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1. Introduction

Fractional differential equations have garnered significant attention owing to their
widespread utility across diverse domains, including but not limited to fluid me-
chanics, chemical physics, electronic networks, dynamic system control theory, fluid
dynamics, economics, and various other fields with broad and multifaceted applica-
tions, see Book [3, 10,12].

Scholars have shown a preference for the oscillation theory of integral order
functional differential equations, recognizing its vital theoretical importance and
practical significance, which has led to substantial advancements in this field, see
classic Book [1, 2, 4, 6].

In recent studies, Duan et al. [7], Harikrishnan et al. [9], Raheem et al. [13],
Zhou et al. [17] and Feng et al. [5] have investigated oscillation and forced oscillation
characteristics for fractional-order delay differential equations. The nonoscillatory
theory for fractional differential equations has been further discussed by scholars
including Zhou et al. [16], Sun et al. [14] and Grace et al. [8]. Nonetheless, there
has been limited exploration into the existence of oscillatory solutions in fractional
functional differential equations that involve distributed delays. We will now address
this issue in the following discussion.

In this paper, we study the existence of oscillatory solutions for the fractional
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delay differential equations with forced term

Dα
t [r(t)Φ(x′(t))] +

m∑
i=1

fi(t, x(gi(t))) = q(t), t ≥ t0, (1.1)

where Dα
t is Liouville fractional derivative of order α ≥ 0 on the half-axis, r ∈

C
(
[t0,∞), R+), q, gi ∈ C

(
[t0,∞), R), fi ∈ C

(
[t0,∞)×R,R), and gi(t) ≤ t, lim

t→∞
gi(t)

=∞, i = 1, 2, · · · ,m,Φ(u) is continuously increasing real function with respect to u
defined on R, and Φ−1(u) satisfies the local Lipschitz condition.

2. Preliminaries

In this section, we introduce preliminary details that will be used throughout this
paper.

Definition 2.1. A solution of Equation 1.1 is a function x(t) defined on [T,∞) such
that x(t) and r(t)Φ(x′(t)) exist on [t1,∞) and equation 1.1 holds for all t1 > T .
Such a solution is said to be oscillatory if it has a sequence of zeros tending to
infinity. Otherwise, it is said to be nonoscillatory.

Definition 2.2. [10] (Liouville fractional integrals on the half-axis) The Liouville
fractional derivative on the half-axis is defined by

D−αt f(t) =
1

Γ(α)

∫ ∞
t

(s− t)α−1f(s)ds,

where Γ(α) =

∫ +∞

0

tα−1e−tdt, t ∈ R andα ∈ [0,∞).

Definition 2.3. [10] (Liouville fractional derivatives on the half-axis) The Liouville
fractional derivative on the half-axis is defined by

Dα
t f(t) =

dn

dtn
(D
−(n−α)
t f(t)) =

1

Γ(n− α)

dn

dtn

∫ ∞
t

(s− t)n−α−1f(s)ds,

where n = [α] + 1, α ∈ [0,∞), [α] denotes the integer part of α and t ∈ R. In
particular, if α = n ∈ N , thenDn

t f(t) = f (n)(t), where f (n)(t) is the usual derivative
of f(t) of order n.

Property 2.1. [10] For α > 0, we have

Dα
t (D−αt f)(t) = f(t).

We will prove a general result about equation 1.1 on the existence of oscillatory
solutions.

Here, for any σ ≥ t0, let T = min
1≤i≤m

inf
t≥σ

gi(t). For a constant γ > 0, pi(t)γ =

max
|x|≤γ

1

γ
|fi(t, x)|, t ≥ t0, i = 1, 2, · · · ,m, Lγ denote the local lipischitz constants of

functions Φ−1(u).
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3. The main results

Lemma 3.1 ( [15]). Let S be a locally convex topological space. For any nonempty
compact convex set K ⊂ S, any continuous map F : K → K has a fixed point.

Theorem 3.1. Assume there exists η, γ > 0 such that r(t) > η,

1

r(t)

∫ ∞
t

sα−1q(s)ds is integrable on [t0,∞), (3.1)

1

r(t)

∫ ∞
t

sα−1
m∑
i=1

pi(s)γds is integrable on [t0,∞), (3.2)

moreover, there exist two increasing divergent sequences {tn} and {sn}, such that∫ ∞
tn

Φ−1

(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u) + γ

m∑
i=1

pi(u)γ)du

)
ds < 0, (3.3)

∫ ∞
sn

Φ−1

(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u)− γ
m∑
i=1

pi(u)γ)du

)
ds > 0, (3.4)

then equation (1.1) has an oscillatory solution x(t) defined on [t0,∞) with |x| ≤ γ,
and lim

t→∞
x(t) = 0.

Proof. The proof is based on an application of the well known Schauder-Tychonoff
fixed point theorem.

From (3.1) and (3.2), for any γ > 0 we can choose a large number Tγ , such that
for all t ≥ Tγ ≥ T ,∫ ∞

t

Φ−1

(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u) + γ

m∑
i=1

pi(u)γ)du

)
ds ≤ γ, (3.5)

∫ ∞
t

Φ−1

(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u)− γ
m∑
i=1

pi(u)γ)du

)
ds ≥ −γ. (3.6)

Let C[T,∞) denote the locally convex space of all continuous functions with topol-
ogy of uniform convergence on compact subsets of [T,∞), let S = {x ∈ C[T,∞),
|x(t)| ≤ γ}, clearly, S is a close convex subset of C[T,∞).

Introduce an operator F by the following formula,

(Fx)(t)

=


∫ ∞
t

Φ−1

(
1

Γ(α)r(t)

∫ ∞
s

(u− t)α−1(q(u)−
m∑
i=1

fi(u, x(gi(u))))du

)
ds, t > Tγ ,

(Fx)(Tγ), T ≤ t ≤ Tγ .

It is easy to see that for any x ∈ S, (Fx)(t) is well defined on [T,∞) continuously.
From (3.5) and (3.6) we obtain

(Fx)(t) ≤
∫ ∞
t

Φ−1

(
1

Γ(α)r(t)

∫ ∞
s

(u− t)α−1(q(u) +

m∑
i=1

pi(u)γ)du

)
ds
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≤ γ, t ≥ T,

and

(Fx)(t) ≥
∫ ∞
t

Φ−1

(
1

Γ(α)r(t)

∫ ∞
s

(u− t)α−1(q(u)−
m∑
i=1

pi(u)γ)du

)
ds

≥ −γ, t ≥ T.

Hence |(Fx)(t)| ≤ γ, thus we have FS ⊂ S and Fx is uniformly bounded on S.
Let{xn}∞n=1 ∈ S be any sequence and x0 ∈ S with lim

n→∞
xn = x0. Let T1 be a

large constant with T1 > T , for any ε > 0 that∫ ∞
T1

1

Γ(α)r(s)

∫ ∞
s

(
(u− t)α−1

m∑
i=1

pi(u)γdu

)
ds <

ε

3γLγ
. (3.7)

From the compactness of the domain of fi, there exists a large N(ε) > 0 and a
constant δ(ε) > 0, let t ∈ [T, T1] and n ≥ N when |xn − x0| < δ(ε),

max
1≤i≤m

|fi(t, xn(gi(t)))− fi(t, x0(gi(t)))| ≤
ε

3LγmM
, (3.8)

where M =

∫ T1

T

(s− T )α−1

Γ(α)r(s)
ds. By the virtue of (3.1)-(3.8), we have that for any

t ≥ T and |xn − x0| < δ,

|(Fxn)(t)− (Fx0)(t)|

=|
∫ ∞
t

Φ−1

(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u)−
m∑
i=1

fi(u, xn(gi(u)))du

)
ds

−
∫ ∞
t

Φ−1

(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u)−
m∑
i=1

fi(u, x0(gi(u))))du

)
ds|

≤
∫ ∞
t

(
Lγ

Γ(α)r(s)

∫ ∞
s

(u− t)α−1
m∑
i=1

|fi(u, xn(gi(u)))− fi(u, x0(gi(u)))|du

)
ds

≤
∫ T1

T

(
Lγ

Γ(α)r(s)

∫ ∞
s

(u− t)α−1
m∑
i=1

|fi(u, xn(gi(u)))− fi(u, x0(gi(u)))|du

)
ds

+

∫ ∞
T1

(
Lγ

Γ(α)r(s)

∫ ∞
s

(u− t)α−1
m∑
i=1

|fi(u, xn(gi(u)))− fi(u, x0(gi(u)))|du

)
ds

<
ε

3
+

2ε

3
=ε,

the continuity of F on S is proved.
Moreover, for all t2, t1 > T,

(Fx)(t2)− (Fx)(t1)

=

∫ t2

t1

Φ−1

(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u)−
m∑
i=1

fi(u, x(gi(u))))du

)
ds
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≤
∫ t2

t1

Φ−1

(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u) +

m∑
i=1

pi(u)γ)du

)
ds

≤K1(t2 − t1),

where K1 = sup
t≥t0

Φ−1(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u) +

m∑
i=1

pi(u)γ)du).

(Fx)(t2)− (Fx)(t1)

=

∫ t2

t1

Φ−1

(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u)−
m∑
i=1

fi(u, x(gi(u))))du

)
ds

≥
∫ t2

t1

Φ−1

(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u)−
m∑
i=1

pi(u)γ)du

)
ds

≥K2(t2 − t1),

where K2 = inf
t≥t0

Φ−1

(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u)−
m∑
i=1

pi(u)γ)du

)
, thus,

|(Fx)(t2)− (Fx)(t1)| ≤ K|t2 − t1|,

where K = max{|K1|, |K2|}, this implies Fx is equicontinuous, hence by the Ascoli-
Arzela Theorem the operator is a completely continous on S. By Lemma, there
exists x̃ ∈ S satisfying x̃(t) = (Fx̃)(t),

x̃(t) =

∫ ∞
t

Φ−1

(
1

Γ(α)r(t)

∫ ∞
s

(u− t)α−1(q(s)−
m∑
i=1

fi(s, x̃(gi(s)))ds

)
,

r(t)Φ(x̃′(t)) =
1

Γ(α)

∫ ∞
s

(u− t)α−1(q(s)−
m∑
i=1

fi(s, x̃(gi(s)))ds,

from Property 2.1, it is easy to see that x̃(t) is a solution of Equation 1.1.
On the other hand, from (3.3) and (3.4), we find

x̃(tn) ≤
∫ ∞
tn

Φ−1

(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u) + γ

m∑
i=1

pi(u)γ)du

)
ds < 0,

and

x̃(sn) ≥
∫ ∞
sn

Φ−1

(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u)− γ
m∑
i=1

pi(u)γ)du

)
ds > 0,

which implies that x̃(t) is a bounded oscillatory solution of 1.1 and limt→∞ x̃(t) = 0.
The proof is complete.

Corollary 3.1. Assume (3.1) and (3.2) of Theorem hold, and specially, Φ(u) =
uλ, λ ≥ 1 is the ratio of two positive odd integers, there exist two increasing divergent
sequences {tn} and {sn}, such that∫ ∞

tn

(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u) + γ

m∑
i=1

pi(u)γ)du

) 1
λ

ds < 0,
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and ∫ ∞
sn

(
1

Γ(α)r(s)

∫ ∞
s

(u− t)α−1(q(u)− γ
m∑
i=1

pi(u)γ)du

) 1
λ

ds > 0.

Then (1.1) has an oscillatory solution x(t) defined on [t0,∞) with |x| ≤ γ, and
lim
t→∞

x(t) = 0.

4. Remark

We consider the existence of oscillatory solutions of equation 1.1 for any order α > 0.
In particular, for α = 1, equation 1.1 reduces to equation 1.1 of reference [11].

References

[1] R. P. Agarwal, L. Berezansky, E. Braverman and A. Domoshnitsky, Nonoscil-
lation Theory of Functional Differential Equations with Applications, Springer,
New York, 2012.

[2] R. P. Agarwal, M. Bohner and W. Li, Nonoscillation and Oscillation: Theory
for Functional Differential Equations, Marcel Dekker Inc., New York, 2004.

[3] K. Diethelm, The Analysis of Fractional Differential Equations, Springer,
Berlin, 2010.

[4] L. H. Erbe, Q. Kong and B. Zhang, Oscillation Theory for Functional Differ-
ential Equations, Marcel Dekker Inc., New York, 1995.

[5] L. Feng and Z. Han, Oscillation Behabior of solution of impulsive fractional
differential equations, Journal of Applied Analysis and Computation, 2020,
10(1), 223–233.

[6] K. Gopalsamy, Stability and Oscillation in Delay Differential Equations of Pop-
ulation Dynamics, Kluwer Academic, Boston, 1992.

[7] S. R. Grace, On the oscillatory behavior of solutions of nonlinear fractional
differential equations, Applied Mathematics and Computation, 2015, 266, 259–
266.

[8] S. R. Grace, J. R. Graef and E. Tun, On the boundedness of nonoscillatory
solutions of certain fractional differential equations with positive and negative
terms, Applied Mathematics Letters, 2019, 97, 114–120.

[9] S. Harikrishnan, P. Prakash and J. J. Nieto, Forced oscillation of solutions of
a nonlinear fractional partial differential equation, Applied Mathematics and
Computation, 2015, 254, 14–19.

[10] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of
Fractional Differential Equations, in: North-Holland Mathematics Studies, vol.
204. Elsevier Science B.V., Amsterdam, 2006.

[11] Y. Liu, J. Zhang and J. Yan, Existence of oscillatory solutions of second order
delay differential equations, Journal of Computational and Applied Mathemat-
ics, 2015, 277, 17–22.

[12] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego,
1999.



Existence of oscillatory solutions 1777

[13] A. Raheem and M. Maqbul, Oscillation criteria for impulsive partial fractional
differential equations, Computers and Mathematics with Applications, 2017,
73, 1781–1788.

[14] Y. Sun and Y. Zhao, Oscillation and asymptotic behavior of third-order non-
linear neutral delay differential equations with distuibuted debiating arguments,
Journal of Applied Analysis and Computation, 2018, 8, 1796–1810.

[15] D. Xia, Z. Wu, S. Yan and W. Shu, Real Variable Function and Functional
Analysis, Higher Education Press, Beijing, (in Chinese), 1978.

[16] Y. Zhou, B. Ahmad and A. Alsaedi, Existence of nonoscillatory solutions for
fractional neutral differential equations, Applied Mathematics Letters, 2017,
72, 70–74.

[17] Y. Zhou, B. Ahmad, F. Chen, et al., Oscillation for fractional partial differen-
tial equations, Bulletin of the Malaysian Mathematical Sciences Society, 2019,
42(2), 449–465.


	Introduction
	 Preliminaries
	 The main results
	Remark 

