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ON EPIDEMIOLOGICAL TRANSITION
MODEL OF THE EBOLA VIRUS IN

FRACTIONAL SENSE
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Abstract Recently, many researchers have focused on modeling and analyz-
ing various problems in biological phenomena and life sciences such as viruses
and nervous system. One of these cases can be seen in the modeling of the
Ebola virus. In this paper, we present an efficient method based on properties
of Bernstein’s operational matrices as well as dual Bernstein for the system
of nonlinear equations of Ebola virus in the Caputo fractional sense. The op-
erational matrix of the fractional derivative of order v is obtained based on
the dual Bernstein. The proposed dual Bernstein method reduces the solution
of the Ebola virus in fractional sense to the solution of a system of nonlin-
ear algebraic equations. The unknown coefficients are obtained by solving the
final system of nonlinear equations using the Newton-Raphson method. An-
other feature of this method is that a reasonable approximate solution can be
found with a small number of bases. Moreover, some numerical treatments
of fractional models of Ebola Virus are examined. The existence, uniqueness
and stability of the suggested methodologies are discussed and proven. Nu-
merical simulations are reported for various fractional orders and by using
comparisons between the simulated and measured data, we find the best value
of the fractional order. Finally, we will use the data provided by the World
Health Organization (WHO) and we compare the fractional Mellin transform,
real data, Caputo’s derivative, and the classical model. According to the ob-
tained results, the ordinary derivative is less accurate than the fractional order
model. In other words, the results showed that fractional order derivatives are
superior to classical orders, more reliable and effective in describing biological
processes.
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1. Introduction

Mathematical modeling is the description of a system using mathematical rules and
its theorems and concepts. Modeling helps scientists to analyze a system and predict
its properties. Mathematical modeling is widely used in physical sciences, geology,
meteorology, artificial intelligence, psychology, economics, sociology and biology.
For more details regarding the recent history of fractional calculus and applied
sciences, the reader is advised to consult the research works presented in [23, 24]
and [38].

In recent years, many researchers have focused on modeling and analyzing var-
ious problems in life sciences and biological phenomena such as viruses, nervous
system, etc. With the help of these modeling, scientists can investigate and predict
behavior phenomena separately in an equipped laboratory.

In [9], a new mathematical model in a generalized fractional framework is pro-
posed to investigate the transmission dynamics of HIV/AIDS. In [8] a new and
efficient fractional model is explored for the investigation of COVID-19 dynamics.

In [3], the authors provide the historical information about Ebola to primary care
nurses to inform future treatment options and algorithm development. The results
of a randomized clinical trial of investigational therapeutics for Ebola demonstrated
survival benefits from two monoclonal antibody products targeting the Ebola mem-
brane glycoprotein [17]. For instance, the colorized scanning electron micrograph
of Ebola virus particles (green) found both as extracellular particles and budding
particles from a chronically infected African green monkey kidney cell (blue). For
further information see special reference [45].

Figure 1. Ebola virus [45].

The Ebola virus (Figure 1) was first identified in 1976. This year, Ebola infected
about 300 people and 9 out of 10 people died due to its spread. With the re-
emergence of this virus in 1995, more than 80% of the infected died. In 2014,
the release of this virus started from Guinea and spread to neighboring countries,
including Liberia, and about 400 people lost their lives. Between 2013 and 2016, and
during the Ebola virus epidemic in West Africa, about 22, 000 suspected cases were
identified. In this epidemic, at least 11, 000 people were also killed by this disease
[26]. The Ebola virus causes severe fevers in humans and other mammals, which
itself leads to dangerous and usually fatal bleeding [21]. Researchers in this field
believed that the natural and main source of Ebola viruses are bats and especially
fruit bats. Bats infect other animals, especially monkeys. Monkeys also transmit
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this virus to humans through direct contact with the blood, body fluids and tissues
of infected animals. Then, the Ebola virus spreads between humans through direct
contact with the body fluids of the infected person, and through the mouth, nose,
and eyes [32].

After the Ebola epidemic in Liberia in 2014, a mathematical model of the spread
of this virus was presented with the help of data simulation provided by the WHO
[33]. After that, by presenting a fractional model for the spread of this virus, a
study and comparison was made between the classical and fractional Ebola outbreak
model [4]. In [6], considering classical and fractional models, and with the help of the
Jacobian method, they numerically solved these models by an iterative method. For
a better understanding of this model, the existence and uniqueness of the solution
in the fractional model was presented in [19]. In the following, the effect of various
factors on the efficiency of the proposed models was investigated, and numerical
methods were also presented to solve this fractional system [12,14,16,18].

Ebola is a rare but deadly human virus that causes symptoms inside and outside
the body. As the virus spreads through the body, it damages the immune system
and organs. There is no cure for Ebola, although researchers are working on one.
Therefore, investigating this virus can be a very important issue for researchers.
However, considering the actual cases reported in the world, it seems that more
research is needed in this area. It was shown in [9] that numerical methods are
effective for understanding epidemiological patterns as well as for optimal control
of epidemic models, and scientific computing is useful in medicine and has led to
disease control.

Inspired by the above discussion, in this article we intend to propose a numerical
method to solve the fractional order model of Ebola virus. The suggested numer-
ical scheme is based on properties of Bernstein’s operational matrices as well as
dual Bernstein for the system of nonlinear equations of Ebola virus in the Caputo
fractional sense. Numerical analysis is performed using a real case registered by
WHO [4].

For this purpose, consider the fractional model as follows:

DvS1(t) = −αS1(t)S2(t) + βS3(t)− γN, S1(0) = ŝ0,

DvS2(t) = αS1(t)S2(t)− ζS2(t)− δS2(t), S2(0) = î0,

DvS3(t) = δS2(t)− βS3(t), S3(0) = r̂0,

DvS4(t) = ζS2(t) + γN, S4(0) = d̂0,

(1.1)

whereDv is the Caputo fractional operator of order v ∈ (0, 1]. The general fractional
derivative is considered in the Caputo sense in order to be coincidence with the
initial conditions. On the other hand, it helps us to find out the main characteristics
of the dynamics of the studied disease. S1(t) represents people susceptible to this
disease, S2(t) represents infected people, S3(t) represents recovered people, and
finally S4(t) represents people who died due to this disease. This equation has been
investigated and solved in different ways. In [44], the authors presented the spectral
collocation method using Chebyshev polynomial to solve this equation and also
investigated the existence and uniqueness of the solution. In [11], the authors solved
this model numerically by using the Sinc Legendre collocation method. In [43],
the authors present three different and new models of the fractional order Ebola
virus propagation process and solve them numerically. However, in many numerical
works, no comparison has been made between the presented numerical method and
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real data. Therefore, the accuracy of the methods is not comparable. In this article,
we will present a numerical scheme for Eq. (1.1) using dual Bernstein operational
matrices. The main contributions of this study are highlighted as below:
• Obtaining the derivative of a fractional value in the form of a matrix, which

makes calculations easy.
• The studied problem becomes a system of nonlinear algebraic equations, which

is solved by Newton’s method.
• A reasonable approximate solution can be found with a small number of bases.
• The existence and uniqueness of the answer have been investigated.
• The stability of the method is also presented.
• The simulation results are compared with a real case of Ebola virus epidemic

in Liberia in 2014.
• Numerical simulations are reported for various fractional orders. By using

these comparisons between the simulated and measured data, we find the best
value of the fractional order.
• Using real-world data for the Ebola virus, we compared the fractional Mellin

transform, real data, Caputo’s derivative, and the classical model.

2. Definitions and properties

This section is dedicated to stating the basic definitions and some of their features.
First, the essential definitions of fractional calculus is briefly reviewed and we in-
troduce the fractional Riemann-Liouville integral, the Riemann-Liouville fractional
derivative and the Caputo fractional derivative. Then Bernstein polynomials and
dual Bernstein polynomials are defined. For more information about fractional
calculus and its application see [2, 13,15,25,27,28,30,34,37,39,42].

Definition 2.1. A real function S(t), t > 0, is said to be in the space Cv, v ∈ R, if
there exists a real number p (> v), such that S(t) = tpS?(t), where S? ∈ C[0,∞),
and it is said to be in the space Cmv ,m ∈ N

⋃
{0}, if and only if S(m)(t) ∈ Cv.

Definition 2.2. [31] Let t, v ∈ (0,∞), the fractional Riemann-Liouville integral
of order v is defined as:

RI
v
t S(t) = (Ivt S)(t) =

1

Γ(v)

∫ t

0

(t− u)v−1S(u)du. (2.1)

Eq. (2.1) can be written in the following form:

RI
v
t S(t) =

∫ t

0

S(u)dgt(u), where gt(u) =
1

Γ(v + 1)
(tv − (t− u)v). (2.2)

As mentioned in [31] for describing the geometric interpretation of fractional
Riemann-Liouville integration, in the plane (u, g) the function gt(u), 0 ≤ u ≤ t
is plotted. Also, a fence of the varying height f(u) is built, where the top edge of
the fence is a three-dimensional line (u, gt(u), f(u)), 0 ≤ u ≤ t. A Matlab program
for calculating and analyzing the snapshots of the changing shadow of changing
fence, the fence and its shadows and the process of change of the fence basis shape
for S(t) = 1

2sin(t) + t and v = 0.75 are given in Figures 2-4 respectively.
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clc
clear
close a l l
v =0.75;
S = @( t ) ( t +0.5∗ sin ( t ) ) ;
g = @(u , t ) 1/gamma( v+1)∗( t . ˆ v−(t−u ) . ˆ v ) ;
t = 10 ;
u = 0 : 0 . 5 : t ;
G = g (u , t ) ;
F=S(u ) ;
stem3 (u ,G, F , ’ . r ’ ) ; hold on
stem3 (u ,G∗0 ,F , ’ . b ’ ) ;
stem3 (u∗0 ,G, F , ’ . g ’ ) ;
plot3 (u ,G, F , ’ r ’ )
plot3 (u ,G∗0 ,F , ’b ’ ) ;
plot3 (u∗0 ,G, F , ’ g ’ ) ;
xlabel ( ’ t , u ’ ) ;
ylabel ( ’ g t (u) ’ ) ;
zlabel ( ’S (u) ’ ) ;

Figure 2. Snapshots of the changing shadow of changing fence for Ivt , v = 0.75, S(t) = 1
2 sin(t) + t,

∆t = 0.5.

clc
clear
close a l l
v =0.75;
g = @(u , t ) 1/gamma( v+1)∗( t ˆv−(t−u ) . ˆ v ) ;
t = 0 : 0 . 5 : 1 0 ;
for i =1: length ( t )

u= 0 : 0 . 1 : t ( i ) ;
G = g (u , t ( i ) ) ;
plot3 (u ,G, u∗0 , ’ k ’ ) ;
hold on

end
xlabel ( ’ t , u ’ ) ;
ylabel ( ’ g t (u) ’ ) ;
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Figure 3. The fence and its shadows I1t and Ivt , v = 0.75, S(t) = 1
2 sin(t) + t.

clc
clear
close a l l
warning o f f
v =0.5 ;
f = @( t ) ( t +0.5∗ sin ( t ) ) ;
g = @(u , t ) 1/gamma( v+1)∗( t ˆv−(t−u ) . ˆ v ) ;
for t =0 :0 .5 : 10

u = 0 : 0 . 1 : t ;
G = g (u , t ) ;
F = f (u ) ;
stem(G(end ) ,F(end ) , ’ . k ’ ) ; hold on ;
plot (G, F , ’ k ’ ) ;

end
xlabel ( ’ t , u ’ ) ;
ylabel ( ’ g t (u) ’ ) ;
zlabel ( ’S ( t ) ’ ) ;

Figure 4. The process of change of the fence basis shape for Ivt , v = 0.75.
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Definition 2.3. [31] The Riemann-Liouville fractional derivative of order n− 1 6
v < n is defined as:

RD
v
t S(t) =

dn

dtn
In−vt S(t) =

1

Γ(n− v)

dn

dtn

∫ t

0

S(u)

(t− u)v−n+1
du. (2.3)

Definition 2.4. [31] The Caputo fractional derivative of order v > 0 is given by:

CD
v
t S(t) = DvS(t) =


1

Γ(n− v)

∫ t

0

S(n)(u)

(t− u)v−1+n
du, n− 1 < v < n, n ∈ N,

dn

dtn
S(t), v = n ∈ N.

(2.4)

2.1. Bernstein polynomials (BPs)

Definition 2.5. [10] The Bernstein basis polynomials of degree r in the interval
[0, 1] are defined as:

ϕri (u) =

(
r

i

)
ui(1− u)r−i =

r∑
h=i

(−1)h−i
(
r

i

)(
r − i
h− i

)
uh, i = 0, 1, 2, . . . , r, (2.5)

where
(
r
i

)
=

r!

i!(r − i)!
.

Definition 2.6. [40] The dual to the Bernstein basis of degree r on [0, 1] is defined
as:

ψrk(u) =

r∑
i=0

λhiϕ
r
i (u), k = 0, 1, 2, . . . , r, (2.6)

where λhi defined as:

λhi =
(−1)h+i(
r
h

)(
r
i

) min(h,i)∑
k=0

(2k + 1)

(
r + k + 1

r − h

)(
r − h
r − k

)(
r + k + 1

r − i

)(
r − k
r − i

)
,

h, i = 0, 1, 2, . . . , r. (2.7)

Proposition 2.1. Since (2.6) is the dual of polynomial (2.5), we will have the
following property: ∫ 1

0

ϕrh(u)ψrk(u)du =

{
1, if h = k,

0, if h 6= k.
(2.8)

For more details about properties of dual BP see [41].

3. Approximation of functions

Let us consider the set of BP of n-th degree:

φ(t) = [ϕn0 (t), ϕn1 (t), ..., ϕnn(t)]
T ⊂ L2[0, 1], (3.1)
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and assume that

W = span{ϕn0 (t), ϕn1 (t), ..., ϕnn(t)}.

Considering g as an arbitrary function in the space L2[0, 1] and W as a vector space
with finite dimension, g has the best approximation out of W such as gn ∈W [20].
In other hands,

∀ w ∈W, ‖ g − gn ‖2 ≤ ‖ g − w ‖2 . (3.2)

Since gn ∈W , there exist the unique vector C = [c0, c1, · · · , cn]T so that

g(v) ' gn(t) =

n∑
p=0

cpϕ
n
p (t) = CTφ(t). (3.3)

The coefficients cp in Eq. (3.3) are determined as:

cp = 〈g, ψnp 〉 =

∫ 1

0

g(t)ψnp (t)dt. (3.4)

Lemma 3.1. [41] Suppose that S(t) is a continuous and bounded function such that
| S(t) |6 ξ. If function S(t) is approximated with Bernstein functions, coefficients
sj can be bounded as:

| sj |≤ ξ
m∑
i=0

λj,i

(
m

i

)
2m−i. (3.5)

Theorem 3.1. Let φ(t) be BPs vector. So:

Dvφ(t) ' D(v)φ(t), (3.6)

where D
(v)
(n+1)×(n+1) is the operational matrix of fractional derivative of order v in

the following form

D(v) =



n

Σ
j=dve

w0,j,0

n

Σ
j=dve

w0,j,1 . . .
n

Σ
j=dve

w0.j,n

...
... . . .

...
n

Σ
j=dve

wi,j,0
n

Σ
j=dve

wi,j,1 . . .
n

Σ
j=dve

wi.j,n

...
... . . .

...
n

Σ
j=dve

wn,j,0
n

Σ
j=dve

wn,j,1 . . .
n

Σ
j=dve

wn,j,n


, (3.7)

where wh,j,l is given by:

wh,j,l = (−1)j−h
(
n

h

)(
n− h
j − h

)
Γ(j + 1)

Γ(j − v + 1)

n∑
k=0

λlkµkj , (3.8)

and

µrj =

n∑
s=r

(−1)s−r
(
n

r

)(
s− r
n− r

)
1

j − β + s+ 1
.
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Proof. Let φ(t) be the Bernstein vector defined in Eq. (3.1) and suppose that
v > 0. Then, by using Eqs. (2.5) and the Caputo’s fractional differentiation we
have:

Dvϕp,m(t) =

m∑
j=p

(−1)j−p
(
m

p

)(
m− p
j − p

)
Dv(tj)

=

m∑
j=dve

(−1)j−p
(
m

p

)(
m− p
j − p

)
Γ(j + 1)

Γ(j − v + 1)
tj−v, p = 0, 1, ...,m.

(3.9)

Approximating tj−v by means of the BP, leads to:

tj−v '
m∑
l=0

uljϕl,m(t). (3.10)

By using Eq. (3.4) we have:

ulj =

∫ 1

0

tj−vψl,m(t)dv

=

m∑
k=0

λlk

∫ 1

0

tj−vϕm,k(t)dt

=

m∑
k=0

λlk

m∑
s=k

(−1)s−k
(
m

k

)(
m− k
s− k

)∫ 1

0

tj−v+sdt

=

m∑
k=0

λlk

m∑
s=k

(−1)s−k
(
m

k

)(
m− k
s− k

)
1

j − v + s+ 1

:=

m∑
k=0

λlkµkj ,

where λlk is given in Eq. (2.7) and

µkj =

m∑
s=k

(−1)s−k
(
m

k

)(
s− k
m− k

)
1

j − v + s+ 1
.

Therefore:

Dvϕp,m(t) '
m∑

j=dve

m∑
l=0

(−1)j−p
(
m

p

)(
m− p
j − p

)
Γ(j + 1)

Γ(j − v + 1)
uljϕl,m(t)

=

m∑
l=0

 m∑
j=dve

wp,j,l

ϕl,m(t),

(3.11)

where wp,j,l is given by:

wp.j,l = (−1)j−p
(
m

p

)(
m− p
j − p

)
Γ(j + 1)

Γ(j − v + 1)

m∑
k=0

λlkµkj . (3.12)
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Let us rewrite Eq. (3.11) in the vector form:

Dvϕp,m(t) '
[ m∑
j=dve

wp,j,0,

m∑
j=dve

wp,j,1, ...,

m∑
j=dve

wp,j,m
]
φ(t), p = 0, 1, ...,m. (3.13)

Therefore:
Dvφ(t) ' D(v)φ(t). (3.14)

In the follow up using the operational matrix method based on BPs, Eq. (1.1)
is analyzed. Therefore by using Eq. (3.2) and Eq. (3.6) we have:

S1(t) =

n∑
j=0

sjϕ
n
j (t) = ST1 φ(t), DvS1(t) = ST1 D

(v)φ(t),

S2(t) =

n∑
j=0

ijϕ
n
j (t) = ST2 φ(t), DvS2(t) = ST2 D

(v)φ(t),

S3(t) =

n∑
j=0

rjϕ
n
j (t) = ST3 φ(t), DvS3(t) = ST3 D

(v)φ(t),

S4(t) =

n∑
j=0

djϕ
n
j (t) = ST4 φ(t), DvS4(t) = ST4 D

(v)φ(t).

(3.15)

By inserting Eq. (3.15) in Eq. (1.1), one will set:

ST1 D
(v)φ(t) = −α

(
ST1 φ(t)

) (
ST2 φ(t)

)
+ β

(
ST3 φ(t)

)
− γN,

ST2 D
(v)φ(t) = α

(
ST1 φ(t)

) (
ST2 φ(t)

)
− ζ

(
ST2 φ(t)

)
− δ

(
ST2 φ(t)

)
,

ST3 D
(v)φ(t) = δ

(
ST2 φ(t)

)
− β

(
ST3 φ(t)

)
,

ST4 D
(v)φ(t) = ζ

(
ST2 φ(t)

)
+ δN.

(3.16)

On the other hand, considering that φ(0) = [1, 0, 0, . . . , 0], the initial values will be
as follows:

S1(0) = ŝ0 −→
n∑
j=0

sjϕ
n
j (0) = ŝ0 −→ s0 = ŝ0,

S2(0) = î0 −→
n∑
j=0

ijϕ
n
j (0) = î0 −→ i0 = î0,

S3(0) = r̂0 −→
n∑
j=0

rjϕ
n
j (0) = r̂0 −→ r0 = r̂0,

S4(0) = d̂0 −→
n∑
j=0

djϕ
n
j (0) = d̂0 −→ d0 = d̂0. (3.17)

To calculate unknown coefficients in nonlinear system (3.16) with boundary condi-
tions (3.17), we use the suitable collocation points. Therefore, Eq. (1.1) becomes
a nonlinear system with 4(n + 1) equations. Hence, this system is solved by using
the Newton-Raphson method.
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4. Existence and uniqueness of solution

In the follow up, we show that the solution to Eq. (1.1) exists and is unique. For
this purpose, first consider the following nomenclature

Zi(t, Si) := DvSi(t), i = 1, 2, 3, 4, (4.1)

where
Z1(t, S1) = −αS1(t)S2(t) + βS3(t)− γN,

Z2(t, S2) = αS1(t)S2(t)− ζS2(t)− δS2(t),

Z3(t, S3) = δS2(t)− βS3(t),

Z4(t, S4) = ζS2(t) + γN.

(4.2)

Theorem 4.1. Assuming that functions Si(t) for i = 1, 2, 3, 4 are bounded (∃ri :
‖Si(t)‖ ≤ ri), then the functions Zi(t, Si) for i = 1, 2, 3, 4 applies to the Lipshitz
condition.

Proof. According to Eq. (4.2) for Z1(t, S1), we have

Z1(t, S1)− Z1(t, S∗1 )

= (−αS1(t)S2(t) + βS3(t)− γN)− (−αS∗1 (t)S2(t) + βS3(t)− γN)

=− αS1(t)S2(t) + αS∗1 (t)S2(t)

=− αS2(t) (S1(t)− S∗1 (t)) .

(4.3)

Therefore:
‖Z1(t, S1)− Z1(t, S∗1 )‖ ≤ ‖αS2(t)‖‖S1(t)− S∗1 (t)‖

≤ αr2‖S1(t)− S∗1 (t)‖

:= R1‖S1(t)− S∗1 (t)‖.

(4.4)

Definition 4.1. A function S, defined on [a, b], is said to satisfy a Lipschitz con-
dition on [a, b] ( [20]) if there exists a constant L > 0 such that

|S(t1)− S(t2)| ≤ L |t1 − t2| , (4.5)

for all t1, t2 ∈ [a, b] and L is called the Lipschitz constant.

With a similar process for other Zi(t, Si), i = 1, 2, 3, 4 we will have

‖Zi(t, Si)− Zi(t, S∗i )‖ ≤ Ri‖Si(t)− S∗i (t)‖, for i = 1, 2, 3, 4, (4.6)

where R1 = αr2, R2 = αr1 + ζ + δ, R3 = β and R4 = 0, which indicates that the
Lipschitz condition for Zi(t, Si) are satisfied.

Lemma 4.1. [7] If Dvg(t) = f(t) and g(0) = g0, then

g(t) = g0 +
1

Γ(v)

∫ t

0

(t− η)v−1f(η)dη. (4.7)
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Theorem 4.2. Assume that Zi(t, Si) for i = 1, 2, 3, 4 apply in the Lipschitz condi-
tions. In this case, there is a unique solution for Eq. (1.1).

Proof. By using Lemma (4.1), the model (1.1) can be written as:

S1(t)− ŝ0 =
1

Γ(v)

∫ t

0

(t− η)v−1Z1(η, S1)dη,

S2(t)− î0 =
1

Γ(v)

∫ t

0

(t− η)v−1Z2(η, S2)dη,

S3(t)− r̂0 =
1

Γ(v)

∫ t

0

(t− η)v−1Z3(η, S3)dη,

S4(t)− d̂0 =
1

Γ(v)

∫ t

0

(t− η)v−1Z4(η, S4)dη.

(4.8)

The recurrence form and the initial conditions of the model (4.8) are given as:

Sn1 (t) =
1

Γ(v)

∫ t

0

(t− η)v−1Z1(η, Sn−1
1 )dη, S1(0) = ŝ0,

Sn2 (t) =
1

Γ(v)

∫ t

0

(t− η)v−1Z2(η, Sn−1
2 )dη, S2(t) = î0,

Sn3 (t) =
1

Γ(v)

∫ t

0

(t− η)v−1Z3(η, Sn−1
3 )dη, S3(t) = r̂0,

Sn4 (t) =
1

Γ(v)

∫ t

0

(t− η)v−1Z4(η, Sn−1
4 )dη, S4(t) = d̂0.

(4.9)

In this case, the difference between two consecutive sentences will be as follows

ψni (t) :=Sni (t)− Sn−1
i (t) =

1

Γ(v)

∫ t

0

(t− η)v−1(Zi(η, S
n−1
i )− Zi(η, Sn−2

i ))dη,

i = 1, 2, 3, 4.
(4.10)

In this case, it is clear that:

Sni (t) =

n∑
j=1

ψji (t), i = 1, 2, 3, 4. (4.11)

From Eq. (4.6) for ψn1 (t)

‖ψn1 (t)‖ = ‖Sn1 (t)− Sn−1
1 (t)‖

≤ 1

Γ(v)

∫ t

0

(t− η)v−1‖Z1(η, Sn−1
1 )− Z1(η, Sn−2

1 )‖dη

≤ R1

Γ(v)

∫ t

0

(t− η)v−1‖Sn−1
1 − Sn−2

1 ‖dη.

(4.12)
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With a similar process for other ψni (t) for i = 1, 2, 3, 4 we will have

‖ψni (t)‖ ≤ Ri
Γ(v)

∫ t

0

(t− η)v−1‖ψn−1
i (t)‖dη, i = 1, 2, 3, 4. (4.13)

By continuing this process for ψn−1
i (t), we get

‖ψni (t)‖ ≤
(

Rit
v

Γ(v + 1)

)n
, i = 1, 2, 3, 4. (4.14)

In order to show that Eqs. (4.14) are solutions for Eq. (1.1), we will have the
following assumption

Si(t)− ŝ0 = Sni (t)−Υn
i (t), i = 1, 2, 3, 4. (4.15)

Consider the following conditions

‖Υn
i (t)‖ ≤ ‖ 1

Γ(v)

∫ t

0

(t− η)v−1
(
Zi(η, Si)− Zi(η, Sn−1

i )
)
dη‖, i = 1, 2, 3, 4. (4.16)

Therefore

‖Υn
i (t)‖ ≤

(
Rit

v

Γ(v + 1)

)n
, i = 1, 2, 3, 4. (4.17)

This shows that when n −→∞, then ‖Υn
i (t)‖ −→ 0 for i = 1, 2, 3, 4. Now, to show

the uniqueness of the solution, we assume that there are S∗1 , S∗2 , S∗3 and S∗4 other
solutions of the Eq. (1.1). Therefore

S1(t) = Sn1 (t) + ŝ0,

S∗1 (t) = Sm1 (t) + ŝ0,

‖S1(t)− S∗1 (t)‖ = ‖Sn1 (t)− Sm1 (t)‖ ≤
(

R1t
v

Γ(v + 1)

)l
,

(4.18)

where l = max{m,n}. This shows that when l −→ ∞, then ‖S1(t)− S∗1 (t)‖ −→ 0.
With a similar process we have

Si(t)− S∗i (t) = 0, i = 1, 2, 3, 4. (4.19)

5. Stability

In this section, the stability for the model (1.1) is investigated. For this purpose,
we use the Ulam-Hyers stability. So first consider the following definition:

Definition 5.1. [1, 35, 36] Suppose that Λ = E × E × E × E is a Banach space
where E = C[0, T ]. In this case, we call model (1.1) Ulam-Hyers stable whenever

if there exists λ > 0 and ε > 0 for each Ŝi(t), i = 1, 2, 3, 4 with the following
inequalities

|DvŜi(t)− Zi(t, Ŝi)| ≤ εi, (5.1)
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then there exists Si(t) satisfying the Eqs. (1.1) with the following initial conditions

S1(0) = ŝ0,

S2(0) = î0,

S3(0) = r̂0,

S4(0) = d̂0,

(5.2)

such that

‖(Ŝ1, Ŝ2, Ŝ3, Ŝ4)− (S1, S2, S3, S4)‖Λ ≤ λε. (5.3)

Lemma 5.1. The solution of the perturbed problem

DvŜ(t) = w1(t, Ŝ) + f1(t), Ŝ(0) = ŝ0, (5.4)

implies |Ŝf1(t)− Ŝ(t)| ≤ kε1, where Ŝf1(t) is a solution of (5.4) and k =
T v

Γ(v + 1)
.

Proof. Using Lemma (4.1), the proof is straightforward.

Theorem 5.1. Under the presumptions of (4.8) and conditions (4.6), the Eqs.
(1.1) are Ulam-Hyers stable in Λ.

Proof. Let S ∈ E be a unique solution of Eq. (1.1) and Ŝ ∈ E be the solution of
the inequality (5.1) with the condition

S(0) = Ŝ(0), (5.5)

that is

S(t) = S0 +
1

Γ(v)

∫ t

0

(t− η)v−1Z1(η, S)dη. (5.6)

From Eq. (5.5) one will set

S(t) = Ŝ0 +
1

Γ(v)

∫ t

0

(t− η)v−1Z1(η, S)dη. (5.7)

Therefore

|Ŝ(t)− S(t)| ≤ |Ŝ(t)− Ŝf1(t)|+ |Ŝf1(t)− S(t)|

≤ kε1 +
1

Γ(v)

∫ t

0

(t− η)v−1|Z1(η, Ŝ)− Z1(η, S)|dη

≤ 2kε1 +
T v

Γ(v + 1)
R1‖Ŝ − S‖.

(5.8)

In other words

‖Ŝ − S‖E ≤
2kε1

1− χ1
, where χ1 =

T v

Γ(v + 1)
R1. (5.9)
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Now, for λ1 =
2k

1− χ1
we have

‖Ŝ − S‖E ≤ λ1ε1. (5.10)

By continuing this process, we will have

‖Ŝi − Si‖E ≤ λiεi, i = 1, 2, 3, 4, (5.11)

where λj =
2k

1− χj
, and χj =

T v

Γ(v + 1)
Rj for j = 1, 2, 3, 4. Thus, Eq. (1.1) is

Ulam-Hyers stable.

6. Numerical results

Hereunder, the numerical treatment of the proposed method is investigated. For
this purpose, we have considered the data of the WHO, following the spread and
epidemic of the Ebola virus in West Africa and especially in Liberia in 2014. Some
of these data are given in Table 1 (see [4]). In Figure 5, a comparison between the

Table 1. Confirmed cases of Ebola virus

Date Total Date Total

2014/03/27 15 2014/07/12 706

2014/03/31 24 2014/07/20 786

2014/04/05 54 2014/07/30 953

2014/04/09 66 2014/08/11 1176

2014/04/14 71 2014/08/22 1516

2014/04/20 112 2014/09/05 2364

2014/04/26 121 2014/09/16 2997

2014/05/01 127 2014/09/26 3606

2014/05/07 129 2014/10/08 4440

2014/05/23 152 2014/10/17 5159

2014/06/01 217 2014/10/29 7606

2014/06/05 249 2014/11/07 8142

2014/06/16 364 2014/11/19 9397

2014/06/20 441 2014/11/16 10018

2014/07/02 557 2014/12/01 10553

actual data in 200 days and the proposed method in [4] is presented. In the left
figure, the parameter values are m = 90, q = 0.058 and v = 0.9, and in the right
figure, m = 85, q = 0.09 and v = 0.9. In Figure 6, a comparison is made between
the proposed method for number of infected people (S2(t)) and real data in a period
of 250 days. In the left figure, the parameter values are m = 4 and v = 0.9, and in
the right figure, m = 5 and v = 0.9. Other parameters are as follows: α = 0.001,
β = 0.02, γ = 0.01, ζ = 0.06 and δ = 0.
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Figure 5. Comparison of real data and approximate method for number of infected people (S2(t))
in [4].

The operational matrix D(v) of order v = 0.9 and m = 4 and m = 5 are as
follows:

D
(v)
4 =



−2.7537 −2.2577 0.4754 −0.5195 −0.0719

2.7968 −0.0562 −2.7096 0.2678 −0.1333

−0.0482 2.3639 0.6374 −2.5723 −0.1445

0.0057 −0.0539 1.6181 2.0332 −3.1734

−0.0005 0.0039 −0.0212 0.7908 3.5232


, (6.1)

D
(v)
5 =



−3.3140 −2.9023 1.2528 −1.2649 0.2365 −0.1914

3.3618 −0.0746 −3.7504 1.1083 −0.5311 0.0369

−0.0542 3.0480 0.1544 −2.7875 −0.0816 −0.0845

0.0074 −0.0803 2.3952 1.3737 −3.2282 −0.1900

−0.0011 0.0100 −0.0558 1.5881 2.8315 −3.8672

0.0001 −0.0008 0.0038 −0.0178 0.7728 4.2963


. (6.2)

As it can be seen from the comparison of Figures 5 and 6, our proposed method
has more appropriate accuracy for approximating data and can approximate data
with less error, which shows the efficiency of the proposed method. Figure 6 shows
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Figure 6. Comparison of real data and suggested method for number of infected people (S2(t)).

that it is possible to have a reasonable approximate solution with a small number of
bases, which will reduce calculations and increase the speed of program execution.
Also, from the examination of Figure 6, we can see that by increasing the value of
m, the accuracy of the method and on the other hand its approximation will be
better. In Figure 7, a comparison has been made between the solution of the classic

Figure 7. Comparison of real data and solution of the classic model and the solution of the fractional
model.

model and the solution of the fractional model for the real data in Table 1. As it is
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clear from the figure, the fractional model shows a much better and more suitable
approximation for the data, which shows the importance of examining and modeling
problems in fractional form. In Figure 8, numerical results are shown for different

Figure 8. Comparison of real data and suggested method for number of infected people (S2(t)) for
m = 4 and different values of v.

values of fractional derivative v with m = 4. From examining the left figure, it is
clear that the optimal result for v = 0.9 has been obtained, so approximations of
v = 0.9 are presented in the right figure.

6.1. A comparison between Caputo fractional derivatives and
fractional Mellin transform

Definition 6.1. Let f(x) be locally Lebesgue integrable over [0,∞). The Mellin
transform of f(x) is defined by

M [f(x); s] = f∗(s) =

∫ ∞
0

xs−1f(x)dx, s = η1 + iµ1, η1, µ1 ∈ R, i2 = −1. (6.3)

The largest open strip (a, b) in which the integral converges is called the fundamental
strip, and its ainverse transform is
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f(x) = M−1[f∗(s);x] =
1

2πi

∫ η1+i∞

η1−i∞
f∗(s)x−sds, x > 0, η1 = Re(s). (6.4)

For more details, the reader is advised to consult the research works presented
in [5, 22,29].

Theorem 6.1. Let f(x) be Mellin transformable function on R+, and f be a frac-
tional derivative function for all n− 1 < v < n, n ∈ N, then

M [fv(x); s] =
Γ(s)

Γ(s− v)
M [f(x); s− v]. (6.5)

Corollary 6.1. Let s = η1 + iµ1, z = η2 + iµ2 and assume that Re(s) +Re(z) < 0
where

f(t) = H(t− t0)tz, (6.6)

and H is the Heaviside step function. Then we have∫ ∞
0

ts−1f(t)dt =
−tz+s0

z + s
. (6.7)

Proof. By applying the properties of Mellin transform and Heaviside step function,
one will set∫ ∞

0

ts−1f(t)dt =

∫ ∞
0

ts−1tzdt =

∫ ∞
t0

tz+s−1dt =
tz+s

z + s

∣∣∣∣∞
t0

. (6.8)

Assume know that

tz+s

z + s
=
t(η1+η2)+i(µ1+µ2)

z + s
=
t(η1+η2)ti(µ1+µ2)

z + s
, (6.9)

as we know, η1 + η2 < 0, then, when t tends to infinity, tη1+η2 → 0 which implies
that:

Eq. (6.9) be equal to zero, which completes the proof.
In Fig. 9 and using a real-world data for the Ebola virus, we compared the frac-

tional Mellin transform, real data, Caputo derivative and classic model. According
to our research, the ordinary derivative has less accuracy than the fractional order
model. In other words, results demonstrated that fractional order derivations are
superior than classical orders, more dependable, and more effective in describing bi-
ological processes. The numerical simulation of the findings shows that the Caputo
derivative in comparing with some other applicable methods (for instance; frac-
tional Mellin transform) gives a more precise numerical results. Finally, we point
out that this idea should be generalized and verified for more complicated linear
and nonlinear problems. In other words, the present note is only an introduction
to the topic, and there remains a lot of issues to do.

7. Concluding remarks

Recently, the modeling of problems and their analysis have attracted the attention
of many scientists in different fields. In biological sciences and biological phenom-
ena such as viruses, the need for modeling is felt more to recognize and predict the
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Figure 9. Comparison of fractional Mellin transform, real data, Caputo derivative and classic model
for presented example in Section 6.

function of viruses. One of these cases can be seen in the modeling of the Ebola
virus. The model presented for the Ebola virus and even many models presented
for different problems do not have an analytical solution. Therefore, it is necessary
to evaluate them with different numerical methods in order to make a correct pre-
diction of the performance of the virus. In this paper, we presented an effective
method based on properties of Bernstein operational matrices as well as dual Bern-
stein for the system of fractional order Ebola virus nonlinear equations. Also, for
the simplicity of work and calculations, the operational matrix of fractional deriva-
tive of order v was obtained based on dual Bernstein. The proposed dual Bernstein
method leads to the transformation of the Ebola virus into a system of nonlinear
algebraic equations. The unknown coefficients of the final system are obtained us-
ing the Newton-Raphson method. One of the features of this method is that a
reasonable approximate solution can be found with a small number of bases. Then,
the data provided by the WHO were used to obtain numerical results. Numerical
simulations are reported for various fractional orders. By using these comparisons
between the simulated and measured data, we find the best value of the fractional
order. These comparisons, additionally, indicated that the fractional order model
follows the reality more precisely than the classical framework, a fact which jus-
tifies the use of fractional calculus modeling in our case under study. Finally, we
compared the fractional Mellin transform, real data, Caputo’s derivative, and the
classical model. According to our research, the ordinary derivative is less accurate
than the fractional order model. In other words, the results showed that fractional
order derivatives are superior to classical orders, more reliable and effective in de-
scribing biological processes. Finally, it should be mentioned that, the results can
be extended to other scientific areas involving the treatment of COVID-19, Zombie
models and SARS and etc. Furthermore, the future works will focus on the sim-
ilarities, differences and numerical treatments of fractional models of Ebola virus,
Zombie models, SARS and coronavirus. Also, the application of this method for
solving the stochastic fractional equations as well as solving the multi dimensional
differential-integral stochastic equations can be investigated. It is also possible to
evaluate the derivative of the fractional Mellin transform or other fractional deriva-
tives in these problems.



On epidemiological transition model of . . . 1645

Acknowledgements

The authors would like to thank the editor and anonymous referees for helpful
comments and suggestions.

Declarations conflict of interest

The authors declare that there is no conflict of interest regarding the publication
of this article.

References

[1] M. S. Abdo, S. K. Panchal, K. Shah and T. Abdeljawad, Existence theory and
numerical analysis of three species prey-predator model under Mittag-Leffler
power law, Advances in Difference Equations, 2020, 1, 1–6.

[2] S. Al Fahel, D. Baleanu, Q. M. Al-Mdallal and K. M. Saad, Quadratic and cu-
bic logistic models involving Caputo-Fabrizio operator, The European Physical
Journal Special Topics, 2023, 1–5. DOI: 10.1140/epjs/s11734-023-00935-0.

[3] S. B. Amundsen, Historical analysis of the Ebola virus: Prospective implications
for primary care nursing today, Clinical Excellence for Nurse Practitioners,
1998, 2, 343–351.

[4] I. Area, H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh and A. Torres, On a
fractional order Ebola epidemic model, Advances in Difference Equations, 2015,
1, 278.

[5] E. Ata and I. Onur Kiymaz, New generalized Mellin transform and applica-
tions to partial and fractional differential equations, International Journal of
Mathematics and Computer in Engineering, 2023, 1(1), 45–66.

[6] A. Atangana and E. Franc Doungmo Goufo, On the mathematical analysis of
Ebola hemorrhagic fever: deathly infection disease in west African countries,
BioMed Research International, 2014, 261383.

[7] A. Atangana and K. M. Owolabi, New numerical approach for fractional differ-
ential equations, Mathematical Modelling of Natural Phenomena, 2018, 13(1),
3.

[8] D. Baleanu, S. Arshad, A. Jajarmi, W. Shokat, F. A. Ghassabzade and M. Wali,
Dynamical behaviours and stability analysis of a generalized fractional model
with a real case study, Journal of Advanced Research, 2023, 48, 157–173.

[9] D. Baleanu, M. Hasanabadi, A. M. Vaziri and A. Jajarmi, A new intervention
strategy for an HIV/AIDS transmission by a general fractional modeling and
an optimal control approach, Chaos, Solitons and Fractals, 2023, 167, 113078.

[10] M. Bhatti and P. Bracken, Solutions of differential equations in a Bernstein
polynomial basis, Journal of Computational and Applied Mathematics, 2007,
205, 272–280.

[11] M. H. Derakhshan, The stability analysis and numerical simulation based on
Sinc Legendre collocation method for solving a fractional epidemiological model
of the Ebola virus, Partial Differential Equations in Applied Mathematics, 2021,
3, 100037.



1646 I. Masti, K. Sayevand & H. Jafari

[12] M. O. Durojaye and I. J. Ajie, Mathematical model of the spread and control
of Ebola virus disease, Applied Mathematics, 2017, 7, 23–31.

[13] R. M. Ganji, H. Jafari and D. Baleanu, A new approach for solving multi
variable orders differential equations with Mittag-Leffler kernel, Chaos Solitons
and Fractals, 2020, 130, 109405.

[14] G. T. Gellow, J. M. W. Munganga and H. Jafari, Analysis of a ten compart-
mental mathematical model of malaria transmission, Journal Advanced Math-
ematical Models & Applications, 2023, 8(2), 140–156.

[15] J. H. He, Nonlinear oscillation with fractional derivative and its applications,
in International Conference on Vibrating Engineering, 1998, 98, 288–291.

[16] M. T. Hossain, M. M. Miah and M. B. Hossain, Numerical study of Kermack-
Mckendrik SIR model to predict the outbreak of Ebola virus diseases using Euler
and fourth order Runge-Kutta methods, American Academic Scientific Research
Journal for Engineering, Technology and Sciences, 2017, 37(1), 1–21.

[17] S. T. Jacob, et al., Ebola virus disease, Nature Reviews Disease Primers, 2020,
6(1), 13.

[18] H. Jafari, P. Goswami, R. S. Dubey, S. Sharma and A. Chaudhary, Fractional
SIZR model of Zombie infection, International Journal of Mathematics and
Computer in Engineering, 2023, 1(1), 91–104.

[19] I. Koca, Modelling the spread of Ebola virus with Atangana-Baleanu fractional
operators, The European Physical Journal Plus, 2018, 133(3), 100.

[20] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley
and Sons. Inc, 1978.

[21] J. H. Kuhn, et al., Proposal for a revised taxonomy of the family Filoviridae:
Classification, names of taxa and viruses, and virus abbreviations, Archives of
Virology, 2010, 155(12), 2083–2103.

[22] Y. Luchko and V. Kiryakova, The Mellin integral transform in fractional cal-
culus, Fractional Calculus and Applied Analysis, 2013, 16, 405–430.

[23] R. L. Magin, Fractional Calculus in Bbioengineering, Begell House Digital Li-
brary, 2021.

[24] R. L. Magin, Fractional calculus models of complex dynamics in biological tis-
sues, Computers and Mathematics with Applications, 2010, 59(5), 1586–1593.

[25] F. Mainardi, Fractional calculus: In Fractals and fractional calculus in
continuum mechanics, Springer Science and Business Media, Vienna, Aus-
tria, 1997, 291-348.

[26] A. M. Marciarille, Managing our microbial mark: What we can learn about pay
for performance from Ebola’s arrival at our shores, American Journal of Law
and Medicine, 2016, 42(2–3), 393–428.

[27] I. Masti and K. Sayevand, On collocation-Galerkin method and fractional B-
spline functions for a class of stochastic fractional integro-differential equations,
Mathematics and Computers in Simulation, 2024, 216, 263–287.

[28] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Frac-
tional Differential Equations, New York, 1993.



On epidemiological transition model of . . . 1647

[29] M. Omran and A. Kilicman, On fractional order Mellin transform and some
of its properties, Tbilisi Mathematical Journal, 2017, 10(1), 315–324.

[30] I. Podlubny, Fractional Differential Equations, San Diego: Academic Press,
1990.

[31] I. Podlubny, Geometric and physical interpretation of fractional integration and
fractional differentiation, Fractional Calculus and Applied Analysis, 2002, 5(4),
367–386.

[32] D. Quammen, Insect-eating bat may be origin of Ebola outbreak, new study
suggests, National Geographic Society, 2014, 12, 30.

[33] A. Rachah and D. F. Torres, Mathematical modelling, simulation, and optimal
control of the 2014 Ebola outbreak in West Africa, Discrete Dynamics in Nature
and Society, 2015, Article ID 842792. DOI: 10.1155/2015/842792.

[34] P. Rahimkhani and Y. Ordokhani, Numerical investigation of distributed-order
fractional optimal control problems via Bernstein wavelets, Optimal Control
Applications and Methods, 2021, 42(1), 355–373.

[35] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Pro-
ceedings of the American Mathematical Society, 1978, 72, 297–300.

[36] T. M. Rassias, On the stability of functional equations and a problem of Ulam,
Acta Applicandae Mathematicae, 2000, 62(1), 23–130.

[37] K. M. Saad and H. M. Srivastava, Numerical solutions of the multi-space
fractional-order coupled Korteweg-De vries equation with several different ker-
nels, Fractal and Fractional, 2023, 7(10), 716.

[38] N. A. Sajjadi and J. H. Asad, Fractional treatment: An accelerated mass-spring
system, Romanian Reports in Physics, 2022, 74, 122.

[39] K. Sayevand, Mittag-Leffler string stability of singularly perturbed stochastic
systems within local fractal space, Mathematical Modelling and Analysis, 2019,
24, 311–334.

[40] K. Sayevand, J. T. Machado and I. Masti, On dual Bernstein polynomials and
stochastic fractional integro-differential equations, Mathematical Methods in
the Applied Sciences, 2020, 43(17), 9928–9947.

[41] K. Sayevand, J. T. Machado and I. Masti, Analysis of dual Bernstein operators
in the solution of the fractional convection-diffusion equation arising in under-
ground water pollution, Journal of Computational and Applied Mathematics,
2022, 399, 113729.

[42] K. Sayevand, F. Mirzaee and I. Masti, On two-dimensional weakly singular
fractional partial integro-differential equations and dual Bernstein polynomials,
Numerical Methods for Partial Differential Equations, 2023, 39(3), 2538–2560.

[43] H. M. Srivastava and K. M. Saad, Numerical simulation of the fractal-fractional
Ebola virus, Fractal and Fractional, 2020, 4(4), 49.

[44] H. M. Srivastava, K. M. Saad and M. M. Khader, An efficient spectral colloca-
tion method for the dynamic simulation of the fractional epidemiological model
of the Ebola virus, Chaos, Solitons and Fractals, 2020, 140, 110174.

[45] https://www.bcm.edu/departments/molecular-virology-and-
microbiology/emerging-infections-and-biodefense/specific-agents/ebola-virus.


	Introduction
	Definitions and properties
	Bernstein polynomials (BPs)

	Approximation of functions
	Existence and uniqueness of solution
	Stability
	Numerical results
	A comparison between Caputo fractional derivatives and fractional Mellin transform

	Concluding remarks

