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INDIRECT BOUNDARY STABILIZATION FOR
WEAKLY COUPLED DEGENERATE WAVE
EQUATIONS UNDER FRACTIONAL
DAMPING

Rachid Benzaid* and Abbes Benaissalf

Abstract In this paper, we consider the well-posedness and stability of a
one-dimensional system of degenerate wave equations coupled via zero order
terms with one boundary fractional damping acting on one end only. We prove
optimal polynomial energy decay rate of order 1/t(377). The method is based
on the frequency domain approach combined with multiplier technique.
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1. Introduction

In this paper, we investigate the existence and energy decay rate of a system of
coupled degenerate wave equations with only one fractional boundary damping.
This system defined on (0,1) x (0, 4+00) takes the following form

uge(z,t) — (a(x)ug)e(x,t) + v =0 in (0,1) x (0, 400),
v (2, t) — (a(x)vg)z(x,t) Fau=0 in (0,1) x (0,+00),

u(0,t) =0 if0<m, <1
in (0, +00)
(auy)(0,t) =0 if 1 <m, < 2
v(0,t) = ifo<m, <1
in (0, +00), (1.1)
(avy)(0,8) =0 if 1 <m, <2
v(l,t) =0 for t € (0, 400),

Bu(l,t) + (auy)(1,t) = —pd;“u(1,t) in (0,+00),
u(z,0) = uo(x), ur(x,0) = uy (x) for x € (0,1),
v(x,0) = vo(z),v(z,0) = vy (x) for z € (0,1),
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where a € C([0,1]) N C*(]0,1]) is positive on ]0,1] but vanishes at zero, a denote
the coupling parameter, which is assumed to be real and small enough, g > 0 and
0 > 0. The notation 9;"* stands for the generalized Caputo’s fractional derivative
of order 7, (0 < 7 < 1), with respect to the time variable (see [11]). It is defined as
follows

o gt fort=1, w>0,
9, g(t) = L ' o w(t—s)dg
e Jo(t—s)Te T (s)ds for 0 <7 <1, w=>0.

The initial data (ug, u1,v0,v1) belong to a suitable function space.

Degenerate partial differential equations are encountered in the theory of bound-
ary layers, in the theory of shells, in the theory of diffusion processes, in particular
in the theory of Brownian motion, in climate science, in contact mechanics and in
many other problems in physics and mechanics. We find that the commun feature
of these problems is the lose of its typical characteristics, including ellipticity or
hyperbolicity, which can have a substantial impact on how solutions behave.

Degenerate equations are studied by posing two closely connected problems: 1)
a demonstration of the solvability of, say, boundary value problems taking into
account changes in their formulation which are a consequence of the degeneration
of type; and 2) a determination of properties of the solutions which are analogous
to those of non-degenerate equations (smoothness, Harnack inequalities for elliptic
and parabolic equations, etc.).

We review the related papers, regarding linear degenerate wave system, from
a qualitative and quantitative study. For a single degenerate wave equation, we
beginning with the work treated in [3], for (z,t) € (0,1) x (0, +00) where the goal
was mainely on the equation

wn(a,t) — (ale)us(2,8)), = 0 in (0,1) x (0,00),

together with boundary linear damping of the form

u(0,t) =0
(auy)(0,t) =0 if 1 <m, <2
up(1,t) + ugy(1,t) + fu(l,t) =0  in (0, 4+00).

zla’(z)|
a(x)
of the degree of the degeneracy. Thanks to the energy multiplier method, it is
proved that the total energy of the whole system decays exponentially.
Recently, Benaissa and Aichi [8] (see also [4-6,22]) considered the scalar degen-
erate wave equation under the following boundary fractional damping

if0<m,<1
in (0, +00),

where 8 > 0 is the given constant. m, = supy.,<; < 2 is the measurement

u(0,t) =0 Hfo<my,<1 )
in (0, +00),
(aug)(0,t) =0 if 1 <m, <2

(aug)(1,t) + 007 “u(1,t) + Bu(1,t) =0 in (0, +00).

They obtained an optimal polynomial stability of the solutions by using a frequency
domain approach combining with a multiplier method.
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Next, in a recent paper of Liu and Rao [18] general systems of coupled second
order evolution equations have been studied. The system is described

Uy — bAu 4+ ay =0 on €,
Yy — Au+au=0 on Q,
u =0 on I'p,

bo,u+yu+u; =0 on Iy,

y=0 in T,

where Q C IR" is a bounded domain with smooth boundary I of class C? such that
' =TpUl'y and I'pNI'y = 0. They established, by the frequency domain approach,
polynomial decay rate of order lnTt for smooth initial data, while waves propagate
with equal speeds. Moreover, while waves propagate with different speeds, i.e. the
case b # 1, they proved that the energy decays at a rate which depends on the
arithmetic property of the ratio of the wave speeds b.

Very recently, Wehbe and Koumaiha [15] considered a one-dimensional setting
of a system of wave equation coupled via zero order terms. More precisely, they
studied the stabilization of the following system of partially damped coupled wave

equations propagating with equal speeds, described by

Ut — Ugy + QY = 0 in (0, 1) X (07 —|—OO)7
Ytt — Yoo +u =0 in (0,1) x (0, +00),
0, +00),

u(0,t) = y(0,t) = y(1,t) =0 in (
uz(1,t) + yue(1,8) =0 in (
u(z,0) = up(x), us(x,0) = uy(z) for z € (0,1),

y(,0) = yo(x), ye(x,0) = ya(x) for x € (0, 1),

0, +00),

where v > 0. They proved optimal polynomial energy decay rate of order %, by
using a frequency domain approach and Riesz basis property of the generalized
eigenvector of the system.

In [2], Akil et al considered a one-dimensional coupled wave equations on its
indirect boundary stabilization defined by

Ut (T, 1) — Uge (T, 1) — dvg(x,t) =0 in (0,1) x (0, +00),
Ve (X, 1) — gy + dug(z,t) =0 in (0,1) x (0,400),
u(0,t) = v(0,t) = v(1,¢) =0 on (0, +00),

uz (1, ) + 00 “u(1,t) =0 on (0, +00),

u(xz,0) = ug(x), ue(z,0) =uy(z) on (0,1),

v(z,0) = vo(x), ve(x,0) =vi(x) on (0,1).

They established a polynomial energy decay rate of type ¢t=*(7), such that
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i) If d # km, then s(7) = 2.

1—7
i) If d = kmr, then s(7) = 2.
In [14], kerdache et al investigate the decay rate of the energy of the coupled
wave equations with a two boundary fractional dampings, that is,

Ut (2, 1) — Upy (x,1) + a(u —v) =0 in (0,1) x (0, +00),
v (T, 1) — Vg + (v —u) =0 in (0,1) x (0, 4+00),
u(0,t) = v(0,t) =0 on (0, +00),
ug(1,t) + 00 “u(1,t) =0 on (0, +00),

v (1,) + 007 “u(1,t) = 0 on (0,1) x (0, +00),
w(z,0) = up(x), u(x,0) =ui(z) on (0,1),

v(x,0) = vo(x), ve(z,0) =vi(x) on (0,1).

Using semigroup theory, they proved an optimal polynomial type decay rate.

Motivated by the works [8, 15, 18] we wonder what the asymptotic behavior of
the coupled degenerate wave equations would be, considering a boundary fractional
damping acting only on one equation.

This paper is divided into four sections. In section 2, we introduce the appropri-
ate functional spaces that are naturally associated with degenerate problems and
preliminary result used throughout the paper. Section 3 is devoted to the proof of
the well-posedness and strong asymptotic of the considered system. In Section 4
we establish an optimal polynomial decay of type t~5= for smooth initial data, by
the frequency domain method.

2. Preliminary results

Let a € C([0,1] N C*(]0,1]) be a function satisfying the following assumptions:

(1) a(x) >0 Vzx €]0,1],a(0) =0,
o ()]
00 e = 50 " afa)

(i3i) a € ClI™a1(]0, 1]),

<2, and (2.1)

where [-] stands for the integer part.

When m, > 1, we suppose 8 > 0 because if § = 0 and the feedback law only
depends on velocities, we may encounter the situation where the closed-loop system
is not well-posed in terms of the semigroups in the Hilbert space.

Examples. 1) Let w € (0,2) be given. Define
a(z) =2% Vzel0,1],

satifies (2.1).
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2) Let w € [0,2) be given and let 8 € (0,1 — w/2). The function
a(z) = 2% (1 + cos*(Inz?)) Vz € [0,1]

satifies (2.1).
Now, we introduce, as in [10,12] or [3], the following weighted spaces:

H0,1) = {u is locally absolutely continuous in (0, 1] : \/a(z)u, € L?(0, 1)} .

It is easy to see that H1(0,1) is a Hilbert space with the scalar product

1
(u, V)1 (0,1) = /0 (a(2) (z)v () + u(z)v(z)) de  VYu,v € HX(0,1)

and associated norm

1/2

1
mon ={ [ @ @F +uoPash e o)

[l

Next, we define
H?(0,1) = {u € H}(0,1): au’ € H'(0,1)},

where H'(0,1) denotes the classical Sobolev space.

In order to express the boundary conditions of the first component of the solu-
tion of (1.1) in the functional setting, we define the spaces Hj ,(0,1) and W, (0,1)
depending on the value of m,, as follows:

(i) For 0 < m, < 1, we define
Hj,(0,1) = {ue H}(0,1)/ u(0) = u(1) = 0},
W20,1) = {ue H}(0,1)/ u(0) =0} .
(ii) For 1 <m, < 2, we define
H; ,(0,1) = {u € Hy(0,1)/ u(1) = 0},
Wi,1)=H(0,1).

It is easy to see that H!(0,1) when 3 > 0 is a Hilbert space with the scalar product

()0 = [ o) @) de -+ Bu(UolD),

Let us also set

1/2

lul« = (/01 a(;v)|u’(:v)|2dx) Yu € H(0,1).

Actually, |-|. is an equivalent norm on the closed subspaces Hg ,(0,1) and W, (0,1)
to the norm of H}(0,1) when m, € [0,1[. This fact is a simple consequence of the
following version of Poincaré’s inequality.
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Proposition 2.1. Assume (2.1) with m, € [0,1). Then there is a positive constant
Cy = C(a) such that

lullf20,1) < Cululta Vu € Hgo(0,1). (2.2)

Proof. Let u e Hj ,(0,1). For any 2 €]0,1] we have that

o e
/01 @) de < ul?, {/ )

1/2

lu(x)| = ’/Ow u'(s)ds

Therefore

O
Now, we state two propositions that will be needed later (see [3,10,12]).
Proposition 2.2. Assume (2.1). Then the following properties hold.
(i) For every u € H!(0,1)
lim zu?(x) = 0. (2.3)
z—0
(ii) For every u € H2(0,1)
lim za(x)u'(z)? = 0. (2.4)
z—0
(iii) For every u € H2(0,1)
. / _
ili% za(z)u(z)u'(z) = 0. (2.5)

Proposition 2.3. H!(0,1) < L2(0,1) with compact embedding.

3. Well-posedness and strong stability

3.1. Augmented model

In this section we reformulate (P) into an augmented system. For that, we need
the following proposition.

Proposition 3.1 (see [14]). Let 9 be the function:
() = [¢|® V2, —co<¢< 400, 0<T<1. (3.1)
Then the relationship between the ‘input’ U and the ‘output’ O of the system

ro(s,t) + (2 +w)p(s,t) —U[)9(s) =0, —o0<¢ < 4oo,w>0,t>0, (3.2)

©(s,0) =0, (3.3)
+oo
O(t) = (x) " sin(rr) / 9()pls, ) de., (3.4)

where U € C°([0,400)), is given by

O=T1"T"%[, (3.5)
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where

1 10) = 1o

(lT) /0 (t— 8)77167“’(’575)]”(5) ds.

Lemma 3.1 (see [14]). If A € D, =Q\| — 0o, —w] then
/+OO 192(g) dg _ s ()\ i (,())T_l.

oo At w2 sinTm

We are now in a position to reformulate system (P). Indeed, by using Proposi-
tion 3.1, system (P) may be recast into the augmented model:

uge(x,t) — (a(x)uy)z(x,t) +av =0 in (0,1) x (0, 4+00),
v (2, t) — (a(x)vg)z(2,t) + au =0 in (0,1) x (0,400),
@i(s,t) + (% + w)p(s,t) —u(1,1)9(c) =0,  —o0 < <400, t >0,
u(0,t) =0 ifo<m, <1 )
in (0, 400),
(auz)(0,8) =0 if 1 <mg <2
(P") v(0,t) =0 if0<mg <1 in (0, +00),
(av3)(0,t) =0 if 1 <mg <2
v(l,t) =0 for t € (0, 400),
+oo
Bu(1,) + (aus)(1,6) = = [ 9()e(s,t)ds, ¢ = ol) ! sin(r),
u(z,0) = up(x), ue(x,0) = up () for x € (0,1),
v(x,0) = vo(z), ve(z,0) = vi(x) for z € (0,1).

We define the energy associated to the solution of the problem (P’) by the following
formula:

1 1
&0 =5 [l +a@lusPio+5 [ (o + el o

1 1 _ B B , ¢ +oo ) (3'6)
- dx + = |u(l, 2 ,1)|” ds.
o [ s omde+ Guop+5 [ letstP s

2

Lemma 3.2. Let (u,v,9) be a regular solution of the problem (P’). Then, the
energy functional defined by (3.6) satisfies

+oo
)=—¢ [ rwlelnPd<o (37)
—o0
In this section, we give an existence and uniqueness result for problem (P’) using
the semigroup theory. Introducing the vector function U = (u,,v,9,¢)?, where
U = ug, U = vy, system (P’) can be treated as a Cauchy evolution problem
0 = A0, for all ¢t > 0,
(3.8)

0(0) = Oy,
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where ©g = (ug, u1,vo,v1, o)’ and
A:DA)CH—-H

is the operator given by

a (a(z)ug)s — aw

Alov | = o . (3.9)
0] (a(z)vg)e — au
so —(c? + w)p +a(1)9(s)

We introduce the following phase space (the energy space):
H =W, (0,1) x L*(0,1) x H ,(0,1) x L*(0,1) x L*(—o00, +00),

that is a Hilbert space with the following inner product

1 1 1
(U, U)y = / a(2)u1,Us dr +/ a(x)v1, Vo dx + a/ (u1Tg + voty ) dx
0 0 0
1 1 “+oco
+/ ﬂﬁgda; =+ / f)lggd?ﬂ + C/ P19y ds + 5U1(1)ﬂ2(1),
0 0 —00

for all U = (uy, 1, v1, 01, 1)7 and U= (ug, Uiz, v2, U2, pa) 7.
The domain of A is

(u, 0,9, )T in H :u e H2(0,1) N WL(0,1),

ve HZ20,1)NHj,(0,1),a € Wi (0,1),0 € Hg,(0,1),
D(A) = { (¢ +w)p +a(1)d(s) € L*(—o0, +00), . (3.10)
Bu(l) + (auy)(1) + </+<><> ds =0,

lslp € L?(—o0, +00)

We have the following existence and uniqueness result.

Theorem 3.1 (Existence and uniqueness). (1) If Uy € D(A), then system (3.8)
has a unique strong solution with the following reqularity,

UecC'(Ry,D(A)NCHRL,H).
(2) If Uy € H, then system (3.8) has a unique weak solution such that
UcC'Ry,H).

Proof. We use the semigroup approach. In what follows, we prove that A is
monotone. For any U € D(A) and using (3.8), (3.7) and the fact that

£(t) = 31U, (3.11)
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we have oo
ROAU, Uy = —C / (62 + W) [(o)|? de. (3.12)

and therefore, A is dissipative. Next, we prove that the operator A\I — A is surjective
for A > 0. More precisely, given G' = (g1, 92,93,94,95)7 € H, we will show that
there is U € D(A) such that

(M- AU =G. (3.13)

From Equation (3.13), we get the following system of equations

Au—1u = g,

At — (a()ug) . + av = ga,

Av — D = gs, (3.14)

A0 — (a(x)vg )z + au = gy,

Ap + (6% + w)p — a(1)d(s) = gs-

Suppose u, v are found with the appropriate regularity. Then, (3.14); and (3.14)3
yield

-0 € W(zl(()) 1)7

(3.15)
— g3 € H&a(o, 1).
By using (3.14)s, (3.14)4 and (3.15) it can easily be shown that u, v satisfy
Ay — (a(2)uy)s + v = go + Agy,
(a(z)us) 92+ Ag1 (3.16)

Ay — (a(T)uz)z + au = ga + Ags.

Solving system (3.16) is equivalent to finding (u,v) € H2(0,1)NWL(0,1)x H2(0,1)N
Hj; ,(0,1) such that

/01(/\2uw — (a(z)ug),w) dx + a/ol vwdxr = /Ol(gg + Ag1)w dz,
/O I(A%y — (a(x)vs)y) dz = /0 1(g4 + Ag3)y dz,

for all (w,y) € W;(0,1) x Hg,(0,1). By using (3.17), the boundary condition
(3.10)3 and (3.14)5 the functions u and v satisfy the following system

(3.17)

/ ()\Quw—i—a(a;)uwww)dx—i—a/ v dz + Bu(1)T(1) + Ca(1)w(1)
01 0
~ [ rmms ¢ |7 i am, (3.18)

1 1 1
/ (A7 + a(x)v,y,) dr + a/ uydr = / (94 + Ag3)y dz,
0 0 0

here ds. Using again (3.15)1, we deduce that
where € = ¢ [ i Using again (3.15) w

(1) = Au(1) — gi(1). (3.19)
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Inserting (3.19) into (3.18), we get

/ (A2 + a(2)us®s) dz + o / v dz + (& + B)u(1)m(1)
0

1 ~+o0 ~
— [ —¢ [ P gn(q dmn) + Gn(ma), :20)

1 1 1
/ (A7 + a(x)v,y,) dr + a/ uydr = / (94 + Ag3)ydz.
0 0 0

Adding (3.20); and (3.20)2, we introduce a sesquilinear form B : [W1(0,1) x
Hj ,(0,1)]* =@ given by

1 1
B((u,v), (w,y)) = )\2/0 (uw + vy) d:ch/O a(z)(uy Wy + 0,7, ) dz
+a/0 (W@ + ug) dx + (A + B)u(1)w(1),

and a continuous antilinear functional £ : W} (0,1) x Hg ,(0,1) =@ where
L(w )—/1( + A )wdm—(/+ooﬁ(g) (¢) dsw(1)
Y) = 0 g2 g1 1 - §2+w+)\go§ <
o) + [ (g4 M)y,
0

satisfying

B((u, ), (w,y)) = L(w,y), (3.21)
the sesquilinear form B(.,.) is a bounded since for any (u,v), (w,y) € W2k(0,1) x

H; ,(0,1).
B((u,v), (w,y))
< Xullz2opllwllz2o,0) + Xvlle20,0) lvllz20,1)

Hval@)uzll 20,1l vV a(@)we || L20,1) + [V a(@) vl 22 0,1) | vV a(@)yz | 220,1)

| 2

+all[vllz2 o lwll L2 0.1) + el z2 0.0 191l 2201y + Allu(1)
< M||(u, U)HWL}(O,I)XH&Q(O,I)”(way)”Wé(O,l)xH&ya(O,l)»

and is coercive because V(u,v) € W, (0,1) x Hg ,(0,1)

B((u,v), (u,v)) > )‘Q(HUHQB(OJ) + Hv||2L2(0,1)) + [lv a(x)uwH%ﬁ(oJ)
1
I ale)oalZa) + 2a§R/ B dz + AZu(1)[?
0
> dllullwzon o), 0,1
for a small enough. Therefore, Lax-Milgram says that system (3.21) has a unique
solution (u,v) € W;(0,1) x Hj ,(0,1).
Now taking (w,y) = (w,0) with w € D(0,1) in (3.21), we obtain

N — (a(x)ug) e + v = go + Agi. (3.22)
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Due to the fact that u € W}2(0,1) we get (a(x)u,), € L?(0,1), and we deduce that
u € H2(0,1) N W2(0,1).
Similarly taking (w,y) = (0,y) with y € D(0,1) in (3.21), we obtain

N0 — (a(2)v,)s + au = g4 + Ags, (3.23)

and we deduce that v € HZ(0,1) N Hg ,(0,1).

Multiplying both sides of the conjugate of equalities (3.22) and (3.23) by w €
W2(0,1) and y € Hj,(0,1), integrating by parts on (0,1), and comparing with
(3.21) we get

(a(@)u )(1)@() (AN +w)™t + Bu(D)w(1)
+C/oo % +w+)\ 95(c) dsw(1) — o(A+w)" g1 (L)w(1) = 0.

Consequently, defining & = Au — g; and ¢ by (3.14)5, we deduce that

+oo
fu(t) + (alw)u) () +¢ [ 0(c)pls)ds =o.

In order to complete the existence of U € D(A), we need to prove ¢ and [¢|p €
L?(—00,00). From (3.14)5, we get

2 g5 () [? 2 2 2 [s]>!
/]R|90(<)| d<§3/mmd<+3(/\ [u(1)[*+]g1(1)] )/Rm‘k-

Using Proposition 3.1, it easy to see that

|§|2T 1
B ge=(1—
/]R (2 +w+ A)? de = T)smﬂr(/\_HU)

On the other hand, using the fact that g5 € L?(IR), we obtain

/ |g5(§)|2 dec < 1 / |95(§)|2 dc < 4-00.
R (+w+A)? 77 (0+ ) IR

It follows that ¢ € L%(IR). Next, using (3.14)s5, we get

[ tsetopds <3 [ EHEE e e + n )

2w+ )

|§‘27'+1
X = ds.
/lR (2 +w+ )2
Using again Proposition 3.1, it easy to see that

/ A A+w)!
R (s2+w+ )2 ¢~ Tsinrn '

Now, using the fact that g5 € L?(IR), we obtain

l<[?]g5 (<) [? 1 / ,
ds < ds < +oo.
/IR (24+w+ )2 C = w+N IR l95(s)|* ds < +o00

It follows that |¢|p € L?(IR). Finally, since ¢ € L?(IR), we get
—(6* +w)p + a(1)9() = Ap(<) — g5(<) € L*(IR).

Then U € D(A) and Therefore, the operator A\I — A is surjective for any A > 0.
O
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3.2. Strong stability of the system

In this part, we use a general criteria of Theorem 3.2 to show the strong stability
of the Cy-semigroup e** associated to the wave system (P) in the absence of the
compactness of the resolvent of A.

To state and prove our stability results, we need some results from semigroup
theory.

Theorem 3.2 ( [7]). Let A be the generator of a uniformly bounded Cy-semigroup
{S(t)}+>0 on a Hilbert space X. If:

(i) A does not have eigenvalues on iIR.

(i) The intersection of the spectrum o(A) with iIR is at most a countable set,

then the semigroup {S(t)}1>0 is asymptotically stable, i.e, ||S(t)z||x — 0 ast — oo
for any z € X.

Our main result is the following theorem:

Theorem 3.3. The Cy-semigroup e is strongly stable in H; i.e, for all Uy € H,
the solution of (3.8) satisfies

lim || Upl|3 = 0.
t—o00

Proof. For the proof of Theorem 3.3, we need the following two lemmas.
Lemma 3.3. A does not have eigenvalues on iIR.

Proof. We will argue by contraction. Let U € D(A) and let A € IR, such that
AU = i)U.

Then, we get

idu—u =0,

A — (a(2)ug)y +av =0,

iv—17 =0, (3.24)

iA0 — (a(z)vg)y + u =0,

iXg + (s% 4+ w)p — @(1)9(s) = 0.

eCase 1. If X # 0, then, from (3.12) we have
0 =0. (3.25)

From (3.24)3, we have
(1) = 0. (3.26)

Hence, from (3.24); we obtain

u(1) =0 and u,(1) = 0. (3.27)
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Eliminating @ and ¢ in equations (3.24); and (3.24)3 in equations (3.24)2 and
(3.24)4, we obtain the following system

Nu+ (a(z)ug)y — v =0,
)

220 + (a(x)vg)e — au = 0,

u(l) =uz(1) =v(1) =0, (3.28)
u(0) =v(0) =0 if m, € [0,1),
(a(x)uz)(0) = (a(z)vy)(0) =0 if m, € [1,2).

On the other hand, multiplying (3.28); by 7, (3.28)2 by @ and using the boundary

condition (3.28)3, we get
1 1
/ luf? do = / lv|? dz. (3.29)
0 0

Multiplying equation (3.28); by %, using Green formula, (3.27) and the boundary
conditions, we get

1 1 1
/\2/ lu|? dx — / a(x)|ug|? de — a/ vadr = 0. (3.30)
0 0 0

Multiplying equation (3.28); by 2., we get

1 1 1
)\2/ TUT, dx + / Uz (a(T)ug)y do — a/ VU, dx = 0. (3.31)
0 0 0

U € D(A), then the regularity is sufficiently for applying an integration on the
second integral in the left hand side in equation (3.31). Then we obtain

A2 tod ! 1! d
— x—\u|2dx—/ a(m)|ux|2dx—f/ ra(z)— |u, | do
2 Jo dx 0 2 Jo dx

(3.32)

1
—045}%/ v, dx = 0.
0

Using Green formula, Proposition 2.2-(ii) and the boundary conditions, we get

1
0

1 1
22 / lu|? da + / (a(x) — zd (z))|ug|? dx + QQ%/ 2V, dx = 0. (3.33)
0 0

Multiplying equations (3.30) by —m,/2, and tacking the sum of this equation and
(3.33), we get

2—mg o ! 9 ! , Mg 9
T/\ /0 ul da:+/0 (a(aj)—xa (x)—!—Ta(x)) |ug|” da 3

1 1
+2a§R/ xvuﬁgdm—l—aﬁ/ vudr = 0.
0 2 Jo

By definition of m,, we have

(2 —mg)a(z) < 2(a(z) — xd' (x)) + mga(z).
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Then using the Cauchy-Schwartz and Poincaré’s inequalities, we deduce from (3.34)
and (3.29) that there exists a positive constant C' > 0,

1
/ a(x )|uz|2dm<aC/ ) |ug |* d.
0

which yields u=0 for a small enough. It then follows from (3.29) that v = 0, and
from (3.24); and (3.24)3 that &« =0 = 0.

Consequently, we obtain U = 0, which contradict the hypothesis U # 0. The
proof has been completed.

eCase 2. Otherwise, if A = 0, the system (3.24) becomes

u=0=0,

(a(x)ug)y —av =0, (3.35)
(a(x)vg)y —au =0,

(

2+ w)p —a(1)d(s) = 0.
From (3.35); and (3.35)4 , we have
0 =0. (3.36)

Multiplying equation (3.35)2 by @, (3.35)3 by 7, using Green formula and the bound-
ary conditions, we get

1 1 1
/ a(x)[[ug|? + |ve|?] dz + Blu(1)|* + a/ vudr + a/ uwvdz =0, (3.37)
0 0

0

which yields u, = v, = 0 for a small enough. Moreover, if m, € [1,2), then
u(1) = 0. Hence

u=v=0,

if m, € [0,1), then w(0) = v(0) = 0. Hence u = v = 0. and consequently, we obtain
U = 0, which contradict the hypothesis U # 0. The proof has been completed. [

Lemma 3.4. We have
iR C p(A) if w # 0,
1IR* C p(A) ifw=0.

Where IR* = R — {0}.

Proof. eCase 1. A # 0.

We will prove that the operator i\l — A is surjective for A # 0. For this purpose,
let G = (g1, 92,93, 94,95)" € H, we seek X = (u,@,v,9,¢)T € D(A) solution of the
following equation

(A — A)X = G. (3.38)
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Equivalently, we have

AU —u = g1,
iIAM— (a(x)ug)y + v = g,
N — D = gs, (339)

iAD — (a(z)vg) s + au = gy,

idp + (¢ + w)p — a(1)d(s) = gs.

Inserting (3.39); and (3.39)3 into (3.39)2 and (3.39)4, we get

{—)\ZU — (a(@)tz)s + v = (g2 + irg1), (3.40)

220 — (a(2)vy)z + au = (g4 +i)g3).

Solving system (3.40) is equivalent to finding v € H2 N W2(0,1) and v € H2 N
Hj; ,(0,1) such that

/ (= \2ut — (a(x)u, ), + avw) de = / (g2 +iXg1)w dz,
0 0
(3.41)

i 1
/ (=X — (ale)uy)eF + o) do = / (g1 + irgs)7 do,
0 0

for all w € W;(0,1) and y € Hj ,(0,1). Then, we get

1
/0 (=N2uT + a(z)u, W, + avw) dz + (iAC + B)u(1) w(1)

1 +o00 ~
:/0 (92+i)\gl)wd‘r*C/ioo %fs(g)ckﬁ(l)wLCgl(l)ﬁ(l), (3.42)

1 1
/ (=07 + a(2)v,7, + auy) do = / (94 +1iAg3)y de.
0 0

We can rewrite (3.42) as

B((u,v), (w,y)) = l(w,y), Y(w,y) € W, x Hg,(0,1), (3.43)
where
B(“? U)v (w» y) =B (u7 v), (wv y) + BZ(”» U)v (wa y)
with
1
Bi(u,v), (w,y) = / (@(2) (4T + 027,) + (0T + up)) d
(*) +(Bu(1) +iA)u(1) w(1),

1
BQ(U,’U),(IU,y) = _/ )\2(’[1,@4—1}?) d.’E,
0
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and

%%(c) ds w(1)
1

1 +oo
l(wyy)=/0 (gz+i/\gl)@dx—</_
oA+ w) s (D@1 + / (g1 + iMgs)7 do.

Let (W, x H; ,(0,1))" be the dual space of Wy x Hj ,(0,1). Let us define the
following operators

(%)

B:Wg x Hj ,(0,1) = (Wg x Hj ,(0,1)) By : Wy x Hj ,(0,1) = (Wg x H} ,(0,1))" i€ {1,2},

(uv U) = B(u7 u) (u7 U) — Bt(uv U)
such that

(B(u,v))(w,y) = B((u,v), (w,y)), Y(w,y) € Wg x Hg4(0,1),
(Biu)w = Bi(u,w), V(w,y) € W} x Hg ,(0,1),i € {1,2}.

(s * %)

We need to prove that the operator B is an isomorphism. For this aim, we divide
the proof into three steps:

Step 1. In this step, we want to prove that the operator By is an isomorphism. For
this aim, it is easy to see that B is sesquilinear, continuous form on W, x Hg ,(0,1).
Furthermore

RB1 ((u,v), (u,v)) = |Vaug |5 + [[Vave |35 + a/o (uv + v) da + Blu(1)[?
+0AR (z(z)\ + w)T_l) lu(1)]?
> c(Vauell5 + [[vVave |13 + Blu(1)?),

where we have used the fact that

+oo
oAR (i(iA +w)™ ) = 0\2/ U0k ds > 0.

oo A2+ (w+¢2)2
Thus B; is coercive. Then, from (x*) and Lax-Milgram theorem, the operator B;
is an isomorphism.

Step 2. In this step, we want to prove that the operator By is compact. For this
aim, from (*) and (x * %), we have

|Ba((u, ), (w, )] < ell(w, v)[[ 20,1 [ (w, y) | 22(0,1)

and consequently, using the compact embedding from W, x Hj ,(0,1) to L*(0,1) x
L?(0,1) we deduce that By is a compact operator. Therefore, from the above steps,
we obtain that the operator B = By + By is a Fredholm operator of index zero.
Now, following Fredholm alternative, we still need to prove that the operator B is
injective to obtain that the operator B is an isomorphism.

Step 3. Let (u,v) € ker(B), then

B(u,v), (w,y)) =0 Y(w,y) € W} x Hé’a((), 1). (3.44)
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In particular for (w,y) = (u,v), it follows that

)‘2(H“”L2 01 T HU”H 0,1)) — 1OA(iA +w)" Hu(D)? = Blu(1)?
- || Vv a uac” 01)+H\/ UJ:HLQ(O 1)"‘0(/ (’Uﬂ-i-’l}ﬂ) dx.

Hence, we have
u(1) = 0. (3.45)
From (3.44), we obtain
(a(w)ua)(1) = 0 (3.46)
and then
ANu+ (a(z)ug)r — av =0,
)

220 + (a(x)vg)e — au = 0,
u(l) =u(1) =v(1) =0, (3.47)
u(0) =v(0) =0 if mg €0,1),

(a(x)ug)(0) = (a(x)vy)(0) =0 if m, € [1,2).

Then, according to Lemma 3.3, we deduce that (u,v) = (0,0) and consequently
Ker(B) = {0}. Finally, from Step 3 and Fredholm alternative, we deduce that the
operator B is isomorphism. It is easy to see that the operator [ is a antilinear and
continuous form on W, x Hj ,(0,1). Consequently, (3.43) admits a unique solution
(u,v) € W, x Hj ,(0,1). By using the classical elliptic regularity, we deduce that
U € D(A) is a unique solution of (3.38). Hence i\ — A is surjective for all A € IR*.
Case 2. A =0 and w # 0. Using Lax-Milgram Lemma, we obtain the result. [

Taking account of Lemmas 3.3, 3.4 and from Theorem 3.2 the Cy-semigroup e'
is strongly stable in H. O

3.3. Optimal condition for strong stability of the system in
the case a(z) = 27

Theorem 3.4. The Cy-semigroup e is strongly stable in H if and only if the
coefficient o satisfies

Vy, v

(©) ats (2 7>Uzkj3m,hmeN,

where vy = |1 —~]/(2—7) and ju1 < jJu2 < ... <jur <... denote the sequence of
positive zeros of the Bessel function of first kind and of order v.

A2u+ (27ug)y — av =0,

A0 + (270,) — au = 0,
u(l) = uz (1) = v(1) = (3.48)
u(0) =v(0) =0 if m, € [0,1),

(x7uz)(0) = (27v,)(0) =0 if m, € [1,2).
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We consider only the case v € [0, 1[. The case v € [1, 2[ is similar. Then ¢ = u+v
and v = u — v satisfy

{()\2 )+ (a7y)e = 0, .19

(A2 4+ )t + (271hs)z = 0.

The solution of the equation (3.49) is given by

{qs(x) = 1B, (z) + 2P (2),
Y(a) = Ppp(2) + 20— (2),

togheter with the boundary conditions

where

Ve (ﬁ A2 — osz> ,
(3.50)
( )

where

N =y y
Tuly) = n;) m!I'(m +v+1) (5)

Tou(y) = m]p((nf_)jm (%)%H =D amy" (3.52)

where J, and J_, are Bessel functions of the first kind of order v and —v.
As ¢(0) = ¥(0) = 0, then ¢ = ¢ = 0. As u(z) = %(qb(x) + 9¥(x)), we deduce
that
¢2(1) = —a(1).

Then
ci{(1 =), (%\/AQ - Oé) VA2 —aldy, 1 (%V A2 — 04)]’
=—a{(l -9, (%\/)\2 + a) -V +ad, 11 (%\/)\2 + a)}.

Moreover ¢(1) = 1(1) = 0. Then

CIJVA, <2E’y V )\2_Oé> :0, 61Jy,y (237 V )\2+O() :O,
(1=, (V= a) =V = adu 1 (35 VA —a)}

= —&{(1 =), (%\/)\2 T a) VN a1 (%\rz Ta)l
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If Bessel are zero then

2 2
e /\Q—a:ijkandi\//\Q—i—a:j,,m
27,-}/ ’ 27,}/ 2]

for some integers k and m. Hence, eigenvalues on (IR exist iff

1/2-7\",. )
o= ) <2> (]37,k 7]37,m)'

Hence, if condition (C') is satisfied we deduce that ¢; = 0 or ¢; = 0 and consequently
u=1v=0.
Therefore U = 0. Consequently, A does not have purely imaginary eigenvalues.

3.4. Lack of exponential stability

This section will be devoted to the study of the lack of exponential decay of solutions
associated with the system (P’).

At

Proposition 3.2. The Cy-semigroup of contractions S(t) = e”** associated with

(3.8) is not exponentially stable.

Proof. Let pi, be an eigenvalue of Ku = —(au,), in Hg ,(0,1) corresponding to
the normalized eigenfunction e,, and

Then a straightforward computation gives

«

1Vl =1, v = AUl = 5= = 0.

This shows that the resolvent of A is not uniformly bounded on the imaginary axis.
Following [13,21], the system (P’) is not uniformly and exponentially stable in the
energy space H. O

Precise spectral analysis in the case a(z) = 27.

We aim to show that an infinite number of eigenvalues of A approach the imag-
inary axis which prevents the system (P) from being exponentially stable. Indeed
we first compute the characteristic equation that gives the eigenvalues of A. Let A
be an eigenvalue of A with associated eigenvector U = (u, v, ¢)T. We consider only
the case v € [0,1[. The case v € [1,2[ is similar. Then AU = AU is equivalent to

v — =0, (3.53)
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with boundary conditions

u(0) = v(0) = v(1) =0,

(3.54)
(B+ oA\ +w)™ Hu(l) + uz (1) = 0.
Inserting (3.53); into (3.53)2 and (3.53)3 into (3.53)4, we get
ANu — (27ug), +av =0,
220 — (27v,), +au =0,
(270, 5
u(0) = v(0) =v(1) =0,
(B+ oA\ +w)" Hu(l) + ux (1) = 0.
Let us set
=u-+v,
¢ (3.56)
Y=u—0.
Then, we obtain
A +a)d— (27¢y)s =0,
(02 +a)o — (76.) -
(A — )y — (27¢)s = 0.
The solution of equations (3.57) is given by
x)=c1Py +c_P_,
P(z) = c1 P4 (3.58)

Y(x) = a® oy + B,
where &, ®_, &, and ®__ are defined by

~

Oy (2) =27 J,, (%zﬂ:f%) ,

(1) =2, (i)
and
1= . 2—9
Pyi(2) =277 Jy, (%Mﬂﬂ 2 ) ;
o__(x):= xlTwJ,V 2%1)@7)
where
-~
Uy = —.
Y 2 —
Then
1
u(@) = 5(a®p +o o+ a0+ D),
1 ~ ~
V(@)= (@l e~y —c @ ).
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Then, using the series expansion of J,_ and J_,_, one obtains

[e%S) [e%S)
O, (z) = é;,mxl_WHQ_wm’ O_(z) = Z c;mmx@—"/)m’
m=0 m=0
00 9]
By, (2) = Z é;,mxl—’y+(2—'y)m7 o ()= Z é;mmx@—w)m
m=0 m=0
with
9 R 2m—+tu.y 2 B 2m—v~
Cl—i—%m :Cl-i,,m (2_71A> 5 é;mm :C;,wm (2_71)\> 5
2m—+v. 2m—v.
- ) =z v L _ 2 = y
e;:’m = ;:}m (2_77/)\> 5 ez/,\”m :cl’“f’m (2_71A> .

Next one easily verifies that ®,,®, € H; ,(0,1): indeed,

Oy (x) ~o & 2! 7Y, 2R () ~o (1—7)E) g7 /?,
®_(2) ~o G, g, @PRL(2) ~o (2 7)E, gzt T2,
where we have used the following relation
xJ!(z) = v, (z) — 2,41 (). (3.59)
Hence, given c— = é_ = 0,u(x) = 5(c1®4 () + 61®44(2)) € H ,(0,1) and v(z) =
Her®y(z) — P14 (2)) € Hj ,(0,1) with the boundary conditions
v(l) =0,
(B4 0A(A+w) Hu(l) +up (1) = 0.

Then
C1 0
M = , (3.60)
C1 0
where
M= (B+oAXA+w)" P (1) + ¥ (1) (B4 AN+ w)™ 1P, (1) + P, (1)

(1) —P1(1)

System (3.55) admits a non trivial solution if and only if det(M) = 0. i.e., if and
only if the eigenvalues of A are roots of the function f defined by

FO) =208+ (1 =9+ AA+w) ), (550) 4, (%M (3.61)

~iMs, (5500) Jun (5500) = M, (2500) , (5500)
Our purpose is to prove, thanks to Rouché’s Theorem, that there is a subsequence
of eigenvalues for which their real part tends to 0.
In the sequel, since A is dissipative, we study the asymptotic behavior of the

large eigenvalues A of A in the strip S = {A €T : —ag < R(A) < 0}, for some
ag > 0 large enough and for such A, we remark that ®,,®_ remain bounded.
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Lemma 3.5. The large eigenvalues of the dissipative operator A are simple and can
be split into two families (\jx)rez,|kj>n-J = 1,2,(N € IN, chosen large enough,).
Moreover, the following asymptotic expansions for the eigenvalues hold:

e [f T =1, then

2—~ o—1 (1-2v,) 1y .
3 [1n Q+1+z(k+4 | + O A ifo>1

1,k = , kel.
’ 2—v 1—0 . 3 —2vy 1 .
5 [ Q+1+z(k+ 1 >7T:|+O<k_) ifo<1
2—7. (1-2v,) ar  (1—2vy)ar 2 \° o002
Ao g = [ Sl s § -
2k = Z< [ R 29—~ ) (k)

~0()

o [fO< T <1, then

2—7. (3 —2v,) B B 1 =
>\1,k: B) (k+ 4 7r+k177+k177+0 F 7k2N,ﬂ1€ZR,

where

2
( ) — cos((1 — T)W)
2—~v) 7w-—7 2
2— (1-2 1-2 3
Mo = 7 (kw+ Vw) ar ( Vy)(h) n B2 B2
1

km + 4k27

kS—T + k3—7’

+o(k3 T) k> N,p, €ilR,

where

2\ oa? T
,6’2:—(27) o cos(l—T)E,

Nk =Nj—k if k < —N.
Moreover for all |k| > N, the eigenvalues \j are simple.

Proof. Step 1. We will use the following classical development (see [17] p. 122,
(5.11.6)): for all § > 0, the following development holds when |arg z| < 7w — §:
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Moreover, for A large enough, we have

~ 2 3

Azx/ﬁz)mt%_&jLOE\O;)’

= 2 O

A=V 2= :A_%_% (;;)

Mi:”*% O(;f)’ (3.63)
~ 2

R

M, (5500) , (2500) = M, (72500) b, (5500
= —iX [T, (5500) o, (52500) + T, (5500) 4, (53500

« 2 - 2 = 2 =z 2 .
—i~ | Jiw, ( 5——=iN) o A = Jitw A )y A
Z/\{1+”(272> ”(272) 1“(27@) ”<2vl )]

+0 (51) -

Now, we set
— 2 \N_, T _
= IA— Uy

— _ T _
a=12 V’YQ 2—7y

s
1
— S _ym_m_ 25, m
b=2Z-vy5 -1 =355A 13

Thus, from (3.62), we have

a 7 1
Jiyv, (Z) =sina + %cosa — sinaaQ(VﬂY) +0 <) ,

- 1
(1) =J,(Z) = cosb - sinb%%) - cosbaéyﬂ/) +0 () )

2 73
( ) in (1) 1 (3.64)
J1+VW(Z)—smb+ Z cosb — smbaQZ? +O<Z3),
— _ - a1(vy) az(vy) 1
¢, (1) =J,,(Z) =cosa—sina S T cosa—; +0 75 )
where
cosvm T3 +v )3 —v - cosvam D2 + v, )I'(% —v
) = - Sm LG 2 NG 2 v) Gy, costam EG 2 )TG v
cosvom D(3 + v, )T(3 —v,) cosvym D(Z 4+ v,)T(2 —vy)
a2(ny): Tr’Y 2 78 2 ,CLQ(I/A/):— ﬂ-’Y 'Y8 2 gl
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Let us start with the case 7 = 1. Inserting (3.64) and (3.63) in (3.61) we get

9 \U/2 /9 \1/2 _
r=-n(5) (Z) o, (3.65)
where
f(\) = — cosh(x) + ig(isinh(x) + 1) + % [f%(l — i sinh(x))
+8 (1 + isinh(x)) + iB(1 + i sinh(x)) + 2a1e cosh(*)}
1 [ior2a? +a a1 2if
+F [197“204 + <a2 =2 2 + a;gl + Z;“) cosh(x)
+2i (282 (1 + isinh(x)) + 42 (1 - isinh(+)) ) | + 0(%),
where 5
T_ﬁv F:ZT, /8:/84»(177)
and
() = 2rA +ivym.
e A0 L B0 (1
FO) = fo(\) + 1A + 32 +0 (A?)) , (3.66)
where
fo(A) = — cosh(x) + ip(isinh(x) + 1), (3.67)
i) = —%(1 — isinh(x)) + %(1 + isinh(x)) +i8(1 + isinh(x)) + 2i010 cosh(x),
(3.68)
;o202 e e 28
f2(\) = “”"20“ + (C‘Q;GQ + a;;” + Zg‘”) cosh(x) + 2i (— Q;Q(l + isinh(x))
+g;§ 1- isinh(*))) .
(3.69)

Note that fo, f1 and fo remain bounded in the strip —ap < (M) < 0.

Step 2. We look at the roots of fo. From (3.67), fo has has two families of roots
that we denote A{ , and AJ ;.

fo(A) =0 < —cosh(*) +ip(isinh(x) + 1) = 0,

i.e
—(Q + 1)e4r)\ + 21@671}77”62"\ + (.Q _ 1)672117771’ =0.
This yield
627‘)\ — @ — le_y‘rWi or
o+1
627“)\ — iefl/,ﬂri
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and directly implies that

2= {m 91+i<k+w)w] if o> 1
2 o+1

)\(l),k = ) ke 27

2—7. (1-2v,)
Ag,k: TZ (k7r+4'y7r)

Using Rouché’s Theorem, we deduce that f admits an infinity of simple roots in S
denoted by A1, and Mg i, for |k| > ko, for k¢ large enough, such that

Ak = A g+ ELns (3.70)

Aok = A3 ), + €2k (3.71)

Step 3. Asymptotic behavior of ¢; ;. We consider only the case p > 1. The
case ¢ < 1 is similar. Using (3.70), we get

sinh(*) = i(cosh ¢ 4 2req j sinh ¢ + 27‘28%7]6 cosh? + o(sik)), (3.72)
, :
1

cosh(x) = i(sinh £ + 2req  cosh ¢ + 27“2£ik sinh £ + o(7 1)),
where { = In %. Substituting (3.72) into (3.67), using that f(A; ) = 0, we get

1
€1,k = O (k) .

Step 4. Asymptotic behavior of ¢; ;. Using (3.71), we get

sinh(*) = 4(1 + 27“2»33’,C + O(Sg’k))’ (3.73)
=29

cosh(*) (reg,r + %””35:23,19 + 0(5§,k))'

Substituting (3.73) into (3.67), using that f(Asx) = 0, we get

- ) 2a1 1 €2k
ﬂ&@z—%mm—ﬂﬁﬂ+O@M+O<m>+O<k):& (3.74)

The previous equation has one solution

S 2 L £2,)
Eok = zr]m+0(sg7k.)+0(k2>+0( . ) (3.75)

We can write

2 1-2
Ao = = 7 <k7r + (””)w> - z% +éop, (3.76)
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where €2, = 0o(1/k). Substituting (3.76) into (3.66), we get

; o 2iga? igrta® (1 —2v,)a; 4iga? = 2iga?
FO2) = =2irgon+ os = 502 ~ 2 T kn)2 T (k)2
- 1 €2,k
2 _ —4ah —
+O(52’,€)+O<k3>+0< . > 0.

The previous equation gives

_ orfa?
4(km)?

(1-2vy)as . 2 1 S0,k
izr T OGO G ) 057 )

From (3.78) we have in that case |k|?RA2 x ~ v with

Eok =

or3a?
V=
472

Case 0 <7< 1.

f(A) = —cosh(x) +

w ..
N7 (isinh(x) + 1)
1
A

_,_)\2177 [22?19 cosh(x) +io(1 — T)w(l + 14 sinh(*))}
7

1 as + ao ai1aq 2i,5’(l1
—|—p ( = + = + = cosh(x)
oa

2 [or?a? _0ap
A7 4 72 272

+

(1 +isinh(x)) +

(1 —isinh(x))

elr=beas o) () 4 Sr=r=2e? +ismh(*))} +0 (AS

F = o + LA 4 2t

Ja(N) + f3(N\) n fa(N) N f5(N) +O< 1 > 7

\2—-T 22 \3—T 23

where

fo(X) = — cosh(x),
f1() = io(isinh(x) + 1),

fa(A) = f%(l —isinh(x)) + %(1 + isinh(x)) +43(1 + isinh(x)),
fa(\) = %(;19 cosh(x), +io(1 — T)w(1 + i sinh(x)),

Ja(N) = <a2;&2 + a;c;zl + 2i€a1> cosh(),

f5(0) = iQT§a2 + 2 [— Q;Q(l +isinh(x)) + gﬁ(l — isinh(x))

+- {L;l(l — isinh(x)) + %(1 + isinh(x)) +i3(1 + isinh(*))]

(3.77)

(3.78)
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-1
+Q(T7~)wa1 cosh(*) +

Y (1 +isinh(x))] .
(3.85)

Note that fo, f1, f2, f3, f4 and f5 remain bounded in the strip —ay < R(X) <O0.

Step 2. We look at the roots of fy. From (3.80), fo has two families of roots that
we denote A{ ; and AJ ;.

fo(A) =0 < —cosh(x) = 0.

Then
_e4r>\ _ 6_21/77”. =0.
Hence
627"/\ — _e—uwﬂ'i or
627")\ — ,L-efy,ﬂri7
2—7. 3—2v
Ay = 5 ¢ k+ 47 m, ke,
2 — 1-2
Ad = 271' kTrJr(4V'y)7r>, keZ.

Using Rouché’s Theorem, we deduce that f admits an infinity of simple roots in S
denoted by A1 i and Ag i, for |k| > ko, for k¢ large enough, such that

2— -2

Ak = 7 7 (kﬂr + Wﬁ) + &1k, (3.86)
2— 1-2

Aok = B) ’yi (kﬂ' + (41/7)77) + E2k- (3.87)

Step 3. Asymptotic behavior of ¢; ;. Using (3.86), we get

sinh(x) = —i(1 4 2r2¢ , + o(e3 1)),

(3.88)

cosh(x) = —2i(rey i, + %r‘?’a‘i’,k + o(fsik)).

Substituting (3.88) into (3.79), using that f(A; ) = 0, we get
) = 2i 2 Lo() 4o L -0 3.89
f( k) = 21T k + W + E + e = U. ( . )

The previous equation has one solution

2
€1

ek = —W(COS(I —7)5 —sin(l—7)3)+0 (;) +0 (pi) . (3.90)

From (3.90) we have in that case |[k|'="RA; x ~ 1 with

81 = _i:—f cos(1 — T)g
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Step 4. Asymptotic behavior of €3 j.
Using (3.87), we get

sinh(*) = i(l + 27"25%’,c + 0(5371@))’ (3.91)
=2

cosh(*) (reg,r + %T%%,k +o(e31.))-

Substituting (3.91) into (3.79), using that f(Asz) = 0, we get

. , 2a 1 €5
f(Aa k) = —2irea — ka;) +0(e5 ) + O (}7{:2) +0 (kfv’i> =0. (3.92)

The previous equation has one solution

2
_ . a/l 3 1 52)]{)
&2k = _Z% + 0(527k> + 0 (k2) + O <k17—> . (393)
We can write
2 — 1-2
/\271€ = 5 ,yi <k‘71' + (41/’Y)7T> — Z% + é2,k7 (3.94)

where &5 ;, = o(1/k). Substituting (3.94) into (3.79), we get

- 5—7 2 2
. ‘ ior’ Ta (1—2vy)ay €2k
for) = —2ires ) — = — — +0 :
(Az) 2 2i1=7(km)3-7 2k%m (3.95)

€2k 1
+0 (kj_T) +0(e3,)+ 0 (1«3) =0.

The previous equation gives

4702 1-2 €5 1
S ””)C“z'+0< 2.k >+0(62”“ )+0(e;,€)+0( )

4T (k)3T Ark?w k=7 k2-7 k3
(3.96)
From (3.96) we have in that case |k[>~"RAg ), ~ B2 with
4—7 2
ortTa ] T
62 = —47]_3777_ COb(l — 7)5

Now, setting Uy, = ()\?’ w — AUy, where Uy, is a normalized eigenfunction associated
to Ajr. We then have

I(AS . = A) " Ul

1A = A) ey = sup
UEH,U#£0 U
- 1A 5 —A) " Uklln
Ukl
Ukl

~ IO = AUkl
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Hence, by Lemma 3.5, we deduce that

0 o k> ifr=1,
A2 = A) " ey = ¢
kP-T if0 <7< 1.

So that, the semigroup e** is not exponentially stable. Thus the proof is complete.
O

4. Polynomial stability (for w # 0)

To prove polynomial decay, we use the following theorem.

Theorem 4.1 ( [9]). Assume that A is the generator of a strongly continuous
semigroup of contractions (e'4)¢>o on a Hilbert space X. If iR C o(A). Then for
a fized I > 0 the following conditions are equivalent

1) sup [|(is T — A) | zx) = O(Is]").
selR

C
2) e Ul < F||U0||D(A) Vit >0, Uy € D(A), for some C > 0.
1

Our main result is the following.

Theorem 4.2. The semigroup S(t), associated with system (P') is polynomially
stable, i.e., there exists a constant C > 0 such that

E(t) = |S4(U0]Z < —5

D)

Proof. In section 3, we have proved that the first condition in Theorem 4.1 is
satisfied. Now,we need to show that

sup i — A) 7Yy < oo, (4.1)

[Al=1

where | = 3 — 7. We establish (4.1) by contradiction. So, if (4.1) is false, then there
exist sequences (\,), C IR and U,, = (un, Un, Un, On, 9 ) € D(A) satistying

el

[Unlle =1 ¥n=>0, (4.2)
nh_{glo [An| = o0 (4.3)

and
hm M| (GA T — AU, || — 0, (4.4)

which implies that

A (idu— @) = g1 — 0 in WL(0,1),

N (idd — (a(z)ug)y + av) = g2 — 0 in L2(0,1),

A(ixv—10) = g3 = 0in H} ((0,1), (4.5)
A

AN (idg

iAD — (a(2)vy)s + au) = g4 — 0 in L%(0,1),

ido + (s2 +w)p —a(1)9(s)) = g5 — 0 in L?(—o0, +00).
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For simplification, we denote A,, by A, Uy, = (tn, Un, Uy Ty 00) by U = (u, @, v, 0, )
and H,, = (91n7g2n193nvg4n795n) = )\il(z)\nI_A)Un by G, = (91792793394795)~ We
will prove that |U|l = o(1) as a contradiction with (4.2). Our proof is divided
into several steps.

eStep 1. Taking the inner product of A (iA] — A)U with U, we get

NI, — (AU, Uy = A3 (46)
Using (3.12), we get
e 2 2 o(1)
C/_ (% 4+ w)|e(9)|* ds = —R(AU,U) = U (4.7)

Now, from (4.5)5, we obtain

w(1)9(s) = (A +¢2 +w)p — 95)\(l§). (4.8)

By multiplying (4.8) by (i\ + ¢2 4+ w)~2[s|, we get
(i + 62 + ) 2] = A+ 52+ w) " le — i3+ 62+ )2 B (49)

Hence, by taking absolute values of both sides of (4.9), integrating over the interval
] — 00, +00[ with respect to the variable ¢ and applying Cauchy-Schwartz inequality,
we obtain

Rla(1)] < V2P </+Oo <2<p|2d§)é + 2% (/:o g95(s)|? dc)é , (4.10)

o _
where

|1 — 27 ™ , (27-5)
(27+3) ||1)\‘*‘W| T,

4 |Sin Tﬂ'

R = ’/_:O(MJr<2 + w) 2[s]9(s) dc’ =

+oo %
"o (/ (N +¢? +w>‘2d<) = ("IN + w1,

— 0o

1
+oo 2 N 1/2
_ 2 —4 12 _ 1 _5
o= ([Tt tide) = (Fi -+l

— 00

Thus, by using the inequality 2PQ < P2 + Q2% P > 0,Q > 0, again, we get

R2|a(1)* < 2P? (/

— 00

Cevaeta) +a ([ mora). @

We deduce that

AP = o2 2 (1.12)

Then

()| = —%- (4.13)
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So, from (4.5)1, we find

v |, (1) o(1)
i N D (4.14)

u(1)] =

Since U € D(A) and using the boundary conditions (3.10)3, (4.14) and (4.7), we
obtain

a(tua ()] = 21 (4.15)
A 2

eStep 2. Now we use the classical multiplier method. Let us introduce the following
notation
T,(z) = [Va(z)ve (z)]* + [3(

For simplification, we set g1 = 5, 2 =3, §3 =51, a =5t 5 = 55+

Lemma 4.1. We have that

/ [((ata) ~ a'(@)) + Za@)) ol + (1 - T2 fi(a)] do

1 1
+2a§R/ UV, dx + a%% uv dx (4.16)
0 0

E
o

= [xIv}(l) + %[a@)vmﬁ](l) + R,

where

1 1 1 1
Rzm/ 2G4Ts d:c+28%/ ©5Gs, dx+%/ 5§da:+@/ Gavda.
0 0 2 0 2 0

Proof. To get (4.16), let us multiply the equation (4.5)4 by 27, Integrating on
(0,1) we obtain

1 1 1 L
i)\/ VXV, dx — / (a(2)vg) 20, dx + a/ TUD, dr = / J4xT, dx
0 0 0 0

or

1 1 1 1
—/ vz (idvy) do — / x(a(x)vg) Ty d + a/ TUT, dx = / 41U, d.
0 0 0 0
Since iA\v, = v, + g3, taking the real part in the above equality, we get

1t d 1t d
—5/0 mdx|v|2dx—|1—2/o ma(x)@|vx|2dlm
f[xa(:c)|vz|2](1)+/ a(w)|vx|2d$+a§}%/ 2uv, dz
1 0 1 0
:5R/ ﬁx§3mdx+5ﬁ/ a2V dx.
0 0

Performing an integration by parts we obtain

/ [V a(z)vs|* + [5(2)|?] da — / za' (x)|v, ()| do + 2a3?/ TUT, dx
0 0 0
= [z(|Va(@)ve|* + [5(2)]*)]5 + R,

(4.17)
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where

1 1
0 0

Multiplying (4.5)4 by T and integrating over (0,1) and using integration by parts
we get

1 1 1 1 1
/ a(x)|ve [Pdr — / |52dz — [a(z)v, D] + a/ uvdxr = / 0gs dx +/ gavdx.
0 0 0 0 0

(4.18)
Multiplying (4.18) by m,/2 and summing with (4.17) we get
1
Mg Mg\~
| (o) =@ + at@len + (1 = o) Pl
1 1
—|—2a§R/ TUT, dx + a@ uv dx (4.19)
0 2 Jo
= [xIv}é + %[a(m)vmﬁ]}) +R
with
R=R,+ Ry
and
me [ me [
Ry = —a/ gz dr + == [ gsvdx
2 Jo 2 Jo
O
We have [a(z)v,0]f = 0 and [2Z,]§ = a(1)lvg(1)[*.  Since [|0]r2(0,1),
v/ a(2)vz | £2(0,1) are bounded, we have from (4.19):
a()|v.(V)]> < C. (4.20)
By eliminating @ and ¢ from system (4.5) we obtain
N+ (a(z)uy), —av = fin L(0,1), (4.21)
Mo+ (a(x)v,), — au = g in L*(0,1), (4.22)
where
|92 +idgy B o(1)
[ fllL2(0,1) = N =T
2o (4.23)
9l z20.1) = ‘ g4 +iAgs _ o(1)
7 Al oy AN

Next we multiply (4.21) by v and (4.22) by @, then add the resulting equations.
This yields

/|v|2d:cfa/ lul? dx — Rlav,a §R/ Z)\uvdx+§R/ IAVT dx
+8‘E/ gvdx—%/ Jaudz.

(4.24)
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Then

1 1 1
a/ lv|* dz = a/ |u|? dz — R[av,a)} + §R/ (1AG1 + G2)vdx
0 0 0 (4.25)

1
—§R/ (iAgs + ga)u dz.
0
Thus, applying Cauchy-Schwarz’s and Young’s inequalities, using (4.14) and (4.20)
we obtain

1 1
A2 [ wlPde =A% [ |ulfdz+ _o) (4.26)
A

I—(1-7)
0 0 —5 1

Lemma 4.2. We have that

/01 [((a(m) —zd(2)) + %a(m)) |2 + (1 - mT) |ﬂ(:c)|2} dz

1 1
—|—20z§R/ TUUy dx—!—a%/ v dx (4.27)
0 2 Jo
= [eZ,]} + St [a(@)u,a + R,
where
Tu(z) = |V a(x)u, (2)[* + |a(z)[?
and

1 I m. 1 m. [
R = 2§R/ TGolUy, dr + 2§R/ UGy, dr + —= / gy dor + —= / goudzx.
0 0 2 Jo 2 Jo

Proof. To get (4.27), let us multiply the equation (4.5)3 by 2%, Integrating on
(0,1) we obtain

1 1 1 L
i)\/ WUy dz — / (a(z)uy)zrU, do + a/ VITU, dr = / GoXUy dx
0 0 0 0

or

1 1 1 1
— / az(idug) de — / z(a(x)uy) Uy do + a/ VXU, dT = / GoXTUy, dx.
0 0 0 0

Since iA\u, = u, + f1, taking the real part in the above equality results in

—1/1xdﬂ|2dx+1/1xa(x)d|u | dr — [za(x)|u |2]1+/1a(x)u ? dx
2 )y dx 2 Jo do'™" oh o 0 *

1
—I—a%/ VXU, dx

0

= 9?/01 g, dr + %/01 G220y dx.
Performing an integration by parts we get
/OIHMWF + |a(x)]?) do — /01 za' (x)|uy ()| do + 204%/01 VU, d
= [z(Val@)uz|? + a(2)*)]s + R,

(4.28)
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where . )
R, = 2§R/ TGol, dr + 2§R/ rUg;, dx.
0 0

Multiplying (4.5)2 by @ and integrating over (0, 1) and using integration by parts
we get

1 1 1 1 1
/ a(x)|uy|*dz — / |a]2dx — [a(x)u 7]y + a/ vudr = / gy dx + / goudz.
0 0 0 0 0

(4.29)
Multiplying (4.29) by m,/2 and summing with (4.28) we get
1
| (ata) = a'@) + T a)ual + (1 - B ate) ) de
0
1 e [
—&—204?]?/ VT Uy, dx—i—oz—a/ v dx (4.30)
0 2 Jo
= [eZ,] + St [a(@)us + R
with
R=Ri+ Ry
and
mg ! = Mmq ! ~
Ry = 7/ ugy dx + 7/ goudzx.
0 0
[

eStep 3. We have [2Z,]} = a(1)]u(1)]? + |2(1)|? and [a(x)u,a) = a(1)u, (1)u(1).
By definition of m,, we have

(2 —my)a < 2(a—zd') + mga.

This, together with (4.30), gives

1
_ o(1)
| e+ ar = 25 (431)
It follows from (4.26) and (4.31) that
1
/ 5> dx — 0. (4.32)
0
Finally, from (4.18) and (4.32), we obtain that
1
/ a(x)|vg|* dz — 0. (4.33)
0
Since w > 0, we have
2 L[, 2
ol ey < 5 [ (@@l ds >0, (131

Combining (4.31), (4.32),(4.33) and (4.34), we obtain that
U2 — 0. (4.35)
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This is a contradiction with the assymption that |U||y = 1.

Moreover the decay rate is optimal. In fact for the case a(z) = 27, € [0, 2, the

decay rate is consistent with the asymptotic expansion of eigenvalues which shows
a behavior of the real part like k=3~7).

O

References

[1]

[9]

[10]

Z. Achouri, N. Amroun and A. Benaissa, The Fuler-Bernoulli beam equation
with boundary dissipation of fractional derivative type. Math., Method. Appl.
Sci., 2017, 40(11), 3837—-3854.

M. Akil, M. Ghader and A. Wehbe, The influence of the coefficients of a system
of wave equations coupled by wvelocities on its stabilization, SeMA J., 2021,
78(3), 287-333.

F. Alabau-Boussouira, P. Cannarsa and G. Leugering, Control and stabilization
of degenerate wave equations, SIAM J.Controle Optim, 2017, 555(3), 1-36.

K. Ammari, F. Hassine and L. Robbiano, Stabilization for Some Fractional-
Evolution Systems, SpringerBriefs Math. Springer, Cham, 2022.

K. Ammari, F. Hassine and L. Robbiano, Fractional-feedback stabilization for a
class of evolution systems, J. Differential Equations, 2020, 268(10), 5751-5791.

K. Ammari, F. Hassine and L. Robbiano, Stabilization of fractional evolution
systems with memory, J. Evol. Equ., 2021, 21(1), 831-844.

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-
parameter semigroups, Trans. Am. Math. Soc., 1988, 306, 837-852.

A. Benaissa, C. Aichi, Energy decay for a degenerate wave equation under
fractional derivative controls, Filomat, 2018, 32(17), 6045-6072.

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and oper-
ator semigroups, Math. Ann., 2010, 347(2), 455-478.

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class
of degenerate parabolic operators, SIAM J. Control Optim., 2008, 47(1), 1-19.
(electronic), 2006.

J. U. Choi and R. C. Maccamy, Fractional order Volterra equations with appli-
cations to elasticity, J. Math. Anal. Appl., 1989, 139, 448-464.

M. Fotouhi and L. Salimi, Null controllability of degenerate/singular parabolic
equations, J. Dyn. Control Syst., 2012, 18(4), 573-602.

F. Huang, Characteristic conditions for exponential stability of linear dynamical
systems in Hilbert spaces, Ann. Differ. Equ., 1985, 1, 43-55.

M. Kerdache, M. Kesri, A. Benaissa, Fractional boundary stabilization for a
coupled system of wave equations, Ann. Univ. Ferrara Sez. VII Sci. Mat., 2021,
67(1), 121-148.

M. Koumaiha, Analyse Numérique pour les E’quations de Hamilton-Jacobi sur
Réseaux et Controlabilité Stabilité Indirecte d’un Systéme D’équations des On-
des 1D, PhD thesis, Université Paris est, 2017.

V. Komornik, Fxact Controllability and Stabilization: The Multiplier Method,
Wiley-Masson Series Research in Applied Mathematics, Wiley, 1995.



1770

R. Benzaid & A. Benaissa

[17]

[18]

[19]

N. N. Lebedev, Special Functions and their Applications, Dover Publications,
New York, 1972.

Z. Liu and B. Rao, Frequency domain approach for the polynomial stability of a
system of partially damped wave equations, J. Math. Anal. Appl., 2007, 335(2),
860-881.

B. Mbodje, Wave energy decay under fractional derivative controls, IMA J.
Math. Contr. Inf., 2006, 23, 237-257.

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differen-
tial Equations, Springer Verlag, New York, 1983.

J. Pruss, On the spectrum of CO-semigroups, Transactions of the American
Mathematical Society, 1984, 284(2), 847-857.

H. Zerkouk, C. Aichi and A. Benaissa, On the stability of a degenerate wave
equation under fractional feedbacks acting on the degenerate boundary, J. Dyn.
Control Syst., 2022, 28(3), 601-633.



	Introduction
	Preliminary results
	Well-posedness and strong stability
	Augmented model
	Strong stability of the system
	Optimal condition for strong stability of the system in the case a(x)=x
	Lack of exponential stability

	Polynomial stability (for =0)

