logω)σ+2

(logω)2−ζ1
G)(ω)

) ∣∣∣∣∣
≤ $1(ω)|Q − G|+$2(ω)|SQ− SG|+$3(ω)|HQ−HG|,

for all Q,G ∈ R, ω ∈ (1,∞), where(
S

1 + (logω)σ+2

(logω)2−ζ1
Q
)

(ω) =

∫ ω

1

K(ω, ϑ)
1 + (log ϑ)σ+2

(log ϑ)2−ζ1
Q(ϑ)

dϑ

ϑ
,(

H
1 + (logω)σ+2

(logω)2−ζ1
Q
)

(ω) =

∫ ∞
1

U(ω, ϑ)
1 + (log ϑ)σ+2

(log ϑ)2−ζ1
Q(ϑ)

dϑ

ϑ
;

(G3) There exists a number Υ such that %0 ≤ Υ < 1, ω ∈ (1,∞), where

%0 = (1 + l0 + k0)HI
ζ1
$ ,

and

HI
ζ1
$ = max

{
sup

ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2H
Iζ1$i(ω), i = 1, 2, 3

}
.

Theorem 3.1. Suppose that g ∈ C((1,∞) × R3,R) satisfies the conditions (G1)
and (G2) and that there exists a number M > 0 such that |g(ω,Q(ω), (SQ)(ω),
(HQ)(ω))| ≤ M . Then, the problem (1.1) has a unique solution when %0 < 1 (%0

is defined in (G3)).

Proof. Define an operator Φ : X → X as

ΦQ(ω) =
1

Γ(ζ1)

∫ ω

1

(
log

ω

ϑ

)ζ1−1

g(ϑ,Q(ϑ), (SQ)(ϑ), (HQ)(ϑ))
dϑ

ϑ

+
η2

Γ(ζ1)
(logω)ζ1−1 + η1(logω)ζ1−2. (3.1)

Let us set sup
ω∈(1,∞)

‖g(ω, 0, 0, 0)‖ = Λ, ω1 =
1

Γ(ζ1 + 1)
sup

ω∈(1,∞)

(logω)2

1 + (logω)σ+2
,

ϑ1 = sup
ω∈(1,∞)

logω

1 + (logω)σ+2
, ϑ2 = sup

ω∈(1,∞)

1

1 + (logω)σ+2
and choose

ρ ≥ 1

1−Υ
|ω1Λ +

η2

Γ(ζ1)
ϑ1 + η1ϑ2|,
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where %0 ≤ Υ < 1. Introduce Bρ = {u ∈ X : ‖u‖X ≤ ρ}. For any Q ∈ Bρ and
ϑ ∈ (1,∞), by the triangle inequality and (G2), we obtain

|g (ϑ,Q(ϑ), (SQ)(ϑ), (HQ)(ϑ)) |

=

∣∣∣∣∣g
(
ϑ,

1 + (log ϑ)σ+2

(log ϑ)2−ζ1
· (log ϑ)2−ζ1

1 + (log ϑ)σ+2
Q(ϑ), (S

1 + (log ϑ)σ+2

(log ϑ)2−ζ1

× (log ϑ)2−ζ1

1 + (log ϑ)σ+2
Q)(ϑ), (H

1 + (log ϑ)σ+2

(log ϑ)2−ζ1
· (log ϑ)2−ζ1

1 + (log ϑ)σ+2
Q)(ϑ)

)∣∣∣∣∣
≤

∣∣∣∣∣g
(
ϑ,

1 + (log ϑ)σ+2

(log ϑ)2−ζ1
· (log ϑ)2−ζ1

1 + (log ϑ)σ+2
Q(ϑ), (S

1 + (log ϑ)σ+2

(log ϑ)2−ζ1

× (log ϑ)2−ζ1

1 + (log ϑ)σ+2
Q)(ϑ), (H

1 + (log ϑ)σ+2

(log ϑ)2−ζ1
· (log ϑ)2−ζ1

1 + (log ϑ)σ+2
Q)(ϑ)

)

−g (ϑ, 0, 0, 0)

∣∣∣∣∣+ |g (ϑ, 0, 0, 0) |

≤ $1(ϑ)
(log ϑ)2−ζ1

1 + (log ϑ)σ+2
|Q|+$2(ϑ)

(log ϑ)2−ζ1

1 + (log ϑ)σ+2
|SQ|

+$3(ϑ)
(log ϑ)2−ζ1

1 + (log ϑ)σ+2
|HQ|+ Λ

≤ $1(ϑ)|‖Q‖X +$2(ϑ)‖SQ‖X +$3(ϑ)‖HQ‖X + Λ

≤ [$1(ϑ) + l0$2(ϑ) + k0$3(ϑ)]‖Q‖+ Λ

≤ [$1(ϑ) + l0$2(ϑ) + k0$3(ϑ)]ρ+ Λ. (3.2)

Now, we will show that ΦBρ ⊂ Bρ. For all Q ∈ Bρ, by (G1), (G2), (G3) and (3.2),
we have

‖(ΦQ)‖ ≤ sup
ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2

[ ∫ ω

1

(
log ω

ϑ

)ζ1−1

Γ(ζ1)
{[$1(ϑ) + l0$2(ϑ)

+k0$3(ϑ)]ρ+ Λ}dϑ
ϑ

+
η2

Γ(ζ1)
(logω)ζ1−1 + η1(logω)ζ1−2

]
≤
{

sup
ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2H
Iζ1$1(ω)

+l0 sup
t∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2H
Iζ1$2(ω)

+k0 sup
ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2H
Iζ1$3(ω)

}
ρ

+
1

Γ(ζ1 + 1)
sup

ω∈(1,∞)

(logω)ζ1(logω)2−ζ1

1 + (logω)σ+2
Λ

+
η2

Γ(ζ1)
sup

ω∈(1,∞)

(logω)ζ1−1(logω)2−ζ1

1 + (logω)σ+2

+η1 sup
ω∈(1,∞)

(logω)ζ1−2(logω)2−ζ1

1 + (logω)σ+2
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≤ (1 + l0 + k0)HI
ζ1
$ ρ+ ω1Λ +

η2

Γ(ζ1)
ϑ1 + η1ϑ2

≤ %0ρ+ (1−Υ)ρ ≤ ρ. (3.3)

Therefore, ‖(ΦQ)‖ ≤ ρ.
Now, we show that Φ is a contraction. For Q,G ∈ X and ω ∈ (1,∞), it follows

by (G1) and (G2) that

‖(ΦQ)− (ΦG)‖

≤ sup
ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2

[ ∫ ω

1

(
log ω

ϑ

)ζ1−1

Γ(ζ1)

×[g(ϑ,Q(ϑ), (SQ)(ϑ), (HQ)(ϑ))− g(ω,G(ϑ), (SG)(ϑ), (HG)(ϑ))]
dϑ

ϑ

]
≤ sup

ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2

∫ ω

1

(
log ω

ϑ

)ζ1−1

Γ(ζ1)
{$1(ϑ)‖Q − G‖X

+$2(ω)‖SQ− SG‖X +$3(ω)‖HQ−HG‖X}
dϑ

ϑ

≤
{

sup
ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2H
Iζ1$1(ω)

+l0 sup
ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2H
Iζ1$2(ω)

+k0 sup
ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2H
Iζ1$3(ω)

}
‖Q − G‖X

≤ (1 + l0 + k0)HI
ζ1
$ ‖Q − G‖X = %0‖Q − G‖X ,

where %0 is given in (G3). Since %0 < 1, therefore Φ is a contraction. Hence, the
assumptions of the contraction mapping principle are satisfied. This leads to the
conclusion.

Now, we prove the next existence result by applying Leray-Schauder nonlinear
alternative [1, 5].

Lemma 3.1. (See [1, 5]). Let E be a Banach space, C a closed, convex subset of
E, U an open subset of C and 0 ∈ U . Suppose that F :Ū → C is a completely
continuous operator. Then, either:

(i) F has a fixed point in Ū, or

(ii) there is an element u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with
u = λF (u).

Theorem 3.2. Suppose that g is a continuous function with g ∈ X. In addition,
let the following conditions hold:

(H1) There exist three functions Li ∈ X and nondecreasing functions Yi : R+ → R+

(i = 1, 2, 3), such that∣∣∣∣g(ω, 1 + (logω)σ+2

(logω)2−ζ1
Q(ω), (S

1 + (logω)σ+2

(logω)2−ζ1
Q)(ω), (H

1 + (logω)σ+2

(logω)2−ζ1
Q)(ω)

)∣∣∣∣
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≤
3∑
i=1

Li(ω)Yi(Q),

for all ω ∈ [1,∞) and Q ∈ R;

(H2) There exists a constant M > 0 satisfying the the inequality:

M∑3
i=1 Yi(M) supω∈(1,∞)

(logω)2−ζ1

1+(logω)σ+2HIζ1Li(ω) + η2
Γ(ζ1)ϑ1 + η1ϑ2

> 1.

Then, the problem (1.1) has at least one solution.

Proof. We firstly establish that Φ is uniformly bounded in X. Set Br = {Q ∈
X : ‖Q‖X ≤ r}. We firstly get

g (ω,Q(ω), (SQ)(ω), (HQ)(ω))

=

∣∣∣∣∣g
(
ω,

1 + (log ϑ)σ+2

(log ϑ)2−ζ1
· (log ϑ)2−ζ1

1 + (log ϑ)σ+2
Q(ω),

(S
1 + (log ϑ)σ+2

(log ϑ)2−ζ1
· (log ϑ)2−ζ1

1 + (log ϑ)σ+2
Q)(ω),

(H
1 + (log ϑ)σ+2

(log ϑ)2−ζ1
· (log ϑ)2−ζ1

1 + (log ϑ)σ+2
Q)(ω)

)∣∣∣∣∣
≤

3∑
i=1

Li(ω)Yi(‖Q‖X).

Consequently, we have

‖ΦQ‖X

≤ sup
ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2

[∫ ω

1

1

Γ(ζ1)

(
log

ω

ϑ

)ζ1−1 3∑
i=1

Li(ϑ)Yi(‖Q‖X)
dϑ

ϑ

+
η2

Γ(ζ1)
(logω)ζ1−1 + η1(logω)ζ1−2

]

≤
3∑
i=1

Yi(r) sup
ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2H
Iζ1Li(ω)

+
η2

Γ(ζ1)
sup

ω∈(1,∞)

(logω)ζ1−1(logω)2−ζ1

1 + (logω)σ+2
+ η1 sup

ω∈(1,∞)

(logω)ζ1−2(logω)2−ζ1

1 + (logω)σ+2

≤
3∑
i=1

Yi(r) sup
ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2H
Iζ1Li(ω) +

η2

Γ(ζ1)
ϑ1 + η1ϑ2.

Setting K :=
∑3
i=1 Yi(r) supω∈(1,∞)

(logω)2−ζ1

1+(logω)σ+2HI
ζ1Li(ω) + η2

Γ(ζ1)ϑ1 + η1ϑ2, we get

‖ΦQ‖X ≤ K. Thus, Φ is uniformly bounded in X.
Next, we show that Φ is equi-continuous. Let ω1, ω2 ∈ [1,∞) with ω1 < ω2 and

Q ∈ Br. Then, we obtain∣∣∣∣ (logω2)2−ζ1

1 + (logω2)σ+2
(ΦQ(ω2)− (logω1)2−ζ1

1 + (logω1)σ+2
(ΦQ(ω1)

∣∣∣∣
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≤ 1

Γ(ζ1)

∫ ω1

1

[
(logω2)2−ζ1

1 + (logω2)σ+2

(
log

ω2

ϑ

)ζ1−1

− (logω1)2−ζ1

1 + (logω1)σ+2

(
log

ω1

ϑ

)ζ1−1
]
|g (ϑ,Q(ϑ), (SQ)(ϑ), (HQ)(ϑ)) |dϑ

ϑ

+
1

Γ(ζ1)

∫ ω2

ω1

(logω2)2−ζ1

1 + (logω2)σ+2

(
log

ω2

ϑ

)ζ1−1

|g (ϑ,Q(ϑ), (SQ)(ϑ), (HQ)(ϑ)) |dϑ
ϑ

+
η2

Γ(ζ1)

[
logω2

1 + (logω2)σ+2
− logω1

1 + (logω1)σ+2

]

+η1

[
1

1 + (logω2)σ+2
− 1

1 + (logω1)σ+2

]

≤
3∑
i=1

Yi(r)
Γ(ζ1)

∫ ω1

1

[
(logω2)2−ζ1

1 + (logω2)σ+2

(
log

ω2

ϑ

)ζ1−1

− (logω1)2−ζ1

1 + (logω1)σ+2

(
log

ω1

ϑ

)ζ1−1
]
Li(ϑ)

dϑ

ϑ

+

3∑
i=1

Yi(r)
Γ(ζ1)

∫ ω2

ω1

(logω2)2−ζ1

1 + (logω2)σ+2

(
log

ω2

ϑ

)ζ1−1

Li(ϑ)
dϑ

ϑ

+
η2

Γ(ζ1)

[
logω2

1 + (logω2)σ+2
− logω1

1 + (logω1)σ+2

]

+η1

[
1

1 + (logω2)σ+2
− 1

1 + (logω1)σ+2

]
:= z.

Clearly, z → 0 independently of Q ∈ Br as ω2 → ω1. So, by the Arzelá-Ascoli
theorem, we deduce that Φ is completely continuous.

Let Q be a solution of the equation G = λΦG for λ ∈ (0, 1). Then, by straight-
forward computation, we have

‖G‖X = ‖λ(ΦG)‖X

≤
3∑
i=1

Yi(r) sup
ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2H
Iζ1Li(ω) +

η2

Γ(ζ1)
ϑ1 + η1ϑ2,

which can alternatively be written as

‖G‖X∑3
i=1 Yi(r) supω∈(1,∞)

(logω)2−ζ1

1+(logω)σ+2HIζ1Li(ω) + η2
Γ(ζ1)ϑ1 + η1ϑ2

≤ 1.

From (H2), there exists χ with ‖G‖ 6= χ. Set

W = {G ∈ X : ‖G‖X < χ}.

Clearly, continuity of g implies that Φ is continuous. Also, Φ is completely contin-
uous. By the definition of W , for some λ ∈ (0, 1) there is no Q ∈ ∂W such that
G = λΦ(G). So, by Lemma 3.1, we get the conclusion.
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3.1. Special case

In case the nonlinearity in the problem (1.1) is of the form: ĝ(ω,Q(ω)), then it
takes takes the form:{

HD
ζ1Q(ω) = ĝ(ω,Q(ω)), ω ∈ (1,∞),

lim
ω→1

(logω)2−ζ1Q(ω) = η1, lim
ω→1

HD
ζ1−1Q(ω) = η2,

(3.4)

where ĝ ∈ C((1,∞) × R,R). In the following result, we prove the existence of
solutions for the he problem (3.4).

Theorem 3.3. Suppose that ĝ : [1,∞) × R → R is a continuous function with
ĝ(ω,Q) ∈ X. In addition, let the following conditions hold:

(H3) There exist a function L ∈ X and a nondecreasing function Y : R+ → R+

such that ∣∣∣∣ĝ(ω, 1 + (logω)σ+2

(logω)2−ζ1
Q
)∣∣∣∣ ≤ L(ω)Y(Q),

for all (ω,Q) ∈ [1,∞)× R;

(H4) There exists a constant M > 0 such that

M

Y(M) supω∈(1,∞)
(logω)2−ζ1

1+(logω)σ+2HIζ1L(ω) + η2
Γ(ζ1)ϑ1 + η1ϑ2

> 1.

Then, there exists at least one solution for the the problem (3.4) on [1,∞).

Proof. We only provide the outline of the proof as it is similar to that of Theorem
3.2. Let Φ1 : X → X be defined by :

Φ1Q(ω) =
1

Γ(ζ1)

∫ ω

1

(
log

ω

ϑ

)ζ1−1

ĝ(ϑ,Q(ϑ))
dϑ

ϑ
+

η2

Γ(ζ1)
(logω)ζ1−1 + η1(logω)ζ1−2.

In order to show that Φ1 is uniformly bounded in X, we consider the set Bµ =
{Q ∈ X : ‖Q‖X ≤ µ}. Notice that

ĝ(ω,Q) =

∣∣∣∣ĝ(ω, 1 + (logω)σ+2

(logω)2−ζ1
(logω)2−ζ1

1 + (logω)σ+2
Q
)∣∣∣∣ ≤ L(ω)Y(‖Q‖X).

Then, as in the previous result, we get

‖Φ1Q‖X ≤ Y(µ) sup
ω∈(1,∞)

(logω)2−ζ1

1 + (logω)σ+2H
Iζ1L(ω) +

η2

Γ(ζ1)
ϑ1 + η1ϑ2 = Ks (say).

Thus, Φ1 is uniformly bounded in X.
Now we verify that Φ1 is equi-continuous. Let ω1, ω2 ∈ [1,∞) with ω1 < ω2 and

Q ∈ Bµ. Then, we obtain∣∣∣∣ (logω2)2−ζ1

1 + (logω2)σ+2
(Φ1Q(ω2)− (logω1)2−ζ1

1 + (logω1)σ+2
(Φ1Q(ω1)

∣∣∣∣
≤ Y(µ)

Γ(ζ1)

∫ ω1

1

[
(logω2)2−ζ1

1 + (logω2)σ+2

(
log

ω2

ϑ

)ζ1−1
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− (logω1)2−ζ1

1 + (logω1)σ+2

(
log

ω1

ϑ

)ζ1−1
]
L(ϑ)

dϑ

ϑ

+
Y(µ)

Γ(ζ1)

∫ ω2

ω1

(logω2)2−ζ1

1 + (logω2)σ+2

(
log

ω2

ϑ

)ζ1−1

L(ϑ)
dϑ

ϑ

+
η2

Γ(ζ1)

[
logω2

1 + (logω2)σ+2
− logω1

1 + (logω1)σ+2

]

+η1

[
1

1 + (logω2)σ+2
− 1

1 + (logω1)σ+2

]
,

which tends to 0, independently of Q ∈ Bµ as ω2 → ω1. So, by the Arzelá-Ascoli
theorem, it follows that Φ1 is completely continuous.

Let Q be a solution of the equation G1 = λΦ1G1 for λ ∈ (0, 1). Then, we have

‖G1‖X
Y(µ) supω∈(1,∞)

(logω)2−ζ1

1+(logω)σ+2HIζ1L(ω) + η2
Γ(ζ1)ϑ1 + η1ϑ2

≤ 1.

By using (H4), as argued in the last part of of the proof of the previous result, it
can be shown that the problem (3.4) has at least one solution on [1,∞).

Example 3.1. Consider the following Hadamard fractional differential equation
with initial data:

HD
3
2Q(ω) = (logω)

1
2 )

8ω(1+(logω)2)Q(ω) + 2
ω(logω)2

∫ ω

1

(log ϑ)
(log ϑ)

1
2Q(ϑ)

(1 + (log ϑ)2

dϑ

ϑ

+ 1
ω(ω+1)

∫ ∞
1

e1−log ϑ · (log ϑ)
1
2

1 + (log ϑ)2
Q(ϑ)

dϑ

ϑ
, ω ∈ (1,∞),

lim
ω→0

(logω)
1
2Q(ω) = η1, lim

ω→1
HD

1
2Q(ω) = η2,

(3.5)

Here ζ1 = 3
2 , K(ω, ϑ) = 2

10 (logω)−
1
2 log ϑ · (log ϑ)

1
2

1+(log ϑ)2 and U(ω, ϑ) =

1
20 (logω)−

1
2 e1−log ϑ · (log ϑ)

1
2

1+(log ϑ)2 . Choose σ = 0. By direct calculations, we find

that l0 = 0.1, k0 = 0.05 and HI
3
2

L ≈ 0.7522756338. Moreover, we find that

%0 = (1 + l0 + k0)HI
3
2
$ ≈ 0.8651169789 < 1.

Clearly all the conditions of Theorem 3.1 are satisfied. So, Theorem 3.1 yields that
the problem (3.5) has a unique solution on (1,∞).

4. Conclusion

We have discussed the solvability of a Hadamard type fractional differential equation
involving nonlinearities with and without integral terms on a half-line complemented
with logarithmic type initial data. The uniqueness of solutions for the given problem
is established by applying a fixed point theorem due to Banach, while the existence
of at least one solution is shown via Leray-Schauder nonlinear alternative. The
results presented in this paper are new and opens a new avenue of research for
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Hadamard type fractional integro-initial value problems on infinite domains. In our
future work, we plan to investigate a system of coupled Hadamard type fractional
differential equations of different orders on a half-line supplemented with logarithmic
type initial conditions.
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