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CONTINUITY OF THE MULTILINEAR
MAXIMAL COMMUTATORS IN SOBOLEV

SPACES∗

Xixi Jiang1 and Feng Liu1,†

Abstract In the present paper we study the Sobolev continuity of the multi-
linear maximal commutators and their fractional variants with Lipschitz sym-
bols. More precisely, let Mα,~b be the multilinear fractional maximal commu-

tators, where 0 ≤ α < mn and ~b = (b1, . . . , bm) with each bi ∈ Lip(Rn). We
establish the continuity of Mα,~b :W

1,p1(Rn)× · · · ×W 1,pm(Rn)→W 1,q(Rn),
provided that 1 < p1, . . . , pm < ∞, 1/q =

∑m
i=1 1/pi − α/n and 1 ≤ q < ∞.

The main result we obtain answers a question originally posed by Chen and
Liu in 2022. Our main result is new, even in the linear case m = 1.

Keywords Multilinear maximal commutator, fractional variants, Sobolev
space, continuity.
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1. Introduction

This note continues the study of multilinear maximal commutators and their frac-
tional variants. More precisely, let m ≥ 1, 0 ≤ α < mn and ~b = (b1, . . . , bm) with

each bj ∈ L1
loc(Rn). For ~f = (f1, . . . , fm) with each fj ∈ L1

loc(Rn), the multilinear

fractional maximal commutator with ~b is defined by

Mα,~b(
~f)(x) =

m∑
i=1

Mi
α,~b

(~f)(x),

where

Mi
α,~b

(~f)(x) = sup
r>0

1

|B(x, r)|m−α/n

∫
B(x,r)m

|bi(x)− bi(yi)|
m∏
j=1

|fj(yj)|d~y,

where B(x, r)m =

m︷ ︸︸ ︷
B(x, r)× · · · ×B(x, r) and d~y = dy1 · · · dym. When α = 0, the

operator Mα,~b reduces to the usual multilinear maximal commutator M~b. Particu-
larly, when m = 1, the operator Mα,~b becomes the fractional maximal commutator
Mb,α. Meanwhile, the operator M~b is just the maximal commutator Mb.
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Recently Chen and Liu [8] established the Sobolev bounds of Mα,~b with Lipschitz
symbols. The purpose of this note is to establish the Sobolev continuity of Mα,~b with
Lipschitz symbols. Before stating our main theorem, we introduce some notation
and recall relevant results from the literature.

The regularity theory of maximal operators began with Kinnunen’s work [22] in
which the author observed that the centered Hardy–Littlewood maximal operator

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy,

is bounded on the first order Sobolev space W 1,p(Rn) for 1 < p ≤ ∞, where B(x, r)
is the open ball in Rn centered at x with radius r and |B(x, r)| denotes its volume.
In [22], Kinnunen used the above bounds to obtain a weak type inequality for the
Sobolev capacity, which can be used to study the pointwise behaviour of Sobolev
functions by the standard methods (see [12]). Here W 1,p(Rn) is the set of all
measurable functions f : Rn → R satisfying

‖f‖W 1,p(Rn) := ‖f‖Lp(Rn) + ‖|∇f |‖Lp(Rn) <∞,

where ∇f = (D1f, . . . ,Dnf) is the weak gradient of f . Since then, Kinnunen’s
work [22] has initiated a new research direction in harmonic analysis. There are
many extensions of his work. For example, see [21,23] for the local case, [24] for the
fractional case, [6, 28] for the multisublinear case. On the other hand, due to the
lack of the sublinearity for the weak derivative of maximal functions, the continuity
of M : W 1,p(Rn) → W 1,p(Rn) for 1 < p < ∞ is certainly a nontrivial issue. This
was posed by Haj lasz and Onninen in [21] and was addressed in the affirmative
by Luiro [32]. Later on, Luiro’s result was extended to the local case in [33], to
the bilinear case in [6] and to the fractional and multilinear case in [26]. Since
the above results do not include the endpoint case p = 1, the W 1,1-regularity of
maximal operators has also been studied by many authors. We can consult [2,4,19],
among others.

The maximal commutator and its fractional variant have been the subject of
many recent articles in harmonic analysis. This topic began with Garcia-Cuerva
et al. [17] who introduced the maximal commutator and used its Lp bounds to
characterize BMO(Rn) functions. It is worth noticing that the maximal commutator
plays an important role in the study of commutators of singular integral operators
with BMO symbols (see, for instance, [36, 37]). In fact, the maximal commutators
can also be used to characterize the Lipschitz space (see [43,44]). The investigation
on the fractional maximal commutators has attracted the attention of many authors
(see [9,10,20]). Other interesting works can be found in [1,3,41,42], among others.
For more progresses on commutators of some integrals, we refer to the papers (see
[5,7,11,13–16,18,35,38,40]). Commutators in multilinear settings were first studied
by Pérez and Torres [34] and were later developed by many authors (see [25] et
al.). Particularly, the multilinear maximal commutators associated to cubes were
first introduced by Zhang [45] who investigated the multiple weighted estimates for
them.

Another extension of the regularity of maximal operators is to investigate the
regularity of maximal commutators. In [31], Liu, Xue and Zhang first investigated
the boundedness of maximal commutators with Sobolev symbols on the Sobolev
spaces. Later on, the above result was extended to the fractional version in [29]
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and to the local case in [30]. Very recently, Liu and Wang [27] studied the Sobolev
boundedness of maximal commutator and its fractional variant with Lipschitz sym-
bols. More precisely, the authors proved that if 1 < p < ∞, 0 ≤ α < n/p and
1/q = 1/p−α/n, then Mb,α is bounded from W 1,p(Rn) to W 1,q(Rn), provided that
b belongs to the inhomogeneous Lipschitz space Lip(Rn). Here

Lip(Rn) : = {f : Rn → C continuous : ‖f‖Lip(Rn) <∞},

where
‖f‖Lip(Rn) := ‖f‖L∞(Rn) + ‖f‖Lip(Rn)

and

‖f‖Lip(Rn) := sup
x∈Rn

sup
h∈Rn\{0}

|f(x+ h)− f(x)|
|h|

.

The following presents the differentiable properties of the Lipschitz function.

Remark 1.1. Let b ∈ Lip(Rn). It was pointed out in [27] that the weak partial
derivatives Dib, i = 1, . . . , n, exist almost everywhere. Moreover, we have that

Dib(x) = limh→0
b(x+hei)−b(x)

h and |Dib(x)| ≤ ‖b‖Lip(Rn) for almost every x ∈ Rn.
Here ei = (0, . . . , 0, 1, 0, . . . , 0) is the canonical i-th base vector in Rn for i = 1, . . . , n.

Very recently, Chen and Liu [8] established the Sobolev continuity of multilinear
maximal commutator and its fractional variant.

Theorem A ([8, Theorem 1]). Let 0 ≤ α < mn, 1 ≤ q < ∞, 1 < p1, . . . , pm < ∞
and 1/q =

∑m
i=1 1/pi − α/n. If ~b = (b1, b2, · · · , bm) with each bi ∈ Lip(Rn), then

the map
Mα,~b : W 1,p1(Rn)× · · · ×W 1,pm(Rn)→W 1,q(Rn) (1.1)

is bounded.

Meanwhile, the authors of [8] posed the following question.

Question 1.1. It the map (1.1) continuous under the conditions of Theorem A?

This is the main motivation of this note. In the present paper we shall provide
a positive answer to the above question.

Theorem 1.1. Let 0 ≤ α < mn, 1 ≤ q < ∞, 1 < p1, . . . , pm < ∞ and 1/q =∑m
i=1 1/pi − α/n and ~b = (b1, b2, · · · , bm) with each bi ∈ Lip(Rn). Then the map

(1.1) is continuous.

In order to prove Theorem 1.1, the following facts are very useful.

Remark 1.2. Let 0 ≤ α < mn, 1 < p1, . . . , pm <∞, 1/q = 1/p1+ · · ·+1/pm−α/n
and 1 ≤ q <∞. Let ~b = (b1, . . . , bm) with each bj ∈ L∞(Rn).

(i) Let us fix i ∈ {1, . . . ,m} and ~f = (f1, . . . , fm) with each fj ∈ Lpj (Rn). It
was pointed out in [8, Remark 2] that

‖Mi
α,~b

(~f)‖Lq(Rn) ≤ Cα,m,n,p1,...,pm‖bi‖L∞(Rn)

m∏
j=1

‖f‖Lpj (Rn). (1.2)

Moreover, the map

Mi
α,~b

: Lp1(Rn)× · · · × Lpm(Rn)→ Lq(Rn)
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is continuous (see [8, Remark 2]). We also point out that

|Mi
α,~b

(~fj)−Mi
α,~b

(~f)| ≤
m∑
l=1

Mi
α,~b

(~F jl ), (1.3)

where ~fj = (f1,j , . . . , fm,j) and ~F jl = (f1, . . . , fl−1, fl,j − fl, fl+1,j , . . . , fm,j).

(ii) For ~f = (f1, . . . , fm) with each fj ∈ L1
loc(Rn), the multilinear fractional

maximal operator Mα is defined by

Mα(~f)(x) = sup
r>0

1

|B(x, r)|m−α/n
m∏
j=1

∫
Rn
|fj(y)|dy.

It is well known that

‖Mα(~f)‖Lq(Rn) ≤ Cα,m,n,p1,...,pm
m∏
j=1

‖f‖Lpj (Rn). (1.4)

We now introduce the structure of the paper. In Section 2 we present some pre-
liminary notation and lemmas, which are the main ingredients of proving Theorem
1.1. The proof of Theorem 1.1 will be given in Section 3. We remark that the main
ideas employed in the proof of Theorem 1.1 are motivated by [8, 27,32].

Throughout this paper, the letter C will stand for positive constants not neces-
sarily the same one at each occurrence but is independent of the essential variables.
We write Cα,β for positive constants that depend on the parameters α, β.

2. Preliminaries

In this section we present some preliminary notation and lemmas, which are the
main ingredients of proving Theorem 1.1.

2.1. Preliminary notaton

We denote N = {1, 2, . . .}. Given A ⊂ Rn, we set Ac = Rn \ A. For any suitable
function F (x, y) defined on Rn × Rn, we let

∇xF = (D1,xF, . . . ,Dn,xF ), ∇yF = (D1,yF, . . . ,Dn,yF ),

were Di,xF (resp., Di,yF ) is the i-th weak partial derivative of F in x (resp., y).
For convenience, for suitable functions b, g, any x ∈ Rn and r > 0, we set

ur,g(x) =

∫
B(x,r)

g(y)dy, ub,r,g(x) =

∫
B(x,r)

|b(x)− b(y)|g(y)dy.

In what follows, let~b = (b1, . . . , bm) with each b1 ∈ Lip(Rn) and ~f = (f1, . . . , fm)
with each fj ∈ Lpj (Rn), where 1 < p1, . . . , pm < ∞, 1 ≤ q < ∞ and 1/q =∑m
i=1 1/pi − α/n. For each fixed point x ∈ Rn, we define an auxiliary function

A1
~b,α,x,~f

: [0,∞)→ R by

A1
~b,α,x,~f

(r) =


0, if r = 0;

1

|B(x, r)|m−α/n
ub1,r,f1(x)

m∏
i=2

ur,fi(x), if r ∈ (0,∞).
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We define the set R~b,α(~f)(x) by

R~b,α(~f)(x) :=
{
r ≥ 0 : M1

α,~b
(~f)(x) = lim sup

rk→r
A1
~b,α,x,~f

(rk) for some rk > 0
}
.

It should be pointed out that the function A1
~b,α,x,~f

(r) is continuous on (0,∞)

for all x ∈ Rn and at r = 0 for almost every x ∈ Rn. Since

A1
~b,α,x,~f

(r) ≤ (|b1(x)|+ ‖b1‖L∞(Rn))

m∏
i=1

‖fi‖Lpi (Rn)|B(x, r)|−1/q,

we can get that limr→∞A1
~b,α,x,~f

(r) = 0, Note that R~b,α(~f)(x) is always closed and,

from the above, nonempty. Also,

M1
α,~b

(~f)(x) = A1
~b,α,x,~f

(r) for every x ∈ Rn such that 0 < r ∈ R~b,α(~f)(x),

M1
α,~b

(~f)(x) = A1
~b,α,x,~f

(0) for almost every x ∈ Rn such that 0 ∈ R~b,α(~f)(x).

Let f ∈ Lp(Rn) for 1 < p < ∞. For all h ∈ R, |h| > 0, y ∈ Rn and l ∈
{1, 2, . . . ,m}, we define the functions f lτ(h) and f lh by

f lh(x) =
f(x+ hel)− f(x)

h
and f lτ(h)(x) = f(x+ hel).

It is well known that ‖f lτ(h) − f‖Lp(Rn) → 0 as h → 0, and if f ∈ W 1,p(Rn), then

‖f lh −Dlf‖Lp(Rn) → 0 as h→ 0.

2.2. Derivative formulas of multilinear maximal commutators

In this subsection we establish some derivative formulas for multilinear maximal
commutators, which play a key role in the proof of Theorem 1.1. Before that, it is
necessary for us to explore some nice properties of R~b,α(~f). For R > 0, we denote
by BR the ball of radius R centered at the origin. For A ⊂ Rn and x ∈ Rn, we set

d(x,A) := inf
a∈A
|x− a| and A(λ) := {x ∈ Rn; d(x,A) ≤ λ} for λ ≥ 0.

Lemma 2.1. Let 0 ≤ α < mn, 1 < p1, . . . , pm < ∞, 1 ≤ q < ∞, 1/q =∑m
i=1 1/pi−α/n and ~b = (b1, . . . , bm) with each bj ∈ L∞(Rn). Let ~f = (f1, . . . , fm)

with each fi ∈ Lpi(Rn) and ~fj = (f1,j , . . . , fm,j) with each fi,j ∈ Lpi(Rn) for any
j ≥ 1. Assume that ‖fi,j − fi‖Lpi (Rn) → 0 as j → ∞ for all i = 1, 2, . . . ,m. Then
for all R > 0 and λ > 0, we have

lim
j→∞

|{x ∈ B(0, R);R~b,α(~fj)(x) * R~b,α(~f)(x)(λ)}| = 0. (2.1)

Proof. We shall adopt the method of [32, Lemma 2.2] to prove this lemma.
In what follows, let us fix λ > 0, R > 0 and ε ∈ (0, 1). An argument simi-
lar to those used to derive [32, Lemma 2.2] gives that for any j ∈ Z, the set

{x ∈ Rn; R~b,α(~fj)(x) * R~b,α(~f)(x)(λ)} is measurable. In addition, for almost

every x ∈ B(0, R), we can find γ(x) ∈ N such that

A1
~b,α,x,~f

(r) <M1
α,~b

(~f)(x)− 1

γ(x)
for all r /∈ R~b,α(~f)(x)(λ).
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From the above we can find γ = γ(R, λ, ε) ∈ N and a measurable set E with |E| < ε
such that

B(0, R) ⊂ {x ∈ Rn : A1
~b,α,x,~f

(r) <M1
α,~b

(~f)(x)− γ−1

for all r /∈ R~b,α(~f)(x)(λ)} ∪ E.
(2.2)

Set

H1,j := {x ∈ Rn : |M1
α,~b

(~fj)(x)−M1
α,~b

(~f)(x)| ≥ (4γ)−1},

H2,j := {x ∈ Rn : |A1
~b,α,x, ~fj

(r)−A1
~b,α,x,~f

(r)| ≥ (2γ)−1 for all r /∈ R~b,α(~f)(x)(λ)},

H3,j := {x ∈ Rn : A1
~b,α,x, ~fj

(r) <M1
α,~b

(~fj)(x)− (4γ)−1 for all r /∈ R~b,α(~f)(x)(λ)}.

Clearly,

{x ∈ Rn : A1
~b,α,x,~f

(r) <M1
α,~b

(~f)(x)− γ−1 for all r /∈ R~b,α(~f)(x)(λ)} ⊂
3⋃
i=1

Hi,j .

Combining the above with (2.2) implies that

{x ∈ B(0, R);R~b,α(~fj)(x) * R~b,α(~f)(x)(λ)} ⊂ H1,j ∪H2,j ∪ E (2.3)

since H3,j ⊂ {x ∈ Rn : R~b,α(~fj)(x) ⊂ R~b,α(~f)(x)(λ)}. In view of (1.3), one has that
for any x ∈ Rn,

|M1
α,~b

(~fj)(x)−M1
α,~b

(~f)(x)| ≤
m∑
l=1

M1
α,~b

(~F jl )(x), (2.4)

where ~F jl = (f1, . . . , fl−1, fl,j−fl, fl+1,j , . . . , fm,j). By our assumption, there exists
N0 = N0(ε) ∈ N such that ‖fi,j−fi‖Lpi (Rn) < ε

γ and ‖fi,j‖Lpi (Rn) ≤ ‖fi‖Lpi (Rn) +1

for any j ≥ N0 and i = 1, 2, . . . ,m. These facts together with (1.2) and (2.4) imply
that

|H1,j | ≤
∣∣∣{x ∈ Rn;

m∑
l=1

M1
α,~b

(~F jl )(x) ≥ (4γ)−1
}∣∣∣

≤
m∑
l=1

|{x ∈ Rn;M1
α,~b

(~F jl )(x) ≥ (4mγ)−1}|

≤
m∑
l=1

(4mγ)q‖M1
α,~b

(~F jl )‖qLq(Rn)

≤ Cα,m,n,p1,...,pm(4mγ)q‖b1‖qL∞(Rn)

m∑
l=1

‖fl,j − fl‖qLpj (Rn)

×
l−1∏
µ=1

‖fµ‖qLpµ (Rn)
m∏

ν=l+1

‖fν‖qLpν (Rn)

≤ Cα,m,n,p1,...,pm‖b1‖
q
L∞(Rn)

m∏
µ=1

(1 + ‖fµ‖Lpµ (Rn))qεq,

(2.5)
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for any j ≥ N0. We also note that, as in (1.3),

|A1
~b,α,x, ~fj

(r)−A1
~b,α,x,~f

(r)| ≤
m∑
l=1

M1
α,~b

(~F jl )(x),

for all r ∈ [0,∞). It follows that

H2,j ⊂
{
x ∈ Rn :

m∑
l=1

M1
α,~b

(~F jl )(x) ≥ (4γ)−1
}
.

An argument similar to (2.5) gives that

|H2,j | ≤ Cα,m,n,p1,...,pm‖b1‖
q
L∞(Rn)

m∏
µ=1

(1 + ‖fµ‖Lpµ (Rn))qεq, (2.6)

for any j ≥ N0. Then we get from (2.3), (2.5) and (2.6) that

|{x ∈ B(0, R);R~b,α(~fj)(x) * R~b,α(~f)(x)(λ)}| ≤ Cα,m,n,p1,...,pm,b1,f1,...,fmε,

for any j ≥ N0. This leads to (2.1) and completes the proof.
Let A, B be subsets of Rn. The Hausdorff distance of A and B is defined by

π(A,B) := inf{δ > 0 : A ⊂ B(δ) and B ⊂ A(δ)}.

Applying Lemma 2.1 and an argument similar to that in the proof of [32, Corollary
2.3], we have the following.

Lemma 2.2. Let 1 < p1, . . . , pm < ∞, 1 ≤ q < ∞, 1/q =
∑m
i=1 1/pi − α/n

and ~b = (b1, . . . , bm) with each bj ∈ Lip(Rn). Let ~f = (f1, . . . , fm) with each
fj ∈ Lpj (Rn). Then for all R > 0, λ > 0 and l ∈ {1, 2, . . . , n}, we have

|{x ∈ B(0, R);π(R~b,α(~f)(x),R~b,α(~f)(x+ hel)) > λ}| → 0 as h→ 0. (2.7)

Proof. Fix l ∈ {1, 2, . . . , n}, λ > 0 and R > 0. For (2.7) it is enough to show

|{x ∈ B(0, R);R~b,α(~f)(x+ hel) * R~b,α(~f)(x)(λ)}| → 0 as h→ 0 (2.8)

and

|{x ∈ B(0, R);R~b,α(~f)(x) * R~b,α(~f)(x+ hel)(λ)}| → 0 as h→ 0. (2.9)

At first we prove (2.8). The proof of (2.8) is similar to that of Lemma 2.1. By

a change of variable, one has that R~b,α(~f)(x+ hel) = R~bl
τ(h)

,α(~f lτ(h))(x). Here

~blτ(h) = ((b1)lτ(h), . . . , (bm)lτ(h)),
~f lτ(h) = ((f1)lτ(h), . . . , (fm)lτ(h)).

Thus, (2.8) is equivalent to

|{x ∈ B(0, R);R~bl
τ(h)

,α(~f lτ(h))(x) * R~b,α(~f)(x)(λ)}| → 0 as h→ 0. (2.10)
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Let ε ∈ (0, 1). By the proof of Lemma 2.1, we can conclude that for any h ∈ R, the

set {x ∈ Rn;R~bl
τ(h)

,α(~f lτ(h))(x) * R~b,α(~f)(x)(λ)} is measurable. Moreover, there

exist γ = γ(R, λ, ε) ∈ N and a measurable set E with |E| < ε such that

B(0, R) ⊂ {x ∈ Rn : A1
~b,α,x,~f

(r) <M1
~b,α

~f(x)− γ−1

for all r /∈ R~b,α(~f)(x)(λ)} ∪ E.
(2.11)

Let h ∈ R and set

H1,h := {x ∈ Rn : |M1
~bl
τ(h)

,α
~f lτ(h)(x)−M1

~b,α
~f(x)| ≥ (4γ)−1},

H2,h := {x ∈ Rn : |A1
~bl
τ(h)

,α,x,~f l
τ(h)

(r)−A1
~b,α,x,~f

(r)| ≥ (2γ)−1

for some r /∈ R~b,α(~f)(x)(λ)},

H3,h := {x ∈ Rn : A1
~bl
τ(h)

,α,x,~f l
τ(h)

(r) <M1
~bl
τ(h)

,α
~f lτ(h)(x)− (4γ)−1

for all r /∈ R~b,α(~f)(x)(λ)}.

We note that

H3,h ⊂ {x ∈ Rn : R~bl
τ(h)

,α(~f lτ(h))(x) ⊂ R~b,α(~f)(x)(λ)} (2.12)

and

{x ∈ Rn : A1
~b,α,x,~f

(r) <M1
~b,α

~f(x)− γ−1 for all r /∈ R~b,α(~f)(x)(λ)}

⊂
3⋃
i=1

Hi,h.
(2.13)

It follows from (2.11)–(2.13) that

{x ∈ B(0, R);R~bl
τ(h)

,α(~f lτ(h))(x) * R~b,α(~f)(x)(λ)} ⊂ H1,h ∪H2,h ∪ E. (2.14)

We notice that

|M1
α,~bl

τ(h)

(~f lτ(h))(x)−M1
α,~b

(~f)(x)|

≤ sup
r>0

1

|B(x, r)|m−α/n
∣∣∣u(b1)lτ(h),r,(|f1|)lτ(h)(x)

m∏
i=2

ur,(|fi|)lτ(h)
(x)

−ub1,r,|f1|(x)

m∏
i=2

ur,|fi|(x)
∣∣∣

≤ sup
r>0

1

|B(x, r)|m−α/n
(
|u(b1)lτ(h),r,(|f1|)lτ(h)(x)− ub1,r,|f1|(x)|

m∏
i=2

ur,(|fi|)lτ(h)
(x)

+ub1,r,|f1|(x)
∣∣∣ m∏
i=2

ur,(|fi|)lτ(h)
(x)−

m∏
i=2

ur,|fi|(x)
∣∣∣).

Moreover, ∣∣∣ m∏
i=2

ur,(|fi|)lτ(h)
(x)−

m∏
i=2

ur,|fi|(x)
∣∣∣

≤
m∑
i=2

ur,|(fi)lτ(h)−fi|
(x)

m∏
ν=i+1

ur,(|fν |)lτ(h)
(x)

i−1∏
µ=2

ur,|fµ|(x),
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and

|u(b1)lτ(h),r,(|f1|)lτ(h)(x)−ub1,r,|f1|(x)| ≤ u(b1)lτ(h),r,|(f1)lτ(h)−f1|(x)+u(b1)lτ(h)−b1,r,|f1|
(x).

Hence, we have∣∣∣M1
α,~bl

τ(h)

(~f lτ(h))(x)−M1
α,~b

(~f)(x)
∣∣∣

≤M1
α,~bl

τ(h)

( ~Ah,l)(x) + 2‖b1‖Lip(Rn)Mα( ~Bh,l)(x)|h|+
m∑
i=2

M1
α,~b

( ~Di
l,h)(x) =: Θh(x),

where

~Ah,l = ((f1)lτ(h) − f1, (f2)lτ(h), . . . , (fm)lτ(h)),
~Bh,l = (f1, (f2)lτ(h), . . . , (fm)lτ(h)),

~Di
l,h = (f1, · · · , fi−1, (fi)lτ(h) − fi, (fi+1)lτ(h), · · · , (fm)lτ(h)).

Similarly we can conclude that

|A1
~bl
τ(h)

,α,x,~f l
τ(h)

(r)−A1
~b,α,x,~f

(r)| ≤ Θh(x),

for all r ∈ [0,∞). Hence, we have

|H1,h|+ |H2,h|

≤ 2|{x ∈ Rn : Θh(x) ≥ (4γ)−1}|

≤ 2|{x ∈ Rn : M1
α,~bl

τ(h)

( ~Ah,l)(x) ≥ (4(m+ 1)γ)−1}|

+2|{x ∈ Rn : 2‖b1‖Lip(Rn)Mα( ~Bh,l)(x)|h| ≥ (4(m+ 1)γ)−1}|

+2

m∑
i=2

|{x ∈ Rn : M1
α,~b

( ~Di
l,h)(x) ≥ (4(m+ 1)γ)−1}|.

(2.15)

Note that ‖(fi)lτ(h)−fi‖Lpi (Rn) → 0 as h→ 0 for all i = 1, 2, . . . ,m. Then there ex-

ists δ > 0 such that ‖(fi)lτ(h)−fi‖Lpl (Rn) <
ε
γ and ‖(fi)lτ(h)‖Lpl (Rn) ≤ ‖fi‖Lpi (Rn)+1

for any i = 1, 2, . . . ,m. The above facts together with (1.2), (1.4) and (2.15) imply
that

|H1,h|+ |H2,h|

≤ 2(4(m+ 1)γ)q‖M1
α,~bl

τ(h)

( ~Ah,l)‖qLq(Rn) + 2(4(m+ 1)γ)q
m∑
i=2

‖M1
α,~b

( ~Di
l,h)‖qLq(Rn)

+2(8(m+ 1)γ|h|‖b1‖Lip(Rn))q‖Mα( ~Bh,l)‖qLq(Rn)

≤ Cα,m,n,p1,...,pm‖b1‖
q
L∞(Rn)γ

q‖(f1)lτ(h) − f1‖
q
Lp1 (Rn)

m∏
i=2

‖(fi)lτ(h)‖
q
Lpi (Rn)

+Cα,m,n,p1,...,pm‖b1‖
q
Lip(Rn)‖f1‖

q
Lp1 (Rn)

m∏
i=2

‖(fi)lτ(h)‖
q
Lpi (Rn)ε

q

+Cα,m,n,p1,...,pmγ
q
m∑
i=2

i−1∏
µ=1

‖fµ‖qLpµ (Rn)‖(fi)
l
τ(h) − fi‖

q
Lpi (Rn)

×
m∏

ν=i+1

‖(fν)lτ(h)‖
q
Lpν (Rn)

≤ Cα,m,n,p1,...,pm,b1,f1,...,fmεq,
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when |h| < min{δ, γ−1ε}. Here the above constant Cα,m,n,p1,...,pm,b1,f1,...,fm is inde-
pendent of γ and ε. This together with (2.14) gives (2.10).

Next we prove (2.9). It is easy to see that R~b,α(~f)(x) = R~bl
τ(−h),α

(~f lτ(−h))(x +

hel). It follows that if |h| < 1, then

{x ∈ B(0, R);R~b,α(~f)(x) * R~b,α(~f)(x+ hel)(λ)}

⊂ {x ∈ B(0, R);R~bl
τ(−h),α

(~f lτ(−h))(x+ hel) * R~b,α(~f)(x+ hel)(λ)}

⊂ {x ∈ B(0, R+ 1);R~bl
τ(−h),α

(~f lτ(−h))(x) * R~b,α(~f)(x)(λ)}.

This together with (2.8) leads to (2.9).
In order to prove Theorem 1.1, we need to establish some formulas for the

derivatives of maximal commutators, which are the main ingredients of proving
Theorem 1.1.

Lemma 2.3. Let 0 ≤ α < mn, 1 < p1, . . . , pm < ∞, 1 ≤ q < ∞ and 1/q =∑m
i=1 1/pi − α/n. Let ~f = (f1, . . . , fm) with each fj ∈ W 1,pj (Rn) and ~b = (b1, . . . ,

bm) with each bj ∈ Lip(Rn). Let us fix l ∈ {1, 2, . . . , n}. Then

(i) For almost every x ∈ Rn if 0 < r ∈ R~b,α(~f)(x), then

DlM
1
~b,α

(~f)(x)

=
1

|B(x, r)|m−α/n
(∫

B(x,r)

Dl,yFb1(x, y)|f1|(y)dy

+

∫
B(x,r)

Dl,xFb1(x, y)|f1|(y)dy + ub1,r,Dl|f1|(x)
) m∏
i=2

ur,|fi|(x)

+
1

|B(x, r)|m−α/n
ub1,r,|f1|(x)

m∑
i=2

ur,Dl|fi|(x)
∏

2≤µ≤m,
µ6=i

ur,|fµ|(x),

(2.16)

where Fb1(x, y) = b1(x)− b1(y).

(i) For almost every x ∈ Rn if 0 ∈ R~b,α(~f)(x), then

DlM
1
~b,α

(~f)(x) = 0. (2.17)

Proof. Note that M1
~b,α

(~f) = M1
~b,α

( ~|f |), where ~|f | = (|f1|, . . . , |fm|). It was known

that |u| ∈ W 1,p(Rn) and |Dl|u||(x) = |Dlu|(x) for almost every x ∈ Rn and any
l ∈ {1, 2, . . . ,m} if u ∈ W 1,p(Rn) for any 1 < p < ∞. Hence, we may assume
without loss of generality that all fj ≥ 0.

Let A1 := {x ∈ Rn; |b1(x)| ≤ ‖b1‖L∞(Rn)} and A2 := {x ∈ Rn;Mf1(x) < ∞}.
Clearly, |Ac1| = 0. Note that Mf1 ∈ Lp1(Rn) because of f1 ∈ Lp1(Rn). Then
Mf1(x) < ∞ for almost every x ∈ Rn. So |Ac2| = 0. Let A3 be the set of all
x ∈ Rn for which x is the Lebesgue point of all f1, . . . , fm and Dlf1, . . . , Dlfm.
Clearly, |Ac3| = 0. Let A4 be the set of all x ∈ Rn for which b1 is differentiable at
x. Clearly, |Ac4| = 0. Let R > 0. By Lemma 2.1, there exists a sequence {sk}∞k=1,

sk > 0 and sk → 0 such that limk→∞ π(R~b,α(~f)(x),R~b,α(~f)(x + skel)) = 0 for al-

most every x ∈ B(0, R). Since fi ∈W 1,pi(Rn), we have ‖(fi)lτ(sk) − fi‖Lpi (Rn) → 0
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and ‖(fi)lsk −Dlfi‖Lpi (Rn) → 0 as k → ∞. Hence, we deduce that ‖M((fi)
l
τ(sk)

−
fi)‖Lpi (Rn) → 0 and ‖M((fi)

l
sk
− Dlfi)‖Lpi (Rn) → 0 as k → ∞. On the other

hand, we get by Theorem A that M1
α,~b

(~f) ∈ W 1,q(Rn). Thus, we have that

‖(M1
α,~b

(~f))lsk − DlM
1
α,~b

(~f)‖Lq(Rn) → 0 as k → ∞. Note that f1 ∈ Lp1(Rn) and

|(b1)lsk(x) −Dlb1(x)| ≤ 2‖b1‖Lip(Rn) for almost every x ∈ Rn. Applying the domi-

nated convergence theorem, one has that ‖|(b1)lsk −Dlb1|f1‖Lp1 (Rn) → 0 as k →∞.

It follows that ‖|M((b1)lsk −Dlb1|f1)‖Lp1 (Rn) → 0 as k →∞.
Let Fb1(x, y) = |b1(x) − b1(y)|. It is clear that Fb1(x, ·) ∈ Lip(Rn). Moreover,

‖Fb1(x, ·)‖Lip(Rn) ≤ ‖b1‖Lip(Rn) for all x ∈ Rn. By Remark 1.1, for a given x ∈ Rn
the function Fb1(x, ·) is differentiable for almost every y ∈ Rn. For almost every
y ∈ Rn, we have that |Dl,yFb1(x, y)| ≤ ‖b1‖Lip(Rn). Similarly we see that Fb1(·, y) ∈
Lip(Rn) and ‖Fb1(·, y)‖Lip(Rn) ≤ ‖b1‖Lip(Rn) for all y ∈ Rn. Next, for a fixed
y ∈ Rn the function Fb1(·, y) is differentiable almost everywhere. Moreover, for
almost every x ∈ Rn, we have that |Dl,xFb1(x, y)| ≤ ‖b1‖Lip(Rn). For convenience,
for given h ∈ R \ {0} we define

(Fx,b1)lh(y) =
1

h
(Fb1(x, y + hel)− Fb1(x, y)),

(Fy,b1)lh(x) =
1

h
(Fb1(x+ hel, y)− Fb1(x, y)).

From the above, we can conclude that there exist a subsequence {hk}∞k=1 of
{sk}∞k=1 and a measurable set A5 ⊂ B(0, R) with |B(0, R) \ A5| = 0 such that for
any x ∈ A5, the following hold:

(i) limk→∞(M1
α,~b

(~f))lhk(x) = DlM
1
α,~b

(~f)(x); limk→∞M((fi)
l
τ(hk)

− fi)(x) = 0,

limk→∞M((fi)
l
hk
−Dlfi)(x) = 0, limk→∞M(|(b1)lhk −Dlb1|f1)(x) = 0;

(ii) limk→∞ π(R~b,α(~f)(x),R~b,α(~f)(x+ hkel)) = 0;

(iii) lim
k→∞

(Fy,b1)lhk(x) = Dl,xFb1(x, y) for any y ∈ Rn.

Let

A6 := {x ∈ Rn : M1
α,~b

(~f)(x) =A1
~b,α,x,~f

(0) if 0 ∈ R~b,α(~f)(x)},

A7 :=
∞⋂
k=1

{x ∈ Rn : M1
α,~b

(~f)(x+ hkel) =A1
~b,α,x+hkel, ~f

(0) if 0 ∈ R~b,α(~f)(x+ hkel)},

A8 :=
{
x ∈ Rn; lim

k→∞
(Fy,b1)lhk(x) =Dl,xFb1(x, y) for a.e. y ∈ Rn

}
.

One can easily check that |Aci | = 0 for any i ∈ {6, 7, 8}. Set

A9 :=
{
x ∈ Rn; lim

r→0+

1

|B(x, r)|

∫
B(x,r)

|Dlb1(x)−Dlb1(y)|f1(y)dy = 0
}
.

Note that |Dlb1(x)−Dlb1(y)|f1(y)| ≤ 2‖b1‖Lip(Rn)f1(y) for any x ∈ A4 and almost
every y ∈ Rn. Then by the Lebesgue differentiation theorem we have |Ac9| = 0. So

|(
⋂9
i=1Ai)

c| = 0.

Let x ∈
⋂9
i=1Ai and r ∈ R~b,α(~f)(x). There exists rk ∈ R~b,α(~f)(x + hkel) such

that limk→∞ rk = r. We can write

DlM
1
~b,α

(~f)(x) = lim
k→∞

1

hk
(M1

α,~b
(~f)(x+ hkel)−M1

α,~b
(~f)(x)). (2.18)
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We consider two cases:

Case (i) (r > 0). In this case we may assume without loss of generality that
rk ∈ (0, 2r) for all k ≥ 1. At first we prove that

lim
k→∞

1

hk
(A1
~b,α,x+hkel, ~f

(rk)−A1
~b,α,x,~f

(rk))

=
1

|B(x, r)|m−α/n
(∫

B(x,r)

Dl,yFb1(x, y)f1(y)dy

+

∫
B(x,r)

Dl,xFb1(x, y)f1(y)dy + ub1,r,Dlf1(x)
) m∏
i=2

ur,fi(x)

+
1

|B(x, r)|m−α/n
ub1,r,f1(x)

m∑
i=2

ur,Dlfi(x)
∏

2≤µ≤m,
µ6=i

ur,fµ(x).

(2.19)

By a change of variable, it is not difficult to check that

A1
~b,α,x+hkel, ~f

(rk) =
1

|B(x, rk)|m−α/n
u(b1)lτ(hk)

,rk,(f1)lτ(hk)
(x)

m∏
i=2

urk,(fi)lτ(hk)
(x).

Note that

u(b1)lτ(hk)
,rk,(f1)lτ(hk)

(x)

m∏
i=2

urk,(fi)lτ(hk)
(x)− ub1,rk,f1(x)

m∏
i=2

urk,fi(x)

= (u(b1)lτ(hk)
,rk,(f1)lτ(hk)

(x)− ub1,rk,f1(x))

m∏
i=2

urk,(fi)lτ(hk)
(x)

+ub1,rk,f1(x)
( m∏
i=2

urk,(fi)lτ(hk)
(x)−

m∏
i=2

urk,fi(x)
)
.

It follows that

1

hk
(A1
~b,α,x+hkel, ~f

(rk)−A1
~b,α,x,~f

(rk))

≤ 1

|B(x, rk)|m−α/n
u(b1)lτ(hk)

,rk,(f1)lτ(hk)
(x)− ub1,rk,f1(x)

hk

m∏
i=2

urk,(fi)lτ(hk)
(x)

+
1

|B(x, rk)|m−α/n
ub1,rk,f1(x)

1

hk

( m∏
i=2

urk,(fi)lτ(hk)
(x)−

m∏
i=2

urk,fi(x)
)
.

(2.20)

Fix i ∈ {1, . . . ,m}. Noting that

|urk,fi(x)− ur,fi(x)| ≤
∫
Rn
fi(y)|χB(x,rk)(y)− χB(x,r)(y)|dy

≤
∫
B(x,2r)

fi(y)|χB(x,rk)(y)− χB(x,r)(y)|dy.

This together with the fact that fi ∈ L1(B(x, 2r)) and the dominated convergence
theorem implies that

lim
k→∞

urk,fi(x) = ur,fi(x). (2.21)

Similarly we can obtain

lim
k→∞

ub1,rk,f1(x) = ub1,r,f1(x). (2.22)
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Observe that

|urk,(fi)lτ(hk)
(x)− ur,fi(x)|

≤ |urk,(fi)lτ(hk)
(x)− urk,fi(x)|+ |urk,fi(x)− ur,fi(x)|

≤ |B(x, rk)|M((fi)
l
τ(hk)

− fi)(x) + |urk,fi(x)− ur,fi(x)|.

This together with (2.21) leads to

lim
k→∞

urk,(fi)lτ(hk)
(x) = ur,fi(x). (2.23)

Note that Dlfi ∈ Lpi(B(x, 2r)). An argument similar to (2.21) gives that

lim
k→∞

urk,Dlfi(x) = ur,Dlfi(x). (2.24)

In view of (2.24), one has

|urk,(fi)lhk (x)− ur,Dlfi(x)|

≤ |urk,(fi)lhk (x)− urk,Dlfi(x)|+ |urk,Dlfi(x)− ur,Dlfi(x)|

≤ |B(x, rk)|M((fi)
l
hk
−Dlfi)(x) + |urk,Dlfi(x)− ur,Dlfi(x)|

→ 0 as k →∞.

(2.25)

Hence, we get from (2.21), (2.23) and (2.25) that

lim
k→∞

1

hk

( m∏
i=2

urk,(fi)lτ(hk)
(x)−

m∏
i=2

urk,fi(x)
)

= lim
k→∞

m∑
i=2

urk,(fi)lhk
(x)

i−1∏
µ=2

urk,fµ(x)

m∏
ν=i+1

urk,(fν)lτ(hk)
(x)

=

m∑
i=2

ur,Dlfi(x)

i−1∏
µ=2

ur,fµ(x)

m∏
ν=i+1

ur,fν (x).

(2.26)

Next we prove that

lim
k→∞

u(b1)lτ(hk)
,rk,(f1)lτ(hk)

(x)− ub1,rk,f1(x)

hk

=

∫
B(x,rk)

Dl,yFb1(x, y)f1(y)dy +

∫
B(x,rk)

Dl,xFb1(x, y)f1(y)dy

+ub1,rk,(f1)lhk
(x).

(2.27)

We have

u(b1)lτ(hk)
,rk,(f1)lτ(hk)

(x)− ub1,rk,f1(x)

hk

=

∫
B(x,rk)

(Fx,b1)lhk(y)(f1)lτ(hk)(y)dy

+

∫
B(x,rk)

(Fy+hkel,b1)lhk(x)(f1)lτ(hk)(y)dy + ub1,rk,(f1)lhk
(x).

(2.28)
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Note that

|ub1,rk,(f1)lhk (x)− ub1,r,Dlf1(x)|

≤ ub1,rk,|(f1)lhk−Dlf1|(x) + |ub1,rk,Dlf1(x)− ub1,r,Dlf1(x)|

≤ 2‖b1‖Lip(Rn)|B(x, rk)|1−α/nMα((f1)lhk −Dlf1)(x)

+2‖b1‖Lip(Rn)
∫
B(x,2r)

|Dlf1(y1)||χB(x,rk)(y1)− χB(x,r)(y1))|dy1.

By the Hölder’s inequality, we see that Dlf1 ∈ L1(B(x, 2r)). Applying the domi-
nated convergence theorem we have

lim
k→∞

ub1,rk,(f1)lhk
(x) = ub1,r,Dlf1(x). (2.29)

Note that∣∣∣ ∫
B(x,rk)

(Fx,b1)lhk(y)(f1)lτ(hk)(y)dy −
∫
B(x,r)

Dl,yFb1(x, y)f1(y)dy
∣∣∣

≤
∫
B(x,rk)

|(Fx,b1)lhk(y)||(f1)lτ(hk)(y)− f1(y)|dy

+

∫
B(x,rk)

|(Fx,b1)lhk(y)−Dl,yFb1(x, y)|f1(y)dy.

(2.30)

It is clear that ∫
B(x,rk)

|(Fx,b1)lhk(y)||(f1)lτ(hk)(y)− f1(y)|dy

≤ ‖b1‖Lip(Rn)|B(x, rk)|M((f1)lτ(hk) − f1)(x).

This leads to

lim
k→∞

∫
B(x,rk)

|(Fx,b1)lhk(y)||(f1)lτ(hk)(y)− f1(y)|dy = 0. (2.31)

Note that (Fx,b1)lhk(y) − Dl,yFb1(x, y) → 0 as k → ∞ for almost every y ∈ Rn.

Moreover, we have that |(Fx,b1)lhk(y) − Dl,yFb1(x, y)| ≤ 2‖b1‖Lip(Rn) for almost

every y ∈ Rn. Since f1 ∈ L1(B(x, 2r)), these facts together with the dominated
convergence theorem imply

lim
k→∞

∫
B(x,r)

|(Fx,b1)lhk(y)−Dl,yFb1(x, y)|f1(y)dy = 0. (2.32)

The same arguments give∣∣∣ ∫
B(x,rk)

|(Fx,b1)lhk(y)−Dl,yFb1(x, y)|f1(y)dy

−
∫
B(x,r)

|(Fx,b1)lhk(y)−Dl,yFb1(x, y)|f1(y)dy
∣∣∣

≤
∫
Rn
|(Fx,b1)lhk(y)−Dl,yFb1(x, y)||f1(y)(χB(x,rk)(y)− χB(x,r)(y))|dy

≤ 2‖b1‖Lip(Rn)
∫
B(x,2r)

|f1(y)(χB(x,rk)(y)− χB(x,r)(y))|dy → 0 as k →∞.
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This together with (2.30)–(2.32) implies that

lim
k→∞

∫
B(x,rk)

(Fx,b1)lhk(y)(f1)lτ(hk)(y)dy =

∫
B(x,r)

Dl,yFb1(x, y)f1(y)dy. (2.33)

In view of (2.28), (2.29) and (2.33), for (2.27) it suffices to show that

lim
k→∞

∫
B(x,rk)

(Fy+hkel,b1)lhk(x)(f1)lτ(hk)(y)dy

=

∫
B(x,r)

Dl,xFb1(x, y)f1(y)dy.

(2.34)

We get by a change of variable that∫
B(x,rk)

(Fy+hkel,b1)lhk(x)(f1)lτ(hk)(y)dy =

∫
B(x+hkel,rk)

(Fy,b1)lhk(x)f1(y)dy. (2.35)

Note that limk→∞(Fy,b1)lhk(x) = Dl,xFb1(x, y) and |(Fy,b1)lhk(x)−Dl,xFb1(x, y)| ≤
2‖b1‖Lip(Rn) for almost every x ∈ Rn. We also note that f1 ∈ L1(B(x, r)). Applying
the dominated convergence theorem, one has

lim
k→∞

∫
B(x,r)

(Fy,b1)lhk(x)f1(y)dy =

∫
B(x,r)

Dl,xFb1(x, y)f1(y)dy. (2.36)

We may assume without loss of generality that hk ≤ r for all k ≥ 1. Note that
B(x + hkel, rk) ⊂ B(x, 3r) and |(Fy,b1)lhk(x)| ≤ ‖b1‖Lip(Rn). An application of the
dominated convergence theorem shows that

∣∣∣ ∫
B(x+hkel,rk)

(Fy,b)
l
hk

(x)f1(y)dy −
∫
B(x,r)

(Fy,b1)lhk(x)f1(y)dy
∣∣∣

≤ ‖b1‖Lip(Rn)
∫
B(x,3r)

f1(y)|χB(x+hkel,rk)(y)− χB(x,r)(y)|dy → 0 as k →∞.

This together with (2.35) and (2.36) implies (2.34). Combining (2.20), (2.23), (2.24),
(2.25) with (2.26) leads to (2.19).

It follows from (2.18) and (2.19) that

DlM
1
α,~b

(~f)(x)

≤ 1

|B(x, r)|m−α/n
(∫

B(x,r)

Dl,yFb1(x, y)f1(y)dy

+

∫
B(x,r)

Dl,xFb1(x, y)f1(y)dy + ub1,r,Dlf1(x)
) m∏
i=2

ur,fi(x)

+
1

|B(x, r)|m−α/n
ub1,r,f1(x)

m∑
i=2

ur,Dlfi(x)
∏

2≤µ≤m,
µ6=i

ur,fµ(x).

(2.37)
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On the other hand, we note that

1

hk
(A1
~b,α,x+hkel, ~f

(r)−A1
~b,α,x,~f

(r))

=
1

hk

1

|B(x, r)|m−α/n
(
u(b1)lτ(hk)

,r,(f1)lτ(hk)
(x)

m∏
i=2

ur,(fi)lτ(hk)
(x)

−ub1,r,f1(x)

m∏
i=2

ur,fi(x)
)

=
1

|B(x, r)|m−α/n
u(b1)lτ(hk)

,r,(f1)lτ(hk)
(x)− ub1,r,f1(x)

hk

m∏
i=2

ur,(fi)lτ(hk)
(x)

+
1

|B(x, r)|m−α/n
ub1,r,f1(x)

1

hk

( m∏
i=2

ur,(fi)lτ(hk)
(x)−

m∏
i=2

ur,fi(x)
)
.

This together with (2.18) and the arguments similar to those used to derive (2.37)
implies that

DlM
1
α,~b

(~f)(x)

≥ 1

|B(x, r)|m−α/n
(∫

B(x,r)

Dl,yFb1(x, y)f1(y)dy

+

∫
B(x,r)

Dl,xFb1(x, y)f1(y)dy + ub1,r,Dlf1(x)
) m∏
i=2

ur,fi(x)

+
1

|B(x, r)|m−α/n
ub1,r,f1(x)

m∑
i=2

ur,Dlfi(x)
∏

2≤µ≤m,
µ6=i

ur,fµ(x).

(2.38)

In view of (2.37) and (2.38), we have that (2.16) holds for almost every x ∈ BR.

Case (ii) (r = 0). In this case we have M1
α,~b

(~f)(x) = A1
~b,α,x,~f

(0) = 0. We get from

(2.18) that

DlM
1
α,~b

(~f)(x) = lim
k→∞

1

hk
M1
α,~b

(~f)(x+ hkel) = lim
k→∞

1

hk
A1
~b,α,x+hkel, ~f

(rk). (2.39)

If rk = 0 for infinitely many k, then we get from (2.39) that DlM
1
α,~b

(~f)(x) = 0.

In what follows, we may assume without loss of generality that rk ∈ (0, 1) for all

k ≥ 1. By the definition of M1
α,~b

(~f), we can conclude that one the the following

conditions holds:

(a) there exists i ∈ {2, . . . ,m} such that fi(y) = 0 for almost every y ∈ Rn;

(b) |b1(x)− b1(y)|f1(y) = 0 for almost every y ∈ Rn.

Now we consider two cases:

(i) If case (a) holds, then we may assume that f2(y) = 0 for almost every y ∈ Rn.
Then we have

urk,(f2)lτ(hk)
(x)

hk
=

1

hk

∫
B(x,rk)

((f2)lτ(hk)(y)− f2(y))dy = urk,(f2)lhk
(x).
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Write

1

hk
A1
~b,α,x+hkel, ~f

(rk)

=
1

|B(x, rk)|m−α/n
1

hk
u(b1)lτ(hk)

,rk,(f1)lτ(hk)
(x)

m∏
i=2

urk,(fi)lτ(hk)
(x)

= |B(x, rk)|α/n
( 1

|B(x, rk)|
u(b1)lτ(hk)

,rk,(f1)lτ(hk)
(x)
)

×
( 1

|B(x, rk)|
urk,(f2)lhk

(x)
) m∏
i=3

( 1

|B(x, rk)|
urk,(fi)lτ(hk)

(x)
)
.

(2.40)

Let us fix i ∈ {1, 2, . . . ,m}. We have

1

|B(x, rk)|
urk,(fi)lhk

(x)

≤ 1

|B(x, rk)|

∫
B(x,rk)

|(fi)lhk(y)−Dlfi(y)|dy +
1

|B(x, rk)|

∫
B(x,rk)

|Dlfi(y)|dy

≤M((fi)
l
hk
−Dlfi)(x) +

1

|B(x, rk)|

∫
B(x,rk)

|Dlfi(y)|dy.

It follows that

lim
k→∞

1

|B(x, rk)|
urk,(fi)lhk

(x) = |Dlfi(x)|. (2.41)

Similarly it holds that

lim
k→∞

1

|B(x, rk)|
urk,(fi)lτ(hk)

(x) = fi(x). (2.42)

Observe that

1

|B(x, rk)|
u(b1)lτ(hk)

,rk,(f1)lτ(hk)
(x) ≤ ‖b1‖Lip(Rn)rk

1

|B(x, rk)|
urk,(f1)lτ(hk)

(x).

It follows that

lim
k→∞

1

|B(x, rk)|
u(b1)lτ(hk)

,rk,(f1)lτ(hk)
(x) = 0. (2.43)

In view of (2.40)-(2.43), one has

lim
k→∞

1

hk
A1
~b,α,x+hkel, ~f

(rk) = 0. (2.44)

(ii) If case (b) holds, then we have

1

|B(x, rk)|
1

hk
u(b1)lτ(hk)

,rk,(f1)lτ(hk)
(x)

=
1

|B(x, rk)|
1

hk

∫
B(x,rk)

|(b1)lτ(hk)(x)− (b1)lτ(hk)(y)|(f1)lτ(hk)(y)dy

=
1

|B(x, rk)|
1

hk

∫
B(x,rk)

|(b1)lτ(hk)(x)− (b1)lτ(hk)(y)|((f1)lτ(hk)(y)− f1(y))dy

+
1

|B(x, rk)|
1

hk

∫
B(x,rk)

|(b1)lτ(hk)(x)− (b1)lτ(hk)(y)− (b1(x)− b1(y))|f1(y)dy

≤ ‖b1‖Lip(Rn)|rk|
1

|B(x, rk)|
urk,(f1)lhk

(x)

+
1

|B(x, rk)|

∫
B(x,rk)

|(b1)lhk(x)− (b1)lhk(y)|f1(y)dy.
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Observe that

1

|B(x, rk)|

∫
B(x,rk)

|(b1)lhk(x)− (b1)lhk(y)|f1(y)dy

≤ 1

|B(x, rk)|

∫
B(x,rk)

|(b1)lhk(x)− (b1)lhk(y)− (Dlb1(x)−Dlb1(y))|f1(y)dy

+
1

|B(x, rk)|

∫
B(x,rk)

|Dlb1(x)−Dlb1(y)|f1(y)dy

≤ |(b1)lhk(x)−Dlb1(x)|Mf1(x) +M(((b1)lhk −Dlb1)f1)(x)

+
1

|B(x, rk)|

∫
B(x,rk)

|Dlb1(x)−Dlb1(y)|f1(y)dy

→ 0 as k →∞.

This together with (2.41) leads to

lim
k→∞

1

|B(x, rk)|
1

hk
u(b1)lτ(hk)

,rk,(f1)lτ(hk)
(x) = 0. (2.45)

It follows from (2.42) and (2.45) that

lim
k→∞

1

|B(x, rk)|m−α/n
1

hk
u(b1)lτ(hk)

,rk,(f1)lτ(hk)
(x)

m∏
i=2

urk,(fi)lτ(hk)
(x) = 0.

Hence,

lim
k→∞

1

hk
A1
~b,α,x+hkel, ~f

(rk) = 0.

Combining this with (2.39) leads to

DlM
1
α,~b

(~f)(x) = 0.

Since R was arbitrary and |B(0, R) \ (
⋂9
i=1Ai)| = 0. This proves Lemma 2.3.

3. Proof of Theorem 1.1

In this section we present the proof of Theorem 1.1.

Proof. Let ~b = (b1, . . . , bm) with each bj ∈ Lip(Rn) and ~f = (f1, . . . , fm) with
each fj ∈ W 1,pj (Rn), where 0 ≤ α < mn, 1 < p1, . . . , pm < ∞, 1 ≤ q < ∞
and 1/q =

∑m
i=1 1/pi − α/n. For any j ≥ 1 let fj = (f1,j , · · · , fm,j) be such

that ‖fi,j − fi‖W 1,pi (Rn) → 0 as j → ∞. By Remark 1.1 we see that ‖M1
α,~b

(~fj) −
M1
α,~b

(~f)‖Lq(Rn) → 0 as k →∞. Hence, to prove Theorem 1.1, it is enough to show

that
‖DlM

1
α,~b

(~fj)−DlM
1
α,~b

(~f)‖Lq(Rn) → 0 as j →∞ (3.1)

for any l = 1, 2, . . . , n.
We only prove (3.1) for l = 1 since other cases can be proved similarly. We may

assume without loss of generality that all fi,j ≥ 0 and fi ≥ 0.
For convenience, we set Fb1(x, y) = |b1(x) − b1(y)|. It was pointed out in the

proof of Lemma 2.3 that Fb1(x, ·) ∈ Lip(Rn) and ‖Fb1(x, ·)‖Lip(Rn) ≤ ‖b1‖Lip(Rn)
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for all x ∈ Rn. Moreover, for almost every y ∈ Rn, we have that |D1,yFb1(x, y)| ≤
‖b1‖Lip(Rn). Fb1(·, y) ∈ Lip(Rn) and ‖Fb1(·, y)‖Lip(Rn) ≤ ‖b1‖Lip(Rn) for all y ∈ Rn.
Moreover, for almost every x ∈ Rn, we have that |D1,xFb1(x, y)| ≤ ‖b1‖Lip(Rn). For
convenience, for a fixed x ∈ Rn and ~g = (g1, . . . , gm) with each gj ∈W 1,pj (Rn), we
define the function B~b,α,x,g : [0,∞)→ R by B~b,α,x,~g(0) = 0, and for r ∈ (0,∞),

B~b,α,x,~g(r) =
1

|B(x, r)|m−α/n
(∫

B(x,r)

Dl,yFb1(x, y)g1(y)dy

+

∫
B(x,r)

Dl,xFb1(x, y)g1(y)dy + ub1,r,Dl|f1|(x)
) m∏
i=2

ur,gi(x)

+
1

|B(x, r)|m−α/n
ub1,r,g1(x)

m∑
i=2

ur,Dlgi(x)
∏

2≤µ≤m,
µ6=i

ur,gµ(x).

We define the operator Tα by

Tα(~g)(x) = 2‖b1‖Lip(Rn)Mα(~g)(x) +

m∑
i=1

M1
α,~b

(~gi)(x),

where ~gi = (f1, f2, . . . , fi−1, Dlfi, fi+1, . . . , fm). By the properties of Fb1 , we have
that

B~b,α,x,~g(r) ≤ Tα(~g)(x), (3.2)

for almost every x ∈ Rn. By Minkowski’s inequality and Remark 1.2,

‖Tα(~g)‖Lq(Rn)

≤ 2‖b1‖Lip(Rn)‖Mα(~g)‖Lq(Rn) +

m∑
i=1

‖M1
α,~b

(~gi)‖Lq(Rn)

≤ Cα,m,n,p1,...,pm‖b1‖Lip(Rn)
m∏
j=1

‖fj‖Lpj (Rn)

+Cα,m,n,p1,...,pm‖b1‖L∞(Rn)

m∑
i=1

‖Dlfi‖Lpi (Rn)
∏

1≤µ≤m,
µ6=i

‖fµ‖Lpµ (Rn)

≤ Cα,m,n,p1,...,pm‖b1‖Lip(Rn)
m∏
j=1

‖fj‖W 1,pj (Rn).

(3.3)

Let ε ∈ (0, 1). There exists R > 0 such that ‖Tα(~f)‖Lq((B(0,R))c) < ε. By the
absolute continuity of integration, there exists η > 0 such that for any measurable
subset A ⊂ B(0, R) with |A| < η we have ‖Tα(~f)‖Lq(A) < ε. Observe that for almost
every x ∈ Rn, the function B~b,α,x,~f is uniformly continuous on [0,∞). Hence, for
almost every x, we can find δx > 0 such that

|B~b,α,x,~f (r1)− B~b,α,x,~f (r2)| < |B(0, R)|−1/qε whenever |r1 − r2| < δx.

It follows that

B(0, R) :=
( ∞⋃
j=1

{
x ∈ B(0, R); δx >

1

j

})
∪ E,
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where |E| = 0. Hence, there exists δ > 0 such that

|{x ∈ B(0, R) : |B~b,α,x,~f (r1)− B~b,α,x,~f (r2)|

≥ |B(0, R)|−1/qε for some r1, r2 with |r1 − r2| < δ}| =: |G1| <
η

2
.

(3.4)

In view of Lemma 2.1, we can find a positive integer N1 such that

|{x ∈ B(0, R);R~b,α(~fj)(x) * R~b,α(~f)(x)(δ)}| =: |Hj | <
η

2
, ∀j ≥ N1.

Applying Lemma 2.3, we have that for almost every x ∈ Rn,

|D1M
1
α,~b

(~fj)(x)−D1M
1
α,~b

(~f)(x)|

= |B~b,α,x,~fj (r1)− B~b,α,x,~f (r2)|

≤ |B~b,α,x,~fj (r1)− B~b,α,x,~f (r1)|+ |B~b,α,x,~f (r1)− B~b,α,x,~f (r2)|

(3.5)

for any r1 ∈ R~b,α(~fj)(x) and r2 ∈ R~b,α(~f)(x).

For almost every x ∈ B(0, R) \ (G1 ∩ Hj), there exist r1 ∈ R~b,α(~fj)(x) and

r2 ∈ R~b,α(~f)(x) such that |r1 − r2| < δ and

|B~b,α,x,~f (r1)− B~b,α,x,~f (r2)| < |B(0, R)|−1/qε. (3.6)

On the other hand, for any r ∈ [0,∞) and almost every x ∈ Rn,

|B~b,α,x,~fj (r)− B~b,α,x,~f (r)|

≤ 2‖b1‖Lip(Rn)
m∑
l=1

Mα(~F jl )(x) +

m∑
i=2

M1
α,~b

(~Gi)(x) + M1
α,~b

(~Pi)(x)

+

m∑
i=2

( i−1∑
µ=2

M1
α,~b

( ~Hi,µ)(x) + M1
α,~b

(~Ii)(x) +

i−1∑
µ=2

M1
α,~b

( ~Ji,µ)(x)
)

=: Γj(x),

(3.7)

where

~F jl = (f1, . . . , fl−1, fl,j − fl, fl+1,j , . . . , fm,j);

~Gi = (f1,j − f1, f2,j , . . . , fi−1,j , Dlfi,j , fi+1,j , . . . , fm,j);

~Pi = (Dl(f1,j − f1), f2,j , . . . , fm,j);

~Hi,µ = (f1, f2, . . . , fµ−1, fµ,j − fµ, fµ+1,j , . . . , fi−1,j , Dlfi,j , fi+1,j , . . . , fm,j);

~Ii = (f1, . . . , fi−1, Dl(fi,j − fi), fi+1,j , . . . , fm,j);

~Ji,µ = (f1, . . . , fi−1, Dlfi, fi+1, . . . , fµ−1, fµ,j − fµ, fµ+1,j , . . . , fm,j).

By our assumption, there exists a positive integer N2 such that sup1≤i≤m ‖fi,j −
fi‖W 1,pi (Rn) < ε and sup1≤i≤m ‖fi,j‖W 1,pi (Rn) ≤

∏m
i=1(‖fi‖W 1,pi (Rn) + 1) for any
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j ≥ N2. By (1.2), (1.4) and Minkowski’s inequality, we have

‖Γj‖Lq(Rn)

≤ 2‖b1‖Lip(Rn)
m∑
l=1

‖Mα(~F jl )‖Lq(Rn) +

m∑
i=2

‖M1
α,~b

(~Gi)‖Lq(Rn)

+‖M1
α,~b

(~Pi)‖Lq(Rn) +

m∑
i=2

( i−1∑
µ=2

‖M1
α,~b

( ~Hi,µ)‖Lq(Rn)

+‖M1
α,~b

(~Ii)‖Lq(Rn) +

i−1∑
µ=2

‖M1
α,~b

( ~Ji,µ)‖Lq(Rn)
)

≤ Cα,m,n,p1,...,pm‖b1‖Lip(Rn)
m∑
l=1

‖fl,j − fl‖W 1,pl (Rn)

×
∏

1≤µ≤m,
µ6=l

(‖fµ,j‖W 1,pµ (Rn) + ‖fµ‖W 1,pµ (Rn))

≤ Cα,m,n,p1,...,pm, ~f‖b1‖Lip(Rn)ε,

(3.8)

for any j ≥ N2. In view of (3.2) and (3.5)–(3.7), we have that for almost every
x ∈ Rn,

|D1M
1
α,~b

(~fj)(x)−D1M
1
α,~b

(~f)(x)|

≤ Γj(x) + |B(0, R)|−1/qεχB(0,R)\(G1∪Hj)(x)

+2Tα(f)(x)χG1∪Hj∪(B(0,R))c(x).

(3.9)

By (3.8), (3.9) and Minkowski’s inequality, we have that for any j ≥ max{N1, N2},

‖D1M
1
α,~b

(~fj)−D1M
1
α,~b

(~f)‖Lq(Rn)

≤ ‖Γj‖Lq(Rn) + ‖|B(0, R)|−1/qε‖Lq(B(0,R)) + 2‖Tα(f)‖Lq(G1∪Hj∪(B(0,R))c)

≤ Cα,m,n,p1,...,pm, ~f,b1ε.

Here we have used the fact that |G1 ∪Hj | < η for j ≥ N1. So (3.1) holds for i = 1.
Theorem 1.1 is now proved.
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