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Abstract In this paper, we use a monotone iterative technique in the pres-
ence of lower and upper solutions to discuss the existence of solutions for the
initial value problem of impulsive evolution equations with infinite delay in an
ordered Banach space X. Finally, we give an example to illustrate our main
results.
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1. Introduction

Impulsive differential equations arising from real world problems are used to describe
the dynamics of processes in which sudden, discontinuous jumps occur and such
processes occur in biology, physics, engineering, etc. Due to their significance, they
have attracted much attention in the last decade, we refer the reader to [2,11,14,21,
29] and the references therein for more details. However, many papers on impulsive
differential equations do not consider the influence of delay, see [6, 8, 9, 17, 28] and
the references therein. A large number of theoretical and practical studies show
that the simultaneous introduction of impulsive and delay into a system can better
describe the interaction and influence of many factors inside the system, and better
depict the real world, see [22, 25, 33]. Of course, such systems are more complex
and generally more difficult to study theoretically. When the length of the delay is
close to infinity, the delay evolution equation transfers to the infinite delay evolution
equation. In [13], the author studied the existence and regularity of mild solutions
for a class of abstract neutral functional differential equations with infinite delay by
using fraction power theory and fixed point theorem. In 2022, by using the theory of
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resolvent operators for linear neutral integro-differential evolution systems, Huang
and Fu [20] investigated optimal control and time optimal control for a neutral
integro-differential evolution system with infinite delay. The theoretical methods
of infinite delay and finite delay are very different. The idea of studying finite
delay in the space with the supremum norm is no longer applicable to infinite delay.
Therefore, we introduce to the study of impulsive differential equations with infinite
delay an abstract admissible phase space which was initiated by Hale and Kato [18].
For the general theory and applications of such equations with infinite delay we refer
the interested reader to the papers [1,4,5,12,15,26,31,32,35,36] and the references
therein.

Inspired by the above mentioned aspects, in this paper we will use the monotone
iterative technique to consider the existence of mild solutions for impulsive evolution
equations with infinite delay:

u′(t) +Au(t) = f(t, u(t), ut), t ∈ I = [0, b], t 6= tk,

∆u|t=tk = Jk(u(tk)), k = 1, 2, · · · ,m,

u0 = ϕ ∈ B,

(1.1)

where A : D(A) ⊂ X → X is a closed linear operator and −A generates a C0-
semigroup T (t)(t ≥ 0) on X, b > 0 is a constant, f : [0, b] × X × B → X is a
Carathéodory continuous function, 0 < t1 < t2 < · · · < tm < b, Jk ∈ C(X,X),
k = 1, 2, · · · ,m. ut : (−∞, 0] → X, ut(τ) = u(t + τ) belongs to an abstract phase
space B, ∆u|t=tk = u(t+k ) − u(t−k ), u(t+k ) and u(t−k ) represent the right and left
limits of u(t) at t = tk, respectively.

The monotone iterative technique in the presence of upper and lower solutions
for nonlinear differential equations has received a lot of attention. Li and Liu [24],
Guo and Liu [17] investigated the existence of extremal solutions for the initial
value problem of the integro-differential equation when the nonlinear term satisfies
a monotonicity condition and a noncompactness measure condition. The iterative
method has been extended to evolution equations; see Chen and Li [8, 9], Li and
Gou [23] for evolution equations with impulsive, and Zhang, Chen and Li [34] for
retarded evolution equations with nonlocal and impulsive conditions in Banach
spaces. We should mention that Chaudhary and Dwijendar [7] investigated neutral
fractional differential equations with infinite delay without impulsive effects by using
the monotone iterative method. However we have not seen any relevant papers
that study infinite delay evolution equations with impulsive condition applying the
monotone iterative method. In this paper the nonlinear term f satisfies a monotone
condition and a noncompactness measure condition and we use a monotone iterative
method to discuss the existence of solutions for the impulsive evolution equations
with infinite delay (1.1).

This paper is organized as follows. In section 2, we define the admissible phase
space B and recall some basic definitions and lemmas. In section 3, we investigate
the existence of extremal solutions for the initial value problem of impulsive evolu-
tion equation with infinite delay (1.1) with a compact semigroup. In section 4, we
investigate the existence and uniqueness of solutions for the initial value problem of
impulsive evolution equation with infinite delay (1.1) with a noncompact semigroup.
Lastly, in section 5, we present an example to illustrate the main theorem.
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2. Preliminaries

In this paper, we assume that X is an ordered Banach space with norm ‖ · ‖ and
partial order “ ≤ ”, whose positive cone P = {u ∈ X | u ≥ θ} (θ is the zero element
of X) is normal with normal constant N .

For impulsive differential equations with infinite delay, we will adopt an ax-
iomatic definition of the phase space introduced in [18].

Definition 2.1. The phase space B is a linear space of functions (−∞, 0] into X
endowed with a norm ‖ · ‖B. We will assume that B satisfies the following axioms:

(A) for b > 0, if u : (−∞, σ + b]→ X is continuous on [σ, σ + b] and uσ ∈ B, then
for every t ∈ [σ, σ + b] the following conditions hold:

(i) ut ∈ B;

(ii) ‖u(t)‖ ≤ H‖ut‖B;

(iii) ‖ut‖B ≤ K(t− σ) sup{‖u(s)‖ : σ ≤ s ≤ t}+ P (t− σ)‖uσ‖B,

where H > 0 is a constant, K,P : [0,+∞) → [0,+∞), K(·) is continuous,
P (·) is locally bounded and K(·), P (·) are independent of u(·).

(A1) For the function u(·) in (A), the function t→ ut is continuous from [σ, σ + b]
into B.

(B) The space B is complete.

Consider the space

Bb ={u : (−∞, b]→ X | u is continuous at t 6= tk,

u(t−k ) = u(tk), u(t+k ) exists, k = 1, 2, ...,m, and u0 = ϕ}

endowed with the semi-norm

‖u‖Bb
= ‖u0‖B + sup

t∈I
‖u(t)‖.

Now, Bb is also an ordered Banach space with the partial order “ ≤ ” induced by
the positive cone KBb

= {u ∈ Bb | u(t) ≥ θ, t ∈ (−∞, b]}. KBb
is also normal with

the same normal constant N . For v, w ∈ Bb with v ≤ w, we use [v, w] to denote
the order interval

{u ∈ Bb | v ≤ u ≤ w}

in Bb, and [v(t), w(t)] to denote the order interval

{x ∈ X | v(t) ≤ x ≤ w(t), t ∈ (−∞, b]}

in X.

Let I0 = [0, t1], Ik = (tk, tk+1], I ′k = [tk, tk+1], k = 1, 2, · · · ,m, tm+1 = b, I ′ =
(−∞, b]\{t1, t2, · · · , tm}, I ′′ = (−∞, b]\{0, t1, t2, · · · , tm}. An abstract function
u ∈ Bb ∩ C1(I ′′, X) ∩ C(I ′, X1) (X1 is the Banach space endowed with the norm
‖·‖1 = ‖·‖+‖A·‖) is called the solution of the initial value problem of the impulsive
evolution equation with infinite delay (1.1), if u(t) satisfies(1.1).
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Definition 2.2. If the abstract function u ∈ Bb ∩ C1(I ′′, X) ∩ C(I ′, X1) satisfies
u′(t) +Au(t) ≤ f(t, u(t), ut), t ∈ I = [0, b], t 6= tk,

∆u|t=tk ≤ Jk(u(tk)), k = 1, 2, · · · ,m,
u0 ≤ ϕ ∈ B,

(2.1)

we call it a lower solution of the initial value problem of the impulsive evolution
equation with infinite delay (1.1); if all the inequalities in (2.1) are reversed, we call
it an upper solution of the initial value problem of the impulsive evolution equation
with infinite delay (1.1).

Definition 2.3. A function u : (−∞, b] → X is said to be a mild solution of the
initial value problem of the impulsive evolution equation with infinite delay (1.1) if
u0 = ϕ ∈ B and

u(t) = T (t)ϕ(0) +

∫ t

0

T (t− s)f(s, u(s), us)ds+
∑

0<tk<t

T (t− tk)Jk(u(tk)), t ∈ I.

(2.2)

Definition 2.4. If a function f : [0, b]×X × B → X satisfies

(i) for all (u, v) ∈ X × B → X, f(·, u, v) : [0, b]→ X is measurable;

(ii) for a.e. t ∈ [0, b], f(t, ·, ·) : X × B → X is continuous, then we say f is a
Carathéodory continuous function.

In this paper, let A : D(A) ⊂ X → X be a closed linear operator and −A
generates a positive C0-semigroup T (t)(t ≥ 0) on X. Therefore, there exist constants
M1 and δ ∈ R such that

‖T (t)‖ ≤M1e
δt, t ≥ 0. (2.3)

From (2.3) we see that

M := sup
t∈I
‖T (t)‖L(X) ≥ 1 (2.4)

is a finite number, where L(X) is the Banach space of all bounded linear operators
from X to X.

Therefore, we see that for any contant C > 0, −(A + CI) generates a positive
C0-semigroup S(t) = e−CtT (t)(t ≥ 0) on X and

sup
t∈I
‖S(t)‖L(X) = sup

t∈I
‖e−CtT (t)‖L(X) = M ≥ 1. (2.5)

Hence, S(t)(t ≥ 0) is a positive C0-semigroup in X if T (t)(t ≥ 0) is a positive
C0-semigroup in X; S(t)(t ≥ 0) is a compact C0-semigroup in X if T (t)(t ≥ 0) is a
compact C0-semigroup in X; S(t)(t ≥ 0) is a equicontinuous C0-semigroup in X if
T (t)(t ≥ 0) is a equicontinuous C0-semigroup in X; for more details concerning the
properties of the operator and the C0-semigroup, we refer the reader to Pazy [26]
and Vrabie [29].

Next, we present the definitions and properties copncerning the Kuratowski
measure of non-compactness. In the paper, we use α(·) and αB(·) to denote the Ku-
ratowski measure of non-compactness on the bounded set of X and B, respectively.
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Definition 2.5 ( [10]). The Kuratowski measure of noncompactness α(·) defined
on a bounded set S of the Banach space X is

α(S) = inf{δ > 0 : S = ∪mi=1Si with diam(Si) ≤ δ for i = 1, 2, · · · ,m}. (2.6)

Lemma 2.1 ( [19]). Let B = {un} ⊂ Bb be a bounded and countable set. Then
α(B(t)) is Lebesgue integrable on I, and

α
({∫

I

un(t)dt
})
≤ 2

∫
I

α(B(t))dt.

Lemma 2.2 ( [3]). Let λ > 0. If g(t) and β(t) are nonnegative continuous functions
satisfying

g(t) = λ+

∫ t

0

β(s)g(s)ds, t ∈ I,

then
g(t) ≤ λe

∫ t
0
β(s)ds, t ∈ I.

Lemma 2.3 ( [16]). Let P be a normal cone of the ordered Banach space X and
v0, w0 ∈ X with v0 ≤ w0. Suppose that F : [v0, w0] → X is a nondecreasing strict
set-contraction such that v0 ≤ Fv0 and Fw0 ≤ w0. Then F has a minimal fixed
point u and a maximal point u in [v0, w0]; Moreover

vn → u, wn → u as n→∞,

where vn = Fvn−1 and wn = Fwn−1 (n = 1, 2, · · · ) satisfy

v0 ≤ v1 ≤ · · · ≤ vn ≤ · · · ≤ u ≤ u ≤ · · · ≤ wn ≤ · · · ≤ w1 ≤ w0.

3. T (t)(t ≥ 0) is a compact C0-semigroup

In this section, we study the existence of extremal solutions for the initial value
problem of the impulsive evolution equation with infinite delay (1.1) with a compact
C0-semigroup condition.

Theorem 3.1. Let X be an ordered Banach space, whose positive cone P is nor-
mal with a normal constant N , A : D(A) ⊂ X → X be a closed linear operator
and −A generates a compact positive C0-semigroup T (t)(t ≥ 0) on X. Assume
that the nonlinear function f : I × X × B → X is Carathéodory continuous, and
Jk ∈ C(X,X), k = 1, 2, · · · ,m. Suppose the initial value problem of the impulsive
evolution equation with infinite delay (1.1) has a lower solution v0 and an upper
solution w0 with v0 ≤ w0 and assume the following conditions is satisfied:

(H1) There exists a positive constant C such that

f(t, u2, v2)− f(t, u1, v1) ≥ −C(u2 − u1),

for any t ∈ I, u1, u2 ∈ X and v1, v2 ∈ B with v0(t) ≤ u1 ≤ u2 ≤ w0(t) and
(v0)t ≤ v1 ≤ v2 ≤ (w0)t;

(H2) For any u1, u2 ∈ X with v0(t) ≤ u1 ≤ u2 ≤ w0(t), t ∈ I, we have

Jk(u1) ≤ Jk(u2), k = 1, 2, · · · ,m.
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Then the initial value problem of the impulsive evolution equation with infinite delay
(1.1) has a minimal mild solution and a maximal mild solution between v0 and w0,
which can be obtained by a monotone iterative procedure starting from v0 and w0,
respectively.

Proof. The initial value problem of the impulsive evolution equation with infinite
delay (1.1) is equivalent to the following impulsive evolution equation with infinite
delay 

u′(t) +Au(t) + Cu(t) = f(t, u(t), ut) + Cu(t), t ∈ I, t 6= tk,

∆u|t=tk = Jk(u(tk)), k = 1, 2, · · · ,m,
u0 = ϕ ∈ B,

(3.1)

where C is the same constant as in (H1).We consider the operator F : Bb → Bb
defined by

(Fu)(t) =


S(t)ϕ(0) +

∫ t

0

S(t− s)[f(s, u(s), us) + Cu(s)]ds

+
∑

0<tk<t

S(t− tk)Jk(u(tk)), t ∈ I,

ϕ(t), t ∈ (−∞, 0],

(3.2)

where S(t) = e−CtT (t)(t ≥ 0) is the positive C0-semigroup generated by −(A+CI).
By Definition 2.3, we see that the mild solution of the initial value problem of the
impulsive evolution equation with infinite delay (1.1) is equivalent to the fixed point
of the operator F defined by (3.2). For any ϕ ∈ B, let

ψ(t) =

{
S(t)ϕ(0), t ∈ I,
ϕ(t), t ∈ (−∞, 0],

(3.3)

then ψ ∈ Bb. Further, for any t ∈ (−∞, b], let u(t) = z(t) +ψ(t). Now, u(·) satisfies
(3.1) if and only if z satisfies z0 = 0, and

z(t) =

∫ t

0

S(t− s)[f(s, z(s) + ψ(s), zs + ψs) + C(z(s) + ψ(s))]ds

+
∑

0<tk<t

S(t− tk)Jk(z(tk) + ψ(tk)), t ∈ I. (3.4)

Consider the space B′b = {z : (−∞, b] → X | z ∈ Bb and z0 = 0} endowed with
the norm ‖z‖b = ‖z0‖B+sup

t∈I
‖z(t)‖ = sup

t∈I
‖z(t)‖. Note (B′b, ‖·‖b) is a Banach space.

We define the mapping F : [ṽ0, w̃0]→ B′b by

(Fz)(t) =



∫ t

0

S(t− s)[f(s, z(s) + ψ(s), zs + ψs) + C(z(s) + ψ(s))]ds

+
∑

0<tk<t

S(t− tk)Jk(z(tk) + ψ(tk)), t ∈ I,

0, t ∈ (−∞, 0],

(3.5)
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where ṽ0, w̃0 ∈ B′b ∩ C1(I ′′, X) ∩ C(I ′, X1) with v0(t) = ṽ0(t) + ψ(t), w0(t) =
w̃0(t) + ψ(t), t ∈ I. The operator F has a fixed point if the operator F has a fixed
point.

First, we prove that the operator F : [ṽ0, w̃0]→ B′b defined by (3.5) is continuous.
For this purpose, let {zn}∞n=1 be a sequence such that lim

n→∞
zn = z in [ṽ0, w̃0]. Then

lim
n→∞

(zn)t = zt, t ∈ I. If t ∈ I, by the Carathéodory continuity of the nonlinear

function f , and the continuity of the impulsive function Jk for k = 1, 2, · · · ,m, we
have

lim
n→∞

‖Jk(zn(tk) + ψ(tk))− Jk(z(tk) + ψ(tk))‖ = 0, k = 1, 2, · · · ,m, (3.6)

and

lim
n→∞

‖f(s, zn(s) + ψ(s), (zn)s + ψs)− f(s, z(s) + ψ(s), zs + ψs)

+ C(zn(s) + ψ(s))− C(z(s) + ψ(s))‖ = 0, s ∈ [0, t]. (3.7)

From condition (H1), we see that for any z ∈ [ṽ0, w̃0] and s ∈ [0, t], t ∈ I, we have

f(s, ṽ0(s) + ψ(s), (ṽ0)s + ψs) + C(ṽ0(s) + ψ(s))

≤f(s, z(s) + ψ(s), zs + ψs) + C(z(s) + ψ(s))

≤f(s, w̃0(s) + ψ(s), (w̃0)s + ψs) + C(w̃0(s) + ψ(s)).

The above inequality combined with the normality of the positive cone P , guarantees
that there exists a constant R1 > 0, such that

‖f(s, z(s) + ψ(s), zs + ψs) + C(z(s) + ψ(s))‖ ≤ R1, s ∈ [0, t], t ∈ I. (3.8)

Combining with (2.5), (3.4)-(3.8) and Lebesgue’s dominated convergence theorem,
for any t ∈ I, we have

‖(Fzn)(t)− (Fz)(t)‖ ≤M
∫ t

0

‖[f(s, zn(s) + ψ(s), (zn)s + ψs) + C(zn(s) + ψ(s))]

− [f(s, z(s) + ψ(s), zs + ψs) + C(z(s) + ψ(s))]‖ds

+M
∑

0<tk<t

‖Jk(zn(tk) + ψ(tk))− Jk(z(tk) + ψ(tk))‖

→0 (n→∞). (3.9)

Hence, by (3.9) we have

‖(Fzn)(t)− (Fz)(t)‖b = sup{‖(Fzn)(t)− (Fz)(t)‖ : t ∈ I} → 0 (n→∞),

which means that F is a continuous operator.
Next, we prove that the operator F maps [ṽ0, w̃0] to [ṽ0, w̃0] and is monotonic

increasing. Let z1, z2 ∈ [ṽ0, w̃0] and z1 ≤ z2, then z1(t) ≤ z2(t) for t ∈ (−∞, b]
and (z1)t ≤ (z2)t for t ∈ I. By assumptions (H1), (H2) and the properties of the
C0-semigroup, we see that

Fz1 ≤ Fz2, (3.10)
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which means that F is an increasing operator in [ṽ0, w̃0]. Next, we show that
ṽ0 ≤ F ṽ0,Fw̃0 ≤ w̃0. Let

h(t) = v′0(t) +Av0(t) + Cv0(t), t ∈ I, t 6= tk, k = 1, 2, · · · ,m.

By the definition of the lower solution, we see that

h(t) ≤ f(t, v0(t), (v0)t) + Cv0(t), t ∈ I.

Therefore, by Definitions 2.2 and 2.3 and (3.4), we have

ṽ0(t) + ψ(t)

=v0(t)

=S(t)ϕ(0) +

∫ t

0

S(t− s)h(s)ds+
∑

0<tk<t

S(t− tk)[v0(tk
+)− v0(tk

−)]

≤S(t)ϕ(0) +

∫ t

0

S(t− s)[f(s, v0(s), (v0)s) + Cv0(s)]ds

+
∑

0<tk<t

S(t− tk)Jk(v0(tk))

≤ψ(t) +

∫ t

0

S(t− s)[f(s, ṽ0(s) + ψ(s), (ṽ0)s + ψs) + C(ṽ0(s) + ψ(s))]ds

+
∑

0<tk<t

S(t− tk)Jk(ṽ0(tk) + ψ(tk)), t ∈ I.

By the above inequality, we have

ṽ0(t) ≤
∫ t

0

S(t− s)[f(s, ṽ0(s) + ψ(s), (ṽ0)s + ψs) + C(ṽ0(s) + ψ(s))]ds

+
∑

0<tk<t

S(t− tk)Jk(ṽ0(tk) + ψ(tk))

=(F ṽ0)(t), t ∈ I, (3.11)

namely, ṽ0 ≤ F ṽ0. Similarly, it can be shown that Fw̃0 ≤ w̃0. Therefore, F :
[ṽ0, w̃0]→ [ṽ0, w̃0] is a continuously increasing operator.

Now, we define two sequences {ṽn} and {w̃n} in [ṽ0, w̃0] by the following iterative
scheme:

ṽn = F ṽn−1, w̃n = Fw̃n−1, n = 1, 2, · · · . (3.12)

Then from the monotonicity of F , it follows that

ṽ0 ≤ ṽ1 < ṽ2 ≤ · · · ≤ ṽn ≤ · · · ≤ w̃n ≤ · · · ≤ w̃2 ≤ w̃1 ≤ w̃0. (3.13)

In the following, we show that the sequence {ṽn} and {w̃n} converge on I.
For convenience, let B = {ṽn | n ∈ N} and B0 = {ṽn−1 | n ∈ N}, then B =

F(B0). For any t ∈ I and ṽn−1 ∈ B0, let

(F1ṽn−1)(t) =

∫ t

0

S(t− s)[f(s, ṽn−1(s) + ψ(s), (ṽn−1)s + ψs)
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+ C(ṽn−1(s) + ψ(s))]ds, (3.14)

(F2ṽn−1)(t) =
∑

0<tk<t

S(t− tk)Jk(ṽn−1(tk) + ψ(tk)). (3.15)

For any ṽn−1 ∈ B0, s ∈ [0, t], and t ∈ (0, b], by assumption (H1), we have

f(s, ṽ0(s) + ψ(s), (ṽ0)s + ψs) + C(ṽ0(s) + ψ(s))

≤f(s, ṽn−1(s) + ψ(s), (ṽn−1)s + ψs) + C((ṽn−1(s) + ψ(s))

≤f(s, w̃0(s) + ψ(s), (w̃0)s + ψs) + C(w̃0(s) + ψ(s)).

Combining with the above inequality and the normality of the positive cone P , we
see that there exists a constant R2 > 0, such that for any ṽn−1 ∈ B0 and s ∈ [0, t],
t ∈ (0, b], we have

‖f(s, ṽn−1(s) + ψ(s), (ṽn−1)s + ψs) + C(ṽn−1(s) + ψ(s))‖ ≤ R2. (3.16)

Hence, for t ∈ (0, b], take ε sufficiently small such that t− ε ∈ (0, b]. Let

(Fε1 ṽn−1)(t) =

∫ t−ε

0

S(t− s)[f(s, ṽn−1(s) + ψ(s), (ṽn−1)s + ψs)

+ C(ṽn−1(s) + ψ(s))]ds

=S(ε)

∫ t−ε

0

S(t− s− ε)[f(s, ṽn−1(s) + ψ(s), (ṽn−1)s + ψs)

+ C(ṽn−1(s) + ψ(s))]ds. (3.17)

Since for any t > 0, S(t) is a compact operator in X, {(Fε1 ṽn−1)(t) | ṽn−1 ∈ B0} is
precompact in X. From (3.14), (3.16) and (3.17), we get

‖(F1ṽn−1)(t)− (Fε1 ṽn−1)(t)‖ =

∫ t

t−ε
‖S(t− s)[f(s, ṽn−1(s) + ψ(s), (ṽn−1)s + ψs)

+ C(ṽn−1(s) + ψ(s))]‖ds
≤MR2ε. (3.18)

Therefore

‖(F1ṽn−1)(t)− (Fε1 ṽn−1)(t)‖b ≤MR2ε. (3.19)

This means that there exists a precompact set {(Fε1 ṽn−1)(t) | ṽn−1 ∈ B0} sufficiently
close to the set {(F1ṽn−1)(t) | ṽn−1 ∈ B0} for every t ∈ (0, b]. Therefore, for
t ∈ (0, b], the set {(F1ṽn−1)(t) | ṽn−1 ∈ B0} is precompact in X.

On the other hand, for any ṽn−1 ∈ B0 and k = 1, 2, · · · ,m, by assumption (H2),
we have

Jk(ṽ0(tk) + ψ(tk)) ≤ Jk(ṽn−1(tk) + ψ(tk)) ≤ Jk(w̃0(tk) + ψ(tk)).

By the above inequality and the normality of the positive cone P , we see that there
exists a constant R3 > 0, such that for any ṽn−1 ∈ B0 and k = 1, 2, · · · ,m,

‖Jk(ṽn−1(tk) + ψ(tk))‖ ≤ R3. (3.20)
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Since for any t > 0, S(t) is a compact operator in X, {(F2ṽn−1)(t) | ṽn−1 ∈
B0} is precompact in X by (3.16) and (3.20). Therefore, for any t ∈ (−∞, b],
{(F ṽn−1)(t) | ṽn−1 ∈ B0} is precompact in X, which means that {ṽn(t)} has a
convergent subsequence. Combining with the monotonicity (3.13), we see that
{ṽn(t)} is convergent for every t ∈ (−∞, b], that is

lim
n→∞

ṽn(t) = z(t), t ∈ (−∞, b].

Similarly, we can prove that

lim
n→∞

w̃n(t) = z(t), t ∈ (−∞, b].

Note, {ṽn(t)} ⊂ B′b. Therefore, for any t ∈ I, by the definition of the operator
F , we have

ṽn(t) =(F ṽn−1)(t)

=

∫ t

0

S(t− s)[f(s, ṽn−1(s) + ψ(s), (ṽn−1)s + ψs) + C(ṽn−1(s) + ψ(s))]ds

+
∑

0<tk<t

S(t− tk)Jk(ṽn−1(tk) + ψ(tk)). (3.21)

Letting n → ∞ in the above inequality (3.21), then by the Lebesgue dominated
convergence theorem, for t ∈ I, we have

z(t) =(Fz)(t)

=

∫ t

0

S(t− s)[f(s, z(s) + ψ(s), (z)s + ψs) + C(z(s) + ψ(s))]ds

+
∑

0<tk<t

S(t− tk)Jk(z(tk) + ψ(tk)). (3.22)

Therefore, z ∈ B′b and z = Fz. Similarly, we can prove that z ∈ B′b and z = Fz.
Combining the above conclusion with the monotonicity condition (3.13), we see that
ṽ0 ≤ z ≤ z ≤ w̃0.

Finally, we prove that z and z are the minimal and maximal fixed points of
F in [ṽ0, w̃0], respectively. In fact, for any z ∈ [ṽ0, w̃0], we have Fz = z and
ṽ0 ≤ z ≤ w̃0. Combining this fact with the monotonicity of the operator F , we see
ṽ1 = F ṽ0 ≤ Fz = z ≤ Fw̃0 = w̃1. Continuing such a progress, we get ṽn ≤ z ≤ w̃n.
Letting n → ∞, we get z ≤ z ≤ z. This means that z and z are the minimal and
the maximal fixed points of the operator F , respectively. Therefore, the operator F
has a minimum fixed point u and a maximum fixed point u between v0 and w0, that
is, u and u are the minimum and maximum solution of the initial value problem of
the impulsive evolution equation with infinite delay (1.1) on (−∞, b].

4. T (t)(t ≥ 0) is a non-compact C0-semigroup

In this section, we study the existence and uniqueness of solutions for the initial
value problem of the impulsive evolution equation with infinite delay (1.1) with the
noncompact C0-semigroup condition using the properties of the non-compactness
measure and the monotone iterative technique.



Monotone iterative technique for impulsive evolution equations 1727

Theorem 4.1. Let X be an ordered Banach space, whose positive cone P is normal
with a normal constant N , A : D(A) ⊂ X → X be a closed linear operator and −A
generates the positive C0-semigroup T (t)(t ≥ 0) on X. Assume that the nonlinear
function f : I × X × B → X is Carathéodory continuous, and Jk ∈ C(X,X),
k = 1, 2, · · · ,m. Suppose the initial value problem of the impulsive evolution equation
with infinite delay (1.1)) has a lower solution v0 and an upper solution w0 with
v0 ≤ w0, and conditions (H1)-(H2) and the following condition are satisfied:

(H3) For any bounded set V1 ⊂ X, V2 ⊂ B, there exist a continuous function
µ : I → R+ such that

α(f(t, V1, V2)) ≤ µ(t)[α(V1) + αB(V2)], t ∈ I.

Then the initial value problem of the impulsive evolution equation with infinite delay
(1.1) has a minimal mild solution and a maximal mild solution between v0 and w0,
which can be obtained by a monotone iterative procedure starting from v0 and w0,
respectively.

Proof. According to Theorem 3.1, if the assumptions (H1) and (H2) hold, then
the operator F defined by (3.4) is continuous and monotonically increasing. The
sequence defined by (3.12) satisfies (3.13). In the following, we show that {ṽn} and
{w̃n} are uniformly convergent on I.

For convenience, let B = {ṽn | n ∈ N} and B0 = {ṽn−1 | n ∈ N}, then B =
F(B0). From B = B0 ∪ {ṽ0} it follows that α(B(t)) = α(B0(t)) for any t ∈ I.

For t ∈ I0 = [0, t1], from (3.3),using Lemma 2.1 and assumption (H3), we have

α(B(t))

=α(F(B0)(t))

=α({
∫ t

0

S(t− s)[f(s, ṽn−1(s) + ψ(s), (ṽn−1)s + ψs)+C(ṽn−1(s) + ψ(s))]ds})

≤2M

∫ t

0

α({f(s, ṽn−1(s) + ψ(s), (ṽn−1)s + ψs) + C(ṽn−1(s) + ψ(s))})ds

≤2M

∫ t

0

{µ(s)[α(B0(s)) + αB((B0)s)] + Cα(B0(s))}ds

≤2M

∫ t

0

{µ(s)[α(B(s)) + αB(Bs)] + Cα(B(s))}ds

≤2M

∫ t

0

{µ(s)[α(B(s)) +K sup
0≤τ≤s

α(B(τ))] + Cα(B(s))}ds

≤2M

∫ t

0

(C + µ(s))α(B(s)) +Kµ(s) sup
0≤τ≤s

α(B(τ))ds, (4.1)

where K = max
t∈I

K(t). Let p1(t) = sup
0≤s≤t

α(B(s)), t ∈ I0, then

p1(t) ≤ 2M

∫ t

0

[C + (K + 1)µ(s)]p1(s)ds, t ∈ I0.

By Lemma 2.2, we obtain that p1(t) ≡ 0 on I0. In particular, α(B0(t1)) =
α(B(t1)) = 0, and this means that B(t1) and B0(t1) are precompact in X. Thus
J1(B0(t1)) is precompact in X, and α(J1(B0(t1))) = 0.
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For t ∈ I1 = (t1, t2], from the defininition F and the above discussion of t ∈ I0,
we have

α(B(t)) = α(F(B0)(t))

≤α({
∫ t

0

S(t− s)[f(s, ṽn−1(s) + ψ(s), (ṽn−1)s + ψs) + C(ṽn−1(s) + ψ(s))]ds})

+ α(J1(ṽn−1(t1) + ψ(t1)))

≤2M

∫ t

0

α({f(s, ṽn−1(s) + ψ(s), (ṽn−1)s + ψs) + C(ṽn−1(s) + ψ(s))})ds

+ α(J1(ṽn−1(t1) + ψ(t1)))

≤2M

∫ t

0

{µ(s)[α(B0(s)) + αB((B0)s)] + Cα(B0(s))}ds

≤2M

∫ t

0

{µ(s)[α(B(s)) + αB(Bs)] + Cα(B(s))}ds

≤2M

∫ t

t1

{µ(s)[α(B(s)) +K sup
0≤τ≤s

α(B(τ))] + Cα(B(s))}ds

≤2M

∫ t

t1

(C + µ(s))α(B(s)) +Kµ(s) sup
t1≤τ≤s

α(B(τ))ds, (4.2)

where K = max
t∈I

K(t). Let p2(t) = sup
t1≤s≤t

α(B(s)), t ∈ I1, then

p2(t) ≤ 2M

∫ t

t1

[C + (K + 1)µ(s)]p2(s)ds, t ∈ I1.

Again by Lemma 2.2, we obtain that p2(t) ≡ 0 on I1. Therefore, α(B0(t2)) =
α(B(t2)) = 0 and α(J2(B0(t2))) = 0.

Continuing such a process interval by interval up to Im, we prove that α(B(t)) =
α(B0(t)) ≡ 0 on every Ik, k = 0, 1, 2, · · · ,m.

For any I ′k, if we modify the value of vn at t = tk via ṽn(tk−1) = ṽn(t+k−1), n ∈ N,
then {ṽn} ⊂ C(I ′k, X) and it is equicontinuous. Since α({ṽn(t)}) ≡ 0, {ṽn(t)} is
precompact in X for every t ∈ I ′k. By the Arzela-Ascoli theorem, {ṽn} is precompact
in C(I ′k, X). Hence, {ṽn} has a convergent subsequence in C(I ′k, X). Combining
this with the monotonicity (3.13), we can easily prove {ṽn} itself is convergent
in C(I ′k, X). In particular, {ṽn(t)} is uniformly convergent in Ik. Consequently,
{ṽn(t)} is uniformly convergent over the whole of I. Hence, {ṽn(t)} is convergent
in B′b, that is

lim
n→∞

ṽn(t) = z(t), t ∈ (−∞, b].

Similarly, we can prove that

lim
n→∞

w̃n(t) = z(t), t ∈ (−∞, b].

Using a proof method similar to that in Theorem 3.1, we can prove that z and
z are the minimal and maximal fixed points of F , respectively. Therefore, the
operator F also has a minimal fixed point u and a maximal fixed point u, that
is, u and u are the minimum mild solution and the maximum mild solution of the
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initial value problem of the impulsive evolution equation with infinite delay (1.1)
on (−∞, b], respectively.

Suppose we replace the assumption (H3) by the following assumption:

(H4) there exist continuous functions µ1, µ2 ∈ I → R+, such that for any u, v ∈
[v0, w0] and t ∈ I, ut, vt ∈ B, we have

f(t, u(t), ut)− f(t, v(t), vt) ≤ µ1(t)(u(t)− v(t)) + µ2(t)(ut − vt), ∀t ∈ I.

Then we have the following unique result.

Theorem 4.2. Let X be an ordered Banach space, whose positive cone P is normal
with a normal constant N , A : D(A) ⊂ X → X be a closed linear operator and −A
generates a positive C0-semigroup T (t)(t ≥ 0) on X. Assume that the nonlinear
function f : I × X × B → X is Carathéodory continuous, and Jk ∈ C(X,X),
k = 1, 2, · · · ,m. Suppose the initial value problem of the impulsive evolution equation
with infinite delay (1.1) has a lower solution v0 and an upper solution w0 with
v0 ≤ w0, and assume conditions (H1), (H2) and (H4) hold. Then the initial value
problem of the impulsive evolution equation with infinite delay (1.1) has a unique
solution between v0 and w0, which can be obtained by a monotone iterative procedure
starting from v0 and w0, respectively.

Proof. First, we prove that (H1) and (H4) imply (H3). For t ∈ I, let {un} ⊂
[v0(t), w0(t)] be an increasing sequence. For any m,n ∈ N and m > n, from condi-
tions (H1) and (H4), we have

θ ≤f(t, um(t), (um)t)− f(t, un, (un)t) + C(um(t)− un(t))

≤(µ1(t) + C)(um(t)− un(t)) + µ2(t)((um)t − (un)t),

by the above inequality and normality of the positive cone P , we have

‖f(t, um(t), (um)t)− f(t, un(t), (un)t)‖

≤N(C + µ1(t))‖um(t)− un(t)‖+Nµ2(t)‖(um)t − (un)t‖B + C‖um(t)− un(t)‖

≤[N(C + µ1(t)) + C]‖um(t)− un(t)‖+Nµ2(t)‖(um)t − (un)t‖B.

From the above inequality and the definition of the measure of non-compactness,
we see that there exist a bounded set V1 ⊂ X, V2 ⊂ B such that for any t ∈ I, we
have

α({f(t, V1, V2)}) ≤(Nµ1(t) +NC + C)α(V1) +Nµ2(t)αB(V2)

≤(N max
t∈I

µ1(t) +NC + C)α(V1) +N max
t∈I

µ2(t)αB(V2)

≤H(α(V1) + αB(V2)), (4.3)

where H = max{N max
t∈I

µ1(t) + NC + C, N max
t∈I

µ2(t)}. If {un} is a decreasing

sequence, the above inequality is also valid. Hence (H3) holds.
Therefore, by Theorem 3.1, the initial value problem of the impulsive evolution

equation with infinite delay (1.1) has the minimal solution u and the maximal
solution u in [v0, w0]. Going from I0 and Im interval by interval we show that u = u
in every Ik.
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Clearly, for t ∈ (−∞, 0], u = u. For t ∈ I0, by (3.2), (3.12) and assumption (H4),
we get

θ ≤u(t)− u(t)

=(Fu)(t)− (Fu)(t)

≤
∫ t

0

S(t− s)
[
f(s, u(s), (u)s) + Cu(s)− f(s, u(s), (u)s)− Cu(s)

]
ds

≤
∫ t

0

S(t− s)
[
µ1(s)(u(s)− u(s)) + µ2(s)((u)s − (u)s) + C(u(s)− u(s))

]
ds

≤
∫ t

0

S(t− s)[(µ1(s) + C)(u(s)− u(s)) +Kµ2(s) sup
0≤τ≤s

(u(τ)− u(τ))]ds. (4.4)

By (4.4) and the normality of the cone P , we have

‖u(t)− u(t)‖ ≤NM
∫ t

0

(µ1(s) + C)‖u(s)− u(s)‖+Kµ2(s) sup
0≤τ≤s

‖u(τ)− u(τ)‖ds

≤NM
∫ t

0

(
µ1(s) + C +Kµ2(s)

)
‖u(s)− u(s)‖Bb

ds. (4.5)

Therefore

‖u(t)− u(t)‖Bb
≤ NM

∫ t

0

(
µ1(s) + C +Kµ2(s)

)
‖u(s)− u(s)‖Bb

ds.

From Lemma 2.2, we obtain that u(t) ≡ u(t) in I0.

For t ∈ I1, since J1(u(t1)) = J1(u(t1)), use (3.2) and complete the same argu-
ment as above for t ∈ I0, we get

‖u(t)− u(t)‖Bb
≤NM

∫ t

0

(
µ1(s) + C +Kµ2(s)

)
‖u(s)− u(s)‖Bb

ds

≤NM
∫ t

t1

(
µ1(s) + C +Kµ2(s)

)
‖u(s)− u(s)‖Bb

ds.

Again by Lemma 2.2, we obtain that u(t) ≡ u(t) in I1.

Continuing such a process interval by interval up to Im, we can prove that
u(t) ≡ u(t) over the whole of (−∞, b]. Hence, ũ = u = u is the unique mild solution
of the initial value problem of the impulsive evolution equation with infinite delay
(1.1) in [v0, w0], which can be obtained by the monotone iterative procedure (3.12)
starting from v0 and w0.

5. Application

In this section, the application of the abstract results obtained in this paper in
specific problems is illustrated by an example of the initial value problem of the
nonlinear heat equation with infinite delay and impulse.
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We consider the initial value problem of nonlinear heat equation with infinite
delay and impulse:

∂

∂t
w(x, t)− ι ∂

2

∂x2
w(x, t) = L

(
|w(x, t)|

1 + |w(x, t)|

)
+

∫ 0

−∞
G(s)w(x, t+ s)ds,

x ∈ [c, d], t ∈ [0, b], t 6= tk,

w(x, t+k ) = w(x, t−k ) +

√
|w(x, t)|

1 + |w(x, t)|
, k = 1, 2, · · · ,m, (5.1)

w(x, s) = φ(x, s), x ∈ [c, d], s ∈ (−∞, 0],

where ι > 0 is the thermal conductivity; b, L > 0 is constant; 0 < t1 < t2 < · · · <
tm < b, G ∈ L((−∞, b],R+), φ ∈ C([c, d]× (−∞, 0],R+).

Let X = L2([c, d],R), and its norm is ‖ ·‖2, P = {w ∈ L2 | w(x) ≥ 0, x ∈ [c, d]},
then X is a Banach space, P is a normal cone in X, and the normal constant is
N = 1. Define the operator in X as follows

D(A) = H2(c, d) ∩H1
0 (c, d), Aw = ι

∂2

∂x2
w,

then −A generates the positive C0-semigroup T (t)(t ≥ 0).
Let

u(t) = w(·, t), t ∈ (−∞, b],

f(t, u(t), ut) = L

(
|w(x, t)|

1 + |w(x, t)|

)
+

∫ 0

−∞
G(s)w(x, t+ s)ds, t ∈ [0, b],

Jk(u(tk)) =

√
|w(x, t)|

1 + |w(x, t)|
, k = 1, 2, · · · ,m,

ϕ(t) = φ(·, t), t ∈ (−∞, 0].

Then the initial value problem of the nonlinear heat equation with infinite delay
and impulse (5.1) is transformed into the initial value problem of the impulsive
evolution equation with infinite delay (1.1)) in the Banach space X.

By the properties and assumptions of the nonlinear term f and the impulsive
term Jk, k = 1, 2, · · · ,m, we can easily verify that v0 = 0 and w0 = w(x, t) are the
lower and upper solutions of problem (5.1), respectively, and there exists a constant
C > 0 such that assumptions (H1) and (H3) hold.

For any t ∈ [0, b], u1, u2 ∈ X satisfy θ ≤ u1 ≤ u2, we have that

θ ≤f
(
t, u2(t), (u2)t

)
− f

(
t, u1(t), (u1)t

)
=L

(
u2(t)

1 + u2(t)
− u1(t)

1 + u1(t)

)
+

∫ 0

−∞
G(s)

(
(u2)s − (u1)s

)
ds

≤ L

1 + u1(t)

(
|u2(t)| − |u1(t)|

)
+

∫ 0

−∞
G(s)

(
(u2)t − (u1)t

)
ds.

Combining with the above inequality and the normality of the positive cone P , we
get

‖f(t, u2(t), (u2)t)− f(t, u1(t), (u1)t)‖2
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≤ L

1 + u1(t)
‖u2(t)− u1(t)‖2 +

∫ 0

−∞
G(s)‖(u2)s − (u1)s‖Bds

≤ L

1 + u1(t)
‖u2(t)− u1(t)‖2 +

∫ 0

−∞
G(s)ds‖(u2)t − (u1)t‖B.

Therefore, for any bounded set V1 ⊂ X, V2 ⊂ B, we have

α
(
f(t, V1, V2)

)
≤ H1[α(V1) + α(V2)], t ∈ [0, b],

where H1 = max
{

max
t∈[0,b]

L
1+u1(t)

,
∫ 0

−∞G(t)dt
}

. Thus assumption (H3) is estab-

lished. Therefore, from Theorem 3.1, we see that the initial value problem (1.1)
has a minimum mild solution and a maximum mild solution, which can be obtained
by the monotone iteration method from v0 and w0, respectively. That is to say,
the initial value problem of the heat equation with infinite delay and impulse (5.1)
has the minimum mild solution and the maximum mild solution between 0 and
w(x, t), which can be obtained by the monotone iteration method from v0 and w0,
respectively.
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[12] M. Fečkan and J. Pačuta, Periodic and bounded solutions of functional differ-
ential equations with small delays, Electron. J. Qual. Theory Differ. Equ., 2022,
2022(33), 1–10.

[13] X. Fu, Existence and stability of solutions to neutral equations with infinite
delay, Electron. J. Differ. Eq., 2013, 2013(55), 1–19.

[14] X. Fu and Y. Cao, Existence for neutral impulsive differential inclusions with
nonlocal conditions, Nonlinear Anal., 2008, 68(12), 3707–3718.

[15] X. Fu and L. Zhou, Stability for impulsive functional differential equations with
infinite delays, Acta. Math. Sin., 2010, 26(5), 909–922.

[16] D. Guo and V. Lakshmikantham, Nonlinear Problem in Abstract Cones, New
York: Academic Press, 1988.

[17] D. Guo and X. Liu, Extremal solutions of nonlinear impulsive integro-
differential equations in Banach spaces, J. Anal. Math. Anal., 1993, 177(2),
538–553.

[18] J. K. Hale and J. Kato, Phase space for retared equations with infinite delay
Funckcial, Ekvac., 1978, 21(1), 11–41.

[19] H. R. Heinz, On the behaviour of measure of noncompactness with respect to dif-
ferentiation and integration of vector-valued functions, Nonlinear Anal., 1983,
7(12), 1351–1371.

[20] H. Huang and X. Fu, Optimal control problems for a neutral integro-differential
system with infinite delay, Evol. Equ. Control Theory, 2022, 11(1), 177–197.

[21] H. Huang and X. Fu, Asymptotic properties of solutions for impulsive neutral
stochastic functional integro-differential equations, J. Math. Phys., 2021, 62(1),
18 pp.

[22] M. Li and J. Wang, Finite time stability of fractional delay differential equa-
tions, Appl. Math. Lett., 2017, 64, 170–176.

[23] Y. Li and H. Gou, Mixed monotone iterative technique for semlinear impulsive
fractional evolution equations, J. Appl. Anal. Comput., 2019, 9(4), 1217–1242.

[24] Y. Li and Z. Liu, Monotone iterative technique for addressing impulsive integro-
differential equations in Banach spaces, Nonlinear Anal., 2007, 66(1), 83–92.

[25] J. Liang and T. J. Xiao, Solvability of the cauchy problem for infinite delay
equations, Nonlinear Anal., 2004, 58, 271–297.

[26] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differen-
tial Equations, Berli: Springer-Verlag, 1983.



1734 X. Zhang, P. Sun & D. O’Regan

[27] D. Raghavan and S. Nagarajan, Extremal mild solutions of fractional evolution
equation with mixed monotone impulsive conditions, Bull. Malays. Appl. Sci.
Soc., 2022, 45(4), 1427–1452.
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